
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2009

Web query recommendation via sequential query
prediction
Qi HE
Nanyang Technological University

Daxin JIANG
Microsoft Research Asia

Zhen LIAO
Microsoft Research Asia

Steven C. H. HOI
Singapore Management University, CHHOI@smu.edu.sg

Kuiyu CHANG
Nanyang Technological University

See next page for additional authors

DOI: https://doi.org/10.1109/ICDE.2009.71

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
HE, Qi; JIANG, Daxin; LIAO, Zhen; HOI, Steven C. H.; CHANG, Kuiyu; LIM, Ee Peng; and LI, Hang. Web query recommendation
via sequential query prediction. (2009). 25th IEEE International Conference on Data Engineering ICDE 2009: Proceedings, 29 March-2
April, Shanghai, China. 1443-1454. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/328

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICDE.2009.71
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Qi HE, Daxin JIANG, Zhen LIAO, Steven C. H. HOI, Kuiyu CHANG, Ee Peng LIM, and Hang LI

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/328

https://ink.library.smu.edu.sg/sis_research/328?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220967552

Web Query Recommendation via Sequential Query Prediction

Conference Paper · March 2009

DOI: 10.1109/ICDE.2009.71 · Source: DBLP

CITATIONS

66

READS

174

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Recommender systems View project

ABECOS: Agent Based E-Commerce System View project

Zhang qi

Dalian University of Technology

21 PUBLICATIONS 1,784 CITATIONS

SEE PROFILE

Daxin Jiang

Microsoft

31 PUBLICATIONS 1,869 CITATIONS

SEE PROFILE

Zhen Liao

Nankai University

8 PUBLICATIONS 163 CITATIONS

SEE PROFILE

Steven C. H. Hoi

Nanyang Technological University

181 PUBLICATIONS 4,624 CITATIONS

SEE PROFILE

All content following this page was uploaded by Steven C. H. Hoi on 16 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220967552_Web_Query_Recommendation_via_Sequential_Query_Prediction?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220967552_Web_Query_Recommendation_via_Sequential_Query_Prediction?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Recommender-systems-7?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ABECOS-Agent-Based-E-Commerce-System?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang_Qi27?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang_Qi27?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Dalian_University_of_Technology?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang_Qi27?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daxin_Jiang?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daxin_Jiang?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Microsoft?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daxin_Jiang?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhen_Liao2?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhen_Liao2?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nankai_University?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhen_Liao2?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steven_Hoi?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steven_Hoi?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanyang_Technological_University?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steven_Hoi?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steven_Hoi?enrichId=rgreq-495d90db57fa80094e1f87326fc88cad-XXX&enrichSource=Y292ZXJQYWdlOzIyMDk2NzU1MjtBUzo5NzM2MzU2MTU0OTgyNUAxNDAwMjI0NjkwMjQ2&el=1_x_10&_esc=publicationCoverPdf

1

Web Query Recommendation via Sequential Query

Prediction
Qi He †1, Daxin Jiang §2, Zhen Liao §3, Steven C.H. Hoi †4, Kuiyu Chang †5, Ee-Peng Lim †6 , Hang Li §7

†School of Computer Engineering, Nanyang Technological University, Singapore 639798

{ 1
qihe,

5
kuiyu.chang}@pmail.ntu.edu.sg, { 4

CHHoi,
6
ASEPLim}@ntu.edu.sg

§Microsoft Research Asia, Beijing, China 100080

{ 2
djiang,

3
v-zhliao,

7
hangli}@microsoft.com

Abstract— Web query recommendation has long been con-
sidered a key feature of search engines. Building a good Web
query recommendation system, however, is very difficult due
to the fundamental challenge of predicting users’ search intent,
especially given the limited user context information. In this pa-
per, we propose a novel “sequential query prediction” approach
that tries to grasp a user’s search intent based on his/her past
query sequence and its resemblance to historical query sequence
models mined from massive search engine logs. Different query
sequence models were examined, including the naive variable-
length N-gram model, Variable Memory Markov (VMM) model,
and our proposed Mixture Variable Memory Markov (MVMM)
model. Extensive experiments were conducted to benchmark our
sequence prediction algorithms against two conventional pair-
wise approaches on large-scale search logs extracted from a
commercial search engine. Results show that the sequence-wise
approaches significantly outperform the conventional pair-wise
ones in terms of prediction accuracy. In particular, our MVMM
approach, consistently leads the pack, making it an effective and
practical approach towards Web query recommendation.

I. INTRODUCTION

A. Background and Motivation

Web query recommendation is an essential ingredient for a

user-oriented search engine. A common fact in Web search is

that a user often needs multiple iterations of query refinement

to find the desired results from a search engine. This is par-

tially because search queries are often extremely concise (2-3

words on average [15], [37]), and therefore do not adequately

and/or distinctively convey users’ search intent to the search

engine. Query recommendation1 is thus a promising direction

for improving the usability of Web search engines. The explicit

task of query recommendation is to help users formulate

queries that better represent their search intent during Web

search interactions. In addition, query recommendation can po-

tentially be applied unintrusively to existing Web applications

such as search relevance enhancement, online advertising,

search result presentation, personalized search, and many other

Web applications.

Some recent work has used search engine logs to mine “wis-

dom of the crowd” for query recommendation. For example,

in [10], [13], [17], the authors used queries that are adjacent

or co-occur in the same query sessions as candidates for

1We use “query recommendation” to refer to “Web query recommendation”.

recommendation. Although those methods can often provide

meaningful recommendations, they only focused on mining

the pair-wise relations among queries, i.e., predicting the

probability of the next user query based only on a single

preceding/past user query. In this paper, we argue that pair-

wise query relations may not sufficiently capture the user

context information that is represented by the past queries

issued by the same user. Accordingly, we propose a novel

sequential query prediction approach based on the following

intuitions.

First, the pair-wise approach is not sufficient to capture

the primary contextual information in a session. Previous

empirical studies [14], [32] have estimated the average length

of a query session to be 2 ∼ 3. For example, Jansen et al. [14]

investigated three main approaches in session segmentation

on the search logs of “www.Dogpile.com” and estimated the

average length of a query session to be 2.85, 2.31, and 2.31

respectively. In addition, it was shown that AltaVista users

got used to submitting slightly longer sessions. These studies

suggest that in many cases there are more than one query

submitted immediately preceding the current query. Therefore,

we need a more general approach not limited to pair-wise

relations, but instead is capable of capturing the context

information represented by a variable number of queries.

Second, many query sessions can only be correctly modeled

by treating the previous queries sequentially. In our empirical

study, we randomly picked up 20,000 query sessions from our

search log data and asked 30 labelers to manually classify

them to seven common types of search patterns proposed

in [26], [35]. Figure 1 shows the distribution of the search

patterns in our user study and Table I gives some example

for each type of the search patterns. From Table I, we see

Fig. 1. Distribution of seven types of query session patterns.

that at least three types of patterns, including Spelling change,

2

TABLE I

SOME SAMPLE SEARCH SEQUENCE PATTERNS.

search sequence pattern example

Spelling change goggle⇒ google

Parallel movement SMTP⇒ POP3

Generalization Washington mutual home loans⇒ home loans

Specialization O2⇒ O2 mobile ⇒ O2 mobile phones

Synonym substitution BAMC ⇒ Brooke Army Medical Center

Repeated query aim ⇒ myspace ⇒ myspace ⇒ photobucket

Others muzzle brake ⇒ shared calenders

Generalization, and Specialization, are directly related to the

order of queries in sessions. To adequately understand such

order-sensitive search patterns, which together account for

34.34% of all search patterns as shown in Figure 1, we clearly

need to model query sessions as sequences of queries instead

of bags or pairs of queries.

Third, looking up the context information may reduce the

ambiguity of queries and thus improve the accuracy of query

recommendation. Consider the following intuitive example:

suppose a user issued a “Java” query, it is hard to determine

whether this is about the Java language or Java island. How-

ever, if we know that one of the queries preceding “Java” is

“Indonesia”, then we can determine that the user is more likely

to be interested in Java island of Indonesia. In our empirical

study, we further quantitatively investigate the correlation

between the current query and its context using the entropy

measure. A lower entropy indicates a lower ambiguity of a

query given its context. For example, suppose the query “Java”

appears 100 times, following by “Sun Java” 60 times and

“Java island” 40 times, then the prediction entropy of “Java”

is 0.292. Now, suppose we are given the context “Indonesia”

before “Java”, and we observe “Java island” following the

sequence “Indonesia ⇒Java” 9 times and “Sun Java” only

once, then the entropy drops from 0.29 to 0.14. Figure 2 shows

the average prediction entropy of queries given various context

lengths (i.e., number of past queries). Not surprisingly, the

Fig. 2. Average prediction entropy versus context length.

curve drops dramatically when the length of context increases.

This observation confirms that the probability of each query

conditionally depends on the sequence of past queries as a

whole.

B. Overview of Our Approach and Contributions

Our sequence-based approach to query recommendation

consists of two phases. In the offline model learning phase,

2log base 10 is adopted through the paper.

we treat each session from the search log data as a sequence

of queries and build a probabilistic prediction model. In the

online query recommendation phase, we feed the observed

query context from a user to the prediction model and suggest

the top N (e.g. N = 5) queries with the highest prediction

scores as query recommendations.

In our approach, the online query recommendation phase is

straightforward, and the key issue is which model to choose

for the particular sequential query prediction problem. We

surveyed a wide range of statistical models and narrowed

down our choice to the family of Markov models and their

extensions. This is because Markov models are parametric

approaches to accurately estimate sequence distributions, and

have proven successful in modeling complex sequences in

the field of natural language processing and biological gene

sequence analysis. Among various Markov models and their

extensions, the N-gram model [8] is one of the fundamental

models. We focused on the N-gram and its variations in this

paper instead of other more complicated ones like the Hidden

Markov Model (HMM) [25], the Maximum Entropy Markov

Model (MeMM) [23], and the Conditional Random Field

(CRF) model [20] due to two considerations. First, for the

problem of sequential query prediction, we are only interested

in predicting the next query a user is likely to ask rather than

labeling/predicting an entire follow-up sequence of observa-

tions. Second, for our current formulation of sequential query

prediction, we can directly model queries or query sequences

as states, and do not yet assume them to be generated from

some hidden states.

We first examined the naive variable-length N-gram which

sticks to the maximum length context. To be specific, suppose

we observe a sequence of user input queries [q1, . . . , qi−1]
and we would like to predict the user’s next query qi, we will

search the training evidence of [q1, . . . , qi−1] from the fixed

i-gram model, where i varies over user inputs. Relying on the

full context has the problems of low coverage and over-fitting.

A variation of back-off N-gram [18], called the Variable Mem-

ory Markov (VMM) model [28], was then investigated. The

VMM models allow back-tracking along uncovered suffix con-

texts. For example, if a context [q1, . . . , qi−1] cannot be found

in the training data, the next shorter context [q2, . . . , qi−1] will

be checked recursively. In addition, the VMM models target

at determining a bound D on the maximum context length by

reducing the information redundancy.

Although our empirical studies showed that the naive N-

gram and VMM models are more effective than pair-wise

approaches, one challenge still remains: neither model can

adapt to the user input on the fly and dynamically determine

the optimal length of context used for query prediction. It is a

great challenge to determine how many queries in the context

we should use to yield the best prediction. On one hand,

looking at a small number of queries, e.g., only one preceding

query qi−1, will degenerate the model to a pair-wise approach

and thereby lose significant context information. On the other

hand, blindly incorporating a large number of queries, e.g.,

all observed and trainable queries in the context, may over-fit

the training data and also decrease the coverage of the model.

Although the VMM model is more flexible than the naive N-

3

gram model in the sense that it bounds the optimal length of

context from above, it is still non-trivial, if practical, to select

a universal upper bound D that will work well for all user

queries.

To address the above challenge, we propose a novel sequen-

tial probabilistic model, called the Mixture Variable Memory

Markov (MVMM) model. The basic idea consists of two steps.

In the training step, we learn multiple VMM models with

different context bounds. Then in the testing step, we construct

a mixture model to adapt to the test query sequence on-the-fly.

The parameters of the mixture model can be estimated by a

simple and effective Newton iteration method.

The contributions of this paper are summarized below: (1)

we propose a novel approach of sequential query prediction for

query recommendation; (2) we build a probabilistic framework

for sequential query prediction and develop a new sequential

probabilistic model, i.e., MVMM, for solving the query predic-

tion task; and (3) we conduct an empirical study over two pair-

wise approaches and three sequential prediction models on a

large-scale search log containing 1.1 billion unique queries and

2.5 billion sessions. The results show that sequential models

have superior performance in terms of prediction accuracy over

the baseline methods. Moreover, among the sequential models,

our proposed MVMM model achieves the best performance

in balancing the tradeoffs between prediction accuracy and

prediction coverage.

II. RELATED WORK

Traditional approaches to query recommendation usually

rely on user information such as explicit or implicit user

feedbacks [27], [22], [9], [36], user profiles [34], [6], and

sometimes with the help of semantic analysis via a thesaurus

[21]. Some other approaches attempt to understand a user

query by analyzing the retrieved search results via hit docu-

ment content analysis [31], snippets [29], or anchor texts [19].

Several recent work [7], [3], [2], [13], [10], [17] has mined

search engine log data for query understanding as well as

query recommendation. Compared to traditional methods, log-

mining approaches enjoy several advantages: (1) no user effort

is needed; (2) search log data contains rich user behavior

information complementary to web content information; and

(3) models constructed from massive log data are often statisti-

cally superior to those built from the relatively limited amount

of documents/snippets/anchor content.

In general, two types of information can be extracted from

search logs, i.e., click-through information [37], [3], [1] and

session information [13], [10], [17]. Both have been used for

query understanding.

Approaches based on click-through information assume two

queries to be related if they share many clicked URLs. The

related queries are usually grouped into clusters and used

for recommendations for each other. We call these methods

cluster-based approaches. For example, Beeferman et al. [3],

Wen et al. [37], and Baeza-Yates et al. [1] applied hierarchi-

cal, density-based, and k-means algorithms to obtain query

clusters, respectively. Although these methods can effectively

find similar queries, in query recommendation, it is more

interesting to recommend queries that a user may ask next

in the query context, rather than suggest queries to replace the

current query [5], except for very specialized cases such as

spelling correction (e.g., “do you mean ...”).

In the more related area of search session mining, two main

research problems have been tackled. The first is automatic

session extraction [14], [12], wherein Web search patterns

such as spelling change and specification have been used

to enhance session extraction [24], [26], [11]. Assuming

that query sessions have been reliably extracted, the second

research problem, which directly relates to our work, is to

predict a user query based on queries already entered in the

same session. Existing approaches extract session information

and use queries that are adjacent or co-occur in the same

sessions as recommendations for each other. For example,

Huang et al. [13] used frequently co-occurring query pairs

in the same session to recommend the next query. Fonseca et

al. [10] calculated the co-occurrence of queries and implicitly

used the order of queries for query expansion. Jones et al. [17]

considered frequent adjacent query pairs only for query sub-

stitution. We call these methods session-based approaches.

Our approach can also be classified into the session-based

category. However, our work has one fundamental difference

from all previous session-based approaches: while all previous

work focuses on pair-wise query relations and uses only a

single preceding query for query prediction, we consider a

variable number of preceding queries and effectively capture

more complex context information for query recommendation.

Moreover, our approach can automatically determine the op-

timal context length to be used for query prediction.

III. PRELIMINARY THEORY FOR SEQUENTIAL QUERY

PREDICTION

A. Notations and Problem Statement

Let Q be the set of all unique queries, and G and T be the

training and test set, respectively. Let Q∗ be the set of all query

sequences over Q, i.e., Q∗ = {s|s = [q1, . . . , ql], qi ∈ Q, 1 ≤
i ≤ l}, and S be the subset of query sequences extracted from

G for training purpose by some probabilistic model. In Markov

models, S is also the set of states. Note a special case of

query sequence s is an empty sequence e where the sequence

length l is 0. Let |Q| and |s| denote the cardinality of the

query set Q and the length of a query sequence s, respectively.

6 |s 6 | denotes the frequency of s in a collection. We define the

problem of sequential query prediction as follows.

Definition 1 (Sequential Query Prediction): Given a col-

lection of search logs G, the task of sequential query prediction

is to learn a probabilistic model P̂ which provides a probability

distribution of a user’s next query qi given a sequence of

preceding queries s = [q1, . . . , qi−1] raised by the user as the

context. In other words, given a context s ∈ Q∗ and a query

qi ∈ Q, the model needs to estimate P̂ (qi|s).
The problem of sequence prediction has been intensively

studied in the past years and numerous techniques have been

proposed. However, our task of query recommendation has

two unique characteristics compared to classical applications

of sequence prediction. First, unlike the general requirement of

4

generating a single item with the highest prediction accuracy,

what we need in query recommendation is a ranked list of

queries that have both high accuracy and coverage. Second,

in classical sequence prediction, the entire sequence is unseen

and to be predicted as a whole; while in query recommenda-

tion, we predict a user’s next query each time a user issues a

query to the search engine. Therefore, our prediction task is an

incremental process: after each round of user input, we have

a growing sequence of observed queries that are increasingly

reliable.

B. A Probabilistic Framework for Sequential Query Prediction

In this section, we introduce a probabilistic framework tai-

lored for sequential query prediction. Let P̂ be a probabilistic

model learned from the training query sequence data G. The

prediction performance of P̂ with respect to test data T can

be measured based on the average log-loss l(P̂ , T) rate:

l(P̂ , T) = − 1

|T |
∑

st∈T

1

|st|

|st|
∑

j=2

log P̂ (qj |[q1, . . . , qj−1]), (1)

which is intuitively the average of posterior query probabilities

over all test sequences st = [q1, . . . , qj] of length 2 or

larger. It is easy to see that the average log-loss function

is directly related to the sum of likelihood
∑

st∈T P̂ (st) =
∑

st∈T

∏|st|
j=2 P̂ (qj |[q1, . . . , qj−1]). Hence, minimizing the av-

erage log-loss function is equivalent to maximizing the likeli-

hood of the test data T 3.

The above log-loss measure can be interpreted within the

information theory framework. Suppose G and T are drawn

from the same unknown source distribution P , and let st ∈ T
be a sequence generating random variable (vector). Clearly, P
minimizes the mean log-loss rate over all models:

P = arg min
P̂

{−EP{log P̂ (st)}},

where E is the expectation operator. Since the true distribution

P is often unknown, the difference between P and the

estimated distribution P̂ from training data gives rise to what

is known as “redundancy” in information theory, which can

be measured by the Kullback-Leibler (KL) divergence:

DKL(P ||P̂) = EP {log P (st) − log P̂ (st)}.
The theoretical implication for our task of sequential query

prediction is thus as follows. We aim to uniformly minimize

the information redundancy across all possible generating se-

quence distributions in the search query logs via a probabilistic

model P̂ .

IV. MARKOV MODELS FOR SEQUENTIAL QUERY

PREDICTION

In this section, we first introduce two classical Markov

models, i.e., the naive variable-length N-gram model and

its extension, the VMM model. We then propose a novel

mixture VMM model to address the particular challenges in

the problem of sequential query prediction.

3The first query is assumed to be given, i.e. P̂ (q1) = 1, since it is
meaningless to make a recommendation before the user submits any query.

A. Variable-length N-gram Model

The N-gram model is a well-known technique widely used

in natural language process and genetic sequence analysis.

Moreover, Su et al. [33] have successfully applied the simple

N-gram models to predict the next user click action based on

the server logs. N-gram by definition is a sub-sequence of N
items extracted from any given sequence. The model built from

N-grams is also known the (N −1)-order Markov model, i.e.,

the current query depends only on the last N −1 queries. The

use of N-gram models for a general prediction is rather simple.

For a set of unique query sequences Q∗, an N-gram model

over Q∗ consists of a set of states S = {s|(s ∈ Q∗) ∧ (|s| =
N − 1)}. Given a sequence [q1, . . . , qi−1], an N-gram model

predicts qi using the previous N−1 states [qi−N+1, . . . , qi−1].
Learning for an N-gram model simply refers to estimating the

conditional probability distribution of P (qi|s) for each state

s ∈ S. Given the collection of search session data G, we can

easily learn an N-gram model via the Maximum Likelihood

Estimation approach.

However, selecting a universal N is rather difficult in prac-

tice, especially when the user could submit various number

of queries as the context. For sequential query prediction, we

actually train a series of N-gram models of various length.

If the user has submitted i − 1 past queries, an N-gram

model of N = i will be selected for prediction. We call

such a model variable-length N-gram4. By setting N to be

2, sequential query prediction via N-gram model degenerates

to the Adjacency pair-wise method.

Remark. Although the naive N-gram model has been

successfully used in language modeling, it has some serious

limitations when applied to our sequence query prediction task.

First, we have to train many N-gram models of various N , each

of which over Q has a size of the order |Q|N−1. In practice,

search logs over a time period could contain billions of queries,

which makes an N-gram model with a large N impractical.

Second, an N-gram model with a large N may severely over-

fit the training data, thereby yielding low prediction coverage,

i.e., training samples decreases exponentially with increasing

user contexts, as shown later in the experiment sections. On the

other end of the spectrum, an N-gram model with a small N
(i.e., N = 2, degenerated to Adjacency) loses too much context

information. Therefore, in practice, a compromise must be

made in selecting a suitable N -gram model, where N might

be less than the number of queries submitted by the user.

B. VMM Model

We consider the Variable Memory Markov (VMM)

Model [28] more suitable for the task of query prediction

than the naive N-gram model since it does not fix the length

of context to be the number of past test queries. Indeed, the

VMM model is a variation of back-off N-gram by bounding

the context length on a need basis and allowing partial matches

for uncovered context when applied to a test query. VMM has

been used successfully for general sequence prediction [4].

4We use “(naive) N-gram model” to refer to “variable-length N-gram
model” where no confusion will be caused.

5

A VMM learning algorithm can often achieve a bounded

redundancy, if its context length does not exceed D.

1) Learning VMM via Prediction Suffix Tree: In the follow-

ing, we introduce the Prediction Suffix Tree (PST) [28], [30]

algorithm to build a VMM, which enjoys decent time/space

complexity bounds5. In the original PST algorithm [28], up to

5 parameters must be tuned. For simplicity, we only tune the

ǫ parameter, which controls the PST growth rate and will be

introduced later.

We give a simple example for illustrating the PST al-

gorithm below. Given a set of query sessions for train-

ing as shown in Table II, Q = {q0, q1}, and the max-

TABLE II

SAMPLE SESSION TRAINING DATA.

s 6 |s 6 | s 6 |s 6 | s 6 |s 6 | s 6 |s 6 |
q1q0q0 3 q1q0q1 7 q0q0 78 q1q0 5
q0q1q0 1 q0q1q1 1 q1q1 3 q0 10

imum length of context D is 2 since the last query in

any query sequence has no prediction evidence. Therefore,

Q∗ = {q0q0, q0q1, q1q0, q1q1, q0, q1}. The VMM PST model

is learned in the following 3 stages:

(a) Extract a candidate suffix set S′ ⊂ Q∗ from the training

sequences. If the PST is D-bounded, all sequences in S′ have

lengths ≤ D. A user threshold could be set to filter those

infrequent training sequences. For each candidate s ∈ S′,

we associate the conditional probability to each predictable

query q ∈ Q by counting the occurrences of s and [s, q]. For

example, P (q0|[q1, q0]) = 3/10. Without filtering, we have

S′ = {q1q0, q0q1, q0, q1}.

(b) Determine the suffix set6 S ⊂ Q∗ for training the VMM

model via variable-length modeling. The process of deciding

the suffix set S exactly follows the construction process of a

PST via a depth-first search, where each node corresponds to

a state in the learnt VMM. Given two sequences s and s′, s′

is a descendant of s in PST if s is a suffix of s′. Starting from

the empty sequence e, we evaluate each s ∈ S′ and add s and

its suffixes to the PST if and only if s satisfies either of the

following 2 criteria:

• |s| = 1: add all unique queries (in this example, q1 and

q2) into the PST.

• KL divergence of the predictive probability of s including

its parent is greater than a threshold ǫ.

The criteria for adding a sequence varies across different

applications. For example, Schutze and Singer [30] added one

more condition for Part-of-Speech tagging: if none descendant

of s up to a certain length can be added to the tree, s will

be added. This condition is not suitable for sequential query

prediction because it will almost add every candidate sequence

into the PST since the average length of query sessions is short

(less than 3) in search logs. On another front, Ron et al. [28]

uses a different threshold instead of the KL divergence. By

5A D-bounded PST incurs a training time and space complexity of O(|Q∗|·
Dn2) and O(|Q∗| ·Dn), respectively, where n is the average query session
length. Prediction is linear in D.

6Given a suffix set S, if context s appears in S, then all suffixes of s must
also be in S.

setting ǫ = 0.1, we have for our example S = {q1q0, q0, q1},

DKL(q0||q1q0) = 0.3449, and DKL(q1||q0q1) = 0.0837.

(c) Finally, the conditional probabilities for unobserved

sequences are uniformly assigned a minimum constant proba-

bility of 1/|Q|. After smoothing, the conditional probabilities

are normalized to sum to 1. In our example no unobserved

events exist.

Figure 3 plots the PST for our toy example, where the

conditional probabilities given the empty sequence e is based

on the priori probability of each query.

Fig. 3. PST built from sample data in Table II. Each node is labeled
with a sequence s and its estimated probabilities (P (q0|s), P (q1|s)).

2) Online Query Recommendation: The primary advantage

of PST lies in its extremely fast online prediction speed

(O(D)). Given any test query sequence context s, its corre-

sponding path or maximum length suffix s′ in the PST can

be traversed in linear time. For the example in Figure 3, the

probability of a test sequence such as [q0, q1, q0, q1, q1, q0] is

1 × 0.1 × 0.8 × 0.7 × 0.2 × 0.8, and the labels of the states

that are used for the predictions are s0 = e, s1 = q0, s2 = q1,

s3 = q1q0, s4 = q1, s5 = q1. Note that the first query q0 is

assumed to be deterministic.

Clearly, query recommendation is a simple extension of the

PST traversal. For example, when a user submits a query q0,

we will recommend the query q0 to the user if only one query

is required for recommendation. If the user has submitted 2

past queries [q1, q0], the query q1 will be recommended.

C. Mixture Variable Memory Markov Model (MVMM)

In this section, we first examine the drawbacks of classical

general-purpose sequential probabilistic models, as motivation

for developing our new approach, i.e., the Mixture Variable

Memory Markov (MVMM) model. Finally, we present tech-

niques for learning the MVMM parameters and discuss its

application to query recommendation.

1) Limitations of the VMM Model: Although the VMM

model with its variable length context is superior to the naive

N-gram model, it still suffers some practical limitations. Most

VMM learning algorithms, including the PST, are essentially

D-bounded back-off N-gram models based on maximum like-

lihood estimation. We claim that for such a D-bounded VMM,

there are at least two nontrivial shortcomings.

(a) The PST learning algorithm parameters are hard to be

optimized in practice. For example, the overall PST perfor-

mance is very sensitive to the growth parameter ǫ. A slight

change to ǫ would result in vastly different D-bounded VMM

models. There are two extreme settings of ǫ, as shown in

6

Figure 4, ǫ = +∞ and ǫ = 0, which will generate an

Adjacency (2-gram) model and an infinitely bounded VMM

model, respectively. Clearly, a moderate value of ǫ is desirable

Fig. 4. Two extreme cases of VMM.

to avoid the loss of context information or over-fitting at

both extremes. Unfortunately, the best ǫ must be determined

experimentally.

(b) The PST algorithm requires an extra escape trick.

Following the example in Figure 3, when the user submits

q1q1, the state used for prediction is s = q1 as it is the

longest suffix of q1q1 which can be found in the PST state set.

However, there is actually a context disparity between the user

input context q1q1 and the closest training context q1. We thus

need a smoothing strategy to eliminate such disparities while

generating the probability given the pseudo context q1 instead

of the true underlying q1q1 context. The context disparity could

be a consequence of either a low value of ǫ or the lack of

corresponding training contexts.

2) The MVMM Approach: To overcome the shortcomings

of VMM, we propose a Mixture Variable Memory Markov

model (MVMM), which is a linearly weighted combination

of multiple VMM models of varying bounds D.

(a) Selecting ǫ. Although we can arrive at a decent ǫ via

expensive cross-validation process, we could still lose the

user’s online context information due to the D bound. For the

example of Figure 3, irregardless of whether the user context

is q1q1 or q1q1q1, the state q1 will always be selected. In other

words, once a D-bounded VMM has been trained, any online

test context of length > D will be lost. On the other hand, an

infinitely bounded VMM can model any user context, at the

expense of over-fitting the training data.

In fact, the choice of ǫ is a typical model selection problem

for balancing the prediction accuracy with recall/coverage. A

larger bound D will invariably model more complex contexts,

thereby improving the prediction accuracy, while a smaller

bound D will result in better recall. Given any online user

context, the ideal solution is to dynamically choose the ap-

propriate model of bound D generated on-the-fly, which is of

course infeasible in practice.

A practical compromise is to train various D-bounded

VMM models ahead of time. One implicit assumption made

here is that test model selection is dictated solely by test

context lengths, which is fairly reasonable. Each of the K
D-bounded VMM models, {P̂D, D = 1, . . . , K} are trained

with a range of ǫ values.

After training, the test probabilities are estimated using a

mixture of all D-bounded VMM models as follows:

P̂ (T) =
∑

D

w(D, T) · P̂D(T), (2)

where w(D, T) is a mixing weight function. For a context

s = [q1, . . . , ql], s ∈ T , we compute its probability by

P̂D(s) =

l
∏

i=2

P̂D(qi|[q1, . . . , qi−1]). (3)

The above process leads to a Mixture Variable Memory

Markov model (MVMM). Given a test sequence s, each D-

bounded VMM will output the best matching state sD. The

remaining issue of MVMM is to determine the weighting

function w(D, T), which should intuitively be proportional to

the degree of agreement between s and sD. We model the

distribution of w(D, T) with a 1-D Gaussian function:

w(D, T) =
1

σD

√
2π

exp
(−d(T)2

2σ2
D

)

, (4)

where d(T) is defined as the edit distance between s and sD,

and σD is the sample data variance.

(b) The context disparity. In the event that a user context

is new and never seen before in the training data, the PST

should still output a partial match. The standard way of

handling zero-frequency queries is to smooth the probabilities

for the unobserved queries, or escape or skip to the next

matching query. We chose the latter approach, the context

escape mechanism, for our D-bounded VMM, which works

as follows.
For each unobserved context s = [q1, . . . , ql], we allocate a

probability P̂ (escape|s) for the case that q1 is possibly new.

The residual probability 1−P̂ (escape|s) is shared by all other
queries q 6= q1 that appear before [q2, . . . , ql]. The conditional
probability for any query q is thus defined recursively as
follows:

P̂ (q|s) =

{

P̂D(q|s), if s can be found in S;

P̂D(escape|s) · P̂ (q|[q2, . . . , ql]), otherwise.
(5)

The escape mechanism, originally used for smoothing unob-

served queries in VMM, is borrowed here to recursively bridge

the context disparity between [q1, . . . , ql] and [q2, . . . , ql]. The

probability of escaping from context s = [q1, . . . , ql] to its

suffix context s′ = [q2, . . . , ql] is defined as

P̂D(escape|s) =
6 |[e, s′] 6 |

∑

q∈Q 6 |[q, s′] 6 |+ 6 |[e, s′] 6 | . (6)

The context escape mechanism actually penalizes partial

match in VMM. That is to say, the approximated escape

probability of P̂ (q|s) should be less than the data-estimated

probability of P̂ (q|s′) if s is unobserved. For a single VMM

model, such escape is pointless because the conditional dis-

tribution of s will not be affected after re-normalization. But

for a mixture VMM model, since we can only combine the

prediction results based on weighted generative probabilities,

the escape mechanism will thus penalize the partial matching

models.

7

3) Learning the Mixture Parameters of MVMM: One im-

portant issue of the MVMM model is to determine appro-

priate weighting parameters for combining multiple VMM

models. This motivates us to investigate effective techniques

for learning the weighting parameters from the training data

automatically.

Recall that the goal of our learning task is to minimize the

redundancy in Eq.(1). By following the same principle, we

can formulate the problem of learning the optimal weighting

parameters w of MVMM as follows:

w = arg min
w

DKL(P ||P̂w) (7)

where P is the true distribution for generating the sequential

data and P̂w is the MVMM generative probabilities. We can

rewrite the right hand side of the above optimization explicitly

as:

min
w

n
∑

T=1

P (XT) log
P (XT)

∑K

D=1 w(D, XT)P̂D(XT)
(8)

where P (XT) is the generative probability estimated from the

training data and P̂D(XT) is the generative probability of the

sequence XT by a D-bounded VMM model. By adopting the

parametric model in Eq.(4) for w(D, XT), we can rewrite the

optimization as follows:

max
σ∈RD

n
∑

T=1

P (XT) log

K
∑

D=1

1

σD

√
2π

exp (
−d(XT)2

2σ2
D

)P̂D(XT)

(9)

Since the objective function is convex, we can find the global

solution for the optimization problem by solving it iteratively

with the classical gradient descent (Newton) method:

σ
(t+1) = σ

(t) − [Hf(σ(t))]−1∇f(σ(t)) (10)

where f is the objective function and H is the Hessian matrix.

After the mixing weights have been computed, the online

portion for query recommendation is relatively straightfor-

ward: Depending on the length of user context, a linear weight-

ing could be quickly computed on all (partially matched)

VMM components. The predicted queries of all VMM com-

ponents are combined and re-ranked w.r.t. their generative

probabilities and model weights. Finally, the top N results are

recommended to the user.

V. EXPERIMENTS

We benchmark the coverage and accuracy metrics of the

three sequential models, N-gram (Section IV-A), VMM7 (Sec-

tion IV-B), and MVMM (Section IV-C.2) against two pair-wise

baseline models.

A. Dataset

1) Data Format: We used a 150-day search logs extracted

from a commercial search engine, whose format is shown in

Table III.

7VMM refers to a general VMM model under any parameter settings.
Specifically, VMM (0.05) names a VMM model with ǫ = 0.05 of infinite
order, and 2-bounded VMM (0.05) means a VMM model with ǫ = 0.05 and
D = 2.

TABLE III

A RAW DATA EXAMPLE OF THE SEARCH LOGS.

machine query query # clicked timestamp of URL 1 ...

ID timestamp URLs click on URL 1

xxx 00:08:41 q1 1 00:09:06 aaa.com -

xxx 00:10:55 q2 2 00:11:23 bbb.com ...

2) Session Segmentation: Both machine IDs and times-

tamps were used as cues to detect any change in a user’s

search context. A typical user search log is comprised of a

stream of queries and clicks, with each query followed by a

variable number of clicks. A user search log could be further

segmented into sessions, with each session relating to one

specific user information need. Since session segmentation is

beyond the scope of this paper, we adopt the 30-minute rule

convention [38], [14] by cutting at time-points where more

than 30 minutes have passed between an issued query and

URL click.

We use the first 120-day (4 months) data for training and

the following 30-day (1 month) data for testing. Table IV lists

some session statistics while Figure 5 plots the histogram for

session count versus session lengths. Note that there are quite

a number of (tens of millions) long sessions comprising more

than four queries, two of which are shown in Table V.

TABLE IV

SUMMARY STATISTICS OF SEGMENTED SESSIONS.

Data # Sessions # Searches # Unique queries

training 2,002,409,554 3,860,798,910 1,125,875,693
test 486,184,930 1,102,802,397 356,070,833

(a) Training data (b) Test data

Fig. 5. Session count versus Session length.

TABLE V

SAMPLE SESSIONS.

Length Session

2 sign language ⇒ learn sign language
3 kidney stones ⇒ kidney stone symptoms

⇒ kidney stone symptoms in women
4 Nokia N73 ⇒ Nokia N73 themes ⇒ free themes Nokia

N73⇒ Nokia N73 free themes download
5 www.disney.com ⇒ Disney channel ⇒ Disney channel

games ⇒ Disney channel games kids ⇒
play Disney channel game

3) Session Aggregation: After session segmentation, iden-

tical sessions from different users are aggregated. Figure 6

plots the aggregated session count versus aggregated session

frequency, which clearly follows the power law distribution.

8

(a) Training data (b) Test data

Fig. 6. Power law distribution of unique aggregated sessions.

4) Data Reduction: From Figure 6, we observe a large

number of aggregated sessions (40%) with frequency less

than or equal to 5. These are most likely rare (one-time)

and/or erroneous sessions, which can be safely discarded. The

remaining set of aggregated sessions8 largely maintain the

same distribution as the original set, as shown in Figure 7,

except for the super-long sessions that were discarded.

(a) Training data (b) Test data

Fig. 7. Session count versus Session length after data reduction.

5) Aggregating Training Contexts: For each aggregated

session, the training data context is build as shown in

the following example. Consider an aggregated session se-

quence [q1, q2, q3, q4, q5] with a frequency of 10. Four train-

ing contexts can be derived: [q1], [q1, q2], [q1, q2, q3], and

[q1, q2, q3, q4], each with a support of 10; the support for

predicting q2 from observing [q1] is 10, the support for

predicting q3 after observing [q1, q2] is also 10, etc. Training

contexts are again aggregated over all sessions and fed into

the training model.

6) Ground Truth for Test Set: The same approach for

building the set of aggregated training contexts was used

to create the set of aggregated test contexts, which is also

considered the ground truth for the test set. Specifically, given

a test user context s = [q1, q2, . . . , qm], we counted the

frequencies of all queries that immediately follow s in the

test data; the top n queries are considered to be ground truth.

In our experiments, we set n to 5 since we are interested in

recommending up to 5 queries.

B. Baseline methods

We use the following two pair-wise methods as baselines.

• Adjacency (Adj.): Given a test query q, this method

computes a ranked list of queries that immediately fol-

lows q in the training set. This approach was used in

860.48% and 64.72% of training and test data remained, respectively

[17] for a slightly different purposes: implicit query

substitution/expansion (with no user choice, i.e., forced).

• Co-occurrence (Co-occ.): Given a test query q, this

method computes a ranked list of queries that co-occurs

with q in the training set. This approach was used by

[13] for real time query term suggestion, i.e., while the

user is typing the query.

C. Evaluation Metrics

Query prediction results can be evaluated in terms of

coverage and accuracy.

1) Coverage: Query coverage is defined as the ratio of

predictable query sequences over all sequences in the test set.

For any given query prediction model created from a finite

training set, there are bounds to be some queries that exist

exclusively in the test set. A good query prediction model

aims to achieve as high a coverage as possible on the test set.

Suppose a test query sequence [q1, q2] does not appear in the

training data, then it will not be covered by the 3-gram model.

However, if q2 is a valid context in the training data, it would

be covered by the Adj. and Co-occ. pair-wise models.

2) Accuracy: Query prediction accuracy is computed using

the Normalized Discount Cumulative Gain (NDCG) [16],

which measures the degree of correspondence between two

ranking lists by assuming that higher ranked positions carry

more importance. The NDCG value of a ranking list at position

n is calculated as

N(n) = Zn

n
∑

j=1

2r(j) − 1

log(1 + j)
, (11)

where r(j) is the rating of the j-th query in the ranking list,

and the normalization constant Zn is chosen so that the perfect

list gets a NDCG score of 1. In Eq. 11, 2r(j) − 1 is the gain

(G) of the j-th query, 2r(j)−1
log(1+j) is the discounted gain (DG),

∑n

j=1
2r(j)−1
log(1+j) is the discounted cumulative gain (DCG) at

position n of the list, and finally Zn

∑n

j=1
2r(j)−1
log(1+j) is the

normalized discounted cumulative gain (NDCG) at position

n of the list, which is called NDCG@n.

To calculate the NDCG score, we define the weightage of

each ranked position as {5, 4, 3, 2, 1} for the queries at position

1, 2, 3, 4, and 5 in the ground truth test context, respectively.

Queries beyond the top 5 list in the ground truth are assigned

a weight of 0. For example, given the ground truth context

[q1, q2, q3, q4, q5], the rating of q1 is 5, q5 is 1, and [qi : ∀i > 5]
is 0. The NDCG scores over all test contexts are averaged

to yield a single qualitative metric for each evaluated query

prediction approach.

D. Query Prediction Accuracy

We benchmark the query prediction accuracy of our pro-

posed method MVMM against a few baseline methods in a

two-part comparison.

First, we evaluate our MVMM sequence approach against

conventional pair-wise approaches. We trained a MVMM

made up of a mixture of 11 VMM models by varying ǫ
along the range of {0.0, 0.01, . . . , 0.1}. For comparison, only

9

(a) NDCG@1 (b) NDCG@3 (c) NDCG@5

Fig. 8. Query prediction accuracy of pair-wise (Adj., Co-occ.) and sequence based (MVMM, N-gram) methods.

3 representative VMM models will be shown, namely, VMM

(0.0), VMM (0.05), and VMM (0.1).

Figures 8(a)-(c) show the NDCG@1, NDCG@3, and

NDCG@5 metrics over different context lengths for the various

approaches. From the results, we can make the following

observations.

• Sequence based methods achieve up to 40% higher accu-

racy than the pair-wise methods at all positions and across

all context lengths.

• The Adjacency method has a consistently better (10%)

accuracy than the Co-occurrence method. This is because

the former considers the position relationship of queries

while the latter does not. This observation somewhat lends

credit to our choice of considering full sequence order in

our VMM based methods.

• The accuracy metrics of Adj. and Co-occ. decreases mono-

tonically with increasing context length. This is expected

because longer query contexts usually correspond to more

specific information need, which cannot be modeled by

simple pair-wise generalizations that only look at the most

recent query for prediction. In other words, more query

history is thrown away with increasing context length.

• The accuracy curves of N-gram and MVMM are less con-

sistent. Generally, both peaked at context length 2, except

for N-gram’s NDCG@1, which improves with increasing

context length.

Next, we benchmark MVMM against VMM with varying

parameter settings, as shown in Figures 9(a)-(c). Some insights

can be obtained on this comparison, listed as follows.

• VMM (0.05) is the overall winner across all context lengths

for up to top 3 (NDCG@3) predicted queries.

• The accuracy of VMM (0.1) deteriorates significantly with

increasing context lengths.

• The full-size PST training model, VMM (0.0), suffers from

over-fitting, which is especially obvious if only 1 query is

predicted (NDCG@1).

• From the above, we can deduce that the best accuracy is

achieved at ǫ ≈ 0.05. The VMM model is rather sensitive

to the parameter selection: a slight change in ǫ could result

in significantly different performance.

• After adapting the model selection to the user’s context, the

MVMM model was able to achieve comparable accuracy

as the best VMM (0.05), even beating the latter for the top

5 suggested queries (NDCG@5). This is a huge practical

advantage for MVMM, which does away the hassle of

finding the best parameter via trial-and-error for VMM.

E. Query Prediction Coverage

Fig. 10. Coverage of various methods on test data.

Figure 10 shows the coverage achieved by the different

prediction methods, from which we can make the following

observations.

• The best achieved coverage is 60.6%, using Co-occ. as

expected, which does not consider ordering information.

The 3 sequence approaches Adj., VMM, and MVMM tied

for a close second at 56.8%.

• The coverage of VMM and MVMM is equal to Adj. due to

the partial match strategy adopted by VMM based methods.

• The coverage of N-gram is by far the worst, because it

models full and fixed context sequences, which are often

too specific (over-fitting) given the limited training data.

Figure 11 plots the coverage versus context length curve.

Naturally, coverage of all three methods decreases with in-

creasing test context length. This is because the longer the

context, the lower the chance that a matching context can be

found from the training data. However, among the three meth-

ods, the coverage of VMM and MVMM decreases sub-linearly

with increasing context length, maintaining a respectable 45%.

On the other hand, N-gram quickly deteriorates to less than

1% coverage for context length longer than 3.

10

(a) NDCG@1 (b) NDCG@3 (c) NDCG@5

Fig. 9. Query prediction accuracy of MVMM and VMM.

Fig. 11. Coverage versus context length for sequence-wise models.

In summary, N-gram, despite its slightly higher accuracy,

is not practical due to its outrageously low coverage. Co-

occurrence and Adjacency yield decent coverage but low

accuracy. Therefore we can conclude confidently MVMM

provides the best accuracy and reasonably good coverage.

To conclude our coverage analysis, we summarizes in Table

VI the main reasons for which a test query q cannot be

predicted given user context s.

TABLE VI

REASONS FOR UNPREDICTABLE QUERIES.

Models Reasons

Co-occ. (1) q is a new query; or
(2) q only appears in training sessions of length one.

Adj. (1), (2) above; or

(3) q only appears at the last position of the training sessions.
VMM (1), (2), (3) above.

MVMM (1), (2), (3) above.

N-gram (1), (2), (3) above; or

(4) user context s is not a trained N-gram state.

F. Space Complexity Analysis

We are mainly concerned with the memory requirements of

the VMM model and its variation, MVMM.

1) Training: MVMM requires roughly K (number of mix-

ture models) times the memory footprint of a single VMM.

Fortunately, each of the K models can be independently

trained in parallel over a distributed computing facility such

as a grid or cluster.

2) Online Deployment: The PST learnt by a trained VMM

model must be loaded into RAM for real-time online query

prediction. Therefor, the size of the PST (# nodes) gives a

reasonable estimate of the space requirement of each VMM

model. To avoid loading all K PSTs into memory for the

MVMM, we can actually combine all into a single PST,

where each node requires just 4 extra bits (24 > 11) to

record its source VMM models. For example, the PST of 2-

bounded VMM (0.1) has 6,910,940 nodes and the PST of

3-bounded VMM (0.2) contains 6,854,439 nodes, yet their

mixture model (MVMM)’s PST contains just 7,211,288 nodes.

Apparently, the MVMM used in our experiments has the same

number of PST nodes as VMM (0.0), which is already the

full-sized infinite bounded VMM. The memory footprint of

TABLE VII

MEMORY FOOTPRINT FOR ALL METHODS (UNIT: MEGABYTE).

MVMM VMM (0.0) VMM (0.05) VMM (0.1) Adj. Co-occ. N-gram

363.4 348.6 330.5 329.7 151.6 233.7 170.1

each method is summarized in Table VII. We see that the

MVMM only requires marginally more memory compared to

the standard VMM models. In generally, all VMM models

require approximately twice the amount of memory compared

to pair-wise or N-gram models, due to the need to maintain a

PST in memory. If a memory space is limited, a D-bounded

VMM or MVMM can be used.

G. Time Complexity Analysis

The primary disadvantage of MVMM compared to VMM

lies in its K-fold training time. For example, each of the K=11

VMM mixture components in MVMM has to be first trained

independently, before the cost function can be optimized.

Figure 12 plots the graph of training time versus amount of

training data for all methods. We see that the MVMM training

time is an order of magnitude over the various VMM models.

N-gram and Adj. have the lowest training time since they have

the fewest training evidences, and Co-occ. has a slightly higher

time complexity because it always recommends more queries.

All the three VMM models incurred comparable training time,

11

Fig. 12. Training time scales linearly with data for all methods.

due to similar ǫ settings. The VMM models consume more

time compared to pair-wise and N-gram methods because the

former requires time to construct the PST trees.

However, despite the above differences, the most important

conclusion made from Figure 12 is that all methods have

a linear time complexity w.r.t. data size. Furthermore, as

mentioned before, we can always train the MVMM model

in parallel. Note that all methods have comparable online

prediction time complexity of O(D), where D is the maxi-

mum length of training contexts, typically around 5, making

comparison unnecessary.

H. User Evaluations

We conduct user evaluation tests on our query recommen-

dation system for 4 methods: Adj., Co-occ., N-gram, and

MVMM following the procedure outlined below.

Step 1: We randomly selected 2,000 query sequences from

the test data, 500 for each context length of 1, 2, 3, and 4. We

mixed all four types of query sequences, instead of conduct

the real user evaluations separately on each of them, simply

because the conclusions are rather similar to the previous data

centric evaluations based on various context lengths. We then

applied the four methods to each test query sequence to predict

the top 5 queries. Altogether, a combined 26,193 predicted

queries were returned by the four methods.

Step 2: We created a subset of predicted queries from the

26,193 predicted queries, and asked 30 volunteers to label each

of them as approved or rejected. Specifically, given a predicted

query at a specific position, the labelers were asked to judge

whether the predicted query is appropriate in the context. For

example, the following four predicted queries were approved

by volunteers.

• Predicted query is “youtube”, which follows immediately

after the typo “youtub”.

• Predicted query “Verizon” seems to be semantically related

to the preceding query “GE”.

• Predicted query “Hertz car rental” is more specific than the

preceding query “budget car rental”.

• Predicted query “New York Times” is related to the pre-

ceding query “NY Times”.

Table VIII shows the distribution of user annotations over all

four methods, with MVMM leading the pack.

TABLE VIII

USER LABELING DISTRIBUTION OVER FOUR METHODS.

Co-occ. Adj. N-gram MVMM

predicted queries 7892 6656 5715 6086
“approved” queries 4803 4593 4781 5238

(a) Precision (b) Recall

Fig. 13. Overall user evaluation performance.

Step 3: Only user-approved queries were collected as the

user-centric ground truths. Duplicated queries were removed

from the ground truth set. In the end, there are 9,489 unique

ground truth queries. The standard precision and recall metric

is used to evaluate the overall performance. For example, the

Co-occ. predicted 7,892 queries, among which 4,803 queries

were approved. Its precision is 4803/7892 = 60.86%, and

its recall is 4803/9489 = 50.62%. Figure 13 shows the

precision and recall of predicted queries for each method.

Not surprisingly, although Co-occ. and Adj. could predict

more queries than the other models, they have lower preci-

sion and recall. In contrast, the sequence based models have

much higher precision and moderately higher recall. Overall,

MVMM was the best performer achieving 86.1% precision

and 55.2% recall.

Figure 14 further depicts the precision scores across the top

5 positions for each method. MVMM slightly beats N-gram,

but both work much better than the Adj. and Co-occ. models.

We see that the sequence-based models perform very well at

Fig. 14. Precision over top 5 positions.

the first position, which is supposed to be the most important

position for query recommendation. In contrast, Adj. and Co-

occ. perform quite inconsistently at the different positions.

12

VI. CONCLUSIONS

In this paper, we have introduced a novel approach, called

sequential query prediction, for understanding users’ search

intent and recommending queries. We have applied sequential

probabilistic models to this problem and developed a powerful

mixture model called MVMM, which is based on a set of

Variable Memory Markov models and is particularly suitable

for the task of online query recommendation. Finally, we

extensively evaluated our proposed methods on an extremely

large data set using various data and user centric metrics.

From our experimental results, we can conclude the fol-

lowing: (1) Ordered queries within the same session are

highly correlated, and should be sequentially utilized to under-

stand the user information needs, (2) The proposed MVMM

achieved the best balance among accuracy and coverage both

in terms of data (objective) and user (subjective) centric

evaluation metrics. A thorough time and memory complexity

analysis of our MVMM was also performed, and it was found

to be practical and effective for real-time deployment (constant

time in D, the maximum context length), making it ideally

suitable for real-time search engine query recommendation.

To the best of our knowledge, search query sequences of

such massive scale have never been successfully modeled

before. Our research should provide numerous useful insights

towards the next generation personalized Web search engines.

As future work, we plan to further study all the different N-

gram variations, as well as other more sophisticated Markov

models such as HMM in the general or domain-specific

search. This include modeling hidden states that represent true

user intent, which could be an underlying semantic concept,

especially with the help of domain knowledge. It remains to

be seen whether more sophisticated models can further raise

the performance bar for query recommendation (in domain-

specific search). For deploying the work on a real system, the

analysis on the frequency of retraining the data to adapt to

new query trends would be also necessary.

REFERENCES

[1] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query recommendation
using query logs in search engines. In International Workshop on
Clustering Information over the Web (ClustWeb, in conjunction with

EDBT), 2004.

[2] R. Baeza-Yates and A. Tiberi. Extracting semantic relations from query
logs. In SIGKDD, pages 76–85, 2007.

[3] D. Beeferman and A. Berger. Agglomerative clustering of a search
engine query log. In KDD, pages 407–416, 2000.

[4] R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable
order markov models. Journal of Artificial Intelligence Research, 22,
2004.

[5] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-
aware query suggestion by mining click-through and session data. In
SIGKDD, accepted, 2008.

[6] P. A. Chirita, C. S. Firan, and W. Nejdl. Personalized query expansion
for the web. In SIGIR, pages 7–14, 2007.

[7] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Probabilistic query
expansion using query logs. In WWW, pages 325–332, 2002.

[8] F. J. Damerau. Markov models and linguistic theory. Mouton, The
Hague, 1971.

[9] L. Fitzpatrick and M. Dent. Automatic feedback using past queries:
social searching? In SIGIR, pages 306–313, 1997.

[10] B. M. Fonseca, P. Golgher, B. Pôssas, B. Ribeiro-Neto, and N. Ziviani.
Concept-based interactive query expansion. In ACM CIKM, pages 696–
703, 2005.

[11] S. Han, A. Goker, and D. He. Web user search pattern analysis for
modeling query topic changes. In Proceedings of the user modeling

for context-aware applications, a workshop of the 8th international

conference on user modeling, 2001.
[12] D. He and D. J. H. Ayse Goker. Combining evidence for automatic

web session identification. Information Processing and Management,
38:727C742, 2002.

[13] C.-K. Huang, L.-F. Chien, and Y.-J. Oyang. Relevant term suggestion in
interactive web search based on contextual information in query session
logs. Journal of the American Society for Information Science and

Technology, 54(7):638–649, 2003.
[14] B. J. Jansen, A. Spink, C. Blakely, and S. Koshman. Defining a session

on web search engines. Journal of The American Society for Information

Science and Technology, 58(6):862C871, 2007.
[15] B. J. Jansen, A. Spink, and T. Saracevic. Real life, real users, and real

needs: a study and analysis of user queries on the web. Information

Processing and Management, 36, 2000.
[16] K. Jarvelin and J. Keklinen. Ir evaluation methods for retrieving highly

relevant documents. In SIGIR, pages 41–48, 2000.
[17] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query

substitutions. In ACM WWW, pages 387–396, 2006.
[18] S. M. Katz. Estimation of probabilities from sparse data for the language

model component of a speech recognizer. In ASSP-35, pages 400–401,
1987.

[19] R. Kraft and J. Zien. Mining anchor text for query refinement. In WWW,
pages 666–674, 2004.

[20] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
ICML, pages 282–289, 2001.

[21] S. Liu, F. Liu, C. Yu, and W. Meng. An effective approach to document
retrieval via utilizing wordnet and recognizing phrases. In SIGIR, pages
266–272, 2004.

[22] M. Magennis and C. J. van Rijsbergen. The potential and actual
effectiveness of interactive query expansion. In SIGIR, pages 324–332,
1997.

[23] A. Mccallum, D. Freitag, and F. Pereira. Maximum entropy markov
models for information extraction and segmentation. In ICML, pages
591–598, 2000.

[24] S. Ozmutlu. Automatic new topic identification using multiple linear
regression. Information Processing and Management, 42:934C950,
2006.

[25] L. Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of IEEE, 77(3), 1989.

[26] S. Y. Rieh and H. I. Xie. Patterns and sequences of multiple query
reformulations in web searching: A preliminary study. In Proceedings

of the 64th ASIST Annual Meeting, volume 38, pages 246 – 255.
[27] J. Rocchio. Relevance feedback information retrieval. In The Smart

Retrieval System-Experiments in Automatic Document Processing, pages
312–323, 1971.

[28] D. Ron, Y. Singer, and N. Tishby. Learning probabilistic automata with
variable memory length. In COLT, pages 35–46, 1994.

[29] M. Sahami and T. D. Heilman. A web-based kernel function for
measuring the similarity of short text snippets. In WWW, pages 377–386,
2006.

[30] H. Schutze and Y. Singer. Part-of-speech tagging using a variable
memory markov model. In ACL, pages 181–187, 1994.

[31] X. Shen, B. Tan, and C. Zhai. Context-sensitive information retrieval
using implicit feedback. In SIGIR, pages 43–50, 2005.

[32] A. Spink and B. J. Jansen. Web search: Public searching of the web.
New York: Kluwer, 2004.

[33] Z. Su, Q. Yang, Y. Lu, and H. Zhang. Whatnext: A prediction system
for web requests using n-gram sequence models. In WISE, volume 1,
pages 214–221, 2000.

[34] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web search
based on user profile constructed without any effort from users. In
WWW, pages 675–684, 2004.

[35] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts. Information re-retrieval:
repeat queries in yahoo’s logs. In SIGIR, volume 38, pages 151–158.

[36] E. Terra and C. L. Clarke. Scoring missing terms in information retrieval
tasks. In CIKM, pages 50–58, 2004.

[37] J.-R. Wen, J.-Y. Nie, and H.-H. Zhang. Clustering user queries of a
search engine. In WWW, pages 162–168, 2001.

[38] R. W. White, M. Bilenko, and S. Cucerzan. Studying the use of popular
destinations to enhance web search interaction. In SIGIR, pages 159–
166, 2007.

View publication statsView publication stats

https://www.researchgate.net/publication/220967552

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2009

	Web query recommendation via sequential query prediction
	Qi HE
	Daxin JIANG
	Zhen LIAO
	Steven C. H. HOI
	Kuiyu CHANG
	See next page for additional authors
	Citation
	Author

	he2008icde.dvi

