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Code Search via Topic-Enriched
Dependence Graph Matching

Shaowei Wang, David Lo, and Lingxiao Jiang
School of Information Systems

Singapore Management University
Email: {shaoweiwang.2010,davidlo,lxjiang}@smu.edu.sg

Abstract—Source code contains textual, structural, and seman-
tic information, which can all be leveraged for effective search.
Some studies have proposed semantic code search where users
can specify query topics in a natural language. Other studies
can search through system dependence graphs. In this paper,
we propose a semantic dependence search engine that integrates
both kinds of techniques and can retrieve code snippets based on
expressive user queries describing both topics and dependencies.
Users can specify their search targets in a free form format
describing desired topics (i.e., high-level semantic or functionality
of the target code); a specialized graph query language allows
users to describe low-level data and control dependencies in code
and thus helps to refine the queries described in the free format.
Our empirical evaluation on a number of software maintenance
tasks shows that our search engine can efficiently locate desired
code fragments accurately.

Keywords-Code search; topic modelling; dependence graphs;

I. INTRODUCTION

Programmers spend a lot of time in code search, searching
for not only relevant program components, functions, but also
specific code snippets. To find relevant code fragments, a
developer may employ a search utility that comes with their
operating systems (e.g., Windows Explorer) or IDEs (e.g.,
Eclipse, Visual Studio). However, the functionality of these
tools is often limited. First, they can only provide exact
matching of strings or regular expressions, which require a
user to provide very specific queries. Second, code is texts
with structures and semantics; such information is implicit
and these string-based search tools are unable to capture de-
pendence relations among program elements. Third, intended
search targets by a user can involve code snippets spread across
multiple different program locations; it is difficult for these
tools to capture relevant non-consecutive code snippets.

To address such limitations, one kind of approaches is to
use natural language processing techniques to find relevant
code [5], [9]. Other studies enable users to specify rich
queries involving dependencies among program elements of
interest [4], [14]. Both kinds of studies have their disadvan-
tages. Natural language processing techniques cannot easily
specify fine-grained relations among particular elements in the
code, while dependence based search often fails to distinguish
code of different high-level concepts but with similar low-
level relationship. As the result, both kinds of techniques may
produce various false positives during search.

In this work, we marry the use of natural language and graph

query processing to realize a code search engine that supports
expressive queries allowing natural language texts and depen-
dence relations. We also improve the speed of current state-of-
the-art transitive dependence code search engine tool proposed
in [14] by an order of magnitude speedup on average.

Our solution incorporates a topic modeling engine based
on Latent Dirichlet Allocation (LDA) [11] that learns topics
from and assigns them to documents. We also incorporate
recent advances in querying labeled graphs [7] to alleviate
the limitation of code search engine. Our framework first takes
code bases and extracts structural and semantic representations
(i.e., system dependence graphs (SDGs) and topics) from the
code. The topics are assigned to the various nodes in the SDG
to create an enriched SDG (eSDG). Finally, these eSDGs are
used by our graph query engine to answer user queries that are
expressed in our query language in which a user can specify
both free form texts and complex dependence relations.

II. RELATED WORK

General-Purpose Code Search. General-purpose code search
tools allow users to specify queries in various forms and
return matching code. Some tools allows queries in plain
text [5], [8], [10]; others allow queries describing program
dependencies [14]. We extend these studies by providing
users the combined capability to handle both plain texts and
dependence queries, and leverage a topic modeling engine
and a graph reachability engine to significantly improve the
efficiency of dependence constraints processing. Our code
search is also different from Sourcerer [8], Exemplar [3], and
Portfolio [10] in that we focus on searching for code snippets
instead of applications, components, or functions.

Specialized Code Search. Some other techniques could be
categorized as a form of specialized code search: code clone
detection [1], [6], recommendation of code samples [12], [15],
etc. Different form the above studies, we provide a general-
purpose code search tool supporting: textual constraints, de-
pendence constraints, and topic modeling.

III. PROPOSED FRAMEWORK

Our approach is composed of code processing, text process-
ing, graph enrichment, and query processing. The relations
among these components are shown in Figure 1.

Code and Text Processor Our code processor component
takes in source code and outputs its corresponding System
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Fig. 1. Our Code Search Overview.

Dependence Graph (SDG). We use CodeSurfer to generate
SDGs [2]. The nodes in the SDGs are labeled with different
program element types, and edges between nodes represent
control or data dependencies.

Our text processor component takes in source code and
outputs a topic model. The processor first changes each
method in a code base into a bag of words. For each method,
we take the name of the method, comments and identifiers in
the method, split some names into word tokens, and remove
some keywords and non-interesting words to form the bag of
words. Each bag of words forms a document. A code base is
thus transformed into a set of documents. These documents are
then fed into LDA [11] to produce 50 different topics where
each topic is represented by a set of words.

Graph Enrichment Component. This component takes in
the SDGs outputted by the code processor and the topics
outputted by the text processor, and enriches the SDG nodes
with the topics. After the enrichment process, each SDG
node contains not only the the type of the program element
associated with it, but also, a set of corresponding topics with
their associated probabilities. For example, a node in the SDG
could be associated with topic-1 with probability 0.4, topic-2
with probability 0.3, and topic-3 with probability 0.3.And all
nodes belonging to the same method would be associated with
the same set of topics and their associated probabilities.

Query Processing Engine. The query processor is the key
block in our proposed approach. It takes in a user query
and, based on the enriched SDGs, returns all code snippets
that match the query. Inside of the query processor, we first
transform a user query in the format of 𝐷𝑄𝐿𝑡 (cf. Section IV)
into a graph representation, which is referred to as a query
graph (cf. Section V-A). Then, we search through the enriched
SDGs for program elements that match the query graph and
return search results (cf. Section V-B). As this processor is
rather complex, we describe it in the following two sections.

IV. QUERY LANGUAGE

To help users formulate queries and provide inputs for
our code search engine, we extend the Dependence Query
Language (DQL) proposed in [14] with semantic topics. We
refer to the new language as Dependence Query Language
with Topic Modeling (𝐷𝑄𝐿𝑇 ). Its syntax is shown in Table I.
𝐷𝑄𝐿𝑇 has five parts: topic declaration (𝑡𝑜𝑝𝑖𝑐), node

declaration (𝑛𝑑𝑒𝑐𝑙), node description (𝑛𝑑𝑒𝑠𝑐), relationship
description (𝑟𝑑𝑒𝑠𝑐), and targets (𝑡𝑎𝑟𝑔𝑒𝑡). 𝑇𝑜𝑝𝑖𝑐 specifies the
topics related to intended search results and can be any free
form texts.

𝑞𝑢𝑒𝑟𝑦 ::= (𝑡𝑜𝑝𝑖𝑐)*; (𝑛𝑑𝑒𝑐𝑙)*; (𝑛𝑑𝑒𝑠𝑐)*; (𝑟𝑑𝑒𝑠𝑐)*; 𝑡𝑎𝑟𝑔𝑒𝑡;
𝑡𝑜𝑝𝑖𝑐 ::= 𝑠𝑡𝑟𝑖𝑛𝑔
𝑛𝑑𝑒𝑐𝑙 ::= 𝑡𝑙𝑖𝑠𝑡 𝑖𝑑
𝑡𝑙𝑖𝑠𝑡 ::= 𝑡𝑙𝑖𝑠𝑡 ‘∣’ 𝑡𝑦𝑝𝑒 ∣ 𝑡𝑦𝑝𝑒
𝑡𝑦𝑝𝑒 ::= 𝑓𝑢𝑛𝑐 ∣ 𝑣𝑎𝑟 ∣ 𝑎𝑠𝑠𝑔𝑛 ∣ 𝑑𝑒𝑐𝑙 ∣ 𝑐𝑡𝑟𝑙𝑃𝑜𝑖𝑛𝑡 ∣ 𝑠𝑡𝑚𝑡

𝑛𝑑𝑒𝑠𝑐 ::= 𝑖𝑑 (𝑐𝑜𝑛𝑑)*
𝑐𝑜𝑛𝑑 ::= [not] 𝑢𝑐𝑜𝑛𝑑 ∣ similarTopicAs 𝑠𝑡𝑟𝑖𝑛𝑔

𝑢𝑐𝑜𝑛𝑑 ::= contains 𝑠𝑡𝑟𝑖𝑛𝑔 ∣ inFile 𝑠𝑡𝑟𝑖𝑛𝑔 ∣
inFunc 𝑠𝑡𝑟𝑖𝑛𝑔 ∣ atLine 𝑛𝑢𝑚𝑏𝑒𝑟 ∣
ofType 𝑠𝑡𝑟𝑖𝑛𝑔 ∣ ofControlType 𝑐𝑡𝑦𝑝𝑒

𝑐𝑡𝑦𝑝𝑒 ::= for ∣ while ∣ switch ∣ if
𝑟𝑑𝑒𝑠𝑐 ::= 𝑖𝑑 𝑜𝑝 𝑖𝑑

𝑜𝑝 ::= [oneStep] 𝑑𝑒𝑝𝑒𝑛𝑑𝑂𝑝 ∣ 𝑡𝑒𝑥𝑡𝑂𝑝 ∣ 𝑠𝑡𝑟𝑢𝑐𝑡𝑂𝑝
𝑑𝑒𝑝𝑒𝑛𝑑𝑂𝑝 ::= dataDepends ∣ controls ∣ calls

𝑡𝑒𝑥𝑡𝑂𝑝 ::= contains
𝑠𝑡𝑟𝑢𝑐𝑡𝑂𝑝 ::= isFieldOf ∣ isElementOf

𝑡𝑎𝑟𝑔𝑒𝑡 ::= (𝑖𝑑)*
𝑖𝑑 ::= 𝑠𝑡𝑟𝑖𝑛𝑔

𝑠𝑡𝑟𝑖𝑛𝑔 ::= (A-Z,a-z,0-9)+
𝑛𝑢𝑚𝑏𝑒𝑟 ::= (0-9)+

TABLE I
𝐷𝑄𝐿𝑇 SYNTAX

𝑁𝑑𝑒𝑐𝑙 declares node variables and their types. 𝑁𝑑𝑒𝑠𝑐 spec-
ifies constraints on declared node variables. 𝑅𝑑𝑒𝑠𝑐 specifies
constraints on the relations among declared node variables.
𝑇𝑎𝑟𝑔𝑒𝑡 specifies the variables specified in 𝑛𝑑𝑒𝑐𝑙 that are
desired search targets. When a 𝐷𝑄𝐿𝑇 query is processed
on an enriched SDG, nodes in the eSDG that match the
node variables specified in 𝑡𝑎𝑟𝑔𝑒𝑡 and satisfy the constraints
specified in 𝑛𝑑𝑒𝑐𝑙, 𝑛𝑑𝑒𝑠𝑐 and 𝑟𝑑𝑒𝑠𝑐 would be returned.
Node Declaration. This part of a query is to declare some
node variables that will later be mapped to nodes in an
eSDG. Each node variable can have one or more types (i.e.,
a disjunction of types); each type can correspond to a kind of
code in the code base (which is mostly in C) and is separated
by ‘∣’ as defined by 𝑡𝑙𝑖𝑠𝑡. We consider six different types
of node: 𝑓𝑢𝑛𝑐, 𝑣𝑎𝑟, 𝑎𝑠𝑠𝑔𝑛, 𝑑𝑒𝑐𝑙, 𝑐𝑡𝑟𝑙𝑃𝑜𝑖𝑛𝑡, and 𝑠𝑡𝑚𝑡. A
node of type 𝑓𝑢𝑛𝑐 corresponds to function invocations in
the code. 𝑣𝑎𝑟 corresponds to a variable. 𝑎𝑠𝑠𝑔𝑛 corresponds
to an assignment. 𝑑𝑒𝑐𝑙 corresponds to a variable or function
declaration. 𝑐𝑡𝑟𝑙𝑃𝑜𝑖𝑛𝑡 corresponds to a branching condition
that would affect code execution paths, e.g., if or while
conditions. 𝑠𝑡𝑚𝑡 corresponds to statements that would change
control flows, e.g., return, break, etc.

Node Description. This part of the query specifies further
constraints on declared node variables (𝑐𝑜𝑛𝑑 and 𝑢𝑐𝑜𝑛𝑑). To
specify constraints, developers can use the following unary
operators: 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠, 𝑖𝑛𝐹 𝑖𝑙𝑒, 𝑖𝑛𝐹𝑢𝑛𝑐, 𝑎𝑡𝐿𝑖𝑛𝑒, 𝑜𝑓𝑇𝑦𝑝𝑒, and
𝑜𝑓𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑇𝑦𝑝𝑒. The operator 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 allow developers to
specify that a particular node needs to contain a particular text.
The operators 𝑖𝑛𝐹 𝑖𝑙𝑒 and 𝑖𝑛𝐹𝑢𝑛𝑐 allow developers to specify
a node that is located inside a particular file or function re-
spectively. The operators 𝑜𝑓𝑇𝑦𝑝𝑒 and 𝑜𝑓𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑇𝑦𝑝𝑒 allow
one to specify a node of a particular type or to be a control
node of a particular type (i.e., for, while, switch, or if).

Different from 𝐷𝑄𝐿, 𝐷𝑄𝐿𝑇 has a topic operator
(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑇𝑜𝑝𝑖𝑐𝐴𝑠). With this operator one can specify the
topics each node should belong to. Topic modeling makes it
possible to use free form texts in the topic operator as topic
modeling techniques can handle imprecise textual queries and
relate different words that have similar meanings.
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Relationship Description. This part of the query specifies
constraints governing the relationships between two declared
node variables. We have three types of relationships: depen-
dence operator (𝑑𝑒𝑝𝑒𝑛𝑑𝑂𝑝), textual operator (𝑡𝑒𝑥𝑡𝑂𝑝), and
structural operator (𝑠𝑡𝑟𝑢𝑐𝑡𝑂𝑝).

Dependence operators are used to specify either data de-
pendence, control dependence, or transitive call relationship
(i.e., there is a chain of function invocation from one node
to another in the input SDG). They are expressed as opera-
tors: 𝑑𝑎𝑡𝑎𝐷𝑒𝑝𝑒𝑛𝑑𝑠, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, and 𝑐𝑎𝑙𝑙𝑠, respectively. Textual
operator is used to specify that the textual content of one
node contains (i.e., is a super string) of that of the other.
Structural operator is used to specify that one node is a
field of another (𝑖𝑠𝐹 𝑖𝑒𝑙𝑑𝑂𝑓 ), or is an element of another
(𝑖𝑠𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑓 ). For example, “𝑎.𝑏 𝑖𝑠𝐹 𝑖𝑒𝑙𝑑𝑂𝑓 𝑎” holds, and
“𝑎[𝑏] 𝑖𝑠𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑓 𝑎” also holds.

Targets. This part of a 𝐷𝑄𝐿𝑇 query specifies the target node
variables that would be returned as the output of the query.
This set of variables is a subset of all declared variables.
The declared variables would be matched to nodes in SDG,
but only those specified as a target node variable would be
returned. The other nodes serve as contexts for more accurate
locating of the target nodes. Currently, the outputs of our code
search engine are a set of line numbers linked to the locations
of matching code fragments.

V. QUERY PROCESSING ENGINE

Taking a user query and topic-enriched SDGs as input, our
query processing engine goes through two major steps to pro-
duce search results: query graph construction and graph match-
ing. Figure 2 illustrates the relations among the components in
the query processing engine, which is a zoom-in of the Query
Processor in Figure 1. Query graph construction converts
a textual query into a graph representation. Graph matching
locates nodes and edges in the input system dependence graphs
that match the query graph and compose them into search
answers. We describe them in the following sub-sections.

User Query Topic enriched
SDGs

C t ti f R l f

Query Graph
Construction

Construction of
Potential Node
and Edge Sets

Removal of
Unpromising

Nodes and Edges
Query
Graph

Query Processor

Construction

Answer Set
Composition

Graph

Graph Matching

Matching
Code Snippets

Fig. 2. Components in Query Processor.

A. Query Graph Construction

A user query can consist of node declarations, node de-
scriptions, relationship descriptions, and the identifiers of the
nodes of interest. We would form a graph from this textual

N1: func

N1 calls N2
N1:call site N1:ctrlPoint

N :func | N ll it |

N1:control point
N1 controls N2

( ) (b)

1
N2: func

N2:call site

N2:func |
assgn |
ctrlPoint |
stmt

N2:call site |
assignment |
control point |
statement

(a) (b)

N1:func

N1 dataDepends N2

N1
i:actual inN1:ctrlPoint |

N1 dataDepends N2 N2:actual out |
variable |

1
N2:func |

var |
assgn |
stmt N2:actual out |

1
var |
assgn |
stmt

N2:func | N1:control point |

assignment |
statement

N2:actual out |
variable |
assignment |
statement

N1:call site

var |
assgn |
stmt

N1:control point |
variable |
assignment |
statement

(d)(c)

Fig. 3. Converting User Queries to Query Graphs. We use the “∣” separator
to specify the different node types that could be assigned to 𝑁1 and 𝑁2.
The correspondences between the node types in a user query and those in the
query graph are implicitly shown.

description. Our 𝐷𝑄𝐿𝑇 language syntax aims to make it
intuitive for developers to specify their queries. The intuitive
syntax may not directly correspond to the underlying system
dependence graphs returned by CodeSurfer [2]. The purpose of
the query graph construction step is to transform higher level
𝐷𝑄𝐿𝑇 queries into a more low level query graph with nodes,
edges, and their labels matching the SDG representations.

There are three kinds of basic node relations in user queries:
𝑁1 calls 𝑁2, 𝑁1 controls 𝑁2, and 𝑁1 dataDepends 𝑁2. We
describe the constraints on the node types for each kind of
node relations expressed in user queries and how the relations
are converted into query graphs as follows:

1) 𝑁1 calls 𝑁2. For this kind of node relations, both
𝑁1 and 𝑁2 must be of type function in 𝐷𝑄𝐿𝑇 for a
query expression to be valid. This query is converted
into a query graph containing two nodes as shown in
Figure 3(a).

2) 𝑁1 controls 𝑁2. For this kind of node relations, 𝑁1

must be of type controlPoint, while 𝑁2 can be of any
one of the types: function, assignment, controlPoint, or
statement. This query is converted into a query graph
containing two nodes as shown in Figure 3(b).

3) 𝑁1 dataDepends 𝑁2. For this kind of node relations,
𝑁1 and 𝑁2 can be of any type except declaration.
Figure 3(c) shows how the query is converted into a
query graph when 𝑁1 is not a function. Figure 3(d)
shows the query graph formed when 𝑁2 is a function.

B. Graph Matching

After the above step is done, we have a small query graph
and a large enriched SDG. We want to match the small graph
against the big graph.

This task is computationally expensive, especially when we
want to enable transitive (in addition to oneStep) dependence
queries. Given a query graph consisting of 𝑛 nodes, a naive
approach would be to enumerate all possible 𝑛-node subgraphs
of the enriched SDG and check if the constraints specified in
the query is satisfied by each of the subgraph. This would
incur a very high cost which is not practical for our purpose.
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To tackle this challenging graph matching problem, we
perform some heuristics to exclude nodes and edges that could
not be part of a search result, and break down the transitive de-
pendence queries into a number of graph reachability queries
so that the state-of-the-art technique in graph reachability can
be utilize to process these queries.

Our graph matching algorithm is mainly comprised of three
components, as shown in Figure 2. Its high level description
is as follows. We first identify the nodes in the enriched SDG
that potentially match each node in the query graph. We refer
to the set of potentially matching nodes as potential node set
(PNS), and denote the 𝑃𝑁𝑆 for a node 𝑛 in the query graph as
𝑃𝑁𝑆𝑛. We then identify the set of edges that connect nodes
in PNSs and potentially satisfy the constraints specified in the
query graph. We refer to the set of the edges as potential edge
set (PES). We keep these PNSs and PESs in a data structure
we refer to as a work list. We further filter away unpromising
nodes and edges in PNSs and PESs that could not be part of a
search result. Finally, we compose answer sets by considering
all combinations of the nodes and edges in PNSs and PESs.

More detailed descriptions are given below:

Work List Construction. We take in a query graph and topic-
enriched SDGs and convert them into a work list. This is done
by converting each node 𝑛 and edge 𝑒 in the query graph to
the corresponding 𝑃𝑁𝑆𝑛 and 𝑃𝐸𝑆𝑒.

PNS Construction. Each node in a 𝐷𝑄𝐿𝑇 query could be
specified with its type, textual description, syntactic restriction,
and semantic topics, as defined by 𝑡𝑙𝑖𝑠𝑡, 𝑡𝑒𝑥𝑡𝑂𝑝, 𝑢𝑐𝑜𝑛𝑑, 𝑐𝑜𝑛𝑑

,
etc. in Table I. These constraints are called unit conditions
and topic conditions of a query. The 𝑃𝑁𝑆𝑛 for a node 𝑛

is
obtained by getting the nodes satisfying these conditions

PES Construction. We construct one PES for every edge
𝑒

in the query graph, denoted 𝑃𝐸𝑆𝑒. Each 𝑃𝐸𝑆𝑒 is the set
of edges in SDG that connect two nodes in two different
PNSs whose corresponding nodes are connected in the query
graph. To check if two nodes are connected we use a graph
reachability indexing algorithm [7].

Node & Edge Filtering. In this step, we filter away nodes
and edges that are not possible to be part of a search result
(called unpromising) based on the intuition that all matching
nodes and edges in the SDG should have the same connectivity
as the nodes and edges in the query graph. The purpose of
the filter is to remove all unpromising nodes and edges, and
reduce unnecessary checks when composing PNSs and PESs
into final search results. Due to space limitation, we leave the
description of the filtering process to [13].

Answer Set Composition. Each node in the PNSs after the
filtering step is part of one or more search answers. There are
potentially many answers to a query based on the sizes of the
PNSs and the PESs. In this last step, we compose nodes and
edges in PNSs and PESs to form search answers. The main
idea to take every possible combination of the nodes from
the PNSs and see whether each of the combination including
associated edges from the PESs can match the edges in the
query graph. Finally, we translate each valid combination back

Dataset Approach TP TQ TRF TT
Expat v32 [14] 1.7 64.7 2.1 68.5

ours 0.3 6.0 0 57.3
Expat v38 [14] 0.9 30.4 1.1 31.5

ours 0.8 0.5 0 1.3
GPSbabel v1071 [14] 3.3 640.2 3.6 647.1

ours 0.6 1.0 0 13.2
GPSbabel v1200 [14] 3.3 265.2 0.9 289.4

ours 0.7 0.1 0 0.81

TABLE II
PERFORMANCE COMPARISON (IN SECONDS)

to code snippets as a search result where the line numbers and
the corresponding source codes are shown.

VI. EMPIRICAL EVALUATION

In this section we first describe our scalability evaluation.
We then present four case studies to show the utility of
our topic-enriched dependence search tool on a number of
software engineering tasks on various systems.

Scalability Evaluation. We compare the speed of our process-
ing engine with the previous engine proposed by Wang et al.
[14]. We use the dataset studied in their paper for comparison.
The results of the evaluation are shown in Table II. Column
“TP” represents the time consumed for pruning unpromising
nodes and edges before actual search. Column “TQ” represents
the time for performing queries. In the case of [14], the column
also includes the time spent in building graph indices for each
query, while our approach performs one-time indexing and just
needs to load index when required by a query. Column “TRF”
represents the time of post-filtering on search results which is
not applicable to our approach. The last column “TT” is the
total time for the whole query process, including all necessary
graph indexing costs. From Table II, we notice that on average
our approach is more than 130 times faster.

Case Studies. We next describe some case studies showing
the utility of our code search engine.

Task One. The first searching task is from the Expat project
version 2002-05-17 which is a C language project. The task
was also used in [14]. One comment of the code change
mentioned failed MALLOC() calls that can cause potential
memory leaks. The code before the change is shown below:
t a g = MALLOC( s i z e o f (TAG ) ) ;
i f ( ! t a g )

re turn XML ERROR NO MEMORY;
tag−>buf = MALLOC( INIT TAG BUF SIZE ) ;
i f ( ! t ag−>buf )

re turn XML ERROR NO MEMORY;

The code after the change is shown as below, with an added
call to free:
t a g = MALLOC( s i z e o f (TAG ) ) ;
i f ( ! t a g )

re turn XML ERROR NO MEMORY;
tag−>buf = MALLOC( INIT TAG BUF SIZE ) ;
i f ( ! t ag−>buf ){

f r e e ( t a g ) ;
re turn XML ERROR NO MEMORY;

}

Our task is to find all similar code that may return without
freeing certain memories. A sample query for this purpose in
our 𝐷𝑄𝐿𝑇 syntax is as follows:
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Topics: malloc;

Nodes: func A, func B, var C, var D, ctrlPoint E ofControlType if, stmt F

return;

Relations: C dataDepends A, D dataDepends B, D isFieldOf C, E dataDe-

pends D, E oneStep controls F;

Targets: E

In the query, the topic is 𝑚𝑎𝑙𝑙𝑜𝑐. 𝐴 corresponds to a
function call to MALLOC whose return value is used to
initialize a variable 𝐶; another variable 𝐷, a field of 𝐶, is
assigned the value from another call and used in a control
point 𝐸, and one of 𝐸’s branch may call return.

In this task, the developers actually changed two places
in the program. Our approach finds both of the places, plus
four other places, which are false positives, while Wang’s
approach [14] finds the two target places but brings 36 false
positive. Our approach provides better precision.

Among the four false positives (i.e., the four places not
changed by the developers), one actually missed a call to free
too; the developers missed the place when fixing the memory
leak bugs. This also suggests our code search engine can be
useful for detecting inconsistent changes to help reduce bugs.

Task Two. The second task is from Media Player Classic–
Home Cinema version 1639. The comment of the code change
is to fix the memory leak in decoder initialization functions.
The aim is to find all the memory leaks which are caused
by returns before freeing relevant memory storing structure
variables. An example is as below.
D e c o d e r a m r S t a t e ∗ s ; . . .
i f ( ( s−>l s f S t a t e = ( D p l s f S t a t e ∗ )

ma l loc ( s i z e o f ( D p l s f S t a t e ) ) ) == NULL ) {
f p r i n t f ( s t d e r r , . . . ) ;
re turn −1;

}

The code may cause memory leak since it does not free
the memory of occupied by the variable s and its pointer
fields other than lsfState. In this code, the assignment
s->lsfState = ...malloc... has one-step data de-
pendency on s and the return value of malloc. The control
point (if (...== NULL)) has one-step data dependency
on the assignment, and controls fprintf and the return
statement. The topics for the changes codes are 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 and
𝑖𝑛𝑖𝑡 according to the change comment. Therefore, our user
query is as below.
Topics: decoder, init;

Nodes: var A, func B contains “malloc”, ctrlPoint C ofControlType if, stmt

D return, assgn E, var X;

Relations: X isFieldOf A, X oneStep dataDepends E, E oneStep dataDepends

B, C oneStep dataDepends X, C oneStep controls D;

Targets: C

In this query, 𝑖𝑠𝐹 𝑖𝑒𝑙𝑑𝑂𝑓 is again used to relate a field to
its containing structure. 𝐶 is the 𝑡𝑎𝑟𝑔𝑒𝑡 because the developer
wants to locate only the branches that may need calls to free.

In this task, there are 10 targets in the code, and our
approach finds all the targets with one false positive. If no
topic is used for search, the search based on dependencies
only finds all the targets, but brings 14 false positives. If the
search is given a constraint that the name of the involved

functions should contain both decoder and init without
using the topics, one target is missed, since this target is in a
function Post_Filter_init whose name does not contain
“decoder”. Search with topics can find this target since this
function has latent semantic relationship with “decoder” even
though its name contains no “decoder”.

VII. CONCLUSION

We propose a code search approach that utilizes both of the
topics and the dependence relations in a code base for more
accurate results. Our approach provides a query language that
allows users to specify both free-form topics and complex
dependence relations. We design and implement algorithms
that can utilize topic modeling techniques to refine dependence
graph queries. As a result, our approach can not only return
more relevant search answers, but also is more scalable
for processing transitive dependence queries, achieving on
average an order of magnitude speedup than a previous state-
of-the-art approach. We have evaluated our tool on several
software maintenance tasks in various software systems and
demonstrated the utility of our code search engine.
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