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Abstract. The current packet based stream authentication schemes
provide effective and efficient authentication over a group of packets
transmitted on erasure channels. However, by fixing the packets in trans-
mission, any packet manipulation will cause authentication failure. In
p2p content delivery network where a proxy-in-the-middle is able to
store, forward, transcode and transform the stream, previous schemes
are simply unapplicable. To address the problem, we propose a flexible
verification scheme that relies on special stream formats (i.e. Unequal
Loss Protection ULP scheme [7]). We apply the so called Unequal Loss
Verification ULV scheme into MPEG-4 framework. The encoding, pack-
ing, amortizing and verifying methods are elaborated in this paper. Our
analysis shows that the scheme is secure and cost effective. The scheme is
indeed content aware and ensures the verification rate intuitively reflect-
ing a meaningful stream. Further on, we describe the general method of
publishing and retrieving a stream in p2p CDN.

1 Introduction

Peer-to-peer Content Delivery Networks (p2p CDNs) are emerging as the next
generation network architecture [10]. This overlay networks not only enable static
files to be published, stored, shared and downloaded easily and reliably (e.g.
[25]); but even make real-time streams broadcasted on your PCs (e.g. Split-
Stream [12] and CoopNet [13]). The end users are experiencing innovative p2p
applications and benefiting more and more from the widely adopted CDN archi-
tectures. While effective and efficient delivery is the desirable features, security
issues like authentication, integrity and confidentiality are more important is-
sues that must be considered seriously. Our study in this paper concentrates on
stream authentication.

Stream authentication schemes [14–24] have been intensively studied. Most
of them assume an erasure channel such as Internet where packets are lost from
time to time. And packet loss increases the difficulty of authenticating streams.



Packet loss has different reasons: router discards packets due to network conges-
tion; receiver discards packets when it has no enough resources; proxy discards
unimportant content intentionally so as to meet the network and device require-
ments. To deal with the problem, a body of works [23, 24] used erasure codes [11]
to tolerate arbitrary patterns of packet loss. However, in our p2p CDN setting
where a packet can be manipulated, these schemes are simply unapplicable.

This paper introduces the transcoding and transforming operations by a
proxy-in-the-middle. The proxy, in the p2p CDN setting, behaves more like a
gateway on application layer who can store, reorganize, forward and modify the
received packets. It has a more active role in delivery than a router working
on network layer and simply forwarding packets. Our work relies on traditional
packet based authentication schemes with signature amortization. Based on spe-
cial stream structure and packaging method, we analyze the stream encoding
methods and propose a flexible verification scheme. The scheme allows packet-
manipulation by proxies. It can verify in many ways, extend easily and scale well.
In p2p CDN, we can also publish the stream as well as its authentication data in
a reliable way. Our analysis shows that the scheme is secure and cost-effective.
Briefly, we summarize our main contributions as follows:

- We study packet based stream authentication schemes and identify their
fixed-packet problem which makes them unable to be used in packet manip-
ulation scenarios such as in p2p CDN.

- We propose an Unequal Loss Verification ULV scheme and apply it into
MPEG-4 framework. The scheme is flexible, extensible and scalable.

- We introduce a general method on how to publish, republish and retrieve a
stream in p2p CDN. The method could be used practically and transparently.

Paper organization: Section 2 states the problem of traditional packet based
authentication scheme. We then define the generic model in section 3. In sec-
tion 4 we elaborates the core operations in our ULV scheme. Following on, we
analyze the security and performance issues in section 5. We propose in section
6 the publishing method in p2p CDN. In section 7 we compare some related
approaches. At last, we conclude our paper and point out our future tasks.

2 Problem statement

Of all the authentication schemes [14–24], Gennaro and Rohatgi [15] proposed
off-line and online protocols for stream signature using a chain of one time sig-
natures. Their method increases traffic substantially and can not tolerate packet
loss. Wong and Lam [16] used a Merkle hash tree over a block of packets and
signed on the root of the tree. Each packet can be authenticated individually by
containing the signature and the nodes in tree to reconstruct the root. Perrig et
al. [18] proposed Time Efficient Stream Loss-tolerant Authentication (TESLA)
and Efficient Multi-chained Stream Signature (EMSS) schemes. The schemes are
based on symmetric key operations, which uses delayed disclosure of symmet-
ric keys to provide source authentication. The publisher is required online for



disclosing the keys. Miner and Staddon [21] authenticated a stream over lossy
channel based on hash graph, but their scheme is not scalable. The traditional
schemes can be categorized as hash graph-based [21], tree-based [20, 16] and
symmetric key-based [18]. Other approaches deploy erasure codes to resist arbi-
trary packet loss. Park et al. [23] described an authentication scheme SAIDA by
encoding the hash values of packets and the signature on the whole block with
information dispersal algorithm. By amortizing the authentication data into the
packets, the method reduces the storage overhead and tolerates more packet
loss. Recently, Pannetrat et. al. [24] improved SAIDA by constructing a system-
atic code to reduce the overhead. All of above schemes are Packet based Stream
Authentication Schemes (P-SASs).

In typical P-SAS setting, the packets are prepared by the producer and de-
livered to the receiver via an erasure channel. Along the channel, each packet is
processed as an atomic units. The intermediates (e.g. routers) perform only store
and forward functions. The packets are either dropped or lost, but not modi-
fied due to any reason. P-SASs work well in this sender-receiver (S-R) model.
However, in p2p CDN setting, a proxy performs a more active role since it can
not only store and forward packets, but also transcode and transform the pack-
ets. More security problems are rendered in this Sender-Proxy-Receiver (S-P-R)
model.

Transcoding mechanism is provided in Fine Granular Scalability (FGS) [3]
to distribute a MPEG-4 stream efficiently and flexibly over heterogeneous wired
and wireless networks [4–6]. The transcoding mechanism allows a proxy to dis-
card data layers from the lowest priority layer to higher layers until the resource
restrictions are met. The packet size is reduced accordingly. This transcoding
strategy differs from packet dropping strategy. Because the transcoded stream
can tolerate the same number of packet loss as the original stream, the error-
resilience capability is not decreased. Thus, a receiver is able to verify authen-
ticity of the packet origin even if the stream is transcoded.

However, transcoding can not enlarge the packets. In certain network condi-
tions, enlarging packets does help reduce the packet loss rate. It is not difficult
to find out the relationship between packet loss rate vs. bit-rate vs. packet size
[9]. Under a low bit-rate (e.g. 50kB/s), decreasing the packet size will incur the
decreasing of packet loss rate. But in high bit-rate (e.g. 200kB/s), increasing the
packet size will cause the same effect that is desirable. To fit in fluctuant network
conditions, transforming is necessary and at least as important as transcoding.

3 The general model

Fig. 1 sketches the basic model. It consists of three parts: preparation by source,
modification by proxy and verification by receiver. We describe them as follows:

Part 1: Preparation The producer encodes the video objects according to the
MPEG-4 standard. The producer prepares the packets for the object group
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Fig. 1. A general model of publishing and verifying a stream. It depicts three main
parts: Part 1-preparation, Part 2-modification and Part 3-verification

based on the priorities of the video objects and layers. The producer gener-
ates authentication data including signature and integrity units. The authen-
tication data is amortized over the group of packets. The protected stream
is then published on certain p2p CDN and ready to be delivered.

Part 2: Modification To meet the requirement of the network bandwidth or
the end device resource, proxies may transcode or transform the stream
without affecting verification of the stream. The proxy needs to republish
the modified stream in p2p CDN.

Part 3: Verification This part is actually reversing the preparation part. The
receiver retrieves a stream as well as its authentication data from the p2p
CDN. It then unpacks, decodes the packets. With recovered authentication
data, the receiver can verify the signature and integrity. 1

4 Unequal loss verification ULV scheme

According to [1, 2], a MPEG-4 presentation is divided into sessions including
units of aural, visual, or audiovisual content, called media objects. A video se-
quence (or group, denoted as VSs) includes a series of video objects (VOs). Each
VO is encoded into one or more video object layers (VOLs). Each layer includes
information corresponding to a given level of temporal and spatial resolution,
so that scalable transmission and storage are possible. Each VOL contains a se-
quence of 2D representations of arbitrary shapes at different time intervals that
is referred to as a video object plane (VOP). Video object planes are divided
further into macroblocks (MBs) of size 16×16. Each macroblock is encoded into
six blocks B1, B2, · · · , B6 of size 8×8 when a 4:2:0 format is applied. In a virtual
object sequence V S, VOs, VOLs, VOPs, MBs and Blocks are arranged based

1 Common assumption is that the verification is conducted non-interactively, we have
the same sense, yet still define an interactive scenario in section 6.3.



on a predefined style. Refer to [7] for details on Unequal Loss Protection (ULP)
scheme.

In Fig.2, we illustrate a typical hierarchical object tree in one visual object
group of a MPEG-4 stream. Based on the tree structure, we are able to generate
the hash values bottom-up. At last, a merkle hash tree is formed and its root is to
be signed by the originator as the commitment. The tree structure shown in Fig.2
is based on the priority levels of various objects, layers as well as the planes. For
instance, The top object V O1, as the fundamental layer, has the highest priority
over the whole object group. The lower the level an object stays in the tree,
the lower the priority it has. However, according to different applications, the
tree can be constructed adaptively. By signing once on the root of the MHT,
the originator actually commits a whole virtual object group to the receivers.
Suppose a stream consists of n virtual object groups, n signatures are to be
generated to authenticate the stream. Hereafter, we use authentication data to
represent both the signatures and the hash values. We discuss how to publish
authentication data for each group in a reliable way in next section. Follows, we
elaborate the procedures of generating the hash values and signatures. Then, the
authentication data is to be amortized into the packets using existing information
dispersal algorithm [23]. Transcoding and transforming operations towards the
object group are allowed in transmission. We show that we can verify the group
in either case at last.

...
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B1

MBb

MB1

VOP1

VOL1

VOL2

VOP2

... B6 B
1

B
6

VO3

VOL3

VOP3
...

Fig. 2. A typical tree structure of an object group with priority levels from V O1, V O2,
... down to V OLs, V OPs, MBs and Blocks. Only the hash values circled out as a
partial tree will be taken in authentication data. The shadow part that covers subtrees
(V O2-V O3) will be removed to demonstrate the transcoding operation in section 4.3

In this paper, we frequently use tools like Merkle hash tree (MHT) [8] and
erasure correction coding (ECC), as well as some notations listed in table 1.

4.1 Generating authentication data

Above we defined an object group tree structure, we now generate the MHT
recursively from the leaf nodes (e.g. the blocks) to the root. At the bottom



Table 1. Notations

m A pre-image, a message

h(.) A collision resistant hash function such as
SHA-1

Ks The private key of the producer

Kp The public key of the producer

Sign The signature algorithm: σ = Sign(Ks, m),
such as RSA

Veri The verification algorithm: Veri(Kp, σ, m)
output {true, false}

layer, we compute hash values of Blocks with equation 1

hBi
= h(Blocki ‖ i), i ∈ {1, 2, · · · , 6} (1)

The hash values of the macroblock MBj is

hMBj
= h(hB1 ‖ hB2 ‖ · · · ‖ hB6) (2)

where hBi
(1 ≤ i ≤ 6) is the hash value of block Blocki in macroblock MBj ,

Upward, one upper layer node N with a set of child nodes C = (C1, C2, ..., Cc),
we compute the hash value of N by the following equation 3:

hN = h(C1 ‖ C2 ‖ · · · ‖ Cc) (3)

According to different layers, also refer to Fig. 2, the formulas for calculating
the MHT hash values are

Level1 − (Blocks) : L1j = h(Bj ‖ j), j ∈ {1, 2 · · · , 6} (4)
Level2 − (MBs) : L2j = h((L11 ‖ · · · ‖ L16)), j ∈ {1, 2 · · · , b} (5)

Level3 − (V OPs) : L3j = h((L21 ‖ · · · ‖ L2b) ‖ L3j+1), j = 1, 2, · · · (6)
Level4 − (V OLs) : L4j = h(L31 ‖ L4j+1), j = 1, 2, · · · (7)

Level5 − (V Os) : L5j = h(L41 ‖ L5j+1), j = 1, 2, · · · (8)

where (4) computes the hash of each block, (5) calculates the hash of each block
and (7)(or (8)) calculates, respectively, the hashes of each object layer and object
recursively.

Finally, the object group hash is given as:

hG = h(L51 ‖ G ‖ ID) (9)

The producer now signs the group hash hG using its private key Ks and gets
the signature as:

σ = Sign(Ks, hG) (10)



Now, we have one part (the signature unit) of the authentication data (de-
noted as λ). The critical thing is how many hash values are taken as evidence of
integrity unit. In another view, which part of the MHT is recorded as the evi-
dence for verification. For example, in Fig. 2, the circled area of the tree contains
all VO levels, VOL levels and VOP levels. Thus, all the hash values within the
area would be recorded as the integrity unit. Recall that in ULP scheme [7], it
is the layer’s priority level that proportionally determines its amount of FECs
attached to itself.

Our Unequal Loss Verification ULV scheme simulates the policy of ULP by
matching the amount of hash values with different priority levels. We define
a scheme ULV = (M, T ) that consists of two functions. The matching function
M, given inputs a tree T and objects’ encoding priority levels, assigns each node
on the tree with a priority level and gets a prioritized tree Tp. The truncating
function T , given inputs of a tree Tp and a threshold value θ, truncates all
the nodes on the tree whose priority level p < θ, and outputs T ′p. We use T ′p
as the final tree and record every hash values of its nodes. For a given virtual
sequence V S, we compose its integrity unit as hV S = {hG, L5j , L4j , L3j , · · ·},
j = {1, 2, · · ·}. Thus, we combine them and get the authentication data λ =
{σ, hV S}.

4.2 Amortizing authentication data

After generating the authentication data, we employ ECC encoders to encode
them and amortize them onto the packets before sending them out over an
erasure channel (We use the method introduced in [24]). One complex way is to
encode different portions of the authentication data with unequal encoding rate
(e.g. high priority level yields high encoding rate) and then append the codewords
onto the packets. However, the complexity does not take much advantage. For
simplicity, we treat the authentication data uniformly with the same encoding
rate as of the highest priority layer. The encoding procedure is described as
follows: 2

1. With the systematic ECC algorithm Enc2n−k,n(·), a codeword
X = (h1, h2, · · · , hn, x1, · · · , xn−k)T = Enc2n−k,n(h1, h2, · · · , hn) is produced,
where all symbols are in field GF (2w1), n is the number of packets in a group,
and k is the minimum number of expected received packets.

2. Dividing the concatenation x1 ‖ x2 ‖ · · · ‖ xn−k into k symbols yi ∈
GF (2w2), i = 1, 2, · · · , k. With the erasure code algorithm, a codeword
Cr = Encn,k(y1, y2, · · · , yk) is produced. Denote the n symbols in the code-
word Cr as integrity units r1, r2, · · · , rn.

3. Similarly, dividing signature σ into k symbols σi of the same size, i =
1, 2, · · · , k. σi ∈ GF (2w3)(Note: σi and yi may be of different sizes.) Then en-
code the signature to produce a signature codeword Cs = Encn,k(σ1, σ2, · · · , σk).
Denote the n symbols in the codeword Cs as signature units s1, s2, · · · , sn.

2 The signature part and integrity part of the authentication data are processed dif-
ferently to assist explanation of the following operations.



Next, we append integrity unit rj and signature unit sj on packet Pj, for all
j = 1, 2, · · · , n. That is, the packet Pi now consists of ri, si and Pi1, P i2, · · · , P il.

4.3 Transcoding and transforming

On receiving a stream, a proxy is allowed to do transcoding and transform-
ing operations before retransmission. First, we focus on transcoding. Based on
MPEG-4 stream structure, transcoding means that we preserve certain (im-
portant) branches of a MHT and truncate other (unimportant) parts. I.e. the
shadow part in Fig. 2 could be truncated if necessary. In this example, we discard
the subtree (V O2 − V O3), keep the subtree root and keep the subtree (V O1).
Apparently, the original authentication data λ has to be changed to a new one
λ′. The new data should contain the original signature σ, the new integrity unit
hV O1 and the new signature σP (signed by the proxy on the root of the subtree
V O2 − V O3, for committing the changes made). We get the new authentica-
tion data λ′ = {σ, σP , hV O1}. Using above amortization method, we can append
them onto the packets and send them out. 3

Transforming is another way of adapting to narrow bandwidth, e.g. in Quality
of Service network. It simply re-organizes the stream into more but smaller
packets. Sometimes enlarging packet size may improve on packet loss rate, which
is not supported by transcoding. After transforming, the authentication data
must be encoded again to be amortized into the new (larger or smaller) packets.
Note that by transforming the packets, the whole stream size will be slightly
different from the original size due to more or less packet headers.

4.4 Verifying

The verification process includes unpacking, decoding and verifying, which re-
verses the generation process. Based on the erasure coding, at least k out of
n packets of a group should be received in order to recover the authentication
data. Suppose k packets P1, P2, · · · , Pk are received successfully. The integrity
units r̂1, r̂2, · · · , r̂k and the signature units ŝ1, ŝ2, · · · , ŝk are recovered from the
received packets. With the decoder Decn,k(.) and Dec2n−k,n(.), the authentica-
tion data is reconstructed as λ̂ = {σ̂, ˆhV S}. Then, the signature can be verified
with algorithm Veri(Kp, σ̂, ĥG), where Kp is the public key of the producer. If
Veri(.) is true, then continue to verify the integrity unit; if not, the object group
is bogus and discarded. To this end, the client reconstructs the hash tree h′V S

according to formulas (4)-(8). The extracted integrity unit ˆhV S is now compared
with the constructed unit h′V S , which is actually the comparison of two MHTs.
If there is no transcoding operation, we require h′V S = ˆhV S for successful verifi-
cation. If there are transcoding operations, the signature and integrity units are
verified one by one in descendent order.

3 The new stream size shrinks since both the size of stream data and authentication
data are reduced.



5 Security and performance analysis

The security of our scheme relies on the security of the Merkle hash tree. For-
tunately, Merkle hash tree has very nice security properties [8]. In this analysis,
we focus on how much of a meaningful stream is verifiable. Then, we analyze
the computational cost of each role in the scheme.

5.1 Verification probability

Recall the ULP scheme in [7], the fundamental layer has been assigned the most
FECs to resist the heaviest packet losses. A stream is not successfully received
if even its base layer is not correctly recovered. In this condition, no verifica-
tion is available. In our scheme, we attach the same number of parity units
for authentication data as of the base layer. Assuming the base layer is recov-
erable, the authentication data is also recoverable. Additionally, assuming an
erasure channel with independent packet losses, given ρ the packet loss prob-
ability. The group of n packets transferred over the erasure channel may have
probably

(
n
k

)
ρn−k(1− ρ)k packets received. The verification delay for a group of

n packets is O(n). In our definition, only those recovered content of a received
stream can be verified. If we receive enough packets to recover only the base
layer, we are able to verify it from the authentication data. We say that only
the base layer is verifiable. Surely, more packets received mean that more con-
tents are verifiable. In other words, the rate of the reconstructed hash tree T ′

over the recovered hash tree T̂ from the received packets directly determines the
verification rate T ′/T̂ over the object group, given the signature on T̂ is valid.

5.2 Computational cost

We study the computational cost related to security and ignore object encod-
ing/decoding. Firstly, in case of no transcoding operation, the signature is gener-
ated once for a group of packets. The computational cost for signature generation
and verification depends on the signature scheme selected. However, the signa-
ture verification can be much faster than signature generation. I.e. for a RSA
signature scheme, the verification time can be only 4% of the signature gener-
ation time (with the public exponent equals 17). Secondly, based on equations
(4)-(9), verifying the integrity unit depends on how many hash operations are
required in generating the hash tree. For a MHT with n data items, the total
number of hash operations is roughly 2n.

Last, when there are transcoding operations, the cost of generating and ver-
ifying the signature is proportional to the number of transcoding operations.
By this we assume one transcoding operation produces one signature genera-
tion/verification operation. However, for signature generation, the cost at the
producer is fixed by one; the cost at proxy is proportional to the number of
signature operations. For signature verification, the final receiver has to verify
all the signatures, but at relatively lower cost. The receiver will also spend time
on reconstruct the (probably partial) hash tree over the object group. A partial



hash tree means that the receiver spend less time on constructing the tree at the
cost of verifying more signatures.

6 Publishing the stream in p2p CDN

We introduced the ULV scheme above, note that in section 4.2, the authentica-
tion data units are amortized into the packets. While the packets are transmitted
over a lossy network, this method makes sure that the authentication data can
be recovered from the received packets. In S-R model, the scheme runs well. But
in S-P-R model, there is a subtle problem. Suppose the proxy receives t out of
n packets (t < n, t is enough to recover some base layers, but not enough to
recover other layers), the proxy faces a dilemma: whether to transfer those t
packets unchanged to the receiver (which is simple and saves computation time,
but wastes bandwidth) or to transcode the stream (which wastes computation
resources and needs less bandwidth). Another way-transforming, although feasi-
ble, is also not practical. In either case, the amortizing method, similar to packet
based schemes, suffers either from high computation or from wasting bandwidth.
In p2p CDN, there exists another reliable way to transfer the data stream and
its authentication data separately. Note that the size of authentication data is
much smaller than that of data stream proportionally.

6.1 Publishing and retrieving

Suppose a stream S is divided into n virtual stream object groups (V Ss):
S = {V S1, V S2, ..., V Sn}. According to equations (9,10), we compute authen-
tication data Λ = {HS , Σ}, where HS = {hV S1 , hV S2 , ..., hV Sn}, and Σ =
{σV S1 , σV S2 , ..., σV Sn

}.
Given the name of the stream S as N(S), the publisher inserts the stream

content S to the p2p overlay with key h[N(S),−] and inserts the stream authen-
tication data Λ with key h[N(S), A].

To retrieve the stream, the user first computes the two keys h[N(S),−] and
h[N(S), A]. Then she looks up the keys in the p2p CDN and expects to get some
storing locations of the stream. The user then sends requests to the selected
storing points and downloads the stream as well as its authentication data.

Suppose the stream is extremely large, it is easy to publish it individually
under different look-up keys. For example, V Si can be published using the key
h[N(S), i], (i ∈ {1, 2, ..., n}). In this case, the key h[N(S),−] may be mapped
to a description file of the stream (i.e. a README file on how to download
the stream). By retrieving the description, the user proceeds in downloading by
iteratively querying with h[N(S), i], until she downloads the whole stream. Since
every virtual object group V Si is downloaded separately, if the authentication
data was downloaded first, it can also be verified individually. Using this first-
come-first-serve method, we achieve the on-the-fly verification based on V Ss.



6.2 Republishing and retrieving

We assume initially that the stream can be transcoded or transformed by any
intermediate proxy. Since the scheme is actually transparent over packet level,
transforming operation doesn’t change anything and needs no republishing. How-
ever, transcoding operation changes the content by removing some layers, thus
it needs to be published again. For instance, suppose the original stream S is
played in real time under wide bandwidth 10MB/s. S can be transcoded to
S′ = {V S′1, V S′2, ..., V S′n} to meet certain narrow bandwidth 1MB/s (with low
quality). The proxy needs to compute new lookup keys for S′. Without loss of
generality, assume the new stream name is N(S′) 4. The proxy now insert S′

into the CDN with key h[N(S′),−]. Note that the authentication data Λ needs
no republishing if it covers the layers being removed. The retrieving process is
similar with above method. To verify the transcoded stream, all content of the
stream are able to be verified except for the removed layers.

6.3 An interactive verification scheme

The authentication data Λ is required to be published/retrieved together with
stream data S. If the user would not waste their bandwidth for retrieving it,
but still wants to check the data randomly, she can choose an interactive way of
verifying. In this case, there must be an online verification server who holds Λ
and answers arbitrary queries in real time. Considering Λ as MHT, the server,
being queried with a leave, may answer with a path (with length log(n)) from
the leave to the root of MHT. This is a bandwidth-storage wise solution. Our
basic scheme is flexible on verifying various portions of the group structure. The
scheme can be flexible in more ways.

7 Prior works and discussions

In the literature, there existed a bunch of research works [15–24] that focused
on multicast authentication and stream authentication. We analyzed P-SASs in
section 2. In case of erasure channel or multicast channel, the schemes works
well by passing packets through routers. However, as we have indicated, the
packets have to be manipulated while being passed through proxies. The pre-
vious schemes don’t allow packet modification once the producer’s finishing the
preparation phase. In one word, none of them can work under S-P-R model. One
recent work [26] uses distillation code to defend against pollution attacks over a
polluted erasure channel. Another recent work, [27], deals with the same problem
under a fully adversarial model. In our threat model, we only assume the era-
sure channel. Since the mechanisms of [26, 27] works on the encoding/decoding

4 One way of linking the new name with the original one is to put the new name in
a new README file and published with key h[N(S), new]. In fact, any searching
engine can help derive the new name, which is beyond the scope of this paper.



phase, we can adapt the coding mechanism into our scheme to defend pollution
attacks (this is our future work).

The current approach, [25], describes an on-the-fly verification scheme on
transferring huge file over p2p CDN. It addresses mainly the on-the-fly property
on verifying small blocks while being delivered over an erasure channel. Although
the intermediate operations are not considered in their work, it has a similar
publishing method as ours.

One possible thing needed to be pointed out of our scheme is the potential
abuse of content copyright, since we allow intermediate content modification.
While traditional Digital right Management (DRM) systems focus on end-to-end
protection, the future DRM systems must consider the protection of content in-
delivery. Thus, we assert that our scheme does not apparently violate the DRM
framework, but enriches it. How to ensure the content’s intellectual property, at
the meanwhile to provide high flexibility is still a challenging topic.

8 Conclusions and future directions

We proposed an ULV scheme that can verify a stream flexibly. The scheme is also
easily extensible and scales well, but relies on special stream format (e.g. MPEG-
4). We elaborated how the scheme works in S-R model and how it works in S-P-R
model. Both are under the assumption of “erasure channel”, but can be adapted
to “polluted erasure channel”, e.g. by using distillation code [26]. The scheme is
also enriched by imaginative appliances like multi-source stream authentication.
Our analysis shows that it is secure and cost-effective. In the near future, we will
develop it within MPEG-4 framework and apply it into interesting applications.
More experiments need to be done for testing its performance.
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