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ABSTRACT
Today, watermarking techniques have been extended from the mul-
timedia context to relational databases so as to protect the owner-
ship of data even after the data are published or distributed. How-
ever, all existing watermarking schemes for relational databases are
secret key based, thus require a secret key to be presented in proof
of ownership. This means that the ownership can only be proven
once to the public (e.g., to the court). After that, the secret key
is known to the public and the embedded watermark can be eas-
ily destroyed by malicious users. Moreover, most of the existing
techniques introduce distortions to the underlying data in the wa-
termarking process, either by modifying least significant bits or ex-
changing categorical values. The distortions inevitably reduce the
value of the data. In this paper, we propose a watermarking scheme
by which the ownership of data can be publicly proven by anyone,
as many times as necessary. The proposed scheme is distortion-
free, thus suitable for watermarking any type of data without fear
of error constraints. The proposed scheme is robust against typical
database attacks including tuple/attribute insertion/deletion, ran-
dom/selective value modification, data frame-up, and additive at-
tacks.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—relational databases

Keywords
Relational database, ownership protection, public verifiability, wa-
termark, certificate

1. INTRODUCTION
Ownership protection of digital products after dissemination has

long been a concern due to the high value of these assets and the
low cost of copying them (i.e., piracy problem). With the fast devel-
opment of information technology, an increasing number of digital
products are distributed through the internet. The piracy problem
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has become one of the most devastating threats to networking sys-
tems and electronic business. In recent years, realizing that “the law
does not now provide sufficient protection to the comprehensive
and commercially and publicly useful databases that are at the heart
of the information economy” [12], people have joined together to
fight against theft and misuse of databases published online (e.g.,
parametric specifications, surveys, and life sciences data) [32, 4].

To address this concern and to fight against data piracy, water-
marking techniques have been introduced, first in the multimedia
context and now in relational database literature, so that the own-
ership of the data can be asserted based on the detection of wa-
termark. The use of watermark should not affect the usefulness of
data, and it must be difficult for a pirate to invalidate watermark de-
tection without rendering the data much less useful. Watermarking
thus deters illegal copying by providing a means for establishing
the original ownership of a redistributed copy [1].

In recent years, researchers have developed a variety of water-
marking techniques for protecting the ownership of relational data-
bases [1, 28, 26, 29, 13, 19, 20, 2] (see Section 5 for more on related
work). One common feature of these techniques is that they are se-
cret key based, where ownership is proven through the knowledge
of a secret key that is used for both watermark insertion and de-
tection. Another common feature is that distortions are introduced
to the underlying data in the process of watermarking. Most tech-
niques modify numerical attributes [1, 28, 29, 13, 19, 20], while
others swap categorical values [26, 2]. The distortions are made
such that the usability of data for certain applications is not af-
fected and that watermark detection can be performed even in the
presence of attacks such as value modification and tuple selection.

The above two features may severely affect the application of
watermarking techniques for relational databases. First, the secret
key based approach is not suitable for proving ownership to the
public (e.g., in a court). To prove ownership of suspicious data,
the owner has to reveal his secret key to the public for watermark
detection. After being used one time, the key is no longer secret.
With access to the key, a pirate can invalidate watermark detection
by either removing watermarks from protected data or adding a
false watermark to non-watermarked data.

Second, the distortions that are introduced in the process of wa-
termarking may affect the usefulness of data. Even though cer-
tain kind of error constraints (e.g., means and variances of water-
marked attributes) can be enforced prior to or during the water-
marking process, it is difficult or even impossible to quantify all
possible constraints, which may include domain constraint, unique-
ness constraint, referential integrity constraint, functional depen-
dencies, semantic integrity constraint, association, correlation, car-
dinality constraint, the frequencies of attribute values, and statisti-
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cal distributes. In addition, any change to categorical data may be
considered to be significant. Another difficulty is that the distor-
tions introduced by watermarking cannot be reduced arbitrarily. A
tradeoff has to be made between watermark distortions and the ro-
bustness of watermark detection (roughly speaking, the more dis-
tortions introduced in the watermarking process, the more likely
that a watermark can be detected in the presence of database at-
tacks).

In this paper, we attempt to design a new database watermarking
scheme that can be used for publicly verifiable ownership protec-
tion and that introduces no distortions. Our research was motivated
in part by certain aspects of public key watermarking schemes in
the multimedia context, yet it is fundamentally different and partic-
ularly customized for relational databases (see also Section 5 for re-
lated work). Our scheme has the following unique properties. First,
our scheme is publicly verifiable. Watermark detection and own-
ership proof can be effectively performed publicly by anyone as
many times as necessary. Second, our scheme introduces no errors
to the underlying data (i.e., it is distortion-free); it can be used for
watermarking any type of data including integer numeric, real nu-
meric, character, and Boolean, without fear of any error constraints.
Third, our scheme is efficient for incremental updating of data. It
is designed to facilitate typical database operations such as tuple
insertion, deletion, and value modification. Fourth, our scheme is
robust. It is difficult to invalidate watermark detection and owner-
ship proof through typical database attacks and other attacks. With
these properties, we believe that our watermarking technique can
be applied practically in the real world for the protection of owner-
ship of published or distributed databases.

The rest of the paper is organized as follows. Section 2 presents
our watermarking scheme, which includes watermark generation
and detection. Section 3 studies how to prove ownership publicly
using a watermark certificate. It also investigates certificate revoca-
tion and incremental update in our scheme. Section 4 analyzes the
robustness of our scheme and the tradeoff between its robustness
and overhead. Section 5 comments on related work, and section 6
concludes the paper.

2. THE SCHEME
Our scheme watermarks a database relation R whose schema is

R(P,A0, . . . , Aν−1), where P is a primary key attribute (later we
discuss extensions for watermarking a relation that does not have
a primary key attribute). There is no constraint on the types of
attributes used for watermarking; the attributes can be integer nu-
meric, real numeric, character, Boolean, or any other types. At-
tributes are represented by bit strings in computer systems. Let η
denote the number of tuples in relation R. For each attribute of
a tuple, the most significant bit (MSB) of its standard binary rep-
resentation may be used in the generation of a watermark. It is
assumed that any change to an MSB would introduce intolerable
error to the underlying data value. For ease of referencing, Table 1
lists the symbols that will be used in this paper.

2.1 Watermark Generation
Let the owner of relation R possess a watermark key K, which

will be used in both watermark generation and detection. The wa-
termark key should be capable of publicly proving ownership as
many times as necessary. This is contrast to traditional watermark-
ing, where a watermark key is kept secret so that the database owner
can prove his ownership by revealing the key for detecting the wa-
termark. However, under that formation, the ownership can be pub-
licly proved only once. In addition, the key should be long enough
to thwart brute force guessing attacks to the key.

Algorithm 1 genW (R,K, γ) // Generating watermark W for DB
relation R
1: for each tuple r in R do
2: construct a tuple t in W with the same primary key t.P =

r.P
3: for i=0; i < γ; i= i+1 do
4: j = Gi(K, r.P ) mod (the number of attributes in r)
5: t.Wi = MSB of the j-th attribute in r
6: delete the j-th attribute from r
7: end for
8: end for
9: return W

In our scheme, the watermark key is public and may take any
value (numerical, binary, or categorical) selected by the owner.
There is no constraint on the formation of the key. To reduce un-
necessary confusion, the watermark key should be unique to the
owner with respect to the watermarked relation. We suggest the
watermark key be chosen as

K = h(ID|DB name|version|...) (1)

where ID is the owner’s identity, ‘|’ indicates concatenation, and
h() is a cryptographic hash function (e.g., SHA-512) [22]. In the
case of multiple owners, the public key can be extended to be a
combination of all the owners’ IDs or generated from them using a
threshold scheme. For simplicity, we assume that there is a single
owner of DB relation R in the following.

Our concept of public watermark key is different from that of a
public key in public key infrastructure (PKI) [16]. In the cryptog-
raphy literature, a public key is paired with a private key such that a
message encoded with one key can be decoded with its paired key;
the key pair is selected in a specific way such that it is computation-
ally infeasible to infer a private key from the corresponding public
key. In our watermarking scheme, there is no private key, and the
public watermark key can be arbitrarily selected. If the watermark
key is derived from the owner’s ID as suggested, it is similar to
the public key in identity based cryptography [25, 3, 5], though the
owner does not need to request a private key from a key distribution
center (KDC).

The watermark key is used to decide the composition of a pub-
lic watermark W . The watermark W is a database relation whose
scheme is W (P,W0, . . . ,Wγ−1), where W0, . . . ,Wγ−1 are bi-
nary attributes. Compared to DB relation R, the watermark (rela-
tion) W has the same number η of tuples and the same primary
key attribute P . The number γ of binary attributes in W is a con-
trol parameter that determines the number ω of bits in W , where
ω = η · γ and γ ≤ ν. In particular, we call γ the watermark
generation parameter.

Algorithm 1 gives the procedure genW (R,K, γ) for generat-
ing the watermark W . In the algorithm, a cryptographic pseudo-
random sequence generator (see chapter 16 in [24]) G is seeded
with the concatenation of watermark key K and the primary key
r.P for each tuple r in R, generating a sequence of numbers {Gi(K,
r.P )}. The MSBs of selected values are used for generating the
watermark. The whole process does not introduce any distortions
to the original data. The use of MSBs is for thwarting potential
attacks that modify the data. Since the watermark key K, the wa-
termark W , and the algorithm genW are publicly known, anyone
can locate those MSBs in R that are used for generating W . How-
ever, an attacker cannot modify those MSBs without introducing
intolerable errors to the data.

In the construction of watermark W , each tuple in relation R
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R database relation to be watermarked
η number of tuples in relation R
ν number of attributes in relation R

W database watermark (relation) generated in watermarking
γ (watermark generation parameter) number of binary attributes in watermark W
ω number of bits in W ; ω = ηγ
τ (watermark detection parameter) least fraction of watermark bits required for watermark detection
K watermark key

Table 1: Notation in watermarking

Algorithm 2 detW (R,K, γ,W, τ ) // Detecting watermark for
DB relation R’
1: match count=0
2: total coutn=0
3: for each tuple r in R do
4: get a tuple t in W with the same primary key t.P = r.P
5: for i=0; i < γ; i= i+1 do
6: total count = total count +1
7: j = Gi(K, r.P ) mod (the number of attributes in r)
8: if t.Wi = MSB of the j-th attribute in r then
9: match count = match count +1

10: end if
11: delete the j-th attribute from r
12: end for
13: end for
14: if match count/total count > τ then
15: return true
16: else
17: return false
18: end if

contributes γ MSBs from different attributes that are pseudo-randomly
selected based on the watermark key and the primary key of the tu-
ple. It is impossible for an attacker to remove all of the watermark
bits by deleting some but not all of the tuples and/or attributes from
the watermarked data. The larger the watermark generation param-
eter γ, the more robust our scheme is against such deletion attacks.

2.2 Watermark Detection
Our watermark detection is designed to be performed publicly

by anyone as many times as necessary. This is a notable difference
compared from previous approaches, which are secret key based. In
watermark detection, the public watermark key K and watermark
W are needed to check a suspicious database relation R. It is
assumed that the primary key attribute has not been changed or
else can be recovered. If the primary key cannot be relied on, one
can turn to other attributes, as will be discussed in Section 2.4.

Algorithm 2 gives the procedure detW (R,K, γ,W, τ) for de-
tecting watermark W from relation R, where γ is the watermark
generation parameter used in watermark generation, and τ is the
watermark detection parameter that is the least fraction of correctly
detected watermark bits. Both parameters are used to control the
assurance and robustness of watermark detection, as will be ana-
lyzed in Section 4. The watermark detection parameter τ is in the
range of [0.5, 1). To increase the robustness of watermark detec-
tion, we do not require that all detected MSBs in R match the
corresponding bits in W , but that the percentage of the matches is
more than τ (i.e., match count/total count > τ in algorithm 2).

2.3 Randomized MSBs

Most modern computers can represent and process four primi-
tive types of data besides memory addresses: integer numeric, real
numeric, character, and Boolean. Regardless of its type, a data item
is represented in computer systems as a bit string. The MSB of the
bit string is the leftmost digit, which has the greatest weight. In a
signed numeric format (integer or real), the MSB can be the sign
bit, indicating whether the data item is negative or not1. If the sign
bit is not chosen (or there is no sign bit), the MSB can be the high
order bit (next to the sign bit; in floating point format, it is the left-
most bit of exponent). For character or Boolean data, any bit can
be an MSB and we simply choose the leftmost one.

We assume that watermark bits generated from selected MSBs
are randomly distributed; that is, each MSB has the same prob-
ability of 1/2 to be 1 or 0. This randomness is important in our
robustness analysis (see Section 4). If this is not the case, then we
randomize the MSBs by XOR’ing them with random mask bits. For
the MSB of the j-th attribute of tuple r, the corresponding mask bit
is the j-th bit of hash value h(K|r.P ) if j ≤ , where  is the bit-
length of hash output. In general, if (k − 1) < j ≤ k, the mask
bit is the (j − (k− 1))-th bit of hash value hk(K|r.P ). Since the
hash value is computed from the unique primary key, the mask bit
is random; thus, the MSB after masking is random. The random-
ized MSBs are then used in watermark generation and detection in
our scheme.

2.4 Discussion on Relations without Primary
Keys

Most watermarking schemes (e.g., [1, 20, 26, 2]) for relational
databases, including ours, depend critically on the primary key at-
tribute in the watermarking process. In the case that there is no
primary key attribute, or that the primary key attribute is destroyed
in malicious attacks, one can turn to other attributes and construct
a virtual primary key that will be used instead of the primary key in
the watermarking process. The virtual primary key is constructed
by combining the most significant bits of some selected attributes.
The actual attributes that are used to construct the virtual primary
key differ from tuple to tuple, and the selection of the attributes is
based on a key that could be the watermark key in the context of
this paper. The reader is referred to [19] for more details on the
construction of a virtual primary key.

Since the virtual primary key is constructed from the MSBs of
selected attributes, it is difficult to destroy the virtual primary key
through value modification or attribute deletion. However, unlike
a real primary key, the virtual primary key may not be unique for
each tuple; consequently, there could be multiple tuples in both R
and W sharing the same value of the primary key. In watermark
detection, the exact mapping between pairs of these tuples needs

1In most commonly used storage formats, the sign bit is 1 for a
negative number and 0 for a non-negative number.
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to be recovered (see line 4 in algorithm 2). This can be done as
follows. For each tuple r ∈ R with primary key r.P , compute
a tuple t the same way as in watermark generation, then choose
a tuple t ∈ W such that t is the most close (e.g., in terms of
Hamming distance) to t among the multiple tuples in W that share
the same primary key r.P . The number of tuples sharing the same
primary key value (i.e., the severity of the duplicate problem) can
be minimized, as shown in the above-mentioned work [19].

3. PUBLIC OWNERSHIP PROOF
We now investigate how to publicly prove ownership as many

times as necessary. If the watermark key K is kept secret with the
owner, the ownership proof can be done secretly; however, it can
be done only once in public since the key has to be revealed to the
public during this process.

The problem of public ownership proof was originally raised in
the multimedia context [15] (see section 5 for details); it has not
been studied in the literature of database watermarking. We note
that the requirements for watermarking relational data are different
from those for watermarking multimedia data. The former must be
robust against typical database alterations or attacks such as tuple
insertion, deletion, and value modification, while the latter should
be robust against multimedia operations such as compression and
transformation. An additional requirement for watermarking rela-
tional data is that a watermarked relation should be updated easily
and incrementally.

Public ownership proof in our scheme is achieved by combining
watermark detection with a certificate.

3.1 Watermark Certificate

DEFINITION 3.1. A watermark certificate C of relation R is
a tuple ID,K, h(W ), h(R), T, DB-CA, Sig, where ID is the
identity of the owner of R, K is the owner’s watermark key, W
is the public watermark, T is the validity information, DB-CA is
the trusted authority who signs the certificate by generating a sig-
nature Sig.

Similar to the identity certificate [16] in PKI (or attribute cer-
tificate [10] in PMI), which strongly binds a public key (a set of
attributes) to its owner with a validity period, the watermark cer-
tificate strongly binds a watermark key, a watermark, and a DB
relation to its owner’s ID with validity information. The validity
information is a triple T = Torigin, Tstart, Tend indicating the
original time Torigin when the DB relation is first certified, the
starting time Tstart, and the ending time Tend of this certificate in
the current binding. When the DB relation is certified for the first
time, Torigin should be the same as Tstart. Compared with the
identity certificate or attribute certificate, the watermark certificate
not only has a validity period defined by Tstart and Tend, but also
contains the original time Torigin. The original time will be useful
in thwarting possible attacks that confuse ownership proof.

A comparison of the watermark certificate with the traditional
identity certificate is illustrated in Figure 1. The two kinds of cer-
tificates share a similar structure except that the public key infor-
mation in the identity certificate is replaced by the watermark key,
watermark hash, and database hash in the watermark certificate.
In traditional identity certificate, the subject’s public key is paired
with a private key known only to the subject. In the case of damage
or loss of the private key (e.g., due to collision attacks), the identity
certificate needs to be revoked before the expiration of the certifi-
cate. In the watermark certificate, since there is no private key asso-
ciated with the public watermark key, it seems that there is no need

Version

Serial Number

Signature Algorithm

Issuer

Validity Period

Subject

Subject Public Key Info

Signature

Version

Serial Number

Signature Algorithm

DB-CA

Validity Info T

DB owner ID

Watermark Key K

Watermark Hash h(W)

DB hash h(R)

Signature Sig

Identity Certificate Watermark Certificate

Figure 1: Relation between watermark and identity certificate

of certificate revocation. Nonetheless, certificate revocation and re-
certification may be needed in the case of identity change, owner-
ship change, DB-CA signature compromise, and database update.

The role of DB-CA is similar to that of the traditional CA in PKI
in terms of authentication of an applicant’s identity. The differences
are: (i) it binds the applicant’s ID to the watermark key, watermark,
and watermarked data; and (ii) it confirms the original time when
the watermarked data was first certified. The original time is es-
pecially useful in the case of recertification so as to thwart false
claims of ownership by a pirate. This is addressed in the following
subsection.

3.2 Public Verifiability
While the watermark detection process can be performed by any-

one, voluntarily or in delegation, who has access to the public wa-
termark and watermark key, the ownership is proven by further
checking the corresponding watermark certificate. This involves
checking (i) if the watermark certificate has been revoked (see the
next subsection for details); (ii) if the watermark key and (the hash
of) the watermark used in watermark detection are the same as
those listed in the watermark certificate; (iii) if the signature is cor-
rectly signed by the DB-CA stipulated in the watermark certificate
(this is done in traditional PKI and may involve checking the DB-
CA’s public key certificate, a chain of CA’s certificates, and a cer-
tificate revocation list); and (iv) the similarity of suspicious data
R to the original data R as published by the owner of watermark
certificate. If all are proven, the ownership of the suspicious data
is publicly claimed to belong to the owner of the watermark certifi-
cate for the time period stipulated in the certificate. The original
time that the data was certified is also indicated in the certificate.

The last requirement is optional, depending on whether data
frame-up attack is of concern. In a data frame-up attack, an at-
tacker modifies the watermarked data as much as possible while
leaving the watermarked bits (i.e., MSBs of selected values) un-
touched. Note that in our scheme, an attacker can pinpoint the wa-
termarked bits since the watermark key, watermark, and watermark
algorithm are all public. Since the ownership is publicly verifiable,
such “frame-up” data may cause confusion and damage to the le-
gitimate ownership.

The data frame-up attack has not been discussed before, even
though it is also possible in secret key based schemes. For exam-
ple, in Agrawal and Kiernan’s watermarking scheme [1], the wa-
termark information is embedded in one of ξ least significant bits
of some selected values. Data frame-up attack is possible if an at-
tacker modifies all significant bits except the last ξ least significant
bits in each value. However, this attack is less serious in secret key
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based schemes because the owner of watermarked data may choose
not to claim the ownership for “frame-up” data. In our scheme, this
attack is thwarted by requiring that the suspicious data is similar
enough to the original data (the authenticity of the original data R
can be checked with h(R) in the watermark certificate).

The rationale is that when an attacker forges a low quality data
R with the MSBs given in the public watermark W , such R will
be significantly different from the original R due to its low quality.
The similarity between R and R may be measured, for example,
by the portion of significant bits that match for each pair of values
in R and R whose watermarked MSBs match. The similarity may
also be measured in terms of the usefulness of data, such as the
difference of individual values, means, and variances.

3.3 Certificate Management
Once publicly proven based on a valid watermark certificate,

the ownership of watermarked data is established for the owner
of the certificate. The current ownership is valid for a time pe-
riod [Tstart, Tend] stipulated in the certificate. The original time
Torigin when the data was first certified is also indicated in the cer-
tificate.

The use of original time is to thwart additive attack. Additive at-
tack is a common type of attacks to watermarking schemes in which
an attacker simply generates another watermark for watermarked
data so as to confuse ownership proof. The additional watermark
can be generated using a watermark key that is derived from the
attacker’s ID. It is also possible for the attacker to obtain a valid
watermark certificate for this additional watermark.

We solve this problem by comparing the original time Torigin

in the certificate of real owner with the original time T origin in the
certificate of the attacker. We assume that the owner of data will
not make the data available to potential attackers unless the data is
watermarked and a valid watermark certificate is obtained. There-
fore, one always has Torigin < T origin by which the legitimate
ownership can be proven in the case of an ownership dispute. After
this, the attacker’s valid certificate should be officially revoked.

Besides revocation upon losing an ownership dispute, a certifi-
cate may be revoked before its expiration based on the following
reasons: (1) identity change; (2) ownership change; (3) validity
period change; (4) DB-CA compromise; and (5) database update.
When the owner of a valid certificate changes his identity, he needs
to revoke the certificate and, at the same time, apply for a new
certificate to replace the old one. Upon the owner’s request, the
DB-CA will grant a new validity period [Tstart, Tend] according
to its policy while keeping the original time Torigin unchanged in
the new certificate. The case of ownership change is handled in a
similar manner, except that the DB-CA needs to authenticate the
new owner and ensure the ownership change is granted by the old
owner. In both cases, a new watermark key and a new watermark
may be derived and included in the new certificate.

Sometimes the owner wants to prolong or shorten the validity pe-
riod of his certificate. In this case, the watermark certificate needs
to be re-certified with a new validity period. The watermark key or
watermark does not need to change in the recertification process.

In our scheme, the DB-CA is trusted, similar to the CA in tradi-
tional PKI. A traditional PKI certificate would need to be revoked
for a variety of reasons, including key compromise and CA com-
promise. Since a watermark key is not paired with a private key
in our scheme, there is no scenario of watermark key compromise.
However, there is a possibility of DB-CA compromise if any of the
following happens: (i) DB-CA’s signature is no longer safe (e.g.,
due to advanced collision attacks); (ii) DB-CA loses its signature
key; (iii) DB-CA ceases its operation or business; or (iv) any CA

who certifies the DB-CA’s public key is compromised (the public
key is used to verify the DB-CA’s signature in our scheme). In
the case of DB-CA compromise, all related watermark certificates
must be revoked and re-examined by a valid DB-CA and recertified
with new validity periods but unchanged original times.

Due to the similarity between the watermark certificate and the
traditional identity certificate, many existing standards and mecha-
nisms regarding certificate management, such as certification path
constraints and CRL distribution points, can be borrowed from PKI
with appropriate adaptations. For simplicity and convenience, the
functionality of a DB-CA may be performed by a CA in traditional
PKI.

3.4 Efficient Revocation of Watermark Cer-
tificate

Micali proposed an efficient public key certificate revocation scheme
[23] called CRS (for certificate revocation status). Compared with
the CRL-based solution, CRS substantially reduces the cost of man-
agement of certificates in traditional PKI. This scheme can easily
be adapted to our scheme for efficient revocation of watermark cer-
tificates.

As pointed out in [23], the costs of running a PKI are stagger-
ing and most of the costs are due to CRL transmission. The major
reason is that each time a user queries the status of a single certifi-
cate, he needs to query a directory, an agent receiving certificate
information from a CA and handling user queries about it, and the
directory sends him the whole CRL list that has been most recently
signed by the CA. Since the CRL list tends to be very long and
transmitted very often, the CRL solution is extremely expensive. In
CRS, however, the directory responds to a user’s query by sending
a 100-bit value only, instead of the whole CRL. The 100-bit value
is employed by the user to verify whether the relative certificate is
valid or has been revoked.

In our watermarking scheme, the DB-CA selects a secret 100-bit
value Y0 for a watermark certificate, and recursively applies on it
a one-way function F 365 times, assuming that the validity period
of the certificate is a normal year. The DB-CA then includes the
100-bit value Y365 = F 365(Y0) in the watermark certificate C =
ID,K, h(W ), h(R), T, DB-CA, Y365, Sig.

Assume that the current day is the i-th day in the validity period
of the certificate. The DB-CA generates a 100-bit value Y365−i =
F 365−i(Y0) and gets it published through the directory. It is the DB
owner’s responsibility to obtain Y365−i from the directory and pub-
lish it together with the watermark certificate C. Anyone can verify
the validity of the certificate by checking whether F i(Y365−i) =
Y365, where i is the number of days since the start of the validity
period (i.e., Tstart in T ). If this is the case, the certificate is valid;
otherwise, it has been revoked before the i-th day, in which case
the DB-CA did not get Y365−i published. Note that Y365−i cannot
be computed from previously released Y365−j (j < i) due to the
one-way property of function F .

In this scheme, the DB owner needs to query the directory and
update Y365−i every day. To make the transition from Y365−i to
Y364−i smooth, one more hour may be granted for the validity pe-
riod of Y365−i (i.e., 25 hours). To avoid high query load at certain
hours, the validity period of Y365−i should start at a different time
each day for a different certificate. A policy stating this may also
be included in the watermark certificate.

Note that Micali’s original scheme requires a CA to (i) sign an-
other 100-bit value besides Y365−i to explicitly indicate a certifi-
cate being revoked; and (ii) sign a updated list indicating all and
only the series numbers of issued and not-yet-expired certificates.
The signed value and list are sent to the directory so that any user
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query can be answered by the directory. In our scheme, it is the DB
owner’s responsibility (for his own benefit, namely anti-piracy) to
query the directory and publish the updated Y365−i online together
with DB, watermark, and certificate. A user who wants to verify
the certificate will obtain the validity information from the owner
rather than from the directory. This separation of duty simplifies
the scheme and clarifies the responsibility of the DB owner.

It is relatively straightforward to analyze the communication cost
of our scheme as compared with the CRL based solution. The
analysis is very similar to that given in [23] for comparing CRS
with CRL (CRS is about 900 times cheaper than CRL in terms of
communication cost with the Federal PKI estimates). We omit this
analysis due to space limitations.

3.5 Incremental Updatability
The proposed scheme is also designed to facilitate incremental

database update. In relational database systems, database update
has been tailored to tuple operations (tuple insertion, deletion, and
modification), where each tuple is uniquely identified by its pri-
mary key. In our scheme, both watermark generation and detection
are tuple oriented; each tuple is processed independently of other
tuples, based on its primary key.

The watermark is updated as follows. If a set of new tuples is
inserted into the watermarked data, the watermark generation algo-
rithm 1 can be performed on those new tuples only. As a result, a
set of corresponding new tuples is generated and inserted into the
watermark. If a set of tuples is deleted from the watermarked data,
the corresponding tuples with the same primary keys are simply
deleted from the watermark. In the case that a set of values is mod-
ified, only the related tuples need to be updated in the watermark.
This can be done in a similar manner as in the tuple insertion case.
Note that if a modified value does not contribute any MSB to the
watermark, then no update is needed for that value.

The update of the watermark certificate follows the update of the
watermark. To update a watermark certificate, the owner of water-
marked data needs to authenticate himself to a DB-CA, revoke the
old certificate, and get a new certificate for the updated DB and wa-
termark. The new certificate may have an updated validity period,
but the original time will not be altered. As this process involves
interactions with a DB-CA, it may not be efficient if executed fre-
quently. Fortunately, our scheme is very robust against database
update, as will be indicated in the next section. Therefore, the up-
date of the watermark and watermark certificate may lag behind the
update of the watermarked data; it can be done periodically after a
batch of data updates. The lag-behind watermark and certificate
can still be used for checking the ownership of the updated data as
long as the updates do not severely degrade the robustness of our
scheme.

3.6 Discussion
Like traditional PKI, the certificate revocation in our scheme is

handled only by the trusted party (i.e., the DB-CA). An alterna-
tive solution is to let the DB owner himself handle the certificate
revocation. After the DB-CA signs a watermark certificate C =
ID,K, h(W ), h(R), T,DB − CA, Y365, Sig, where Y365 =
F 365(Y0), it gives Y0 to the DB owner through a secure channel.
The DB owner keeps Y0 secret. On the i-th day in the validity
period of the certificate, the DB owner himself can generate and
publish Y365−i = F 365−i(Y0), based on which anyone can verify
the validity of the certificate. This solution further simplifies our
scheme in the sense that the DB-CA does not need to generate Y-
values for all valid certificates each day, and that all DB owners do
not need to query a directory to update the Y-values. The commu-

nication cost is thus reduced substantially. Whenever the DB owner
deems it appropriate (e.g., after database is updated), he can refuse
to release new Y-values to the public, thus revoking the certificate
in a de facto manner, and apply a new certificate if necessary. This
solution works well for database updates because it is to the bene-
fit of the DB owner to maintain the certificate status. However, it
may not work well in the case of DB-CA compromise or loss of
Y0, but this fortunately would not happen very often as compared
with database updates. It is possible to develop a hybrid solution
that combines the merits of both DB-owner-handled revocation and
CA-handled revocation.

4. ROBUSTNESS AND OVERHEAD
For a watermarking scheme to be useful, it must be robust against

typical attacks and be efficient in practice. In this section, we first
present a quantitative model for the robustness of our watermark-
ing scheme. We analyze the robustness of our scheme by the same
method (i.e., binomial probability) as was used in [1]. We then in-
vestigate the overhead of our watermarking scheme. We also study
the tradeoffs between the robustness and overhead in terms of the
watermarking generation parameter γ and watermarking detection
parameter τ .

4.1 Survival Binomial Probability
Consider n Bernoulli trials of an event, with probability p of

success and q = 1 − p of failure in any trial. Let Pp(k;n) be
the probability of obtaining exactly k successes out of n Bernoulli
trials (i.e., the discrete probability of binomial distribution). Then

Pp(k;n) =


n

k


pkqn−k (2)


n

k


=

n!

k!(n− k)!
(3)

Let Cp(k;n) denote the probability of having more than k suc-
cesses in n Bernoulli trials; that is, Cp(k;n) is the survival bino-
mial probability. According to the standard analysis of binomial
distribution, we have

Cp(k;n) =

n
i=k+1

Pp(i;n) (4)

In many widely available computation software packages such as
Matlab and Mathematica, the survival binomial probability can be
computed by Cp(k;n) = 1− binocdf(k, n, p), where binocdf(k,
n, p) is the binomial cumulative distribution function with param-
eters n and p at value k. When n is large, the binomial distribu-
tion can be approximated by a normal distribution with mean np,
standard deviation

√
npq, at value k + 0.5, where 0.5 is the cor-

rection of continuity (for p = 0.5, the normal is a good approx-
imation when n is as low as 10; see chapter 7.6 in [31]). Thus,
Cp(k;n) = 1 − normcdf(k + 0.5, np,

√
npq), where normcdf

is the normal cumulative distribution function.

4.2 Detecting Non-Watermarked Data
First consider the robustness of our scheme in terms of false hit,

which is the probability of a valid watermark being detected from
non-watermarked data. The lower the false hit, the better the ro-
bustness. We show that the false hit is under control in our scheme
and can be made highly improbable.

Recall that in watermark detection, a collection of MSBs are
located in suspicious data and compared with the corresponding
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bits recorded in the public watermark. When the watermark detec-
tion is applied to non-watermarked data, each MSB in data has the
same probability 1/2 to match or not to match the corresponding
bit in the watermark. Assume that the non-watermarked data has
the same number η of tuples (and the same primary keys) as the
original data. Let ω = ηγ be the total number of bits in the wa-
termark, where γ is the watermark generation parameter. The false
hit is the probability that at least τ portion of ω bits can be detected
from the non-watermarked data by sheer chance, where τ is the
watermark detection parameter. The false hit H can be written as

H = C1/2(τω, ω) = C1/2(τγη, γη) (5)

1 2 3 4 5 6 7 8 9 10

10
−15

10
−10

10
−5

10
0

γ

F
al

se
 h

it 
H

η =1000

τ =0.51
τ =0.52
τ =0.53
τ =0.54
τ =0.55

Figure 2: False hit as function of γ

2000 4000 6000 8000 10000

10
−15

10
−10

10
−5

10
0

η

F
al

se
 h

it 
H

γ =5

τ =0.51
τ =0.52
τ =0.53
τ =0.54
τ =0.55

Figure 3: False hit as function of η

Figure 2 shows the change of the false hit when the watermark
insertion parameter γ increases from 1 to 10 for fixed η = 1000
and various values of the watermark detection parameter τ . The
figure illustrates that the false hit is monotonic decreasing with both
watermark insertion parameter γ and detection parameter τ . On
the one hand, the larger the insertion parameter γ, the more MSBs
are included in the watermark and the smaller the false hit. On
the other hand, the false hit can be decreased by increasing the
detection parameter τ , which is the least fraction of watermark bits
required for ownership assertion.

Figure 3 illustrates the trend of false hit when the number η of
tuples is scaled up from 1000 to 10,000. The trend is that the false
hit is monotonic decreasing with η. This trend is linear, which is
similar to that of increasing γ, as indicated in figure 2. A conclusion

drawn from these two figures is that with reasonably large values
of γ, τ , and/or η, the false hit can be made extremely low.

4.3 Detecting Watermarked Data
We now consider the robustness of our scheme in terms of false

miss, which is the probability of not detecting a valid watermark
from watermarked data that has been modified in typical attacks.
The robustness can also be measured in terms of the error intro-
duced by typical attacks. The less the false miss, or the larger the
error introduced by typical attacks, the better the robustness. The
typical attacks include database update, selective value modifica-
tion, and suppression. Other typical attacks include the data frame-
up attack and the additive attack which have been addressed in a
previous section.

4.3.1 Typical Database Update
Typical database update includes tuple insertion, tuple deletion,

attribute deletion, and value modification. For tuple deletion and
attribute deletion, the MSBs in the deleted tuples or attributes will
not be detected in watermark detection; however, the MSBs in other
tuples or attributes will not be affected. Therefore, all detected
MSBs will match their counterparts in the public watermark, and
the false miss is zero.

Though the deletion of tuples or attributes will not affect the false
miss, it will make the false hit worse. The more the tuples or at-
tributes are deleted, the larger the false hit, as indicated in Section
4.2. The effect to the false hit of deleting tuples is equivalent to that
of decreasing η as shown in Figure 3, while the effect of deleting
attributes is equivalent to decreasing γ proportionally as shown in
Figure 2.

Since the watermark detection is primary key based, a newly in-
serted tuple should have a valid primary key value; otherwise, there
is no corresponding tuple in the public watermark. We thus con-
sider tuple insertion to be “mix-and-match” [1]; that is, an attacker
inserts ξ new tuples to replace ξ watermarked tuples with their pri-
mary key values unchanged. For watermark detection to return a
false answer, at least γη − τγη MSBs in those newly added tu-
ples (which consists of γξ MSBs) must not match their counterparts
in the public watermark (which consist of γη bits). Therefore, the
false miss Mξ for inserting ξ tuples in mix-and-match can be writ-
ten as

Mξ = C1/2(γη − τγη − 1, γξ) (6)
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Figure 4: False miss (tuple insertion) as function of ξ

Figures 4, 5, and 6 show the false miss in the case of tuple inser-
tion. The default parameters in these figures are ξ/η = 90% (i.e.,
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bits recorded in the public watermark. When the watermark detec-
tion is applied to non-watermarked data, each MSB in data has the
same probability 1/2 to match or not to match the corresponding
bit in the watermark. Assume that the non-watermarked data has
the same number η of tuples (and the same primary keys) as the
original data. Let ω = ηγ be the total number of bits in the wa-
termark, where γ is the watermark generation parameter. The false
hit is the probability that at least τ portion of ω bits can be detected
from the non-watermarked data by sheer chance, where τ is the
watermark detection parameter. The false hit H can be written as

H = C1/2(τω, ω) = C1/2(τγη, γη) (5)
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Figure 2 shows the change of the false hit when the watermark
insertion parameter γ increases from 1 to 10 for fixed η = 1000
and various values of the watermark detection parameter τ . The
figure illustrates that the false hit is monotonic decreasing with both
watermark insertion parameter γ and detection parameter τ . On
the one hand, the larger the insertion parameter γ, the more MSBs
are included in the watermark and the smaller the false hit. On
the other hand, the false hit can be decreased by increasing the
detection parameter τ , which is the least fraction of watermark bits
required for ownership assertion.

Figure 3 illustrates the trend of false hit when the number η of
tuples is scaled up from 1000 to 10,000. The trend is that the false
hit is monotonic decreasing with η. This trend is linear, which is
similar to that of increasing γ, as indicated in figure 2. A conclusion

drawn from these two figures is that with reasonably large values
of γ, τ , and/or η, the false hit can be made extremely low.

4.3 Detecting Watermarked Data
We now consider the robustness of our scheme in terms of false

miss, which is the probability of not detecting a valid watermark
from watermarked data that has been modified in typical attacks.
The robustness can also be measured in terms of the error intro-
duced by typical attacks. The less the false miss, or the larger the
error introduced by typical attacks, the better the robustness. The
typical attacks include database update, selective value modifica-
tion, and suppression. Other typical attacks include the data frame-
up attack and the additive attack which have been addressed in a
previous section.

4.3.1 Typical Database Update
Typical database update includes tuple insertion, tuple deletion,

attribute deletion, and value modification. For tuple deletion and
attribute deletion, the MSBs in the deleted tuples or attributes will
not be detected in watermark detection; however, the MSBs in other
tuples or attributes will not be affected. Therefore, all detected
MSBs will match their counterparts in the public watermark, and
the false miss is zero.

Though the deletion of tuples or attributes will not affect the false
miss, it will make the false hit worse. The more the tuples or at-
tributes are deleted, the larger the false hit, as indicated in Section
4.2. The effect to the false hit of deleting tuples is equivalent to that
of decreasing η as shown in Figure 3, while the effect of deleting
attributes is equivalent to decreasing γ proportionally as shown in
Figure 2.

Since the watermark detection is primary key based, a newly in-
serted tuple should have a valid primary key value; otherwise, there
is no corresponding tuple in the public watermark. We thus con-
sider tuple insertion to be “mix-and-match” [1]; that is, an attacker
inserts ξ new tuples to replace ξ watermarked tuples with their pri-
mary key values unchanged. For watermark detection to return a
false answer, at least γη − τγη MSBs in those newly added tu-
ples (which consists of γξ MSBs) must not match their counterparts
in the public watermark (which consist of γη bits). Therefore, the
false miss Mξ for inserting ξ tuples in mix-and-match can be writ-
ten as

Mξ = C1/2(γη − τγη − 1, γξ) (6)

80 82 84 86 88 90 92 94 96 98 100
10

−15

10
−10

10
−5

10
0

ξ /η (%)

F
al

se
 m

is
s 

M
ξ

γ =5, η =1000

τ =0.51
τ =0.52
τ =0.53
τ =0.54
τ =0.55

Figure 4: False miss (tuple insertion) as function of ξ

Figures 4, 5, and 6 show the false miss in the case of tuple inser-
tion. The default parameters in these figures are ξ/η = 90% (i.e.,
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Figure 6: False miss (tuple insertion) as function of η

90% of the new tuples are inserted into the data to replace the wa-
termarked tuples), γ = 5, and η = 1000. A general trend shown
in these figures is that the false miss is monotonic increasing with
watermark detection parameter τ . This trend is opposite to that of
the false hit, which is monotonic decreasing with τ as indicated in
Figures 2 and 3. Therefore, there is a tradeoff between false hit and
false miss with respect to τ .

Figure 4 shows that even if 80% of watermarked tuples are re-
placed with new tuples, the false miss is as low as 10−15 for all τ
values greater than or equal to 51%. The false miss is close to one
only if more than 90% of watermarked tuples are replaced in this
figure.

Figures 5 and 6 illustrate that the false miss is monotonic de-
creasing with γ and η, which is similar to the trend of false hit as
indicated in Figures 2 and 3. With reasonably large γ and/or η, the
false miss can be made extremely low.

For value modification, we assume that the modified values are
randomly chosen. We leave the selective modification targeted on
watermarked values to the next subsection. Recall that there are ν
attributes in the original data in which γ attributes are watermarked
for each tuple. When a random modification happens, it has prob-
ability γ/ν that a watermarked value is chosen. When a water-
marked value is modified, its MSB has probability 1/2 to change
(i.e., the value is modified randomly). In watermark detection, a de-
tected MSB has probability γ/(2ν) not to match its counterpart in
the public watermark. The false miss Mζ for randomly modifying

ζ values can be written as

Mζ = Cγ/2ν(γη − τγη − 1, ζ) (7)
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Figure 7: False miss (value modification) as function of ζ
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Figure 8: False miss (value modification) as function of γ
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Figure 9: False miss (value modification) as function of η

Figures 7, 8, and 9 show the false miss in the case of random
value modification. The default parameters in these figures are
ζ/(γη) = 90% (i.e., 90% of the values are modified randomly),
ν = 10, γ = 5, and η = 1000. The general trend shown in these
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figures for value modification is similar to that shown in previous
Figures 4, 5, and 6 for tuple insertion. The difference in calculation
is due to the use of probability γ/2ν in Equation 7 instead of proba-
bility 1/2 in Equation 6. Figure 7 shows that even if 80% of values
are modified randomly, which would make the data less useful, the
false miss rate in detection is less than 10−10 in our computation.

4.3.2 Selective Value Modification and Suppression
Since both the watermark key and the watermark are public in

our scheme, an attacker can pinpoint the MSBs of watermarked
values. A simple attack would be to flip some of those MSBs so
that the watermark detection will detect no match. Assuming that ς
watermarked MSBs are flipped in selective value modification, the
false miss Mς can be written as

Mς =


1 if ς ≥ γη − τγη
0 otherwise

(8)

If no less than γη−τγη watermarked MSBs are flipped, the wa-
termarked data will no longer be detected. The robustness of our
scheme can then be measured in terms of the error introduced by
this attack. The larger the error introduced for defeating the water-
mark detection (i.e., achieving Mς = 1), the better the robustness.

Recall that any change to an MSB would introduce intolerable
error to the related data value. To defeat the watermark detection,
no less than γη−τγηMSBs have to be flipped; this would intro-
duce intolerable errors to no less than γη− τγη data values. We
thus measure the robustness in terms of failure error rate, which is
the least fraction F of total data values that need to be intolerably
modified for defeating the watermark detection. This failure error
rate can be written as

F =
γη − τγη

ην
≈ (1− τ)

γ

ν
(9)

A larger failure error rate (or better robustness) can be achieved
by increasing γ (watermark generation parameter) or decreasing
τ (watermark detection parameter). There is a tradeoff between
the robustness of our scheme and the size of the public watermark
(which has γ binary attributes). To achieve the best robustness
in terms of thwarting the selective modification attacks, one may
choose γ = ν and τ ≈ 0.5. (However, this would increase the
false hit as indicated in Section 4.2.) In this extreme case, approxi-
mately 50% of data values have to be intolerably modified so as to
defeat the watermark detection.

To avoid the intolerable error, an attacker may choose to suppress
some watermarked values rather than flipping their MSBs. Since
this attack causes no mismatch in watermark detection, the false
miss is zero. However, it will increase the false hit because those
MSBs will be missed in watermark detection. It is easy to know that
the effect of suppressing ς MSBs to the false hit is the equivalent
of decreasing the total number of MSBs by ς in the computation
of false hit. Thus, the false hit formula (see section 4.2) changes
from C1/2(τγη, γη) to C1/2(τ(γη− ς), γη− ς) for selective
suppression of ς watermarked values.

Figure 10 shows the influence of selective value suppression to
the false hit for fixed γ = 5, η = 1000, and various τ from 0.51 to
0.55. In the figure, we change the rate ς/(γη) (the percentage of
watermarked bits are suppressed) from 0% to 99%. Even if the rate
ς/(γη) increases up to 50%, the false hit is still below 15.4% for
τ = 0.51, below 2.2% for τ = 0.52, below 0.13% for τ = 0.53,
below 3 ∗ 10−5 for τ = 0.54, and below 2.6 ∗ 10−7 for τ = 0.55.

4.4 Overhead
We now analyze the time and space overhead for both watermark
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Figure 10: False hit (value suppression) as function
of ς

generation and watermark detection. Throughout the analysis, we
ignore the IO cost (i.e., reading and writing tuples). Table 2 de-
scribes the symbols that will be used in this section.

Consider watermark generation. For each of η tuples to be pro-
cessed, a random sequence generator G is first seeded, then γ MSBs
are determined based on γ random numbers generated by G. The
MSBs are assigned to the corresponding attributes in the public
watermark. For each MSB to be determined, one mod operation is
involved and one attribute is deleted from the copy of related tuple.
The memory requirement for the process of a tuple is to keep the
copy of the tuple, γ MSBs, and the watermark key in concatenation
with the tuple’s primary key. Therefore, the time overhead tgenW

and space overhead mgenW for watermark generation are

tgenW = ηtseed + ηγ(tgenS + tmod + tbit + tdelA)

= O(ηγ) (10)

mgenW = mtuple + γ + mwkey = O(γ) (11)

In watermark detection, the time and space overheads are the
same as in watermark generation except for the cost of processing
the count information. Let tif denote the cost of the last operation
“if match count/total count > τ .” The time overhead tdetW

and space overhead mdetW for watermark detection can be written
as

tdetW = 2tcount + ηtseed + ηγ(tgenS + tmod + tbit +

tdelA + 2tcount) + tif = O(ηγ) (12)

mdetW = 2mcount + mtuple + γ + mwkey = O(γ) (13)

The generated watermark W will be stored on disk. The disk
storage requirement mdisk is thus

mdisk = |W | = ηmpkey + ηγ = O(ηγ) (14)

4.5 Tradeoffs
In our watermark scheme, we have two parameters: watermark

generation parameter γ and watermark detection parameter τ . The
two parameters can be used to balance between the robustness and
the overhead of our scheme. Table 3 summarizes the tradeoffs that
can be made when choosing the two parameters.

The watermark generation parameter γ is used to balance be-
tween robustness and overhead. The larger the γ, the better the
robustness of our scheme and the worse the time and space over-
head. While the watermark detection parameter τ has no effect on
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figures for value modification is similar to that shown in previous
Figures 4, 5, and 6 for tuple insertion. The difference in calculation
is due to the use of probability γ/2ν in Equation 7 instead of proba-
bility 1/2 in Equation 6. Figure 7 shows that even if 80% of values
are modified randomly, which would make the data less useful, the
false miss rate in detection is less than 10−10 in our computation.

4.3.2 Selective Value Modification and Suppression
Since both the watermark key and the watermark are public in

our scheme, an attacker can pinpoint the MSBs of watermarked
values. A simple attack would be to flip some of those MSBs so
that the watermark detection will detect no match. Assuming that ς
watermarked MSBs are flipped in selective value modification, the
false miss Mς can be written as

Mς =


1 if ς ≥ γη − τγη
0 otherwise

(8)

If no less than γη−τγη watermarked MSBs are flipped, the wa-
termarked data will no longer be detected. The robustness of our
scheme can then be measured in terms of the error introduced by
this attack. The larger the error introduced for defeating the water-
mark detection (i.e., achieving Mς = 1), the better the robustness.

Recall that any change to an MSB would introduce intolerable
error to the related data value. To defeat the watermark detection,
no less than γη−τγηMSBs have to be flipped; this would intro-
duce intolerable errors to no less than γη− τγη data values. We
thus measure the robustness in terms of failure error rate, which is
the least fraction F of total data values that need to be intolerably
modified for defeating the watermark detection. This failure error
rate can be written as

F =
γη − τγη

ην
≈ (1− τ)

γ

ν
(9)

A larger failure error rate (or better robustness) can be achieved
by increasing γ (watermark generation parameter) or decreasing
τ (watermark detection parameter). There is a tradeoff between
the robustness of our scheme and the size of the public watermark
(which has γ binary attributes). To achieve the best robustness
in terms of thwarting the selective modification attacks, one may
choose γ = ν and τ ≈ 0.5. (However, this would increase the
false hit as indicated in Section 4.2.) In this extreme case, approxi-
mately 50% of data values have to be intolerably modified so as to
defeat the watermark detection.

To avoid the intolerable error, an attacker may choose to suppress
some watermarked values rather than flipping their MSBs. Since
this attack causes no mismatch in watermark detection, the false
miss is zero. However, it will increase the false hit because those
MSBs will be missed in watermark detection. It is easy to know that
the effect of suppressing ς MSBs to the false hit is the equivalent
of decreasing the total number of MSBs by ς in the computation
of false hit. Thus, the false hit formula (see section 4.2) changes
from C1/2(τγη, γη) to C1/2(τ(γη− ς), γη− ς) for selective
suppression of ς watermarked values.

Figure 10 shows the influence of selective value suppression to
the false hit for fixed γ = 5, η = 1000, and various τ from 0.51 to
0.55. In the figure, we change the rate ς/(γη) (the percentage of
watermarked bits are suppressed) from 0% to 99%. Even if the rate
ς/(γη) increases up to 50%, the false hit is still below 15.4% for
τ = 0.51, below 2.2% for τ = 0.52, below 0.13% for τ = 0.53,
below 3 ∗ 10−5 for τ = 0.54, and below 2.6 ∗ 10−7 for τ = 0.55.

4.4 Overhead
We now analyze the time and space overhead for both watermark
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Figure 10: False hit (value suppression) as function
of ς

generation and watermark detection. Throughout the analysis, we
ignore the IO cost (i.e., reading and writing tuples). Table 2 de-
scribes the symbols that will be used in this section.

Consider watermark generation. For each of η tuples to be pro-
cessed, a random sequence generator G is first seeded, then γ MSBs
are determined based on γ random numbers generated by G. The
MSBs are assigned to the corresponding attributes in the public
watermark. For each MSB to be determined, one mod operation is
involved and one attribute is deleted from the copy of related tuple.
The memory requirement for the process of a tuple is to keep the
copy of the tuple, γ MSBs, and the watermark key in concatenation
with the tuple’s primary key. Therefore, the time overhead tgenW

and space overhead mgenW for watermark generation are

tgenW = ηtseed + ηγ(tgenS + tmod + tbit + tdelA)

= O(ηγ) (10)

mgenW = mtuple + γ + mwkey = O(γ) (11)

In watermark detection, the time and space overheads are the
same as in watermark generation except for the cost of processing
the count information. Let tif denote the cost of the last operation
“if match count/total count > τ .” The time overhead tdetW

and space overhead mdetW for watermark detection can be written
as

tdetW = 2tcount + ηtseed + ηγ(tgenS + tmod + tbit +

tdelA + 2tcount) + tif = O(ηγ) (12)

mdetW = 2mcount + mtuple + γ + mwkey = O(γ) (13)

The generated watermark W will be stored on disk. The disk
storage requirement mdisk is thus

mdisk = |W | = ηmpkey + ηγ = O(ηγ) (14)

4.5 Tradeoffs
In our watermark scheme, we have two parameters: watermark

generation parameter γ and watermark detection parameter τ . The
two parameters can be used to balance between the robustness and
the overhead of our scheme. Table 3 summarizes the tradeoffs that
can be made when choosing the two parameters.

The watermark generation parameter γ is used to balance be-
tween robustness and overhead. The larger the γ, the better the
robustness of our scheme and the worse the time and space over-
head. While the watermark detection parameter τ has no effect on

Table 2: Symbols used in the analysis of overhead

tseed cost of seeding random sequence generator S with public key and a tuple’s primary key
tgenS cost of generating a random number from S
tmod cost of mod operation
tdelA cost of deleting an attribute from a copy of a tuple
tbit cost of assigning/comparing a bit value to/with the public watermark

tcount cost of assigning/updating a count in watermark detection
mcount number of bits required to store a count in watermark detection
mtuple number of bits required to store a copy of a tuple
mwkey number of bits to store a watermark key
mpkey number of bits to store a primary key value

Table 3: Tradeoffs

para- false false failure robustness overhead overhead
meter hit miss error rate (summary) (time) (space)

γ ↑ H ↓ M ↓ F ↑ ↑ ↑ ↑
τ ↑ H ↓ M ↑ F ↓ ↑ in terms of H −− −−

↓ in terms of M,F

the overhead, it is used as a tradeoff between false hit, false miss,
and failure error rate. Increasing τ will make the robustness better
in terms of false hit, but worse in terms of false miss and failure
error rate.

5. RELATED WORK
Watermarking has been extensively studied in the context of mul-

timedia data for the purpose of ownership protection and authenti-
cation [7, 17, 18]. Most watermarking schemes proposed so far are
secret key based, which require complete disclosure of the water-
marking key in watermark verification. These watermarking schemes
can be further classified as private (both the secret key and origi-
nal data are required in watermark verification), blind (only the se-
cret key is needed for watermark bit decoding), and semi-blind (it
requires both the secret key and watermark bit sequence in water-
mark detection). Watermarking schemes can also be classified as
being robust (the watermark is hardly destroyed in attacks), or frag-
ile (the watermark is hardly untouched if the watermarked data is
modified). The robust watermark may be used for ownership proof
while the fragile watermark is suitable for data authentication and
integrity check.

As database piracy increasingly becomes a serious problem, wa-
termarking techniques have been extended to protect the ownership
of published or distributed databases [1, 13, 28, 29, 26, 19, 20,
2]. Agrawal and Kiernan [1] first proposed a robust watermarking
scheme for database relations. Their scheme modifies a collection
of least significant bits of numerical attributes. The locations of
those least significant bits, and the values to which those bits are
modified, are all determined by a secret key. With the same secret
key, those modified values can be localized in watermark detection,
and ownership is claimed if a large portion of the detected values
are as expected.

As noted by Agrawal and Kiernan [1], database relations dif-
fer from multimedia data in significant ways and hence require a
different class of watermarking techniques. A major difference is
that a database relation is composed of a set of tuples; each tuple
represents an independent object which can be added, deleted, and
modified frequently in either benign updates or malicious attacks.

In contrast, a multimedia object consists of a large number of bits;
portions of a multimedia object are bound together in fixed spatial
or temporal order that cannot be arbitrarily changed. It is also noted
that the frequency domain watermarking being used in the multi-
media context is not suitable for watermarking relational data. The
reason is that the error introduced in frequency domain will spread
over all attribute values (i.e., the whole “image”), which may not
be acceptable in certain database applications.

There have been other schemes proposed for watermarking rela-
tional data. In Sion et al.’s scheme [28], an arbitrary bit is embed-
ded into a selected subset of numeric values by changing the distri-
bution of the values. The selection of the values is based on a se-
cret sorting. In another work, Gross-Amblard [13] designs a query-
preserving scheme which guarantees that special queries (called lo-
cal queries) can be answered up to an acceptable distortion. Recent
work also includes watermarking categorical data [26], streaming
data [29], XML data [27], and medical databases [2]. The wa-
termarking schemes for categorical data [26, 2] exchange pairs of
categorical values so as to embed watermark information. In this
case, there is no insignificant change and the error constraint is con-
sidered at aggregation level (e.g., k-anonymity).

A common feature of this class of work is that a watermark is
embedded and detected based on a secret key. Without knowing
the key, an attacker is not able to locate exactly where the water-
mark is embedded, nor does he destroy the embedded watermark
unless too many errors are introduced. A drawback of such a solu-
tion is that the ownership of watermarked data can be proven only
once. After the key is revealed to the public (e.g., to the court) in
the proof, anyone knowing the key can easily locate and remove the
embedded watermark. Another common feature of these schemes
is that the watermarking process introduces errors to the underlying
data. This may severely affect database applications unless error
constraints are carefully enforced in the watermarking process. In
addition, a tradeoff between the watermarking error and the robust-
ness of watermarking schemes has to be made.

The concept of public key based watermark (or asymmetric wa-
termark) was first conceived in the multimedia context. Hachez and
Quisquater summarized the work in this area in [14]. As mentioned
in [14], one of the first ideas was proposed by Hartung and Girod
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[15] for watermarking compressed video. The basic idea is to make
a part of the embedded watermark public such that a user can check
the presence of this part of watermark. However, an attacker is able
to remove this part of watermark and thus invalidate a public de-
tector. Another idea is to embed private key information into a host
signal and detect a correlation between the signal and a transforma-
tion of the signal using a public key [33]. Other correlation-based
public watermarking schemes include [9, 30, 11]. However, such
watermarks can be removed by certain attacks such as a sensitivity
attack [6, 21] or confusing attack [34].

Craver and Katzenbeisser [8] used a zero knowledge protocol to
prove the presence of a watermark in a signal “without revealing the
exact location and nature of the watermark (specified by a private
key).” As in most zero knowledge protocols, the proposed scheme
requires many rounds of interactions between prover and verifier,
which may not be efficient in practice. It is also not clear how to ex-
tend this scheme to watermarking relational databases. Because the
original watermark is not certified and because a verifier is allowed
to perform the protocol multiple times, this scheme may be subject
to oracle attack (an attacker uses a public detector repeatedly to test
modified signals so as to remove the watermark), plain-text chosen
attack (a special case of oracle attack in which the tested signals
are chosen by an attacker), or ambiguity attack (also called invert-
ibility attack, in which a fake watermark is discovered from the
watermarked signal). In comparison, our scheme requires no inter-
action between a verifier and the owner of data, thus is immune to
both oracle attack and plain-text chosen attack. The watermark is
certified in our scheme for thwarting the ambiguity attack (which
we call additive attack in this paper). In addition, our scheme is
both efficient and robust for typical database operations.

6. CONCLUSION
In this paper, we proposed a public watermarking scheme for re-

lational databases. The scheme is unique in that it has the following
properties.

• Public verifiability Given a database relation to be pub-
lished or distributed, the owner of data uses a public water-
mark key to generate a public watermark, which is a rela-
tion with binary attributes. Anyone can use the watermark
key and the watermark to check whether a suspicious copy
of data is watermarked, and, if so, prove the ownership of
the data by checking a watermark certificate officially signed
by a trusted certificate authority, DB-CA. The watermark
certificate contains the owner’s ID, the watermark key, the
hashes of both the watermark and DB relation, the first time
the relation was certified, the validity period of the current
certificate, and the DB-CA’s signature. The watermark cer-
tificate may be revoked and re-certified in the case of iden-
tity change, ownership change, DB-CA compromise, or data
update. Therefore, the revocation status also needs to be
checked in ownership proof. To our best knowledge, our
scheme is the only one to achieve public ownership proof
in database literature. In contrast, all existing schemes are
based on secret key, by which ownership cannot be proven
more than once in public.

• Distortion free Different from typical watermarking schemes
(e.g., [1]) for database ownership proof that hide watermark
information in data by modifying least significant bits (LSBs),
our scheme generates a public watermark from a collection
of the most significant bits (MSBs). Our scheme does not
modify any MSBs; therefore, it is distortion-free. The public

watermark is a database relation that has the same primary
key attribute as the original data, plus one or more binary
attributes to store the MSBs. Even though the MSBs are
publicly known, an attacker cannot modify them without in-
troducing intolerable error to the underlying data. In com-
parison, all previous watermarking schemes for databases
introduce some kind of distortion to the watermarked data.
They either modify LSB’s for numerical data (e.g., [1, 19,
20]), or exchange values among categorical data (e.g., [26,
2]). Those schemes work well for particular types of data
only, while our scheme can be applied for any type of data
distortion-free.

• Incremental updatability Following the line of [1], each
tuple in a database relation is independently processed in
our scheme. Neither watermark generation nor detection de-
pends on any correlation or costly sorting among data items
as required in [28, 26, 2]. Therefore, the scheme is par-
ticularly efficient for typical database operations, which are
mostly tuple oriented. In the case of tuple insertion, deletion,
or modification, the watermark can be easily updated by pro-
cessing those relating tuples only, with simple computation
of random sequence numbers and modulus operations. Due
to the robustness of our scheme, the update of watermark
certificate can be performed periodically after a batch of data
updates.

• Robustness Since the ownership of data is proven after the
data is published or distributed, it is crucial that our scheme
is robust against various attacks that intend to invalidate wa-
termark detection or ownership proof. The robustness of our
scheme is measured in terms of: (i) false hit, the probabil-
ity of detecting a valid watermark from non-watermarked
data; (ii) false miss, the probability of not detecting a valid
watermark from watermarked data due to attacks; and (iii)
failure error rate, the least portion of data that has to be in-
tolerably modified so as to defeat our watermark detection.
Typical database attacks considered in this paper include tu-
ple/attribute insertion, deletion, and random/selecitive value
modification/suppression. Both theoretical analysis and ex-
perimental study show that our scheme is robust in terms
of these measures, which can be adjusted by the watermark
generation and detection parameters. We have also studied
the tradeoff between the robustness and the overhead of our
scheme. Our scheme is robust against the data frame-up at-
tack and additive attack that may be more perilous to public
watermarking schemes.

The major contribution of this paper is the proposal of a public
watermarking scheme that has the above properties. Though our
scheme may not necessarily supersede secret key based schemes
due to the overhead of using certificate and public watermark, we
believe that it can be applied more practically in the real world for
database ownership protection. Our future plan includes extending
our scheme to other types of data such as XML and streaming data.
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