
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2011

Parallel Learning to Rank for Information Retrieval
Shuaiqiang WANG
Shandong University of Finance

Byron J. GAO
Texas State University - San Marcos

Ke WANG
Simon Fraser University

Hady W. LAUW
Singapore Management University, hadywlauw@smu.edu.sg

DOI: https://doi.org/10.1145/2009916.2010060

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
WANG, Shuaiqiang; GAO, Byron J.; WANG, Ke; and LAUW, Hady W.. Parallel Learning to Rank for Information Retrieval. (2011).
SIGIR '11: Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval: Beijing , July
24-28. 1083-1084. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1517

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/2009916.2010060
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1517&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Parallel Learning to Rank for Information Retrieval

Shuaiqiang Wang
∗

Shandong University of Finance, Jinan, China
wangsq@sdfi.edu.cn

Byron J. Gao
Texas State University, San Marcos, TX, USA

bgao@txstate.edu
Ke Wang

Simon Fraser University, Burnaby, BC, Canada
wangk@cs.sfu.ca

Hady W. Lauw
Institute for Infocomm Research, Singapore

hwlauw@i2r.a-star.edu.sg

ABSTRACT
Learning to rank represents a category of effective ranking
methods for information retrieval. While the primary con-
cern of existing research has been accuracy, learning effi-
ciency is becoming an important issue due to the unprece-
dented availability of large-scale training data and the need
for continuous update of ranking functions. In this paper, we
investigate parallel learning to rank, targeting simultaneous
improvement in accuracy and efficiency.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval

General Terms: Algorithms, Performance.

Keywords: Learning to rank, Parallel algorithms, Cooper-
ative coevolution, MapReduce, Information retrieval.

1. INTRODUCTION
Learning to rank represents a category of effective rank-

ing methods for information retrieval (IR) systems. Given
training data, in the form of a set of queries each associ-
ated with a list of search results labeled by relevance degree,
learning to rank returns a ranking function that can be used
to order search results for future queries [7].

While learning accuracy has thus far been the primary
concern, learning efficiency is increasingly a crucial issue [1].
Due to the diversity of queries and documents, learning to
rank involves increasingly larger training data with many
features. For example, the CSearch dataset used in List-
Net [1] contains ∼25 million query-document pairs with 600
features. In addition, due to the rapid growth of the Web,
ranking functions need to be re-learned repeatedly. Thus, it
is important for learning to rank to achieve high efficiency
through parallelization while maintaining accuracy.

Many learning to rank approaches have been proposed,
e.g., ListNet [1], RankBoost [4] and RankSVM [6]. How-
ever, these studies were mainly concerned with accuracy and
did not seek for improvement in learning efficiency through
parallelization. Many parallel machine learning frameworks
have been introduced, e.g., IBM Parallel Machine Learning
Toolbox (www.alphaworks.ibm.com/tech/pml/) and coop-
erative coevolution (CC) [9]. However, none of these parallel

∗This work was done while the first author was a postdoc-
toral fellow at Texas State University.

Copyright is held by the author/owner(s).
SIGIR’11, July 24–28, 2011, Beijing, China.
ACM 978-1-4503-0757-4/11/07..

machine learning methods have been applied to learning to
rank.

In this paper, we investigate parallel learning to rank for
information retrieval. In particular, we propose CCRank, an
CC-based parallel learning to rank framework targeting si-
multaneous improvement in accuracy and efficiency. We also
discuss other ways of achieving parallelization for learning
to rank, such as MapReduce [3].

2. PARALLEL LEARNING TO RANK

2.1 The CCRank Framework
Overview. Evolutionary algorithms (EAs) are stochastic
search methods mimicking the metaphor of natural biologi-
cal evolution. They operate on a population of potential so-
lutions, called individuals, applying the principle of survival
of the fittest to produce better and better approximations
to the optimal solution.

Cooperative coevolution (CC) is a framework advanta-
geous in solving problems with exceptionally large search
space and complex structures [9]. In CC, a collection of
EAs co-evolve simultaneously, where the EAs interact with
one another in a cooperative manner. The fitness of an indi-
vidual is based on how well it cooperates with other interact-
ing individuals. CC follows a divide-and-conquer strategy,
decomposing a problem into sub-problems and combining
sub-solutions in the end to form a complete solution. The
nature of CC allows easy parallelization.

CCRank adapts parallel CC to learning to rank. It starts
with problem decomposition, followed by a parallel iterative
coevolution process. At the end of each generation, parallel
execution is suspended and a complete candidate solution is
produced by combination. CCRank returns the best solution
selected from all the candidates.

Decomposition and combination. Each complete so-
lution is decomposed into a collection of individuals. Ini-
tially L solutions are generated randomly from the full fea-
ture space. Then, each solution is decomposed into N sub-
individuals, resulting in N populations, each having L indi-
viduals. Each population will be assigned an EA to evolve.
Combination is a reverse process of decomposition, which
assemblies individuals into a complete solution.

Coevolution. Coevolution proceeds iteratively, where N
populations co-evolve in parallel from generation to genera-
tion. Each population Pj maintains a collection of individ-

Algorithm 1: CCRank Framework

Input : Training set T , number of generations G, number
of populations N

Output: Ranking function f

P(0)
1,...,N ← Initialize () // decomposition1

for g ← 1 to G do2

P(g)
1,...,N ← Evolve (P(g−1)

1,...,N) // coevolution3

f (g) ← Combine (w1,...,N) // combination4

C ← C ∪ {f (g)}5

uals and a winner wj , the best individual with the highest
fitness score. Under the CC framework, fitness of individuals
is based on how well they cooperate with other populations.
First, individual ij from Pj and winners of other popula-
tions selected in the previous generation are combined into
a solution. Then, the evaluation measure, e.g., MAP , for
the combined solution is calculated using the training data,
and the resulting score is assigned to ij as its fitness score.

Pseudocode. Algorithm 1 summarizes the CCRank frame-
work. Line 1 performs initialization. Lines 2–6 show the
entire evolution process from generation to generation.

2.2 Discussion
Parallel learning to rank. It is possible, but non-trivial,
to adapt parallel machine learning algorithms to learning to
rank. Some of such algorithms are included in IBM Parallel
Machine Learning Toolbox. In addition, Proximal SVM [2]
and Cascade SVM [5] are recent parallel SVMs that have
demonstrated promising performance. On the other hand,
MapReduce [3] provides a simple and unified parallel frame-
work that has been widely applied in various domains. In
the following we discuss how to adapt it to learning to rank.

Adapting MapReduce to learning to rank. MapRe-
duce [3] is based on two fundamental functions, Map and
Reduce. The Map function takes an input key/value pair
and produces a set of intermediate key/value pairs. The
MapReduce library groups together all intermediate values
associated with the same intermediate key and passes them
to the Reduce function. The Reduce function accepts an in-
termediate key and a list of intermediate values, and merges
these values to form a value for the same key.

To adapt MapReduce to learning to rank, it is desirable
to incorporate many existing learning to rank algorithms.
However, since MapReduce achieves parallelism by dividing
processes of algorithms, it is infeasible to have a unifying
framework incorporating all learning to rank algorithms that
have different processes. We propose an framework that is
able to incorporate an important category of learning to rank
algorithms by identifying and parallelizing some common
and time-consuming operations.

This category of algorithms perform direct optimization
of evaluation measures. They use ranking measures such
as MAP and NDCG, or some measure-based formulae, as
their loss functions directly. A common, time-consuming,
and repeating key operation for these algorithms is evalua-
tion of loss functions, which requires ranking of all associ-
ated documents for each query. We propose to parallelize
this operation. In particular, each process of Map evalu-

ates the ranking measure mq of each query q for candidate
ranking function f , and emits the key/value pair (f, mq) to
Reduce. Then, each process of Reduce calculates the value
m of the loss function for f with measures mq1, . . . , mq |Q|
of each query from different Map processes, and emits m.

3. EXPERIMENTS
We implemented CCRank based on RankIP [8]. N = 8

EAs are maintained, each containing L = 70 individuals
that co-evolve up to G = 30 generations. The depth of the
complete solution is d = 8.

For datasets, we used MQ2007 and MQ2008, a collection
of benchmarks released in 2009 by Microsoft Research Asia
(research.microsoft.com/en-us/um/beijing/projects/letor/).
For comparison partners, we used state-of-the-art algorithms
AdaRank [10], RankBoost [4], RankSVM [6] and ListNet [1].

We used the Map measure for accuracy comparison. For
MQ2007, CCRank and RankBoost share the best perfor-
mance. For MQ2008, CCRank outperformed all other algo-
rithms, gaining 1.13%, 0.901%, 2.60% and 0.901% respec-
tively. Note that the best and worst performances from
those comparison partners differ by merely 1.67%.

To demonstrate the gain in efficiency by parallel evolution,
we extracted 25%, 50%, and 100% portions of MQ2008 and
generated 3 datasets, which have 3,803, 7,606, and 15,211 in-
stances respectively. Then we ran CCRank on these datasets
varying the number of processors (1, 2, 4, 8, and 16).

From the execution time analysis, we can see that parallel
evolution leads to significant speed-up in CCRank. Compar-
ing to the case of 1 processor, the averaged relative speed-ups
are 173%, 299%, 486%, and 736% respectively, for the cases
of 2, 4, 8, and 16 processors.

4. REFERENCES
[1] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.

Learning to rank: from pairwise approach to listwise
approach. In ICML, 2007.

[2] R. Collobert, Y. Bengio, and S. Bengio. A parallel
mixture of svms for very large scale problems. In
NIPS, 2004.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[4] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
J. Mach. Learning Res., 4(1):933–969, 2003.

[5] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and
V. Vapnik. Parallel support vector machines: The
cascade SVM. In NIPS, 2004.

[6] T. Joachims. Optimizing search engines using
clickthrough data. In KDD, 2002.

[7] T.-Y. Liu. Learning to rank for information retrieval.
In WWW, 2009.

[8] S. Wang, J. Ma, and J. Liu. Learning to rank using
evolutionary computation: Immune programming or
genetic programming? In CIKM, 2009.

[9] R. P. Wiegand. An Analysis of Cooperative
Coevolutionary Algorithms. PhD thesis, George Mason
University, 2004.

[10] J. Xu and H. Li. AdaRank: a boosting algorithm for
information retrieval. In SIGIR, 2007.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2011

	Parallel Learning to Rank for Information Retrieval
	Shuaiqiang WANG
	Byron J. GAO
	Ke WANG
	Hady W. LAUW
	Citation

	tmp.1480399597.pdf.3XZWi

