
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2008

Ranked Reverse Nearest Neighbor Search
Ken C. K. LEE
Pennsylvania State University

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Wang-Chien LEE
Pennsylvania State University

DOI: https://doi.org/10.1109/TKDE.2008.36

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LEE, Ken C. K.; ZHENG, Baihua; and LEE, Wang-Chien. Ranked Reverse Nearest Neighbor Search. (2008). IEEE Transactions on
Knowledge and Data Engineering. 20, (7), 894-910. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/766

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TKDE.2008.36
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

1

Ranked Reverse Nearest Neighbor Search
Ken C. K. Lee† Baihua Zheng‡ Wang-Chien Lee†

† Pennsylvania State University, USA. {cklee, wlee}@cse.psu.edu
‡ Singapore Management University, Singapore. bhzheng@smu.edu.sg

Abstract— Given a set of data points P and a query point q in a
multidimensional space, Reverse Nearest Neighbor (RNN) query finds
data points in P whose nearest neighbors are q. Reverse k-Nearest
Neighbor (RkNN) query (where k ≥ 1) generalizes RNN query to find
data points whose kNNs include q. For RkNN query semantics, q is
said to have influence to all those answer data points. The degree of
q’s influence on a data point p (∈ P) is denoted by κp where q is the
κp-th NN of p. We introduce a new variant of RNN query, namely,
Ranked Reverse Nearest Neighbor (RRNN) query, that retrieves t data
points most influenced by q, i.e., the t data points having the smallest κ’s
with respect to q. To answer this RRNN query efficiently, we propose two
novel algorithms, κ-Counting and κ-Browsing that are applicable to both
monochromatic and bichromatic scenarios and are able to deliver results
progressively. Through an extensive performance evaluation, we validate
that the two proposed RRNN algorithms are superior to solutions derived
from algorithms designed for RkNN query.

I. INTRODUCTION

A. Definitions and Motivations

The Reverse Nearest Neighbor (RNN) search problem has received
a lot of attentions from the database research community for its
broad application base such as marketing, decision support, resource
allocation and data mining since its introduction [8]. Given a set of
data points P and a query point q in a multidimensional space, RNN
query finds every data point in P with q as its nearest neighbor (NN).
Such RNN query is also called monochromatic RNN since the answer
data points and their NNs are all from the same set of data points, i.e.
P1. On the other hand, bichromatic RNN searches answer data points
from one set of data points, P , with their NNs taken from another
set of data points, say Q. Reverse k-Nearest Neighbor (RkNN) with
k ≥ 1 generalizes RNN to find data points whose kNN include
q. RkNN query is different from (and even more complicated than)
kNN query because of asymmetric NN relationship between two data
points in a dataset. That means if a query point q has found the nearest
neighbor point p (∈ P), p may have other data points else (i.e., other
than q) as its nearest neighbors.

The primary goal of RkNN query is to determine the influence set,
i.e., a subset of data points in P considered to be influenced by a
given query point q if q is the immediate nearest neighbor to them.
The term degree of influence, denoted as κp, is defined in Definition 1
to quantify the influence of a query point q on a data point p in P .
In this paper we assume data points and query point are in Euclidean
space. Hence, when q is the NN to a data point p, q is said to have
the most significant influence on p and the corresponding κp is one.
When q is the second NN of another data point p′, q is the second
most influential point to p′ and κp′ is two, and so on. Based on the
definition of κ, RkNN query can be interpreted as to retrieve data
points with their κ’s not exceeding a given threshold parameter k as
formally stated in Definition 2.

Definition 1: Degree of influence. Given a dataset P and a query
point q, the degree of influence of q on p (∈ P) denoted by κp is
the number of data points not farther than q to p. Formally, κp =

1For the rest of this paper, we refer to the data points in the answer set as
answer data points

∣∣{p′ | p′ ∈ X∪{q}∧dist(p′, p) ≤ dist(p′, q)}∣∣ where X = P−{p}
(monochromatic) or X = Q (bichromatic)2. �

Definition 2: RkNN query. Given a dataset P (and Q when
bichromatic RkNN is considered) and a query point q, RkNN query
returns a set of objects whose κ’s do not exceed k, an influence
threshold setting, i.e., RkNN(q) = {p | p ∈ P ∧ κp ≤ k}. �

RkNN query has no control of the answer set size since the settings
of k does not determine the answer set size. For example, as reported
in [15], a monochromatic R1NN query in a two-dimensional (2D)
space many return none or up to six answer data points. For high-
dimensional space and bichromatic scenario, the number of answer
data points can vary a lot. Besides, RkNN is not very informative
about the influences of a query point on answer data points. It
is hard to differentiate one answer data point from another upon
influence received from the query point. Therefore, it is useful to
determine an influence rank, a predetermined number of influenced
data points (with their κ’s provided) ordered by their κ’s. This search
has a wide application base. For example, a company has some
limited quantity of product samples to send to potential customers
for promotion. Assume that the promoted product, other competitors’
products and customers’ preferences are all captured as data points in
a multidimensional feature space. Suppose that customers are more
likely to purchase a product if it is closer to their preferences in
the feature space. Given the number of available samples t, kNN
query with k = t finds customers who preferences match well with
the product, but the product may not receive high ranks to those
customers due to existence of other products. RkNN can be adopted
to find potential customers. Independent of t, it cannot find exact
t potential customers to send the samples. Besides, both kNN and
RkNN cannot tell which potential customers are the most (or least)
suitable targets. This necessitates a new query that searches the t
most influenced data points ranked based on the degree of influence.

In this paper, we propose Ranked Reverse Nearest Neighbor
(RRNN) query, formally defined in Definition 3, to retrieve from
P the t data points most influenced by a query point q, where t is a
query parameter. When t is set to 1, RRNN query returns a data point
p that q has the most influence on. Notice that κp may not necessarily
be one. When t = |P| (i.e., the cardinality of the object set), RRNN
renders a sorted list of all data points according to their degrees of
influence. Since κ’s are not necessarily unique, the distance between
the data points and the query point is used as the tiebreaker. Revisit
our previous example. An RRNN query with t set to the number
of available samples, say 100, one hundred customers best matched
with the promoted product are retrieved.

Definition 3: RRNN query. Given a dataset P (and Q when
bichromatic scenario is considered), a query point q, and a requested
number of answer data points t, Ranked Reverse Nearest Neighbor
(RRNN) query returns t tuples (p, κp) where p ∈ P , and κp is
p’s degree of influence. Formally, RRNNt(q) = {(p, κp) | p ∈
P ′ ∧ |P ′| = t ∧ P ′ ⊆ P ∧ ∀x∈(P−P′)κp < κx}. �

2dist(x, y) denotes the Euclidean distance between x and y.

2

The RRNN query, a new RNN variant, is functionally more
powerful and more informative than RkNN as it can report the
top-t most influenced data points with their degrees of influence.
This RRNN supports impact analysis as well. Let us consider other
examples. A logistic company plans to set up a service center at a
given location. An impact analysis based on geographical proximity
to their customer bases may be performed at the planning stage.
Assume that customers’ preferences for logistic services are based
on distance. RRNN can show the distribution of impact within a
specified number (or percentage) of most influenced subjects. For
example, among the top-100 potential customers, how the new center
is ranked among existing centers. In this case, RkNN can only figure
out the set of potential customers within a specified impact controlled
by k. Another interesting RRNN application is in the matching
service. When a new member joins, a group of existing members
who may be interested in the new member, can be notified by running
RkNN query based on calculated matching degree. RRNN query can
identify a given number of top-matched candidates, along with their
corresponding matching degrees.

B. Possible Solutions

Although RkNN query is also based on the degrees of influence
(see Definition 3 and Definition 2), none of the existing algorithms
proposed for RkNN search can be directly adopted to efficiently
support the RRNN query. An intuitive approach, called κ-Probing,
is to iteratively invoke an RkNN algorithm by increasing the query
parameter k from 1 until t most influenced data points are obtained.
First, an R1NN query (where k = 1) is first evaluated. The answer set
is recorded and the corresponding κ of each answer data point is 1.
Next, an R2NN query is reissued. Notice that the query result of the
R2NN query subsumes that of the R1NN query in the previous run.
Therefore, the answer data points excluding those obtained from the
previous run have their corresponding κ’s equal to 2. This process
repeats with incremented k at each run until t answer data points
and their κ’s are obtained, which clearly suffers from redundant
processing among different runs. A slight improvement can be made
by exponentially increasing the k’s in the series of RkNN invocations,
e.g., setting k to 1, 2, 4, 8 ... etc. If more than t answer data points
are collected, the algorithm gradually reduces k to smaller values
until t answer data points are found.

From our analysis of the RRNN query, the degree of influence
with respect to the query point q for a data point p, κp, can be
determined by counting the number of data points closer to p than q
(i.e. p’s NNs). If we draw a circle cir(p, q) rooted at p using distance
between p and q, i.e., dist(p, q), as the radius, κp equals the number
of data points, including q, fallen inside the circle. Thus, a naive
approach to processing an RRNN query is to count the numbers of
NNs for all data points exhaustively as above mentioned. However, an
RRNN query is only interested in the t top-ranked data points most
influenced by q. Consequently, it is a waste to figure out the κ’s for
all the other points. In other words, we should only evaluate a set of
potential candidates. This fosters a straightforward approach called
filter-and-rank (FR), serving as a baseline in this paper. FR is similar
to the filter-and-refinement query processing paradigm commonly
used by RkNN search algorithms (to be discussed in Section II). It
has two phases: 1) in the filter phase, it retrieves the top K NN data
points (t ≤ K) to a query point as result candidates; 2) then in the
rank phase, for each candidate, p, a circle cir(p, q) is formed and the
number of data points (i.e., κp) inside cir(p, q) is derived. At last, t
candidates with the smallest κ’s are returned. However, this approach
cannot guarantee the result accuracy. It may return an inaccurate
result if K is not large enough to cover all potential answer points
(i.e., false miss) in the filter phase and thus some other data points

among candidates are mistaken as t most influenced data points,
rendering incorrect results. Setting K to a large value may avoid
false miss but this makes the search suffer a serious performance
penalty.

C. Our Proposed Algorithms

Motivated by the value of the RRNN query and the lack of
efficient algorithms, in this paper, we propose two novel and efficient
algorithms, namely κ-Counting and κ-Browsing, that progressively
obtains κ’s for a subset of the data points. The key difference between
these two algorithms lies in the adopted ordering functions and the
number of data points visited to process the query.

Since data points with small κ’s intuitively have short distances
to q (i.e, small circles formed), the κ-Counting algorithm examines
data points based on their distance to the query point q. While we
determine the κ of one data point at a time, the κ’s of many other
data points are incrementally obtained based on findings of the data
point under processing. The algorithm elegantly explores the property
of the index structure to determine the access order of data points.
However, because of asymmetric NN relationship, data points having
short distance to the query point might not necessarily have small κ’s
and hence are excluded from the answer set. Thus, this algorithm,
based on distance order, may require to process more data points.
The details about κ-Counting will be discussed in Section III.

The κ-Browsing algorithm aims at optimizing the number of data
points processed by visiting data points in the order of their degrees
of influence (i.e., κ). A notion of minκ is introduced and used in the
algorithm to facilitate efficient processing of the RRNN query. The
minκ of a data point is a low bound estimation of κ based on distance
metrics and aggregated counts on aR-tree [10]. Several heuristics are
obtained via the knowledge of minκ to prune the search space and
to retrieve answer data points. Details about minκ and developed
optimization techniques for κ-Browsing are discussed in Section IV.

Both the κ-Counting and the κ-Browsing algorithms support
multidimensional datasets. Other than R-tree/aR-tree maintenance,
they do not incur any pre-processing overhead, making our algorithms
suitable for highly dynamic environments. Moreover, our algorithms
are I/O efficient as they look up a required portion of an index
only once. Besides, our design of algorithms is compatible to both
monochromatic and bichromatic application scenarios. Further, they
can support RkNN with minor modification and provide progressive
result delivery, which was not achieved by existing RNN/RkNN
algorithms. To validate our proposals, we conduct a comprehensive
set of experiments via simulation with a wide range of settings,
such as different cardinality/dimentionality of the dataset and various
values of t (the required number of answer objects). The result
indicates that the κ-Browsing algorithm generally performs the best
in terms of I/O costs and elapsed time.

D. Organization of the Paper

The remainder of the paper is organized as follows. Section II
reviews the R-tree and existing RNN/RkNN search algorithms.
Section III and Section IV present κ-Counting and κ-Browsing
algorithms, respectively. For ease of illustration, the discussion of
the algorithms is based on a 2D space, while our algorithms can
support RRNN search in a multidimensional space. The performance
evaluation of our algorithms is conducted and presented in Section V.
Finally, Section VI concludes this paper.

II. RELATED WORK

This section briefly reviews R-tree [6], an efficient index for many
NN and RNN/RkNN search algorithms, and the existing search
algorithms for RNN/RkNN query.

3

A. R-tree and MBB Distance Metrics

R-tree (including its variants R*-tree [2] and aR-tree [10]) is
a data partitioning index that clusters closely located data points
and abstracts them as minimum bounding boxes (MBBs), based on
which the index is built. Because of tightly bounding enclosed data
points, each side of an MBB must touch at least one enclosed data
point. Consequently, many useful distance metrics, such as mindist,
minmaxdist, and maxdist, have been identified [13]. As shown in
Figure 1(a), mindist(q, N) and maxdist(q, N) represent the lower
and upper bounds of the distance between any data point inside an
MBB N and a single point q; minmaxdist(q, N) defines the upper
bound of the distance between a point q and its NN inside an MBB
N . In other words, a point q should have at least one point located
inside MBB N whose distance does not exceed minmaxdist(q, N).

mindist(q,N)

maxdist(q,N)

N

q

minmaxdist(q,N)

(a) Between a data point and an MBB

a

b

x

(a,b)

N1

N2

mindist(N1,N2)

minExistDNNN (N1)2

maxdist(N1,N2)
minmaxdist(N1,N2)

P1
P2

(b) Between two MBBs

Fig. 1. Distance metrics

Besides, another set of distance metrics are defined between
two MBBs. With the same terminologies, mindist, minmaxdist, and
maxdist [4] are exemplified in Figure 1(b). mindist(N1, N2) and
minmaxdist(N1, N2) are respectively referred to as the lower and
upper bounds of the distance between the closest pair of data points
from MBBs N1 and N2. maxdist (N1, N2) is the upper bound
distance of the farthest pair of data points in respective MBBs.
In addition, minExistDNNN2(N1) [20] represents the minimal
upper bound of distance from any point in MBB N1 to its NN
in MBB N2. As shown in Figure 1(b), an MBB N1 is partitioned
by a perpendicular bisector ⊥(a,b), where a and b are diagonal
points in N2, into two portions, P1 (shaded) and P2 (not shaded).
Conservatively, any data point in P1 (or P2) should have its NN not
farther than b (or a respectively). Here, minExistDNNN2(N1) is
dist(x, a), the distance from x to a. minExistDNN is asymmet-
ric that minExistDNNN2(N1) and minExistDNNN1(N2) are
different. All these distance metrics are useful to derive minκ in the
κ-Browsing algorithm to be discussed later.

B. RNN/RkNN Search Algorithms

Here, we discuss RNN/RkNN search algorithms that can be
broadly categorized as pre-computation based approaches and dy-
namic approaches.

Pre-computation Based RNN/RkNN Search Algorithms. Pre-
computation based approaches pre-execute kNN search for each point
p and determine dist(p, p′) between p and its kth NN point p′ based
on a given k. Further, for each object p, a vicinity circle cir(p, p′),
centered at p with dist(p, p′) as the radius, is created. If a query point
q is inside cir(p, p′), p is the RkNN answer data point. To facilitate
the lookup of answer data points, all the vicinity circles are indexed
using RNN-tree [8], an R-tree variant specific for vicinity circles.
Rather than physically including the vicinity circle, RdNN-tree [22],
another R-tree variant, was proposed to keep both data points and
their vicinity circle radius. This RdNN-tree can efficiently support
both NN and RNN search simultaneously. Figure 2(a) depicts four
MBBs of an RdNN-tree containing eight data points {p1, · · · p8}.
Given a query point, q, RNN search locates N2 and N3 for potential

answer data points as their extended MBBs cover q. Then p1 and p5

are retrieved as the answer data points. However, these approaches
are limited to support RkNN queries for a fixed k and they incur a
very high index construction and update overhead [12]. To support
various k, [1], [18] suggested to estimate kNN distance at the run
time instead of maintaining actual possible kNN distances.

q

p4

p2 p1

p3p5

p6

p7

p8

N1 N2

N3
N4

(a) RdNN-tree

q

p4

p2 p1

p3
p5

p6

p7

p8

N4

(q,p1) (q,p2)

(q,p3)

(q,p5)

(b) TPL algorithm

Fig. 2. RNN algorithms

Dynamic RNN/RkNN Search Algorithms. Dynamic RNN search
algorithms perform search based on a general index like R-tree that
can be efficiently updated [11], [21]. Stanoi et al., [16] derives
Voronoi cells based on R-tree to determine bichromatic RNNs. Other
proposed monochromatic RNN/RkNN algorithms adopt a filter-and-
refine query processing paradigm [14], [15], [17], in which the search
is separated into filter phase and refine phase. In the filter phase,
potential RNN/RkNN answers are identified as candidates from the
entire dataset, which may include false hits. In the refine phase, all
candidates are evaluated with kNN search and those candidates with
more than kNNs found are removed.

Stanoi et al. [15] suggested to partition a 2D search space centered
at the query point into six equal-sized sectors. It is proved that those
NN objects of q found in each sector are the only candidates of
the RNNs. Thus, in the filter step, constrained NN search [5] is
conducted to find the NN data point in each sector. The efficiency of
Stanoi’s algorithm is owing to the small number of candidates, at most
six for monochromatic RNN in 2D space. When the dimensionality
increases, the number of subspaces for candidates increases expo-
nentially. Singh et. al [14] proposed another algorithm to alleviate
the curse of dimensionality. Their algorithm first retrieves KNN
data points to the query point as candidates where K (reasonably
larger than k of RkNN query) is randomly selected. However, the
accuracy and performance of this algorithm is highly dependent on
K. The larger K is, the more candidates are identified. Consequently,
it is more likely that a complete answer set is returned but with a
higher processing cost. A small K favors the efficiency but it may
incur many false misses. The filter-and-rank algorithm (discussed in
Section I-B) borrows this idea.

To guarantee the completeness of results, Tao et al. [17] proposed
TPL algorithm that exploits an half-plane property in space to
locate RkNN candidates. The algorithm examines data points based
on distance browsing [7]. Every time when an unexplored nearest
neighbor data point p to a query point, q, is identified, a half plane
is constructed along the perpendicular bisector ⊥(q,p) between p and
q. It is guaranteed that any object p′ (or node) falling inside the half
plane containing p must have p closer than q to it. Thus, if a data point
is covered by k or more half-planes, it should not be an RkNN answer
data point, thus can be safely discarded from detail examination. The
filter phase terminates when all candidate data points are collected
and the others are discarded. As depicted in Figure 2(b), four objects
p1, p2, p3, and p5 are identified as the candidates for R1NN and
other data points (e.g., p4 and p6) or MBBs (e.g., N4 that encloses a
set of data points) inside the (shadowed) half-planes of candidates are
filtered out. Later in the refine step, NN search is performed on these
candidates to remove the false hits. The final result set is {p1, p5}.

4

C. Other RNN Algorithms

Various RNN/RkNN algorithms consider different application
scenarios, such as data stream [9], graph network [24], moving
objects [3], ad-hoc subspace [23], and object monitoring [19]. Unlike
all those reviewed RNN algorithms which identify influenced data
set with κ ≤ k, our work in this paper focuses on searching for
top t influenced data points ranked with respect to a query point.
Besides, the work of influential site ranking [20] is for bichomatic
RNN scenarios, aiming at finding a rank list of data points from a
set of query points, Q, that influence most of data points in P . In
other words, this work intends to find most influential query points.
Different from this work, our work finds most influenced data points
to a single query point and ranks them.

III. κ-COUNTING ALGORITHM

This section details the κ-Counting algorithm. We give an overview
of the algorithm followed by the detail of how the algorithm oper-
ates for both monochromatic and bichromatic application scenarios.
Finally we discuss its strength and weakness.

A. Overview

Based on an intuition that the κ of a data point p is somewhat
related to the size of cir(p, q) which centers at p with dist(p, q) as
the radius, the κ-Counting algorithm gradually expands the search
space starting from a query point, q, outwards to visit the closest
data points in P . Additionally, we associate a κcnt, a counter for
the number of NNs, with every single data point, initialized to one.
While the search space is expanded, the κcnt’s of some data points
are incremented (if some other points are found to be closer to them
than q) and/or finalized (if they are not affected any more by later
examined data points). Those data points with the smallest finalized
κcnt’s (that equal to κ’s) are collected as answer data points. The
algorithm keeps expanding the search space and incrementing the
κcnt’s of data points until t answer data points are obtained.

We use half-planes as [17] to determine whose κcnt’s need
updating. When the search space expands to a data point, p, we divide
the whole space along the perpendicular bisector, ⊥q,p between p and
q into two half-planes, denoted by HPq(q, p) and HPp(q, p). All the
data points fall inside the half-plane containing p, i.e., HPp(q, p),
must have p closer to them than q, so κcnt’s of those data points are
incremented by one. With the use of half-planes, the κcnt of a data
point p equals the number of half-planes that cover p. For notational
convenience, we use HPq in place of HPq(q, p) hereafter.

To facilitate expanding the search space and counting κcnt’s of
individual data points or groups of data points, we adopt R-tree index.
An example is illustrated in Figure 3(a), where the κcnt’s of data
points or MBBs are denoted in braces. When a perpendicular bisector
⊥q,p is formed between the query point q and its first nearest point
p, both data point p1 and MBB N that represents all enclosed data
points, falling inside HPp, have their κcnt’s incremented by one.
On the other hand, p2 is outside HPp so its κcnt remains one.

q
p

p1

p2
N

(q,p) (2)

(2)
(1)

dist(p,q)2 x dist(p,q)

(a) Bisector ⊥(q,p)

q
p

p1

p2
N

(3)

(2)
(2)

(q,p)

(2)

(q,p2)

(q,p1)

(b) κcnt of all points & node

Fig. 3. Basic idea of κ-Counting algorithm

As shown in Figure 3(b), after examining three data points, p, p1

and p2, κcnt’s of p, p1, p2 and N are updated to 2, 3, 2, and 2,

respectively. It is noteworthy that some of N ’s children N ′ may lie
inside HPp3 , though N is not entirely inside it. Consequently, the
κcnt’s associated with N ′s may be greater than, but definitely not
less than, that of N .

Certainly, after examining all data points/half-planes, κcnt’s of all
data points can be finalized (converged and equal to κ’s). However,
since only t most influenced data points (i.e., those with smallest κ’s)
are needed, a comprehensive checking (that examines all the data
points) incurring a large processing overhead is clearly unnecessary.
To improve the search efficiency, early κcnt finalization is desirable.
Following the non-decreasing distance order, κcnt’s can be finalized
earlier according to the following lemma.

Lemma 1: The κcnt of a data point p is finalized if dist(p′, q)
of all unexamined data points p′ to the query point q is greater than
2 × dist(p, q). �
Proof: Since the perpendicular bisector, i.e., the boundary of a half-
plane, formed between a query point q and any point p′ must be at
least dist(p′, q)/2 away from q, the half-plane cannot cover any data
point, p, whose dist(p, q) < dist(p′, q)/2 (see Figure 3(a)). Thus,
p’s κcnt can be finalized and equals κ. �

Though the κcnt’s of some data points can be finalized earlier,
it is not guaranteed that those points with early finalized κcnt must
be the RRNN query answers. Until their κ’s are certain to be the
smallest, they will not be output as a part of the RRNN query result.
In the following subsections, we present κ-Counting algorithm for
monochromatic and bichromatic RRNN application scenarios.

B. κ-Counting Algorithm for Monochromatic RRNN

The κ-Counting algorithm for monochromatic RRNN is based on
distance browsing [7] as described in the pseudo-code in Figure 4. In
this algorithm, data points have to be examined through three stages,
namely, queued (pending for examination), examined (examined but
with non-finalized κ’s), and finalized (examined with finalized κ’s),
before they can be included as RRNN query results. A priority queue
(P), a candidate set (C), and a finalized candidate set (F) are used
to maintain data points in these respective stages. In addition, a half-
plane set (H) maintains all the half-planes of examined data points.
We also adopt a histogram to facilitate the decision on whether the
finalized κcnt of a data point p is the smallest. For each value of
κcnt, we record the number of data points/index nodes p ∈ P ∪ C
with κcntp = κcnt. When a data point or an index node changes its
κcnt from κold to κnew, the number associated with value κold is
reduced by one while that with value κnew is increased by one. When
the numbers for all κcnt’s in the histogram smaller than p’s κcnt
reach zeroes, p’s κcnt is guaranteed to be the smallest. Moreover,
the histogram is very update efficient.

The algorithm starts with P filled with the root of the index and
C, F and H set to empty. Thereafter, it iteratively takes out the head
entry of P , that is, the closest unexamined entry ε (either a data point
or an index node) to the query point. In each round, ε is checked (lines
2-23). If ε is a data point, a half-plane HPε is created and preserved
in H (line 14). Next, all pending data points and index nodes in P
and all data points in C falling inside this half-plane increase their
κcnt by one (lines 15-18). Finally, ε is kept in C as a candidate (line
19). Otherwise, ε must be an index node. It is explored and all its
children c are placed back to P . The κcnt of each newly inserted
entry c is counted by comparing c against all half-planes in H (lines
8-12). Besides, the mindist of ε is compared against the distances
between q and all data points in C. The data points in C with their
κcnt’s finalized according to Lemma 1 are moved to F (lines 4-6).
Further, those data points in F with smallest κcnt are output as the

5

Algorithm κ-Counting(q, root, t)
Input: a query point (q), the root index of P (root),

the number of answer data points (t)
Local: a priority queue (P), a candidate set (C),

a finalized candidate set (F) and a half-plane set (H);
Output: t RRNN result points;
Begin
1. enqueue (root, 1) to P /* where 1 is the initial κcnt */
2. while (P is not empty AND t > 0) do
3. (ε, κcnt) ← dequeue(P);

/* identify those data point with finalized κcnt */
4. foreach (p, κcnt) ∈ C
5. if (dist(p, q) ≤ mindist(q, ε)/2) then
6. C ← C − {(p, κcnt)}; F ← F ∪ {(p, κcnt)};

/* explore the entry */
7. if (ε is an index node) then
8. foreach c ∈ ε’s children /* explore index node */
9. κcnt← 1;

10. foreach h ∈ H
11. if (c inside h) then κcnt← κcnt + 1
12. enqueue (c, κcnt) to P ;
13. else /* ε is a point */
14. H ← H ∪ {HPε(ε, q)};
15. foreach (p, κcntp) in P /* update κcnt’s of others */
16. if (p inside HPε(ε, q)) then κcntp ← κcntp + 1;
17. foreach (p, κcntp) in C
18. if (p inside HPε(ε, q)) then κcntp ← κcntp + 1;
19. C ← C ∪ {(ε, κcnt)};
/* output data point(s) with smallest finalized κ */
20. determine m = MIN(κcntp) with p ∈ P ∪ C;
21. foreach (p, κcnt) ∈ F
22. if (κcnt ≤ m) then
23. F ← F − (p, κcnt); output (p, κcnt);t← t− 1;
End.

Fig. 4. κ-Counting Algorithm for Monochromatic RRNN

p1q

p3

p2

p3 q p2 q p1 q N

dist(p1,q)

2 x dist(p1,q)

HP
1p HP

2p

HP
3p

Exam
κcnt

p1 p2 p3 N
p1 1 2 2 2
p2 2 2 3 3
p3 2 3 3 4

Fig. 5. Example of κ-Counting for Monochromatic RRNN

partial RRNN query result immediately (lines 20-23). As long as t
answer data points are collected, the algorithm terminates.

Figure 5 shows an example run of the κ-Counting algorithm.
Suppose an RRNN query (with t = 1) issued at q searches for one
data point with the smallest κ. The queue P currently contains three
points, p1, p2, and p3, and one index node, N , after some steps of
index traversal, and the sets H , F and C are empty. First, p1, the
head of P and having κcnt = 1, is examined. A half-plane HPp1 ,
formed based on ⊥(q,p1), is inserted into H . Since p2, p3 and N in
P fall inside HPp1 , their corresponding κcnt’s are increased by 1.
p1 is thereafter moved to C. Next, p2 is examined and its half-plane
HPp2 covers p1, p3 and N . Thus, the κcnt of p1, p3 and N are
changed to 2, 3 and 3, respectively. p2 and HPp2 are inserted into
sets C and H accordingly to complete the second round.

When p3 is inspected, the κcnt of p1 is finalized (based on Lemma
1) since mindist(q, p3) is twice more than dist(p1, q), and hence
it is moved from C to F . As p3’s half-plane, HPp3 , covers p2 and
N , κcnt associated with p2 is increased to 3 and that with N is
incremented to 4. As p1’s finalized κ is smaller than that of the rest
data points (i.e., p2, p3 and N), it is output as the RRNN query result
to complete the search.

C. κ-Counting Algorithm for Bichromatic RRNN

The κ-Counting algorithm for bichromatic RRNN query considers
two datasets P and Q. The answer data points are retrieved from P
while their NNs are obtained from Q. The logic is pretty much the
same as that for monochromatic RRNN query. We associate κcnt’s
with all data points and index nodes from P . Data points in P have to
go through three stages, as described in Section III-B. Thus, a priority
queue (P), a candidate set (C), and a finalized candidate set (F) are
maintained. Examined data points in Q form half-planes, which are
stored in H . As the examination follows the distance order, we put
data points and index nodes from Q and P into P to provide a global
distance order. Every time when an entry dequeued from P is being
examined, one of the following operations is performed accordingly.

• Case 1. If the entry is an index node from Q, it is explored and
all its children nodes are pushed back to P for later examination.

• Case 2. If the entry is a data point s from Q, it forms a half-
plane HPs based on perpendicular bisector ⊥(q,s). Those entries
in C and P (data points/index nodes of P) falling inside HPs

increase their κcnt’s by 1. The newly formed half-plane HPs

is then maintained in H .
• Case 3. If the entry is an index node from P , it is explored.

All its children are checked against all half-planes in H , update
their κcnt’s, and are enqueued to P .

• Case 4. If the entry is a data point p from P , it is put into C.

As previously discussed, the κcnt of a candidate data point p (∈ C)
can be finalized when the mindist of the current head entry (and
hence of all the other queued entries) to q is greater than the double
of dist(p, q) according to Lemma 1. Next, p with finalized κcnt is
moved from C to F . Further, when its finalized κcnt is smaller than
all others in P and C, p is removed from F and delivered as one
of the query results. To efficiently determine whether the finalized
κcnt’s of some data points in F are the smallest, we maintain
a histogram of κcnt’s of data points in C and P . The algorithm
terminates when t RRNN answer data points are collected.

s
q

p

1

s2

s

1

p2

HP2s

HP3s

(q,s3) (q,s2) (q,s1)

dist(p1,q)

3

2 x dist(p1,q)
HP1s

Exam
κcnt

p1 p2

s1 2 2
s2 3 3
s3 3 4

Fig. 6. Example of κ-Counting for Bichromatic RRNN

As it is similar to that for monochromatic RRNN query, the pseudo-
code of the κ-Counting algorithm for bichromatic RRNN query is
omitted to save space. Figure 6 provides an illustrative example where
t, the number of required data points, is set to 1. Assume that after
certain traversal steps, P contains [s1, p1, s2, s3, NS , p2], with s1

being the head and C, F and H being empty. Firstly, s1 is examined,
a half-plane, HPs1 , is created with respect to s1 and q, and the κcnt’s
of both p1 and p2 are incremented to 2. Secondly, p1 is examined
and buffered in C. Thirdly, s2 is examined and its half-plane HPs2

covers p1 and p2. As a result, the κcnt’s of both p1 and p2 become 3.
Then, s3 is dequeued. Its mindist is twice greater than dist(p1, q), so
p1’s κcnt is finalized and it is moved from C to F . Besides, HPs3

covers p2, and p2’s κcnt is therefore incremented to 4. At last, p1

in F with the smallest κcnt is confirmed to be the final result. It is
delivered and the search ends.

6

D. Discussion

It is pretty straightforward to adapt the κ-Counting algorithm to
support RkNN query by collecting data points with their finalized
κcnt’s (i.e., κ) not exceeding k and terminating the search when
all the remaining data points (i.e., those in the priority queue and
the candidate set) are confirmed to have κcnt’s greater than k. By
doing so, the κ-Counting algorithm can provide progressive result
delivery that none of existing RkNN algorithm can offer. Besides, the
κ-Counting algorithm can operate without specifying t, defaulting
t = ∞. This actually sorts all the objects according to ascending
order of κ, i.e., the degree of influence received from q.

N3

N2

N1

q

a

b

(a) Monochromatic RRNN

S3

S2

N1

q

p1

p2s1

s2

q,s1

q,s2

(b) Bichromatic RRNN

Fig. 7. Scenario about Filter-and-Rank

The κ-Counting algorithm can outperform those previously dis-
cussed solutions, namely, κ-Probing and FR. It does not repeatedly
access the same data set as the κ-Probing; it does not need to access
extra data points as FR; and it can guarantee the result correctness.
Figure 7(a) shows a scenario, where a monochromatic RRNN query is
issued at q and t is set to 1. FR examines 2NN points as its candidates.
Here, a whose κ is 1 is the RRNN, but not b. In the rank phase, index
nodes, N2 and N3, are visited as they intersect cir(b, q), thereby
incurring extra I/O costs. For bichromatic scenario, the κ-Counting
algorithm can also perform reasonably better than FR. Figure 7(b)
shows a scenario where an RRNN query is issued at q and p1 is
the answer point. FR retrieves both p1 and p2 as initial candidates.
Based on their circles, other points like s1 and index nodes S2 and
S3 from Q are accessed. However, for the same situation, the κ-
Counting algorithm does not need to explore that many index nodes
of Q and even does not need to examine p2. It accesses s1, s2, p1 and
then p2 according to the global distance order. When p2 is accessed,
p1’s κcnt is finalized. At this time, no other data points have smaller
κcnt than p1’s, thus the κ-Counting algorithm terminates earlier.

q

p'

p

(a) κ-Counting

q

p'

p

(b) κ-Browsing

Fig. 8. Skewed Dataset

However, the κ-Counting algorithm, based on an intuition that the
κ of a data point is related to its distance to a query point, could
be less efficient for skewed datasets. As illustrated in Figure 8(a),
p′ is the answer data point but it is far away from q. According to
the mindist metric, the κ-Counting algorithm scans data points to
form half-planes that are used to update the κcnt’s of covered points.
As a result, it has to scan all the data points on the right side of q
before visiting p′. From this, we can see that processing RRNN query
by means of distance ordering is not necessarily a good strategy. In
the next section, we present κ-Browsing, our second algorithm using
minκ’s to order the access of candidate data points/index nodes for
RRNN query processing.

IV. κ-BROWSING ALGORITHM

In this section, we detail the κ-Browsing algorithm which is based
on a notion of minκ, an estimation of κ for a data point. To facilitate
the calculation of minκ’s, we adopt aRtree [10] which is widely used
to support aggregation query. For RRNN and RkNN, determining
κ’s that counts the number of NNs with respect to a data point is
a sort of aggregation. aRtree is an Rtree variant with every index
node associated with a count indicating the number of data points
indexed beneath the node. Specifically, the count associated with a
leaf node records the number of enclosed data points and the count
associated with a non-leaf node equals the sum of counts of all
its child (descendent) nodes. In the following, we discuss the basic
idea of the κ-Browsing algorithm and then introduce the notion of
minκ and its properties, followed by description of the κ-Browsing
algorithm for monochromatic and bichromatic RRNN scenarios.

A. Overview

The key idea of the κ-Browsing algorithm is to order the access of
data points/index points based on their likelihoods of being/containing
the answer data points. To illustrate the idea of the algorithm, let us
consider Figure 8(b) (which depicts the same scenario as Figure 8(a)).
Considering two unexplored data points p and p′. It is reasonable to
examine the data point p′ before p, as we can visualize from the
figure that κp′ is smaller than κp. However, the exact κp and κp′ is
unknown without exploring other data points/index nodes around p
and p′. Thus, a challenging issue that the κ-Browsing algorithm faces
is how to determine the access order between p and p′ (and other
data points and index nodes) without exactly knowing their κ’s. To
tackle this problem, we introduce a notion of minκ, associated with
every data point and index node, to represent the minimal number
of data points being closer to its associated data point or index node
(i.e., all the data points inside the MBB of the index node) than q,
estimated based on available but limited knowledge of the data point
distribution. In other words, it is the lower bound of κ of a data point
or all data points inside an index node. A data point/index node with
a relatively large minκ is obviously less likely to be/contain the
most influenced data point(s), and thus the access priority should be
given to those with smaller minκ’s. With minκ’s, the κ-Browsing
algorithm can also efficiently prune the search space. As illustrated in
Figure 8(b), we can figure out, based on knowledge discovered during
the query processing, that p’s minκ is larger than that of p′. Then,
the search can decide to process p′ before p and all its neighboring
data points and index nodes, thus alleviating the processing overhead.
Further, as κp′ is smaller than the minκ’s of p and its surrounding
data points, p′ can immediately be output and the search terminates.

B. Notion of minκ

The estimation of minκ’s is proceeded along with the index
traversal. The state of the index under examination can be represented
by a set of index nodes and data points (denoted by V). The data
points and index nodes in V , logically constituting the whole dataset
are not nested. The initial state of V contains only the root node of
the index. As the κ-Browsing algorithm traverses and expands index
nodes, V evolves into new sets of data points and index nodes that
provide more precise knowledge of data distribution in the space.

Given a data point p, its minκ indicates the minimum possible
number of data points closer to p itself than a query point q, based on
the knowledge embedded in the current state of V . Figure 9(a) shows
an illustrative example of how minκ of p is estimated. Rooted at p,
a circle cir(p, q) that covers some MBBs and data points is drawn.
First, a data point p′, inside the circle, is guaranteed to be closer to
p than q and hence is counted towards minκ of p. Similarly, N1

7

is fully covered by the circle (i.e., maxdist(p, N1) ≤ dist(p, q)),
that means all the data points enclosed by N1 are definitely closer
to p than q. We count N1.cnt (that denotes the count associated
with N1) towards minκ. Conversely, N2, N3 and N4 are partially
covered. With minmaxdist, we can assure each of N2 and N3 can
contribute at least 1 towards minκ of p because each of them has
at least one side completely inside cir(p, q). Finally, only a corner
(rather than a complete side) of N4 is covered and conservatively no
contribution from N4 to minκ is assumed. As a result, the minκ is
estimated as (1 + 3 + N1.cnt). Notice that we need to add 1 for q
to the minκ.

p p'

q

dist(p,q)

maxdist(p,N1)

minmaxdist(p,N2)

minmaxdist(p,N3)

dist(p,p’)

N1

N2
N3

N4

N5

cir(p,q)

(a) minκ(q, p,V)

N
p'

q

mindist(N,q)

maxdist(N,N1)

minExistDNNN (N)

maxdist(N,p’)

N1

N2
N3

N4

N5

minExistDNNN (N)
3

2

(b) minκ(q, N,V)

Fig. 9. Examples of minκ

Hence, based on a given V (i.e., the current state of explored data
space in terms of index nodes and data points), Equation (1) calculates
the minκ of a data point p and Lemma 2 states the condition where
the minκ can be finalized and converged to κ.

minκ(q, p, V) = 1 +
∑
v∈V

count(p, v) (1)

where count(p, v) =
⎧⎪⎪⎨
⎪⎪⎩

1 if v is a data point ∧ dist(p, v) ≤ dist(p, q);
v.cnt if v is an index node ∧maxdist(p, v) ≤ dist(p, q);
1 if v is an index node ∧

minmaxdist(p, v) ≤ dist(p, q) < maxdist(p, v);
0 otherwise.

Lemma 2: Given a data point p, a query point q, and a set of
index nodes and data points maintained in V , minκ(q, p, V) equals
κp if all touched index node N (∈ V) are fully covered by cir(p, q),
i.e., ∀N∈V |mindist(p,N)≤dist(p,q) maxdist(p, N) ≤ dist(p, q). �
Proof. As no index node is partially covered by cir(p, q), data points
and index nodes enclosed completely contribute their counts to the
minκ(q, p, V). Thus the minκ of p is finalized and equal to κp. �

Given an index node N , the minκ of N indicates the minimum
possible number of data points that must be closer to all the data
points inside N than q wherever they are located inside N . Compared
with that for a single data point, the calculation of minκ for an index
node is more complicated. Since the exact positions of data points
inside an index node are unknown but they are certainly bounded by
MBBs, we estimate minκ’s based on heuristics derived from MBB
distance metrics as discussed in Section II. There are three possible
cases that all the data points inside MBB can find another point closer
to them than q as stated in the following lemmas.

Lemma 3: A data point p′ is not farther to all data points inside
an index node N than q if maxdist(N, p′) ≤ mindist(N, q). �
Proof. Let p be a data point anywhere inside N . Since dist(p, p′)
≤ maxdist(N, p′) and mindist(N, q) ≤ dist(p, q), maxdist
(N, p′)≤mindist(N, q) guarantees dist(p, p′) ≤ dist(p, q). �

Lemma 4: An entire index node N ′ (i.e, all data points inside N ′)
is not farther to another index node N (i.e., any data point inside N)
than q if maxdist(N, N ′) ≤ mindist(N, q). �

Proof. Assume that p is a data point located inside N .
Due to the fact that dist(p, N ′) ≤ maxdist(N, N ′) and
mindist(N, q) ≤ dist(p, q), maxdist(N, N ′) ≤ mindist(N, q)
ensures dist (p, N ′) ≤ dist(p, q). �

Lemma 5: At least one data point in an index node N ′ is
not farther to all data points inside an index node N than q if
minExistDNNN′(N) ≤ mindist(N, q). �
Proof. Consider that a data point p is inside N , its NN point
p′ is in N ′ and their distance is dist(p, p′). Since dist(p, p′) ≤
minExistDNNN′(N), dist(p, p′) ≤ dist(p, q) is ensured,
according to the stated condition: minExistDNNN′(N) ≤
mindist(N, q) and mindist(N, q) ≤ dist(p, q). �

Based on Lemma 3, 4 and 5, Equation (2) can be obtained to
determine the minκ of an index node N (given a query point q and
a set of data points/index nodes V).

minκ(q, N, V) = 1 +
∑
v∈V

count(N, v) (2)

where count(N, v) =⎧⎪⎪⎨
⎪⎪⎩

1 if v is a data point ∧maxdist(N, v) ≤ mindist(N, q);
v.cnt if v is an index node ∧maxdist(N, v) ≤ mindist(N, q);
1 if v is an index node ∧

minExistDNNv(N) ≤ mindist(N, q) < maxdist(N, v);
0 otherwise.

Figure 9(b) depicts the minκ of an index node N . In the figure, the
data point p′ is closer to the entire N than q and hence contributes 1 to
N ’s minκ. N1, thanks for the smaller maxdist(N, N1) (< mindist
(N, q)), contributes N1.cnt to the minκ. Besides, both N2 and N3

certainly have at least one point each closer to any point inside N
than q, since minExistDNNN2(N) and minExistDNNN3(N)
are smaller than mindist(N, q). In brief, the corresponding minκ
is 1+3+N1.cnt. Further, we explore monotone properties of minκ
(defined in Lemma 6 and Lemma 7) that is useful to the κ-Browsing
algorithm.

Lemma 6: Given a set of data points/index nodes in V , and a
query point q, if Nc is a child (or descendent) of N , minκ(q, Nc, V)
≥ minκ(q, N, V). �
Proof. As Nc is a child (descendent) of N , mindist(Nc, q) ≥
mindist(N, q). Also, other upper distance metrics (i.e., maxdist
and minExistDNN) of Nc to another data point/index node could
be smaller (definitely not greater) than that of N . By Equation (1)
and (2), Nc will cover either a same set of data points/index nodes as
N does, or more data points/index nodes or larger portions of index
nodes than N . Hence, same or greater minκ is expected. �

Lemma 7: Given a query point, q, a set of data points/index nodes
in V , an index node N ′ in V is explored and replaced with its n
descendants N ′

1, · · ·N ′
n, resulting in V ′. For any data point p or index

nodes N , the following two statements should be true:

1) minκ(q, N, V ′) ≥ minκ(q, N, V), and
2) minκ(q, p, V ′) ≥ minκ(q, p, V) �

Proof. Without losing generality, we assume V ′ = V − {N ′} ∪
{∪n

i=1N
′
i}. Let δ denote the difference between minκ(q, N, V ′) and

minκ(q, N, V), i.e., δ =
∑n

i=1 count(N, N ′
i) − count(N, N ′).

There are four possible conditions that N may contribute to
minκ(q, N, V):

1) maxdist(N, N ′) ≤ mindist(N, q). The count(N, N ′) is
N.cnt. Since all N ′

i ⊂ N ′, all maxdist(N, N ′
i) must not be

greater than maxdist(N, N ′) and the total counts of all chil-
dren must be equal to N ′.cnt. Hence,

∑n
i=1 count(N, N ′

i) =
count(N, N ′) and δ = 0;

2) minExistDNNN′(N) ≤ mindist(N, q) < maxdist
(N, N ′). The count(N, N ′) is 1. Since there is no N ′

i such

8

that minExistDNNN′
i
(N) > minExistDNNN′(N). By

Equation (2), Ni can provide at least 1 to minκ as N does.
Hence, δ ≥ 0.

3) mindist(N, q) < minExistDNNN′(N). count(N, N ′) is
0. Because there would be N ′

i whose minExistDNNN′
i
(N)

is not greater than minExistDNNN′(N) and may be smaller
than mindist(N, q), so at least 1 is counted. Even more, some
Ni may have maxdist(N, N ′

i) < mindist(N, q), resulting in
the contribution of N ′

i .cnt to minκ. Hence, δ ≥ 0.
4) mindist(N, q) < mindist(N, N ′). In this case, N ′ and all its

children would not contribute to the minκ of N , thus δ = 0.
As a result, the difference δ is guaranteed to be nonnegative for all
possible conditions and hence minκ(q, N,V ′) ≥ minκ(q, N,V). A
similar proof can be conducted for a data point p. To save space, the
proof is omitted. �

C. κ-Browsing Algorithm for Monochromatic RRNN

The κ-Browsing algorithm for monochromatic RRNN considers
only one dataset, P . In the algorithm, a priority queue P is adopted
to keep unexamined data points/index nodes according to the non-
decreasing order of their minκ’s. In the case of a tie that two or
more data points/index nodes have same minκ’s, the one with the
smallest mindist is ordered first. Besides, a set V is maintained to
capture the current knowledge of the data point (∈ P) distribution
via a set of data points/index nodes, based on which the minκ of
each entry (∈ P) is estimated.

The algorithm always dequeues the head entry for examination
until t data points with the smallest κ’s are retrieved. For monochro-
matic RRNN, all the data points/index nodes in V (except p itself)
contribute to the minκ of point p. As a result, the minκ of a data
point p based on the set V is represented by minκ(q, p, V − {p}).
The minκ of an index node N based on the set V is represented by
minκ(q, N, V −{N})+sc(q, N) where sc(q, N) counts the number
of other data points p′ inside N that are closer to a point p than q,
with p′, p ∈ N and p �= p′. More specifically,

sc(q, N) =

{
N.cnt − 1 if diagdist(N) ≤ mindist(N, q)
0 otherwise.

where diagdist(N) is the diagonal distance of N .
Let us see how the κ-Browsing algorithm runs as exemplified in

Figure 10. Suppose an RRNN (with t = 1) is issued at a query point
q. Initially, the root of P , root, is enqueued into a priority queue
P with its associated minκ set to 1. A set V also takes {root}
as the starting content. The algorithm begins. It retrieves root from
P and explores its children N1 and N2. Then, set V is updated
to {N1, N2} accordingly. The explored N1 and N2 with associated
minκ’s (=1) are enqueued to P . Due to its smaller mindist, N1 is
dequeued and its children NB and NC are retrieved. Consequently, V
is updated to {N2, NB , NC}. Again, NB with updated minκ = 2
and NC with unchanged minκ = 1 are inserted back to P . N2

becomes the head as it has the smallest minκ and shortest mindist
to q. N2 is dequeued, followed by NC and then point c, with V and
corresponding minκ updated accordingly as shown in Figure 10.
When c is dequeued, its minκ equals 1 which is the smallest among
all the queued entries. Because there is no other data point inside
cir(c, q), the minκ of c is finalized (i.e., actually κc), according
to Lemma 2. Furthermore, based on Lemma 6 and Lemma 7, the
minκ’s associated with other entries might increase, but certainly
not decrease. Therefore, c is safely reported as the RRNN query
result to complete the search.

The minκ’s of entries in P might be changed whenever V is
updated, resulting in a high minκ update (processing) cost, especially

aq
b

d

c

N1

N2

NA

NC

ND(2)
diagdist(NB)

NB(2)

Eax. PP VQ
[(N1, 1), (N2, 1)] {N1, N2}

N1 [(N2, 1), (NC , 1), (NB , 2)] {N2, NB , NC}
N2 [(NC , 1), (NA, 2), (NB , 2), (ND, 2)] {NA, NB , NC , ND}
NC [(c, 1), (NA, 2), (NB , 2), (ND, 2), (d, 4)] {c, d, NA, NB , ND}
c Take c as RRNN query result.

Fig. 10. Example of κ-Browsing for Monochromatic RRNN

when the priority queue is long, the number of entries maintained in
the view is large, and/or view update rate is high. In order to reduce
the update cost for all queued entries and to maintain the efficiency of
the κ-Browsing algorithm, we propose an on-demand minκ update
scheme. This scheme is motivated by an observation that many entries
in the queue will not be examined in detail. It tries to defer the minκ
update of the queued entry until it is needed. In support of the κ-
Browsing algorithm, the head entry of the priority queue must have
the smallest minκ. Therefore, when an entry is dequeued, its minκ
is updated based on the current V content and compared against that
of the second entry whose minκ is the smallest among the rest entries
in the queue. According to Lemma 6 and 7, the updated V does not
reduce minκ’s of the queued entries. As a result, the first entry with
updated minκ smaller than the second entry is guaranteed to have
the smallest minκ and hence it can be dispatched safely. Otherwise,
the head entry with the new minκ is pushed back to the queue, and
the new head is examined. This may iterate until a head entry with the
smallest updated minκ is found. The function DequeueWithUpdate
that makes use of basic queue operations is defined in Figure 11.

Function DequeueWithUpdate(P , q, V)
Input: a priority queue (P), a query point (q),

a collection of index nodes and data points (V);
Output: a queue entry in form of (ε, k) with the smallest k;
Begin
1. while(true)
2. (ε, k)← dequeue(P);
3. if (ε is a data point) then k ← minκ(q, ε, V − {ε}) ;
4. else k ← minκ(q, ε, V − {ε}) + sc(q, N);
5. (ε′, k′)← head(P); /* get the head entry of P */
6. if (k ≤ k′) return (ε, k);
7. enqueue (ε, k) to P ;
End.

Fig. 11. Function DequeueWithUpdate

Beside the update of minκ’s, index traversal is another important
issue. When a data point p is explored, its minκ cannot be finalized
unless all touched MBBs are fully covered by cir(p, q). In this case,
partially covered MBBs need to be explored. Exploring all of those
partially covered MBBs at the time p is explored is certainly not a
good strategy, especially if p is not the answer data point. Instead,
we select one of those partially covered MBBs to explore at a time.
If p is an answer data point, all those MBBs are eventually explored
any way. On the other hand, if p is not the answer, exploring all
the partially covered nodes only causes extra I/O costs. Here, our
selection strategy explores the index node with the largest overlap
with cir(p, q). This index node has a higher potential to contribute
more data points to minκ, thus narrowing the difference between
minκ and actual κ. After a node is explored, V is updated and p is
re-inserted into P with updated minκ for next examination.

We depict the pseudo code of the κ-Browsing algorithm for the

9

monochromatic RRNN in Figure 12. It takes a query point, q, the
root node, root, of the aR-tree of a dataset P , and the number of
requested answer data points, t, as the inputs. It first initializes V with
root and the priority queue P with root associated with initial minκ
(lines 1-2). Then, it explores the head entry which has the smallest
minκ until t answer data points are reported (lines 3-20). If the entry
is an index node, the corresponding entry in V is first replaced by
all its children nodes and then the children are inserted into P (lines
6-9). Otherwise, a point p is explored. Among all MBBs are partially
covered by cir(p, q) if any, the one with the largest overlap area is
selected to explore (lines 12-17). Or, the minκ is finalized to κ and
guaranteed to be the smallest. Finally, the data point is output as one
answer point (line 19).

Algorithm κ-Browsing(q,root,p)
Input: a query point (q), the root of P (root)

the no. of requested result points (p)
Local: a priority queue (P), a set of index nodes (V)
Output: t RRNN answer data points;
Begin
1. V ← {root};
2. enqueue (root, minκ(q, root, V)) to P ;
3. while (P is not empty AND t > 0) do
4. (ε, minκ)← DequeueWithUpdate(P, q, V);
5. if (ε is an index node) then
6. suppose ε has n children Ni (i ∈ [1, n]);
7. V ← V − {ε} ∪ (∪n

i=1{Ni});
8. foreach Ni (1 ≤ i ≤ n) do
9. enqueue (Ni, minκ(q, Ni, V)) to P ;

10. else /* ε is a point */

11. if ∃N partially covered by cir(ε, q), then
12. suppose N has n children Ni (i ∈ [1, n]);
13. V ← V − {N} ∪ (∪n

i=1{Ni});
14. remove N from P ;
15. foreach Ni ⊂ N (1 ≤ i ≤ n) do
16. enqueue (Ni, minκ(q, Ni, V)) to P ;
17. enqueue (ε, minκ(q, ε, V)) to P ;
18. else /* there is no partially covered node */
19. output (ε, minκ);
20. t← t− 1;
End.

Fig. 12. κ-Browsing for Monochromatic RRNN

D. κ-Browsing Algorithm for Bichromatic RRNN

The logic of the κ-Browsing algorithm for bichromatic RRNN
scenario is similar to that for monochromatic RRNN scenario. We
omitted the pseudo-code for this algorithm to save space. In a high-
level description, it uses a priority queue PP to keep track of data
points/index nodes in the non-decreasing order of minκ’s and a set
VQ to preserve the knowledge regarding another set of data points,
Q, to support determination of minκ.

Though two datasets are involved and they interact with each other
in the estimation of minκ, the algorithm still examines the head entry
ε of the priority queue PP in every round. An expansion of VQ is
triggered upon examination of ε. If ε is a data point, index nodes
maintained in VQ that are partially covered by cir(ε, q) need to be
explored. As explained previously, instead of exploring all of them
at a time, our node exploring strategy explores the one with largest
overlap with cir(ε, q). Thereafter, VQ is updated and the entry ε is
put back to PP for later examination. If there is no index node in VQ
that is partially covered by the vicinity circle, the minκ of ε actually
equals κ. Consequently, ε is returned as one of the final results since
it has the smallest finalized minκ value.

On the other hand, if ε is an index node NP , some index nodes NQ
in VQ may contribute to its minκ. A question raised is which index
node (NP or NQ) is good to explore next. Recall that in Equation (2),
if maxdist(NP , N ′

Q) ≤ mindist(NP , q), node N ′
Q is contributing

all its N ′
Q.cnt points to minκ. Otherwise, N ′

Q is considered to con-
tribute at most 1 to minκ, which causes minκ underestimated a lot

even if a large portion of NQ is closer to NP than q. To decide which
node (NQ or NP) to explore, we compare minExistDNNNQ(NP)
and mindist(NP , q). If minExistDNNNQ(NP) is greater than
mindist(NP , q), NP is explored. Otherwise, NQ is explored since
NQ would have a few data points closer to NP than q. If multiple
partially covered nodes are involved, we select one with the largest
minExistDNN to compare with NP .

The detailed search algorithm is illustrated through a running
example in Figure 13. For simplicity, the details of some nodes
are omitted. Suppose that a bichromatic RRNN query with t = 1
is issued at a query point q, and two datasets, namely P and Q,
are considered, with the answer point from P . In the first place,
PP contains [(NP , 1)] and VQ contains {NQ, N ′

Q}. By dequeuing
PP , NP is being examined. It is replaced by its two children NP1

and NP2. Since NP2 has minExistDNNN′
Q(NP1) smaller than

mindist(NP1, q), there must be at least one data point in N ′
Q closer

to any point in NP1 than q. Therefore, its minκ is 2. Now in PP ,
NP2 is the head entry and its minκ is 1. Exploring NP2 obtains
p3 and p4. Again, since p3’s minmaxdist(p3, NQ) is smaller than
mindist(p3, q), p3’s minκ is 2. p4’s minκ retains 1 as cir(p4, q)
covers a small portion of NQ. They both are pushed back to PP .
Next, p4 whose minκ is the smallest is retrieved. As NQ is the
only node covered by p4, NQ is explored into NQ1 and NQ2, which
in turn are placed back to VQ. Again, p4 with smallest minκ is
dequeued and now no node is partially covered by cir(p4, q). p4’s
minκ is finalized and it is the final result.

q

p1

p2

p4 N

N 1
N 2

N 1

N 2

N

N ’

p3

minExistDNN (N)
Q 1N’

mindist(N ,q)
1

Eax. PO VS
[(NP , 1)] {NQ, N ′

Q}
NP [(NP2, 1), (NP1, 2)] ditto
NP2 [(p4, 1), (NP1, 2), (p3, 2)] ditto
p4 [(p4, 1), (NP1, 2), (p3, 2)] {NQ1, NQ2, N ′

Q}

Fig. 13. Example of κ-Browsing for Bichromatic RRNN

E. Discussion

The κ-Browsing algorithm can efficiently process RRNN query
because the use of minκ helps to guide the algorithm to explore
the index nodes that are more likely to contain answer data points.
In addition, it is expected to perform better than the κ-Counting
algorithm in terms of result delivery progressiveness. Consider Fig-
ure 8. Suppose t is greater than one, the κ-Browsing algorithm
first identifies p′ and outputs it and then looks for the second most
influenced point p. However, κ-Counting has to visit p and other
nearest points prior to reaching p′. Until p′ is found, both p and p′

are returned.
On the other hand, the efficiency of the κ-Browsing algorithm

relative to the κ-Counting algorithm would degrade if data points
are uniformly distributed and/or in high data dimensionality. When
data point distribution is uniform, minκ of p (or N) will be closely
proportional to mindist(p, q) or (mindist(p, N)). As a result, the
access order based on minκ’s makes no significant difference from
that based on mindist as adopted by the κ-Counting algorithm. Even
worse, additional minκ calculation at every index level consumes

10

considerable processing overhead. Besides, for high data dimension-
ality, minκ based on MBB distance metric heuristics may provide
overly conservative estimation. As a result, many index nodes with
more or less the same minκ are eventually accessed. We study all
those factors in our experiments.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed RRNN search algorithms,
namely, the κ-Counting and κ-Browsing algorithms in comparison
with the κ-Probing algorithm and the filter-and-rank (FR) described in
Section I. We measure the performance of all the algorithms based on
two commonly used metrics, I/O cost and elapsed time, with respect
to three factors, namely, the number of requested answer data points
(t), the dataset cardinality (n) and the data dimensionality (d). The
I/O cost (in unit of number of pages accessed) is measured as the
number of index nodes accessed from the disk. The elapsed time is
measured as the time duration (in unit of seconds) from the query
initiation to query completion that all answer data points are collected.
In our experiments, we also estimate the optimal performance by
traversing indices only for answer data points (obtained by the other
evaluated algorithms) and their NNs.

We employ synthetic and real datasets in this evaluation as sum-
marized in Table I. The data spaces for all datasets are normalized to
[0, 1)d. Synthetic datasets are generated following uniform (labeled as
Uniform) and Gaussian distributions (labeled as Skewed). The mean
and standard deviation of Gaussian distribution are fixed at 0.5 and
0.2, respectively. The dataset cardinality is varied from 10k, 50k,
100k, 500k, 1000k, 5000k and 10,000k (i.e., 10 million) and it is
defaulted at 100k; and the dataset dimensionality is ranged from 2 to
8 and defaulted at 3. Real datasets include Church, School, Wave3A,
Wave3B, Wave4A and Wave4B. Church and School are the 2D
geographical coordinates of churches and schools in United States,
respectively, obtained from the US Census Bureau3; Wave3A and
Wave3B (Wave4A and Wave4B) are 3 (4) wave directions sampled
hourly obtained from National Data Buoy Center4.

Dataset cardinality (n) dimensionality (d)

Uniform/Skewed 10k through 10, 000k, 2 through 8
Church 109k 2
School 46k 2
Wave3A/Wave3B 60k 3
Wave4A/Wave4B 60k 4

TABLE I
DATASET SETTINGS

We build R*-tree [2] to support the κ-Counting algorithm, the
FR and the κ-Probing algorithm, and aR-tree [10] to support the
κ-Browsing algorithm. For the κ-Probing algorithm, we increase k
by a factor of 2 in each round. When more than t answer data
points are found, we gradually decrease k until t answer data points
are collected. Also, we implement TPL [17], the currently known
efficient RkNN algorithm as its underlying RkNN algorithm. For
FR, KNN is selected as initial RRNN candidates. To decide K
that has to be large enough to prevent a false miss, we, based
on [17], adopt 10 × d × MAXκ where d is data dimensionality
and MAXκ is the largest κ among all answer data points obtained
from other algorithms for the same experiment settings. Besides, we
adopt an aggregated count query [18] to determine the number of
points inside individual circular ranges, that counts enclosed data
points for multiple candidates’ circular ranges in one index scan. In
our experiments, the size of a page (i.e., an index node) is fixed at

3http://www.census.gov/geo/www/tiger.
4http://www.ndbc.noaa.gov/historical data.shtml.

4KB. We implement an index cache of 50 pages that uses LRU as the
cache replacement policy. This cache alleviates some I/O costs for
the κ-Probing algorithm and FR that access indices multiple times.
Every run starts with a cold cache. Since both the κ-Counting and
κ-Browsing algorithms need one index lookup, they are not impacted
by the cache size at all.

We implemented all these algorithms with GNU C++ and conduct
all experiments on Linux 2.6.9 on Intel Xeon 3.2GHz computers with
4GB RAM. Each experiment result to be presented is the average of
100 runs on query points uniformly distributed in the data space.
In what follows, we present the experiment settings, results and our
findings for monochromatic and bichromatic RRNN scenarios.

A. Experiments for Monochromatic RRNN

Our first experiment set focuses on monochromatic RRNN sce-
narios where answer data points and their NNs are from one dataset.
First, we evaluate the algorithms with synthetic datasets under various
number of requested answer points (t), dataset cardinality (n) and
dataset dimensionality (d). Next, we evaluate their practicality using
the real datasets.
Evaluation of the number of answer data points (t). We first
evaluate all the algorithms by varying the number of requested
answer points, t (ranged from 1 to 64). The data cardinality (n) and
dimensionality (d) of datasets are fixed at 100k and 3, respectively.
The results are plotted in Figure 14 and Figure 15. We observe from
the figures that both the I/O cost and elapsed time (in log scale) for
all the algorithms increase with t. This is because of the expanded
search range in the data space.

0

100

200

300

400

1 2 4 8 16 32 64

k-Probing

FR

k-Counting

k-Browsing

Optimal

I/O Cost (Uniform, d=3, n=100k)

t (number of RRNN answer data points)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

)

(a) Uniform dataset

0

100

200

300

400

1 2 4 8 16 32 64

k-Probing

FR

k-Counting

k-Browsing

Optimal

I/O Cost (Skewed, d=3, n=100k)

t (number of RRNN answer data points)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

)

(b) Skewed dataset

Fig. 14. The evaluation of the no. of answer data points (t) on I/O cost

0.0001

0.001

0.01

0.1

1

10

100

1 2 4 8 16 32 64

k-Probing FR

k-Counting k-Browsing

Optimal

Elapsed time (Uniform, d=3, n=100k)

t (number of RRNN answer data points)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

(a) Uniform dataset

0.0001

0.001

0.01

0.1

1

10

100

1 2 4 8 16 32 64

k-Probing FR

k-Counting k-Browsing

Optimal

Elapsed time (Skewed, d=3, n=100k)

t (number of RRNN answer data points)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

(b) Skewed dataset

Fig. 15. The evaluation of the no. of answer data points (t) on elapsed time

Among all the evaluated algorithms, both the κ-Counting and κ-
Browsing algorithms are observed to be more efficient than FR and κ-
Probing algorithms in terms of the I/O cost and the elapsed time. They
access fewer pages to retrieve candidates and finalize their κ’s with
one index lookup. They terminate as soon as t RRNN answer points
are determined. However, the FR would access some index nodes
twice for candidates and their NNs, and it terminates only when all
index nodes covered by the circular ranges of all candidate points are
visited. This makes the FR consume a longer elapsed time and access
more pages than the κ-Counting and κ-Browsing algorithms. These
observations are consistent for both Uniform and Skewed datasets.
We can also see that the I/O cost of the κ-Browsing algorithm
performs the closest to the optimal one because minκ estimation

11

provides an near optimal access order of candidates. However, it
takes slightly longer time than the κ-Counting algorithm for both
Uniform and Skewed datasets due to expensive minκ computation.
In contrast, the κ-Probing algorithm is the incomparably worst among
all the algorithms for both metrics due to repeated invocations of
underlying RkNN algorithms. We omit it to save space in the rest of
the following discussion.
Evaluation of the dataset cardinality (n). The second part of
this experiment evaluates the performance under different dataset
cardinalities (from 10k up to 10, 000k), while d and t are fixed at
3 and 8, respectively. As the size of the data space is fixed, the
change of dataset cardinality affects the density of data points (i.e,
the number of data points in an unit volume), which in turn impacts
on the expected κ’s of data points. Thus, the κ-Counting and κ-
Browsing algorithms have to examine more data points/index nodes
before they can finalize the κ’s of answer points. In the mean time,
the FR includes a larger pool of candidates.

0

100

200

300

400

500

600

10k 50k 100k 500k 1000k 5000k 10000k

FR

k-Counting

k-Browsing

Optimal

I/O Cost (Uniform, t=8, d=3)

n (data cardinality)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

)

(a) Uniform dataset

0

100

200

300

400

500

600

10k 50k 100k 500k 1000k 5000k 10000k

FR

k-Counting

k-Browsing

Optimal

n (data cardinality)

I/O Cost (Skewed, t=8, d=3)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

)

(b) Skewed dataset

Fig. 16. The evaluation of data cardinality (n) on I/O cost

0.001

0.01

0.1

1

10

10k 50k 100k 500k 1000k 5000k 10000k

FR

k-Counting

k-Browsing

Optimal

n (data cardinality)

Elapsed time (Uniform, t=8, d=3)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

(a) Uniform dataset

0.001

0.01

0.1

1

10

10k 50k 100k 500k 1000k 5000k 10000k

FR

k-Counting

k-Browsing

n (data cardinality)

Elapsed time (Skewed, t=8, d=3)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

(b) Skewed dataset

Fig. 17. The evaluation of data cardinality (n) on elapsed time

The results, depicted in Figure 16 and Figure 17, show that the
I/O cost and elapsed time grow as the dataset sizes increase. For
Skewed distribution, the improvement of the κ-Counting and κ-
Browsing algorithms over the FR in terms of both I/O cost and
elapsed time is more significant than that for Uniform distribution. It
is because in Uniform datasets, an increase of the dataset cardinality
affects the density of data points, thus increasing the κ’s of data
points. Consequently, the κ-Counting and κ-Browsing algorithms
explore larger search spaces to find RRNN candidates and finalize
κ’s of RRNN candidates. On the other hand, the increased dataset
cardinality in the Skewed datasets has a smaller impact on the density
of data points around query points if they are far away from the
cluster of data points. In larger datasets, the extents of index nodes
are usually smaller than that in smaller datasets. As a result, the κ-
Browsing algorithm can considerably save I/O costs by exploiting the
counts associated with aRtree index nodes, rather than exploring all
those index nodes.
Evaluation of the dataset dimensionality (d). The third part exam-
ines the sensitivity of the algorithms to dataset dimensionality. In this
experiment, we fix n and t at 100k and 8, respectively. An increase
of dimensionality expands the data space volume. While the dataset
size is unchanged, the density of data points is reduced, according
to our previous argument. However, as the dimensionality grows, the
underlying R-tree/aR-tree becomes less efficient (this phenomenon is
known as the curse of dimensionality) and it would result in more

false hits that index nodes appear closer to a query point but not their
enclosed data points. The performances, in terms of I/O cost and
elapse time, are depicted in Figure 18 and Figure 19, respectively.

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8

FR

k-Counting

k-Browsing

Optimal

I/O Cost (Uniform, t=8, n=100k)

d (data dimensionality)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

)

(a) Uniform dataset

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8

FR

k-Counting

k-Browsing

Optimal

I/O Cost (Skewed, t=8, n=100k)

d (data dimensionality)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

)

(b) Skewed dataset

Fig. 18. The evaluation of data dimensionality (d) on I/O cost

0.01

0.1

1

10

2 3 4 5 6 7 8

FR

k-Counting

k-Browsing

Optimal

Elapsed time (Uniform, t=8, n=100k)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

d (data dimensionality)

(a) Uniform dataset

0.01

0.1

1

10

2 3 4 5 6 7 8

FR

k-Counting

k-Browsing

Optimal

Elapsed time (Skewed, t=8, n=100k)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

d (data dimensionality)

(b) Skewed dataset

Fig. 19. The evaluation of data dimensionality (d) on elapsed time
Evaluation on real datasets. Next, we examine the practicality of
our algorithms by using real datasets that include Church, School,
Wave3A, Wave3B, Wave4A and Wave4B datasets with t varied from
1 to 64. Figure 20 and Figure 21 show that both the κ-Counting
and κ-Browsing algorithms achieve desirably good performance, and
both are consistently better than the FR. The κ-Browsing algorithm is
again the most I/O efficient but its elapsed time is slightly longer than
that of the κ-Counting algorithm. These observations are consistent
to what we obtained from synthetic datasets.

B. Experiments for Bichromatic RRNN

The second experiment set evaluates the performance of our
algorithms for bichromatic RRNN query where answer data points
are retrieved from a dataset, P , while their NNs are obtained in
another dataset, Q. Our evaluation studies the performance of the
algorithms over synthetic datasets, followed by real datasets. In this
experiment, the κ-Probing algorithm is omitted since it works on
TPL that is only applicable for monochromatic RkNN. The FR, as a
baseline algorithm, is included for comparison in this evaluation. It
first retrieves a number of candidates from P , independent of Q, and
then performs aggregated counting queries upon Q. We also measure
the optimal performance by traversing an index of P for answer data
points obtained by other algorithms and traversing another index of
Q for answer data points’ NN points.

For synthetic datasets, two Uniform datasets (and two Skewed
datasets) are used. One is used as P and the other as Q. They are
generated independently. We study the performance of the algorithms
against the number of answer data points (t), dataset cardinality (n)
and dataset dimensionality (d).
Evaluation of number of answer data points (t). Figure 22 and
Figure 23 show the results obtained from synthetic datasets with
various t while the cardinality and dimensionality are fixed at 100k
and 3, respectively. The κ-Counting and κ-Browsing algorithms con-
siderably outperform the FR, mainly because they carefully examine
the two queried datasets in a synchronized fashion so that they can
effectively retrieve answer data points and can terminate earlier.
However, the FR filters candidates from P independently of Q,
resulting in redundant index node accesses.

12

0

100

200

300

400

500

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

I/O Cost (Church)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
)

t (number of RRNN answer data points)

(a) Church (2D)

0

50

100

150

200

250

1 2 4 8 16 32 64

FR
k-Counting
k-Browsing
Optimal

I/O Cost (Wave3A)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
)

t (number of RRNN answer data points)

(b) Wave3A (3D)

0

200

400

600

800

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

I/O Cost (Wave4A)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
)

t (number of RRNN answer data points)

(c) Wave4A (4D)

0

100

200

300

400

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

I/O Cost (School)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
)

t (number of RRNN answer data points)

(d) School (2D)

0

50

100

150

200

250

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

I/O Cost (Wave3B)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
)

t (number of RRNN answer data points)

(e) Wave3B (3D)

0

200

400

600

800

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

I/O cost (Wave4B)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
)

t (number of RRNN answer data points)

(f) Wave4B (4D)

Fig. 20. The evaluation of real datasets on I/O cost

0.01

0.1

1

10

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

Elapsed time (Church)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)

t (number of RRNN answer data points)

(a) Church (2D)

0.001

0.01

0.1

1

10

1 2 4 8 16 32 64

FR
k-Counting
k-Browsing
Optimal

Elapsed time (Wave3A)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)

t (number of RRNN answer data points)

(b) Wave3A (3D)

0.01

0.1

1

10

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

Elapsed time (Wave4A)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)
t (number of RRNN answer data points)

(c) Wave4A (4D)

0.01

0.1

1

10

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

Elapsed time (School)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)

t (number of RRNN answer data points)

(d) School (2D)

0.01

0.1

1

10

1 2 4 8 16 32 64

FR
k-Counting
k-Browsing
Optimal

Elapsed time (Wave3B)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)

t (number of RRNN answer data points)

(e) Wave3B (3D)

0.1

1

10

100

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

t (number of RRNN answer data points)

Elapsed time (Wave4B)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)

(f) Wave4B (4D)

Fig. 21. The evaluation of real datasets on elapsed time

0

50

100

150

200

250
Q (uniform)

P (uniform)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

) I/O Cost (Uniform, d=3, n=100k)

FR
k-Counting

k-Browsing
Optimal

1 2 4 8 16 32 64

t (number of RRNN answer data points)

(a) Uniform datasets

0

100

200

300

400
Q (skewed)

P (skewed)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

) I/O Cost (Skewed, d=3, n=100k)

FR
k-Counting

k-Browsing
Optimal

1 2 4 8 16 32 64

t (number of RRNN answer data points)

(b) Skewed datasets

Fig. 22. The evaluation of the no. of answer data points (t) on I/O cost

As shown in the figure, the κ-Browsing algorithm performs consid-
erably better than the κ-Counting algorithm in terms of I/O costs due
to two reasons. First, aRtree provides counts associated with index
nodes to facilitate the κ-Browsing algorithm to estimate minκ’s
instead of direct object counting. The exploring of certain index nodes
in Q can be saved for determining the κ’s of answer data points,
which alleviates some I/O costs. Second, the κ-Browsing algorithm
selectively explores index nodes of Q when they are partially covered
by a candidate data point with the smallest minκ. However, the κ-
Counting algorithm has to completely expand the search space around
answer data points.

0.0001

0.001

0.01

0.1

1

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

Elapsed time (Uniform, d=3, n=100k)

t (number of RRNN answer data points)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

(a) Uniform datasets

0.01

0.1

1

10

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

Elapsed time (Skewed, d=3, n=100k)

t (number of RRNN answer data points)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

(b) Skewed datasets

Fig. 23. The evaluation of the no. of answer data points (t) on elapsed time

Evaluation of dataset cardinality (n) and dimensionality (d). The
second experiment set examines the impact of data cardinality (n).
We vary the data size from 10k up to 10,000k while keeping the
data dimensionality (d) and the number of anser data points (t)
fixed at 3 and 8, respectively. The results are plotted in Figure 24
and Figure 25. The third experiment investigates the effect of data
dimensionality by varying dimensionality from 2 to 8 and fixing t
and n at 8 and 100k, respectively. Figure 26 and Figure 27 show the
experiment results. In all these experiments, the FR is the weakest
candidate among all the evaluated algorithms; while the κ-Browsing
algorithm outperforms the κ-Counting algorithm in terms of I/O costs
but reverse in terms of elapsed time due to the reasons explained

13

previously in monochromatic RRNN scenarios.

0

20

40

60

80

100

120

140
Q(uniform)

P (uniform)

10k 50k 100k 500k 1000k 5000k 10000k

n (data cardinality)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

) I/O Cost (Uniform, t=8, d=3)

FR k-Counting
k-Browsing

Optimal

(a) Uniform dataset

0

100

200

300

400

500

600
Q(uniform)

P (uniform)

n (data cardinality)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

) I/O Cost (Skewed, t=8, d=3)

10k 50k 100k 500k 1000k 5000k 10000k

FR
k-Counting

k-Browsing
Optimal

(b) Skewed dataset

Fig. 24. The evaluation of data cardinality (n) on I/O cost

0.001

0.01

0.1

1

10

10k 50k 100k 500k 1000k 5000k 10000k

FR

k-Counting

k-Browsing

Optimal

n (data cardinality)

Elapsed time (Uniform, t=8, d=3)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

(a) Uniform dataset

0.001

0.01

0.1

1

10

10k 50k 100k 500k 1000k 5000k 10000k

FR

k-Counting

k-Browsing

Optimal

Elapsed time (Skewed, t=8, d=3)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

n (data cardinality)

(b) Skewed dataset

Fig. 25. The evaluation of data cardinality (n) on elapsed time

0

200

400

600

800

1000

1200

1400
Q(uniform)

P (uniform)

2 3 4 5 6 7 8

FR
k-Counting

k-Browsing
Optimal

I/O Cost (Uniform, t=8, n=100k)

d (data dimensionality)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

)

(a) Uniform datasets

0

200

400

600

800

1000

1200

1400
Q(skewed)

P (skewed)

FR
k-Counting

k-Browsing
Optimal

I/O Cost (Skewed, t=8, n=100k)

d (data dimensionality)

I/
O

 c
o

st
(n

u
m

b
e

r
o

f
p

a
g

e
s

a
cc

e
ss

e
d

)

2 3 4 5 6 7 8

(b) Skewed datasets

Fig. 26. The evaluation of data dimensionality (d) on I/O cost

0.001

0.01

0.1

1

10

2 3 4 5 6 7 8

FR

k-Counting

k-Browsing

Optimal

Elapsed time (Uniform, t=8, n=100k)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

d (data dimensionality)

(a) Uniform datasets

0.01

0.1

1

10

2 3 4 5 6 7 8

FR

k-Counting

k-Browsing

Optimal

Elapsed time (Skewed, t=8, n=100k)

E
la

p
se

d
 t

im
e

(s
e

co
n

d
s,

 l
o

g
-s

ca
le

)

d (data dimensionality)

(b) Skewed datasets

Fig. 27. The evaluation of data dimensionality (d) on elapsed time

Evaluation on real datasets. At last, we evaluate the performance
of algorithms over real datasets. Here we evaluate a pair of datasets
for each setting. For instance, for 2D dataset, we use School as P
and Church as Q for one setting and reverse for another. Similarly,
we evaluate Wave3A and Wave3B for 3D cases and Wave4A and
Wave4B for 4D cases. The results with varied t (from 1 to 64) are
shown in Figure 28 and Figure 29. For all the evaluation cases, the
κ-Browsing algorithm performs best consistently.

As concluded from this evaluation, the κ-Browsing algorithm is
the best algorithm for both monochromatic and bichromatic RRNN
search for all evaluated settings. Despite the κ-Counting algorithm is
generally not better than κ-Browsing, it performs substantially better
than the other straightforward approaches, namely the FR and the
κ-Probing algorithms. As R-tree/aRtree performance deteriorates as
dataset dimensionality increases, all the algorithms developed on it
also deteriorates. We shall study alternative indices and algorithms
for RRNN query for high dimensional datasets as our future work.

0

50

100

150

200

250

300

350
Q (School)

P (Church)

1 2 4 8 16 32 64

FR

k-Counting
k-Browsing

Optimal

t (number of RRNN answer data points)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
) I/O cost (Church and School)

(a) Church (P), School (Q)

0

100

200

300

400

500
Q (Church)

P (School)

1 2 4 8 16 32 64

t (number of RRNN answer data points)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
) I/O cost (School and Church)

FR

k-Counting
k-Browsing

Optimal

(b) School (P), Church (Q)

0

50

100

150

200

250
Q (Wave3B)

P (Wave3A)

t (number of RRNN answer data points)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
) I/O cost (Wave3A and Wave3B)

1 2 4 8 16 32 64

FR

k-Counting
k-Browsing

Optimal

(c) Wave3A (P), Wave3B (Q)

0

50

100

150

200

250
Q (Wave3A)

P (Wave3B)

t (number of RRNN answer data points)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
) I/O cost (Wave3B and Wave3A)

1 2 4 8 16 32 64

FR

k-Counting
k-Browsing

Optimal

(d) Wave3B (P), Wave3A (Q)

0

50

100

150

200

250

300
P(Wave4B)

P(Wave4A)

t (number of RRNN answer data points)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
) I/O cost (Wave4A and Wave4B)

1 2 4 8 16 32 64

FR

k-Counting
k-Browsing

Optimal

(e) Wave4A (P), Wave4B (Q)

0

50

100

150

200

250
Q (Wave4A)

P (Wave4B)

t (number of RRNN answer data points)

I/
O

 c
o

st
 (

n
u

m
b

e
r

o
f

p
a

g
e

s
a

cc
e

ss
e

d
) I/O cost (Wave4B and Wave4A)

1 2 4 8 16 32 64

FR

k-Counting
k-Browsing

Optimal

(f) Wave4B (P), Wave4A (Q)

Fig. 28. The evaluation of real datasets on I/O cost

VI. CONCLUSION

Reverse Nearest Neighbor (RNN) and its direct variant Reverse k
Nearest Neighbor (RkNN) have received considerable interests from
the database research community in the past few years. In this paper,
we examine some unexplored aspects of RNN/RkNN and make the
following major contributions:

• We present a new RNN variant, namely, Ranked Reverse Nearest
Neighbor (RRNN), that complements the conventional RNN
query. RRNN distinguishes itself from the existing RNN/RkNN
by: 1) discovering the influence of a query point to a specified
number of data points; 2) rendering a ranked answer set based
on the degrees of influence; and 3) returning the corresponding
degrees of influence along with answer data points.

• We propose two innovative algorithms, κ-Counting and κ-
Browsing, for efficient RRNN query processing. The κ-Counting
algorithm processes data points in the order of their distances to
the query point, and the κ-Browsing algorithm processes data
points/index nodes based on their estimated degrees of influ-
ence. Both algorithms support multidimensional datasets, require
single index lookup, provide progressive result delivery, and
answer both monochromatic and bichromatic RRNN variants.
In addition, with minor modification, our proposed algorithms
can support RkNN with all above merits that none of existing
proposal can achieve.

• Through extensive experiments on various synthetic and real
datasets, the κ-Browsing and κ-Counting algorithms are shown
to significantly outperform FR (the baseline approach) and the
k-Probing algorithm (based on conventional RNN) in terms of
I/O costs and elapsed time. Overall, the κ-Browsing is the best
choice for processing RRNN query. Its I/O cost is the closest to
the optimal among all the evaluated algorithms.

14

0

1

10

100

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

t (number of RRNN answer data points)

Elapsed time (Church and School)
E

la
p

se
d

 t
im

e
 (

se
co

n
d

s,
 l

o
g

-s
ca

le
)

(a) Church (P), School (Q)

0

1

10

100

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

t (number of RRNN answer data points)

Elapsed time (School and Church)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)

(b) School (P), Church (Q)

0.01

0.1

1

10

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

t (number of RRNN answer data points)

Elapsed time (Wave3A and Wave3B)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)

(c) Wave3A (P), Wave3B (Q)

0.01

0.1

1

10

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

t (number of RRNN answer data points)

Elapsed time (Wave3B and Wave3A)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)

(d) Wave3B (P), Wave3A (Q)

0

1

10

100

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

t (number of RRNN answer data points)

Elapsed time (Wave4A and Wave4B)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)

(e) Wave4A (P), Wave4B (Q)

0

1

10

100

1 2 4 8 16 32 64

FR

k-Counting

k-Browsing

Optimal

t (number of RRNN answer data points)

Elapsed time (Wave4B and Wave4A)

E
la

p
se

d
 t

im
e

 (
se

co
n

d
s,

 l
o

g
-s

ca
le

)

(f) Wave4B (P), Wave4A (Q)

Fig. 29. The evaluation of real datasets on elapsed time

ACKNOWLEDGEMENT

Wang-Chien Lee and Ken C. K. Lee were supported in part by
the National Science Foundation under Grant no. IIS-0328881, IIS-
0534343 and CNS-0626709.

REFERENCES

[1] Elke Achtert, Christian Böhm, Peer Kröger, Peter Kunath, Alexey
Pryakhin, and Matthias Renz. Efficient Reverse k-Nearest Neighbor
Search in Arbitrary Metric Spaces. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, Chicago,
IL, USA, Jun 26-29, pages 515–526, 2006.

[2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-Tree: An Efficient and Robust Access Method for Points
and Rectangles. In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, Atlantic City, NJ, USA, May 23-25,
pages 322–331, 1990.

[3] Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas, and Simonas
Saltenis. Nearest Neighbor and Reverse Nearest Neighbor Queries for
Moving Objects. In Proceedings of International Database Engineering
& Applications Symposium, (IDEAS), Edmonton, Canada, Jul 17-19,
pages 44–53, 2002.

[4] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael
Vassilakopoulos. Closest Pair Queries in Spatial Databases. In
Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, Dallas, TX, USA, May 16-18, pages 189–200,
2000.

[5] Hakan Ferhatosmanoglu, Ioana Stanoi, Divyakant Agrawal, and Amr El
Abbadi. Constrained Nearest Neighbor Queries. In Proceedings of
the 7th International Symposium of Advances in Spatial and Temporal
Databases (SSTD), Redondo Beach, CA, USA, Jul 12-15, pages 257–278,
2001.

[6] Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, Boston, MA, USA, Jun 18-21, pages
47–57, 1984.

[7] Gı́sli R. Hjaltason and Hanan Samet. Distance Browsing in Spatial
Databases. ACM Transactions on Database System (TODS), 24(2):265–
318, 1999.

[8] Flip Korn and S. Muthukrishnan. Influence Sets Based on Reverse
Nearest Neighbor Queries. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, Dallas, TX, USA,
May 16-18, pages 201–212, 2000.

[9] Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Reverse Nearest
Neighbor Aggregates Over Data Streams. In Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB), Toronto,
Canada, Aug 20 - 23, pages 814–825, 2002.

[10] Iosif Lazaridis and Sharad Mehrotra. Progressive Approximate Aggre-
gate Queries with a Multi-Resolution Tree Structure. In Proceedings of
the 2001 ACM SIGMOD International Conference on Management of
Data, Santa Barbara, CA, USA, May 21-24, pages 401–412, 2001.

[11] Mong-Li Lee, Wynne Hsu, Christian S. Jensen, Bin Cui, and Keng Lik
Teo. Supporting Frequent Updates in R-Trees: A Bottom-Up Approach.
In Proceedings of 29th International Conference on Very Large Data
Bases (VLDB), Berlin, Germany, Sep 9-12, pages 608–619, 2003.

[12] King-Ip Lin, Michael Nolen, and Congjun Yang. Applying Bulk
Insertion Techniques for Dynamic Reverse Nearest Neighbor Problems.
In Proceedings of the 7th International Database Engineering and
Applications Symposium (IDEAS), Hong Kong, China, Jul 16-18, pages
290–297, 2003.

[13] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. Nearest
Neighbor Queries. In Proceedings of the 1995 ACM SIGMOD Inter-
national Conference on Management of Data, San Jose, CA, USA, May
22-25, pages 71–79, 1995.

[14] Amit Singh, Hakan Ferhatosmanoglu, and Ali Saman Tosun. High
Dimensional Reverse Nearest Neighbor Queries. In Proceedings of
the 2003 ACM International Conference on Information and Knowledge
Management (CIKM), New Orleans, LA, USA, Nov 2-8, pages 91–98,
2003.

[15] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Reverse Nearest
Neighbor Queries for Dynamic Databases. In Proceedings of the 2000
ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, 2000.

[16] Ioana Stanoi, Mirek Riedewald, Divyakant Agrawal, and Amr El Abbadi.
Discovery of Influence Sets in Frequently Updated Databases. In
Proceedings of 27th International Conference on Very Large Data Bases
(VLDB), Roma, Italy, Sep 11-14, pages 99–108, 2001.

[17] Yufei Tao, Dimitris Papadias, and Xiang Lian. Reverse kNN Search
in Arbitrary Dimensionality. In Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB), Toronto, Canada, Aug
31 - Sep 3, pages 744–755, 2004.

[18] Chenyi Xia, Wynne Hsu, and Mong-Li Lee. ERkNN: Efficient Reverse
k-Nearest Neighbors Retrieval with Local kNN-Distance Estimation. In
Proceedings of the 2005 ACM International Conference on Information
and Knowledge Management (CIKM), Bremen, Germany, Oct 31 - Nov
5, pages 533–540, 2005.

[19] Tian Xia and Donghui Zhang. Continuous Reverse Nearest Neighbor
Monitoring. In Proceedings of the 22nd International Conference on
Data Engineering (ICDE), Altanta, GA, USA, Apr 3-8, page 77, 2006.

[20] Tian Xia, Donghui Zhang, Evangelos Kanoulas, and Yang Du. On
Computing Top-t Most Influential Spatial Sites. In Proceedings of
the 31st International Conference on Very Large Data Bases (VLDB),
Trondheim, Norway, Aug 30-Sep 2, pages 946–957, 2005.

[21] Xiaopeng Xiong and Walid G. Aref. R-trees with Update Memos. In
Proceedings of the 22nd International Conference on Data Engineering
(ICDE), Altanta, GA, USA, Apr 3-8, page 22, 2006.

[22] Congjun Yang and King-Ip Lin. An Index Structure for Efficient Reverse
Nearest Neighbor Queries. In Proceedings of the 17th International
Conference on Data Engineering (ICDE), Heidelberg, Germany, Apr
2-6, pages 485–492, 2001.

[23] Man Lung Yiu and Nikos Mamoulis. Reverse Nearest Neighbors
Search in Ad-hoc SubSpaces. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE), Altanta, GA, USA, Apr 3-8,
page 76, 2006.

[24] Man Lung Yiu, Dimitris Papadias, Nikos Mamoulis, and Yufei Tao.
Reverse Nearest Neighbors in Large Graphs. In Proceedings of the 21st
International Conference on Data Engineering (ICDE), Tokyo, Japan,
Apr 5-8, pages 186–187, 2005.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2008

	Ranked Reverse Nearest Neighbor Search
	Ken C. K. LEE
	Baihua ZHENG
	Wang-Chien LEE
	Citation

	TKDE_RRNN.dvi

