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Abstract—Given a geographic query that is composed of in this paper to illustrate the idea of geographic queried an
query keywords and a location, a geographic search engine the function of geographic search engines.

retrieves documents that are the mosttextually and spatially Example 1: (Running example Suppose in a geographic

relevant to the query keywords and the location respectively, . .
and ranks the retrieved documents according to their joint SE&rch engine there is a set of 10 documentss {d,, ---

textual and spatial relevances to the query. The lack of an dio}, €ach of which is associated with one spatial location
efficient index that can simultaneously handle both the textual and consists of multiple keywords. Figure 1(a) and Figubg 1(
and spatial aspects of the documents makes existing geographicp|ot the frequencies of keywords “sushi” and “buffet” ane th

search engines inefficient in answering geographic queries. In g a4ia| |ocations of the documents, respectively.
this paper, we propose an efficient index, called R-tree, that

together with a top-k document search algorithm facilitates

Entire Geographical Space

four major tasks in document searches, namely, spatial filtering, document words
textual filtering, relevance computation and document ranking Sushi | buffet
in a fully integrated manner. In addition, IR-tree allows searches 4 0 0
to adopt different weights on textual and spatial relevance of s 0 5 A A
documents at the run time and thus caters for a wide variety ds 0 3 A
of applications. A set of comprehensive experiments over a da 0 3
wide range of scenarios has been conducted and the experiment ds 1 il
results demonstrate that IR-tree outperforms the state-othe-art ds 2 1
approaches for geographic document searches. d7 1 0
dS 0 1 Boston
dy 2 2
|. INTRODUCTION dio 1 7
The World Wide Web (WWW) has become the most popular df 2 - 56 @
idf log 5 |Og3 (ynosushi and *buffet” [ *sushi* only

and ubiquitous information media. According to wikipedia,
there are 25 billion indexable web pages and over 100 million Loty () st and i
web sites recorded in 2009, and these numbers continue (& Word and document frequency (b) Document spatial distribution
grow. Due to the massive number of web pages, search engifigsl. Example documents

that search and rank documents based on their relevances
user queries become essential for information seekingcBea

anr']gfts Iaatfn::eqTrI]r%?hteor (x;?ég'nﬁ ;g;‘éinéggzngggiigv'tﬁ@ returned. In this query, “sushi” and “buffet” are queryke
Y- 9 » ords, and “Boston” represents a location/area of heréstér

of the key design and implementation objectives of sear . .
engines. To achieve this goal, efficient indexing techrsdhat &egardless of the order of their relevances, this examplesh

) . : set of candidate result documenRt, ds, d4, ds, dg}, with
organize web pages according to their contents are mandagggect to both textual relevance and spatial relevartere,
for search engines.

. . dy, although being within “Boston”, is not relevant because
Although web pages are accessible worldwide over ﬁﬁécontains neither “sushi” nor “buffet”. On the other hand,

Interne_t, users are usually only interested in |r_1forma(_£cuch dr, ds, dy, anddy, although being textually relevant to the
as business listings or news) related to certain locatierms, ithin “B " Th d N th
“Las Vegas's restaurant reviews”, “Boston’s hotels andshar query, are not within "Boston”. The top-3 documents in the
“ . N ' : . ﬁand|date set that are most relevant are returned. |
and “New York's weather”. We refer to these queries, whic
consist of both textual and spatial conditions on documexrgs
geographic queriegor queries, for short), and search engine&n
specialized for answering geographic queriesgaegraphic
search engmeéHere' we use Example 1 as a running eXamplezln Figure 1(b), we use a rectangle to annotate the “Bostoea dor

presentational simplicity.
Iwe refer to “documents” as units of textual information suchveb pages  3The definitions of textual and spatial relevances of docusheith respect
in our discussion. to queries are formalized in Section II.

tRssume that a user Alice in Boston issues a geographic
uery “Bostors sushibuffet’ and the top-3 documents are to

In the past few years, due to increasing application demands
d rapid technological advances in geographical infaonat



systems,geographic search enginkas been receiving a lot relevances, which in turn can be adjusted with different
of attention from both industry and academia [12], [15], relative weights.

[21], [22], [26]. Same as the conventional search engines,. We design a rank-based search algorithm based on IR-
a geographic search engine is required to quickly return tree to effectively combine the search process and ranking
documents of high relevance in both textual and spatialcspe process to minimize I/O costs for high search efficiency.

to a given geographic query. Serving as the core of search We perform a cost analysis for IR-tree and conduct a
engines, index structures apparently are very importaoiv-H comprehensive set of experiments over a wide range of
ever, designing an efficient index structure for both telxtua  parameter settings to examine the efficiency of IR-tree.

and spatial information is not trivial, as four major chaljes The remainder of the paper is organized as follows. Sec-
need to be overcome. First, each keyword in the documegis, || provides a background and reviews existing works
is usually treated as one dimension in the document spagated to geographic search engines. Section Il presents
Indices for document search need to cover a very large highe structure of IR-tree, and discusses variants of agtgega
dimensional search space. Second, words and locationsy§tument information and storage schemes as well as manip-
geographic documents have different forms of represem&ti y|ations. Section IV details a topdocument search algorithm
and measurements of relevances to a query. A coherent ing@%ed on IR-tree. Section V evaluates the performance of

that can seamlessly integrate these two aspects of geagraghe proposed IR-tree in comparison with the state-of-tihe-a
documents is very desirable. Third, the words and locatfon goproaches. Finally, Section VI concludes this paper.

a document have separate influences on the overall relevance
of the document to a query, while the relative importance of
textual and spatial relevance is very much subjective to the
user. Various combinations of these two factors are nenessa In this section, we first define both geographic document
to accommodate diversified user needs. Thus, an ideal indgarch and geographic document ranking based on textual
should allow search algorithms to adapt to different weightelevance and spatial relevance. Then, we discuss the neeasu
between textual and spatial relevance of documents at thents of textual relevances and spatial relevances, angrev
run time. Last but not the least, the index structure togethexisting works proposed for geographic search engines.

with an appropriate search algorithm has to facilitate ieffic

determination of both textual relevance and spatial relesa A. Geographic Document Search and Ranking

of the documents while performing document ranking in order
to guarantee high search efficiency. We assume each documedtin a given document set

Existing index structures for geographic search enginé)s is composed of a set of worddy, and is associated

can be roughly classified into two approaches. ApproachWith a location L. Given a queryy that specifies a set of

uses separated indices (one for textual aspect and another €Y keywordsV, qnd a query spatial scop;, the textual
spatial aspect) and Approach Il utilizes a combined ind Qlevarjce z_;md qut!al relevance _of_a docum@rtb_q are
that carries both textual and spatial information in a sng orma!lz_gd in Definition 1 and Definition 2, respgctlvgly.

index structure [12], [15], [18], [22], [26]. Unfortunatel Definition 1: Textual relevance A documentd is said to

existing approaches are inefficient in processing geogip:aplqe te_xzji‘"y reledvar_lt toa quewf@d_lczontalns_sorr?e (olr all) of
document search, which motivates this research. In thierpapﬂ?i”e eywor f] ."eW;deq #d - 10 qduantlfzt e redevané:e
we design an efficient index structure, namdR;treg for of d to ¢, a weighting function denoted by,(d) is adopted.

geographic search engines which effectively addresséstall Thus, for a giveny, ¢,(di) > ¢4(d2) means document, is
challenges discussed above. The strength of IR-tree laysTi3"e textually relevant tq than documentl,. [

its ability to perform document search, document relevanceP€finition 2: Spatial relevance A documentd is said to
computation and document ranking in an integrated fashidtf SPatially relevant to a queryif the location ofd overlaps
In brief, IR-tree indexes both the textual and spatial colfith the query spatial scope of i.e., LyN S, 7 0. Let o(d)
tents of documents that enablepatial pruningand textual °€ @ S€oring function to quantify the spatial relevancel 6
filtering to be performed at the same time during quer§ 1NUS:¥a(di) > @4(d>) indicates that document; is more
processing. A top document search algorithm based on IR2Patially relevant ta; than document,. _ 0
tree combines both the search and ranking processes, thu&ccordingly, geographic document seardinds from D
effectively reducing the number of documents examined.tA d80s€ documents that are both textually relevant and $atia
of comprehensive experiments over a wide range of systéfievant to a given query (as stated Definition 3), @yew-
and query parameters has been conducted. The experinf§APhic document rankinganks the documents based on the
results demonstrate that IR-tree significantly outperfotie joint textual and spatial relevances with respect to therygue

state-of-the-art approaches for geographic documentisear (8 fo_rnjalized. in Definition 4). _
In summary, the contributions of this paper are listed as Pefinition 3: Geographic document search Geographic
follows. document search identifies those document® ithat are both

textually and spatially relevant t@. O
« We proposelR-tree which indexes both the textual and Definition 4: Geographic document ranking Geographic
spatial contents of documents to support document mecument ranking returns the most relevant documents,
trievals based on their combined textual and spatiabrted in descending order of their joint textual and spatia

Il. PRELIMINARIES



relevances, denoted hy,(d), with respect tog.* Here, k is
specified by the user and(d) is formulated in Equation (1).

w(d){ g.¢(d)+(1_a).¢(d) if ¢(d) >0 andep(d) >0

2) Overlapping. ¢(d) is set to the fraction of the document
location that is covered by the spatial scope, i#d) =
Area(LanS)

Area(La) : .
3) Proximity. ¢(d) is represented by the inverse of the

distance between the center bf and that ofS, i.e.,

otherwise
(1)

The joint relevance ofd is the weighted sum of textual
relevance and spatial relevance, with a parametée [0, 1])
controlling their relative weights. O

A ifLyCS;
_ dist(Lq,S) 1 d =1
#(d) { 0 otherwise.

Without loss of generality, we focus on the proximity in
the following discussion. Other types of spatial relevancan

. . be supported by substituting proximity with a desired spati
The accurate estimation of the relevance between do%feva?lpée calcu)llation ap y P

ments and user queries is critical to the perceived quality

and performance of search engines. Specific to geographic

search engines, we study some existing weighting functiofrs Related Works

for estimating textual relevance and spatial relevance. Here, we review existing works in textual index, spatial

Textual relevance. There are various models (e.g., vectof’dex and geographic document search engines.

space model, probabilistic model, language model, et). [4lextual Index. To facilitate the calculation of TF/IDF of

to measure the relevance of documents to a given queipcuments, inverted files, which are collections of inwerte
Among all those, TF-IDF [13], [24] is the most widely usedlists, are proposed. Each inverted ligtserves one word. An
There are many TF-IDF variants sharing the same fundamergément(d, ¢ f., 4) in l,, records a documemtwith ¢ f,, 4 > 0;
principles, though using differertt andidf formulations. For and each list is arranged in descending order of documents’
simplicity, we consider the generic one hereafter. TF-ID# values. Because conventional TF-IDF calculation does not
weighs a term in a document based @nm frequency(tf) consider any query spatial scope, the IDF value of a given
andinverse document frequen¢yf) [16].° A term frequency word within a document seD can be easily obtained, i.e.,

t f.n,a measures the number of times a wardppears in a doc- idfw,p = |0g% where|D| and|l,,| represent the cardinality
umentd, which indicates the importance of the word within thef D and the length ofl,,, respectively. Some proposed
document. On the other hand, the inverse document frequermgtimization techniques only read the initial portion oftd
idf.,,p measures the specificity (importance) of a waréh a to avoid accessing unnecessary documents [2], [3], [23]. In
document seD, i.e., idf, p = |og‘{d|d€DA‘£¢‘(w ISoT How- geographic document search, computiia, p s as shown
ever, under the context of geographic document searctigthein Eq. (2) is much more challenging than computif.,,

of a wordw, denoted byidf,, p.s, is defined corresponding toin conventional search engine.

a candidate document séls instead. The documents iRs  Spatial Index. Spatial indices [9] have been extensively
have their locations fully covered by the query spatial 8c8p studied in the spatial database community [25]. Among all
Note that the candidate documents are completely subjett tehe existing spatial indices, R-tree [11] is very well-reed.
provided at the query time. Equation (2) formulatéf, p.s- In an R-tree, spatial objects are first abstracted as minimum
@ bounding boxes (MBBs). Those spatial objects whose MBBs

are closely located are clustered in leaf nodes. Similéebf
where Dg = {d|d € DN Lgq C S} anddf, ps = [{d|d €

nodes with closely located MBBs are grouped to form non-
D Atf(w,d) > 0}]. In this paper, the textual relevance of alfaf nodes. This grouping process propagates until the root
documentd to ¢ is defined in Equation (3).

ode is formed. Aggregate R-tree (aRtree) [17] extends R-
tree to support spatial aggregation queries to find aggedgat
Ga(d) = D (tfw,a-idfu,p,s) 3)
weW

B. Document Relevance Measurement

|Ds|
log a7 1

Z.dfw,D,S

information within a search area. Also, R-tree and its visa
can support run time object ranking [14].

Geographic Search Engine.As briefly mentioned in Sec-

Spatial relevance.The spatial relevance of a documehtde- ; - .

: . .tion |, two approaches are used by existing geographic kearc
noted asp(d), depends on the types of the spatial relat|onsh|%% ines, with Approach | using separated indices for dpatia
defined between a document locatibpand a spatial scopg. 9 ! PP g sep

. . : : : information and textual information, and Approach Il using
Commonly adopted relationships as discussed in [26] umluda combined index [12], [15], [18], [22], [26]. However, they

1) Enclosed ¢(d) is set to 1 if the corresponding locationygth are not efficient.

is fully enclosed by the query scope, i.e., Approach | logically extends conventional textual search
engines with spatial filtering capability of Quad-tree, rBet
and Grid index as suggested in [5], [18], [22], respectively
As an example, in [5], the most recent work of Approach I,
an inverted file is created to index words of documents and a
grid index is created to index locations of documents. Based
on two indices, a search generally follows a three-stepgamc

1 if Ld g S;
0 otherwise.

ol = {

4If the context is clear, we omit the subscriptfor notational simplicity
hereafter.
5In this paper, a term is equivalent to a word.



Keyword List

o Step 1: retrieving textually relevant documents with re-
spect to query keywords via a conventional textual index.
« Step 2: filtering out the documents obtained from Step 1

Keyword List

‘ \K1'\K2\K3\ |:|:| ‘

that are not covered by the query spatial scope. oS
« Step 3: ranking the documents from Step 2 based on the B

joint textual and spatial relevances in order to return the = ]

ranked resu“S tO the user. Document Lists Documgnt Lists
We use the running example (i.e., Example 1) to illus- () Hybrid, (b) Hybridg

trate the above three-step process. First, Step 1 retr@Vesrig. 2. Two hybrid indexing schemes

documents textually relevant to query keywords and ignores

those textually irrelevant documents (i.@;). As Alice is

only interested in the query spatial scope “Boston”, doausie ~ KR*-tree is another type of hybrid indices which supports
outside the scope are discarded in Step 2,d£.ds, dy, and Searches for spatial objects based on their textual cantehk

d1o. Finally, in Step 3, the remaining documents are rankdtiextendsHybridg by augmenting with a set of words in the
according to their TF-IDF scores as listed in Table I; and theternal nodes. Thus, it can support both spatial and téxtua

top three documents (i.edg, d3, andds) are returned. filtering simultaneously. The query processing algorithmnagi
TABLE | the nodes that are spatially relevant to the query spatagesc
GEOGRAPHIC DOCUMENT SEARCH RESULT and containing the query keywords. It then evaluates all the

objects in these nodes for ranking. Along the same liné; IR
tree [8] builds an R-tree and uses signature files (rather tha
a set of words) to record the document words associated

Approach | is inefficient due to the following reasonswith nodes in the index. Signature files reduce the storage
First, a keyword based search may retrieve a large numise¢erhead and R-tree can quickly determine the documents
of textually relevant documents that are outside the spatipatially covered by a query spatial scope. However, sigaat
scope. Take our evaluation (to be discussed in Section W) asfiée can only determine whether a given document contains
example. More tha®0% of the textually relevant documentsquery keywords but fail to order them based on the textual
are outside the query spatial scopes. Although it is passitielevance. In briefHybridg, KR*-tree and IR-Tree are not
to reorder Step 1 and Step 2 based on their selectivitigficient due to separation of document search and document
performance improvement is rather limited if the seletiisi ranking. After the document search step, a large number
in Step 1 and 2 are both high. Besides, the ranking procé¥scandidate documents are usually retrieved but dnlgf
is not incremental, i.e., it has to soall of the candidate them are returned after document ranking. Consequenty, th
documents based on the joint textual and spatial relevané¥@luation of those non-result candidates is a waste. Ifjinal
in Step 3 in order to find the top-documents. As the total although KR*-tree, IR-Tree and our IR-tree proposed in this
number of candidate documents is usually much larger khanpaper are built on top of R-tree, they are very different imte
document ranking becomes very expensive. Third, these th@$ structures, functionalities, and extensibility to s#es with
steps are performed sequentially, prolonging the prosgssharious relevance requirements.
time and requiring a large memory storage to buffer the
intermediate results between steps. . IR-T REE

To improve the search efficiency, Approach Il combines the ) ) o ]
spatial locations and textual contents of documents tegeth N this section, we presenR-treg an efficient index that
and builds one index on them. Existing works following’rovides the following required functions for geographacd
Approach Il include [12], [26], [15]. In [15], the name Of_ument search and ranklng:spatla! filtering: all the spatially _
a location and every word of a document are combined ad'lévant documents have to be filtered out as early asiplessi
new word. Referring to our running examplé, produces a Fo shrink the search space; i@xtual fllterlng: all the textually .
new word “Bostonbuffet” (use a location name as a preﬁ)grrelevant documents have to be d|§_carded as early as.lmssm
and a word as suffix connected by an underscore). Then, {@rfut down the search cost; and ii§levance computation
inverted file based on those new words is created to supp@f¢ ranking: since only the top: documents are returned
geographic searches. However, this approach simply treats@Nd & is expected to be_ much s_maller than the tqtal number
cations as texts and cannot deal with various spatial reteva of relevant document;, it is desirable to have _an mcreme_nt.a
computations (as discussed in the previous subsectiome)nseamh process that mtegratgs the computation of the joint
other hand, in [26], two hybrid indices are proposed, namer)glevance and document ranking seamlessly so that thehsearc
(a) an inverted file on top of R-trees (see Figure 2(a)), refer PrOcess can stop as soon as thegpcuments are identified.
to asHybrid,, and (b) an R-tree on top of inverted files (see In addition, IR-tree is designed .by taking into account the
Figure 2(b)), referred to aslybridg. Thus, a search upon storage and access overheads since a document set is very
Hybrid, first locates a collection of documents based on sear@g€ in terms of numbers of documents and their words. In
keywords and then based on locations. The search strategl)® following, we first detail the design of IR-tree indexing
reversed forHybridg. However, these hybrid indices do noftructure. Then, we discuss the notiordotument summaries
integrate the textual filtering and spatial filtering seasslg ~ (@nd several variants) that facilitate search space exjor

| | do | ds | ds [ do | di |
[TF-IDF | 1.03] 0.63| 0.55] 0.48 | 0.24




and pruning as well as ranking. Thereafter, we discuss thet to 3 and 4, respectively and Figure 4(b) shows the distri-

storage schemes and index manipulation methods. butions of MBBs. Documents;, ds, anddg that are spatially
close to each other are grouped into nadg Similarly, d-,
A. IR-tree Indexing Structure dy, andd,o form the nodeN, andd,, ds, d4s anddg form the
- . node N.. These three nodes are further grouped together to
In order to support efficient geographic document searc‘la

. o rm the root node. O

the IR-tree clusters a set of documents into disjointed esgbs
. . .. document ies

of documents and abstracts them in various granularitigs. ﬁqm_w(,\:s,
doing so, it enables the pruning of those (textually or sytlggi e Mool (2 TFingere}> Neo o My
irreIeyant subsets..The. eﬁicier)cy .of IR-tree depends on its o W= TFrn) = L N B
pruning power, which, in turn, is highly related to the effec N .
tiveness of document clustering and the search algoritms. - <t D, ‘ No [ Tay
IR-tree clusters spatially close documents together amiksa — ” (s =2, TPt 0} g2 TFougen 0} > bocton @ i
textual information in its nodes. These designs distintgoisr 7 ); Ny de
IR-tree from other hybrid indices (as reviewed in Section II Ut i) LR ] Oy Mo
C). IR-tree associates each leaf entry with an inverted filg,,,..7, [4/] &)
and associates a document summary that provides textual (a) IR-tree content (b) Node MBBs

information of documents with each node so that thend
idf values of the document words can be estimated at nod®g 4. An example IR-tree

without examining individual documents. Figure 3 depiats a As defined in Section II-B, the textual relevance between a
IR-tree indexing structure. An inverted file consists of st li document and a query is dependent on bothtthelues and
of words, with each corresponding to a wardand pointing  theidf values of documents with respect to query keywords. To
to a list of documents that contain. On the other hand, for facilitate the discussion, IeD; represent the set of documents
each node, a document summary about a set of documeritsdexed beneath nodeand WW; represent the set of words
D; indexed beneath is captured as a three-element tuple: appearing in at least one documeht(c D,) (i.e., W; =

(A, D3], Unew, {dfw.0ys TFup,}). _UdeDin). Since A;, |_Di\ and dfw,l?i values are maint_ained

in document summaries, the candidate documenbsefi.e.,

In the tuple, the first elemend; is the minimal bounding C D) can be formed as early as the search reaches a set of
box (MBB) covering all of the locationd.; of documentsi nodesNg such that4; in a document summary for any node
in D; (i.e., A; = MBB(Uaep, La)).- Next, |D;| refers to the ¢ Ny is fully bounded by the query spatial scope i.e.,
cardinality of the document se&b;. The third element is a v,y A4; C S. Then, theidf value for a given query keyword
set of {fw,p,,» TFu p,) pairs. For each wordy that appears w can be determined over those identified nod&swithout
in at least one document i; (i.e., W;), df., p, represents scanning the documents indexed beneath them as:
the number of documents i; that containw andT'F,, p,
is the aggregated information about tievalues ofw in D;. 2 viens ([Di]) ()
We investigate two different representationsTof, p,, and > viens @fwD,)
they will be discussed in the next subsection. Notice that th then with TF, p, values (or TF values for simplicity)

document summary of a non-root nodes stored withi's  maintained by a document summary available, the textual
parent nodé. Then, given a query that reachiésparent node |gjevance of a document D, to ¢ can be estimated by

h, it can decide whethercontains potential result documents (i) = X yew. idfw.n.s - TFy p,. We formulate TF in such
weWy 4 s Ui

(i.e., whether the examination ofis necessary) based on the, way thatp (i) provides a good estimation o{d) for d € D;.
document summary. Consequently, the estimated values, although not nedgssar
the exact values, are useful to prune those nodes that do not
contain any qualified documents in an early stage of a search

Z‘dfw,D,S = Iog

document summary:
<AD |0y {dfyq TR} >

node entrics process. Notice that this pruning is very flexible. It can be
docun(llent based on the joint spatial and textual relevance, the patiasp
words

relevance, or the pure textual relevance. Further, basdteon
estimated values, a ranking algorithm can order the catelida
documents and give higher priorities to those nodes whieh ar
more likely to contain result documents. The toglocument
search algorithm will be detailed in Section IV.
Although at the first glance it looks similar tHybridg,
Fig. 3. IR-tree indexing structure IR-tree is indeedstructurally and functionally different from
To facilitate our discussion, we use Example 2 to iIIustrat'élyb”dR' From the design perspecﬂyldybndR focusespurgly
. on document search, not supporting document ranking that
an IR-tree based on our running example. N :
is critical to topx document retrieval. On the contrary, IR-
Example 2: Figure 4(a) shows an IR-tree for the examplé&ree maintains document summaries at different levels hwhic
document set, with the minimum and maximum node fanoutmables an estimation of the joint relevances of documersds t

inverted lists inverted files



given query without reaching the leaf level, such that the tosegments, such asA;,|D;|), ({dfw,.p;, TFuw, D;}),

k result documents can be determined without getting all thédf.,, .p;, TFuw,, .p,;}). The first segment(A;, |D;l),
candidates ranked. On the other hand, IR-tree, KR*-tree awtiich is independent to document words, is stored with the
IR2-Tree are all based on R-tree structure. While KR*-tree amdirent nodeh of nodei. The remaining segments are stored
IR2-Tree are mainly for serving document filtering, they do nateparately. Observing that a search for documents textuall
support document ranking. Nevertheless, IR-tree suppotts relevant to a wordv only requires DF/TF values related g
geographic document search and ranking. Besides, IR-aree we strategically storé{df,, p,,TF, p,}) related to the same
be tailored, though not explored in this paper, to cater faword w but for different nodes together in the same memory
various application needs by adjusting the content of dasum block. Here, a memory block refers to a linked list of pages.
summaries to support other relevant measurements based on

. . No {d;n’v'(/v nl\n}
different TF-IDF variants. AV/, w/if;
Nz | Adfine thoine}
B. Two Alternativel'F,, . AT Y,
. . . . . w
As shown earlier, TF plays an important role in estimating .’ value Hlock or i
the textual relevance(i) at nodei. Thus, two TF variants are o o
. . . [ ]
considered in this work. . —
j’ No [ b thomo}
TFs. Given a queryq related to a query spatial scopé the ] %] ] ] ARy e
textual relevance of a documendtwith respect to a query (V%] [ [mn| [(Nalwe] [Na]w.| —indexblock i id’i”H
- Ny wm Ng Hhwmng
keyword w depends on the product of,, 4 andidf, p. s. AR :
) 0 ... inverted files ... value block for wyy,

As such, a straightforward approach to presgt, p, is to
maintain in each document summary tfe, ; values for each (@) IR-tree tree hierarchy (b) DF/TF value blocks
word w € Wy; hence,TFy, p, = Uaecp,rtfo.a>01(ds L fw,a)}-

In other words,I'F, p, resembles an inverted file with respec
to all the documents indexed beneath nedw/ith document ~ Figure 5 illustrates our storage scheme, nameayword
information available at each level of IR-tree, the seardipsed storage schemleconsists of three components, namely,
efficiency is improved at the expense of extremely high sfera(i) @ tree hierarchy that presents the nodes’ parent-child
overhead folO(| D;| x |W;|) TF values. Therefore, keeping allrelationship in an IR-tree to support traversals for sessch

tfs in every document summary is very storage expensive(ii) (conventional) inverted files, and (iii) DF/TF valueduks,

which keep TF and DF values for the same words in the

TF Maximum. In order to alleviate the storage overhead, WEme memory blocks. An example tree hierarchy is shown
store at nodé the T'F,, p, value as the maximum among all

; , in Figure 5(a), in which every node has a fanout of 2. As
tfw,p, values for all documents i);, i.e., max4ep, (tfw,d) shown, (Ay,, Dy,) and (Ay,, Dy,) of node N3 and Ny,
(denoted by f'%"). This reduces the overall storage overheaglgnectively, are kept at the parent nade Notice that in our
for TF values down toO(|W;|) and provides a reasonably;,iementation, each node sits in one disk page. The inverte
good estimation of the textual relevance of the underlquges pointed by leaf node entries are stored independedduig.

y maxr ;
documents a8d € D, (t fuw,a-idfw,p,s) < (tfi'5, idfw,D.5)-  tq limited space, they are not depicted. Figure 5(b) ilatsts

The search for to- documents can follow a path throughpe/TE yajue blocks. It has two parts, namely, index block

node i to reach result documents based on maximal Th,qqjye plocks. Index block consist¥’| entries. Each entry

values, and the details about the search will be presenteqyp one wordw points to a value block that contains DF/TF
Section IV. values forw. Inside a value block of wordv is a list of
{i,dfw.p,,TFy p,} entries.
} i When a geographic query with query keywo and a
As the index I/O cost directly affects the search perfogery spatial scopé is processed, DF/TF valu?il)locks for
mance, how an index is organized on disk is an important igjose query keywords’, are preloaded, and a traversal starts
sue. In this subsection, we present the IR-tree storagem&hesom the root of the tree hierarchy. When a node is traversed,
In an IR-tree, every non-leaf node maintains poOiNters i child node; with A; stored in tree hierarchy is compared
to individual child nodesi together with their document iih s and the corresponding DF/TF values in the preloaded

summaries (4;, | Di|, Uwew, {dfw,p;» TFu,p, }). Consider a pe/rr value blocks are accessed and evaluated. The detailed
scenario wher@V;| = 2000 andT'F,, p, as the TF maximum, search algorithm will be presented in Section IV.
dfw,p, andw take 2, 1 and 1 bytes, respectively. Thus, one

document summary consumés+ 1 + 1) x 2000 bytes, i.e., . )

eight 1KB pages. Further, a non-leaf node with fanpuakes D- IR-tree Manipulations

8 f 1KB pages. Since only a few keywords are queried, loadingThe IR-tree can be manipulated with three operations,

complete document summary corresponding to all the wordamely, bulkloading documents, inserting documents and

is not necessary as it accesses unnecessary DF/TF valuesiébeting documents. Given a set of documents, bulkloading

non-query keywords. creates an IR-tree from scratch. Tne pseudo-code is ddpicte
Instead, we partition each document summary at noddgorithm 1. As a brief description, it first clusters docume

i, i.e., (44 |Dil,Upew,{dfw.p,,TFy p,}) into different based on their spatial locations into leaf-level entries then

Fig. 5. Keyword based storage scheme

C. Keyword Based Storage Scheme



groups the formed entries as nodes in a bottom-up fashidevelop a topt document search algorithm based on IR-tree

repeatedly until the root is formed. to improve the efficiency of geographic document search. The
top-k search algorithm effectively avoids the computation of
Algorithm 1 [R-tree Construction the relevance scores for most of, if not all, non-result adee
Input: a document setD; minimal node fanoutmin; documents. Algorithm 2 outlines the logic of the tbsearch
maximal node fanoutnazx; algorithm. It is composed of two steps, namely, (i) IDF-
Output: the root of an IR-tree; Calculation and (i) Tops Document Retrieval. As the names
Procedure: . .
LN 0 suggest, the former determines IDF for query keywords; and
5. fo? eachd € D do the latter computes the relevance of candidate documedts an
3. geo-coded and represent, with MBB mg; returnsk most relevant documents. In the following, we detail
4: if 3e € Ne,me = my then these two steps and discuss the advantage of this algorithm.
5: addd to e’'s document seD.;
6 else Algorithm 2 Top-t Document Search
7 create a new entry;
g setme. — mq and D, — {d}; Input: the root of an IR-tree; .
9: N, — N, U {e}; a queryq with keywords,W,, and spatial scope,;
10: for eache € N, do the requested number of result documehts,
11:  build inverted file with each list,, w.r.t. every wordw in at the ratio between spatial and textual relevanee,
least one document € D,: Output:  a set of topk documents
12: while |N¢| > nimasz do Procedure:
13:  cluster N, according tomin/maz into nodes, represented as 1: ({idfw,p,s,,Vw € Wy}, B) < IDF Calculationt, Wq, Sg);
new entriesN’; form document summary far in N.; 2. if B # 0 then
14: N, « N.; 3:  return Top-k Document Retrieva{idf. b, s,, Vw € Wy}, B,
15: create the root node to covéf. and their document summaries; Wq, Sq, a, k)
16: output the root node; 4: return 0,

Here, we assume that each document is mapped to one
location L, and documents mapped to the same location de Step One: Derivation of IDF values
collected in a set of entried/, (line 2-9). Accordingly, an  As defined in Equation (2)idf, a component to TF-IDF
inverted file is created for each eniryc N, to keep the term for textual relevance, is a fraction betwefins| and df,, p..
frequencies of different words (line 10-11). Further, &in  As the first step, we determine all of the documents that are
N, are clustered according to their locations to form IR-trelecated inside the query scop® for a queryq. With |D;|
nodes, each of which is associated with a document summags a part of document summary) available with every node
The number of entries included into one node is bounded byan IR-tree, the search only needs to traverse to the nodes
the minimum and the maximum fanouts, i.exjn andmaz, with A; C S,. Notice that if nodei is already fully covered
respectively (line 12-14). Typicallymin is set to 30% of by S, it is not necessary to visits child/descendant nodes in
max andmazx is determined as the quotient of disk page sizerder to determinelf,, p, and|Ds|. Meanwhile, we need to
divided by the maximum entry size. The entries for generat@gentify some candidate nodes that contain result docusnent
nodes (i.e.,N/) are grouped by the same clustering logic. Albeing spatially and textually relevant to a query. Docursent
last, when the number of generated entries (j/€.]) is small beneath those nodes fully covered Syare spatially relevant
enough € max) to be represented by a node, a root node i the query but may not be textually relevant. To determine
formed and returned to complete this bulkloading (line 83-1 whether a node contains any textually relevant document,

Besides, the structure of IR-tree can be easily adapt@é examine thelf, p, values corresponding to each query
when new documents are added and/or existing documekéywordw € W, and discard the node ¥fw € W,, df . p, =
are deleted. When a new documehtis inserted, based on(. Based on these ideas, we formulate Algorithm 3.
L4, we traverse an IR-tree to reach a leaf node that providesn the algorithm, we use a depth-first traversal strategy to
the smallest expanded area aftej is included. Then, the determineidf for all query keywords and to collect nodes
document summaries of all nodes on the path from the lagfth candidate documents. Notice that breath-first traldss
node to the root are updated to accommodat®n the other also applicable. In details, an entrythat represents a node is
hand, deletion of a document is handled by first locating examined from a stack in each iteratione Has its aread. not
the leaf node holding. Then, the document summaries of altovered bysS,, ¢ and all the nodes indexed beneath it can be
nodes on the path from the leaf node to the root are updatigcarded immediately. Otherwisd, and S, overlap in two
to reflect the removal of. We omit the detailed insertion andcases: (i)A. covered bysS, in part, and (i) A. completely
deletion algorithms and handling of some situations (su&h @overed bys,. For (i), the child nodes of, that have smaller
node overflow and node underfull) because they are similardgea thare, are pending for later examination (line 12). For

those for conventional R-trees. (i), we accumulate|D.| to Dg (line 7). In addition, we
check whethek can contribute taDF,, by checkingdf,, p.
IV. TOP-k DOCUMENT SEARCH corresponding to each query keywoude T,. Once a non-

In light of that the size of the candidate set is mucherodf, p. value is found,DF,, will be updated accordingly
larger than the required number of result documehisye ande is inserted intoB. Here, B is a buffer to keep track



Algorithm 3 IDF Calculation Algorithm 4 Top-k Document Retrieval

Input: the root of an IR-treey; Input: a set of idf values{idf. p,s,,Vw € Wy };
query keywords¥, and query spatial scopg,; a candidate set3; query keywordsV,;

Output:  {idfw,pn,s,, Vw € Wy}, and a buffer of node®; query spatial scop§y;

Procedure: a ratio between textual and spatial relevaneg,
1: Dg « 0; DF,, «+ 0,YVw € Wy; the number of returned documents,

2: pushr to an empty stack’; Output: the k& most relevant document;

3: while T' is not emptydo Procedure:

4 op an entrye from T, . . _ maz 1—a) .
. f;fm s #ye@ thor 1: MACRO: 9 (e) = “'wqu(tf idfuw,p.5,) + Tt
6: if Ac C S, then 2: for each entrye € B do

7: Ds «— Ds + |D.|; /I count the no. of document; 3: enqueued;(¢)) to Q; I/ initialize @ with entries inB
8 if wew, dfw,p. >0 then 4: while @ is not emptydo

9: DFy, < DFy + dfw,p.,Yw € W,; [l sumofdf's 5  dequeue an entry from Q;
10: B — BU{e}; Il collect the nodes in B 6: if ¢ is a documenthen
11 else 7 R — RU{e};
12: push all child entries ot to T’ 8: if |R| =k then
13: output ({idfw,p,s, = log 5, Yw € Wy}, B); o: goto 16;

10: else ife is a leaf nodehen
11: for each documend in any €'s inverted listl,,, Vw € W,
do

of nodes fully covered by, during the traversal and it cani2: enqueue d, ¥ (d)) to Q;

facilitate the document retrieval step, as to be discussat n 13:  else _
The traversal repeats until the stafkis empty. 15: foreﬁgﬁzucehidé (o;)etgoQ
Lemma 1: When a node with zerodf., p, value for each ¢ output R; '
query keyword (i.e.yw € Wy, df., p, = 0), all the documents
indexed beneath are textually irrelevant tq. O
Proof. Suppose there is a documeht D; that is textually
relevant tog, i.e., 3w € Wy, tfy.qa ¥ idfy.p,s, > 0. Conse-
quently, tf,,.a > 0 and hencelf,, p, is at Ieast one which
contradicts our assumption to complete the proof. |

Here, the threshold algorithm and its variants [7], [10] ta&n
adopted to improve the performance of reading entries from
inverted lists. Finally, if is a document (6-7), it is directly put
into a result seRR ase has the greatest relevance among all in
i @. OnceR containsk documents or no more documents can
B. Step Two: Tog- Document Retrieval be found as implied by an empty priority queue, the algorithm
After buffer B containing candidate IR-tree nodes is restops and output®.
turned by the IDF Calculation algorithm, Tdp-Document
Retrieval algorithm as the second step of the search r
to identify the result documents. As the candidate set might
contain far more documents thanthis step tries to avoid ex- I order to illustrate our top- search algorithm, Example 3
amining non-result documents. Our strategy is to evaluse tdescribes how it operates on our running example.
documents based on their joint spatial and textual rel@snc Example 3: Continue Example 1. We consider TF-IDF and
with respect to a given query and to terminate the processassume the top-document is requested (i.ek, = 1). The
once the tom result documents are obtained. search is based on the IR-tree shown in Figure 4(a) Iry,tlall
Algorithm 4 lists the pseudo-code of tdpdocument re- those entries covered by Boston are visited. The trace isrsho
trieval. It maintains a priority queu@ that orders the pending in Figure 6(a), withB = {iz,i3,i4, Ny }. The countersD,
entries (either nodes or documents) in descending orderfushi,» @d Dy s s are 6, 2 and 5, respectively, and the IDFs
their relevance with respect tofline 1-3). Based ondf,, p s,, ©Of ‘Sushi’ and ‘buffet’ arelog(6/2) = 0.477 andlog(6/5) =
fm‘,gx , and the distance betweerand the query spatial scopeO 079, respectively.

w

Sy, the upper bound of the relevance value of documents

Dlscussmn

within a queue entry (if it is a node) tog can be estimated ™| Sta:k O ;’“ﬁer (B)
. . 700
as follows: ¥(¢) = « - ezl:/v (tfae® - idfwp.s,) + (1 — ool | IV, V. ) [ Entry [ Priority queue Q) |
Ny Nc Ny Ny, i3, 12, 14

O‘)W Here, A, is the MBB corresponding te. We N, i2, i3, a0 | Ny N, i6. 13, 15, 12, 14
take the distance between the centerdofand the center of | i i3, 14, i3 Ny, iz ig dg, i3, 15, 12, i4
S as dist(A., S,). Notice that this formula also applies tol i i, i %bv i2, 03 dg o T:gvcé%fz?rééilng
individual documents to determine their exact relevance. 8 N o

The search iteratively examines the head entry(€)) in (@) Trace of candidate selection

Q@ (line 4-15). If e is a non-leaf node (line 14-15), its childFig. 6. Trace of candidate selection and ranking

nodes are all enqueued €@ for later processing. Notice that

documentsd not in anyl,, should have theitf,, ; equal to Thereafter, ranking starts. The priority quedg, is initial-

zero. Therefore, in case thatis a leaf node (line 10-12), ized with entriess, i3, i4 andN,. N,, with the largest TF-IDF,
documents appearing i, (Vw € W,) are enqueued t6). is explored first. Its child entries (i.ei; andig) that contain



at least one query word are put backloNext, is is retrieved tree hierarchy denoted &,,,,, and (iii) document summaries
and the corresponding document (i) is put into@. Then, denoted asS;s. The total storage foiR-tree, Str—tree, CaN
dg with the largest TF-IDF is dequeued and inserted into thee estimated as follows.

;Tlsfr:te Ssetg;st_o complete this query. Figure 6(b) summaDrlzes Strtree = Sins + Stree + Sus )
As illustrated by the example, the proposed fodecument  CorrespondinglyS;,, involves|L| inverted files, each con-
search algorithm based on IR-tree has five advantages ositing of O(|W|) inverted lists. As each document is mapped
existing geographic document search algorithms. Firgieit to one location, each list hag(|D|/|L|) TFs and document
forms spatial filtering and textual filtering simultanegusbd 1Ds. Hence,S;,,, = O(|W|-|D|). Next, for|L| locations, the

discard as early as possible branches that are out of thg quegight of an IR-tree idog|L|. With the root is at leveD,

spatial scope and/or branches that do not contain any teXfis number of IR-tree nodes i, is O log | L|—1 1)

. -} y 1. rees 1=0 .
ally relevant documents. Second, it postpones the exmNs¥,thermore, while each node is associated with one documen
calculation of the relevance between each docurdeamd the summary, the storage for all document summarigs is

queryq until d is known to have a high chance to be mcIudeEJ)(‘W| 'leo:g(J)c|L|—l #'). Elaborating Equation (5), we obtain a

into the final result set. Third, it terminates once the mp'more detailed estimation as in Equation (6), assuniii
documents with highest relevances are identified. Fourtian lLD| and|L| < |V q ) g<

support variations of textual and spatial relevance measu
and different weights in combining the two relevances. Last SIR—tree
but not the least, it enables an early detection of querias th = O(|W]-|D|) + O( 'lc;gé\Ll—l )+
return empty result sets. o(w| - Ilo_gélL\fl 10!
|0gf\L\71 ‘nglL\71

O(IW|- D) + O(F—==1) + O(IW| - T5=)
_ _ (W] -|D|) + O(|L]) + O(IW] - |L])

In this section, we evaluate the performance of IR-tree (la- |W|-|D|)
beled asR-tree in our discussion) through both cost analysis (6)
and simulations. In Section V-A, we derive a cost model to an- From the equation, we can see the storage overhea&for
alyze storage overhead and index I/O cost incurredraree. tree is dominated by that of inverted files. Alsgy’| usually
Based on the model, we observe several critical performardiges not increase &®| grows. For example, LATimes’94 and
factors and validate these observations through expetimeRactiva have different numbers of documents but they both
using synthetic document sets. Then, in Section V-B, we uskadve similar number of document words in the corpus. Thus,
two sample document sets, namely, newspaper clips frame can consider storage is linear|0|. Following the same
LA Times (LATimes’94) [20] and news archives from Dowidea, the storage overheads tdybridg and KR*-tree can be
Jones Factiva (Factiva) [6lo evaluate the search performancderived and they produce similar asymptotic storage costs.
of IR-tree in comparison with two existing state-of-thela-arI
approaches, including the hybrid indék/bridg that puts an
R-tree upon inverted files [26] and KR*-tree (labeledkas:-
tree), as reviewed in Section II-C. Note that we hidgbridg
as the representative hybrid index as it performs much tbet
than Hybrid,.

V. PERFORMANCEEVALUATION ~ O
~ O

ndex I/O Cost. There are three types of accessesiRn
tree that constitute the 1/0 cost, including, (i) node traversal
to visit nodes that may contain qualified documents, denoted
10y¢e; (ii) lookup of document summaries to get the
ocuments’ TF and DF statistics with respect to query key-
words, denoted by O4,; and (iii) accesses of inverted files
associated with the leaf nodes in order to evaluate theaetey
A. Performance Analysis of candidate documents to the query, denoted ®y,,,. Due
In the first place, we present a cost model fartree to 0 the small size of node IDs and relevance scores for IR-tree

analyze its storage overhead and 1/O cost for a document B@gles and candidate documents, we consider that buffers and
D with documents uniformly distributed ifL| locations and Priority queues used in the rank-based search algorithm are
in total having || words. In this analysis, we assume themall enough to be retained in main memory. The accesses of
fanout of an IR-tree index is a constafit We further use those are assumed to incur zero I/O cost. Thus, the I/O cost
synthetic dataset to validate the observations made fr@m #Q" IR-tree JO;r—iree Can be expressed in Equation (7).

cost model and to compam-tree with Hybridg andKR*-tree. I015-tree = IOpee + 1040 + IOy @

1) Cost Model: Firstly, we analyze the storage overhead

and 1/O cost foilR-tree. As the search time is highly dependent To facilitate our discussion, we consider a query Wit |

on the 1/0 cost, we do not include the search time analyslgery keywords, a query spatial scofg, requesting for

due to space limitation. k documents. We assume that all document locations are

_ _ _ disjointed and meanwhile of equal size (i.el/|L|), with
Storage Overhead For IR-tree, its storage is contrlbutedA being the total area of the search space. A fracti

by three components: (i) inverted files denotedSas., (i) o an |R-tree tree hierarchy is approximately accedsé.
|Lql S~logs|LI=1 ¢p i
6Notice that entire Factiva is a very large document set and g o total, there ar@(Tq' h=0 f ) nodes accessed and this
randomly selected arountl x 10° documents; whereas we use a complete

LATimes'94 document set. "We use|Lq| to represent the size of query spatial scdpge
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contributes ta/ O,,.... For A being a constant,O,,... involves are also observed. In Figure 7(b), similar linear trends are
O(|Ly| - ifj{)‘“” /™). Next, with keyword-based storageobserved for all the three approaches. Compared with thex oth
scheme, onlyW,| DF/TF value blocks are loaded. Each blockwo, IR-tree performs the best as its cost increases slightly with
has entries with respect to each IR-tree node, and fisys |L|. Here,Hybridg produces the smallest indices but it incurs
takesO (|, |- 319 X171 ¢y pages. FinallyD(|L,|) inverted  the largest /O costiR-tree and KR*-tree produce indices of
files are accessed. In other WOde,|Wq| . |Lq‘) inverted lists Similar size butR-tree incurs less I/O thaKR*-tree due to the
are accessed, with each havip@|/|L| TF and DF values efficient rank-based search algorithm facilitated by doenm

examined. Putting all of them together, we obtain the totammaries.

I/O cost as in Equation (8). B eod 2 O e
0 s. § s
IR—tree logsILI~1 o1 (% 400 g 400
— O(|Lq‘ hl=0 s 1f )+ @ 30d o ﬁsooc
O(Wy| - S 1) + O(|Wy| - | Lg| - |DI/|L)) 2 on S G
[e] ridg
~ O(|Lg| - [L]) + O(IWq - [L[) + O(|Wq| - [Lg| - IDI/IL]) e o
. . } (8) . 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Equation (8) well indicates the performance factors. First
the tree traversal cost (i.e., the first term) is mainly deleen (a) Storage Overhead (b) /O Cost

on the size of a query spatial scogg, and the size of rig 7. storage overhead and /0 cost V5| (|S| = 100km x 100km,
an IR-tree which in turn is affected byL|. Second, the k=100, a = 0.5, |D| = 100, 000)

overhead of document summary lookups (i.e., the second term

is contributed by the number of queried word¥,| and the Effegt of |D|. Next, we evaluate the impact of the docgment
size of an IR-tree. Finally, the access of inverted files.,(i.éset size (D]) on storage overhead and index /O cost. Figure 8

the third term) is based ofD|, |L|, |L,| and [W,|. Notice shows the experiment results againgt| with |L| fixed at
that this equation does not take the number of requestedlooo' It is clear that all approaches follow a linear trenthwi

documents, into account. Hence, Equation (8) simply refle¢’l consistent to the behavior determined in our cost model.
the (worst case) condition thatis very large and/or all result Meanwhile, we can also see a significant difference in tefims o

documents are sparsely distributed in different leaf n()déE""gnitUde,S among all those approaches. This can be analyzed
Of course, whenk is small, the search efficiency improveNd explained by the above discussed reasons.

since many nodes and their indexed inverted files are skippe =, & 1000

from detailed examinations. On the contrafypridg andKR*- 2 ]Em?;e g

tree produce the same asymptotic 1/O costs. However, withol & 5B 2™

incorporating ranking into the search i&stree, both of them @mc 2

always incur the worst case I/O costs as stated in Equatjon (¢2 & 4o LJiR-tree

This observation is consistent with our experiments to b g * < 200 —viey

presented neXt @ 0 100,000 1,000,000 * 0 100,000 1,000,000
2) Validation using Synthetic Documentktere, we adopt

synthetic document sets to validate the observations nmade f (a) Storage Overhead (b) /O Cost

the cost models ofR-tree. As for comparison, we include rig. 8.  Storage overhead and 1/0 cost {B| (S| = 100km x 100km,
Hybridg and KR*-tree. Since |W| is almost constant for a k =100, a = 0.5, |L| = 1000)

document set, in our evaluation, we study the factéisand

D] only. ) )

| '|I'he synthetic document sets are generated as follows, Fifst Simulations Based on Real Document Sets

the document locations distribute uniformly over the skarc Next, we examine the performance i&-tree on two real
space and we assume each location contains the same nurdbeument sets, namely, LATimes'94 and Factiva. In what
of documents. Second, we assume there 5#r@00 words follows, we first present the experiment setup. Then, we
in total and each document contaifi80 words. Regarding discuss the evaluation details and experiment resultsrinste
the size of locations, queries and other settings, we folaw of search time and search 1/0O cost against different query
simulation settings that will be detailed in the next sutisec parameters. Finally, we present the storage cost incuoed f
In the following, we first examine the impact df.| by different approaches.

changing|L| from 2000 to 8000, with |D| fixed at 100, 000. 1) Experiment SetupTo prepare the sample documents for
Then, we evaluate the impact @D| varying from 100,000 to experiments, we extract location names from all individual
1,000,000 whilglZ| is defaulted atl000. documents and then geo-code the location names into spatial
Effect of |L|. First, we evaluate the performance of differentegions, following a commonly used practice (e.g., [5],]126
approaches against the number of locatidrjs The evaluation Our geo-coder is developed based on a proprietary geographi
results in terms of storage cost and 1/O cost are depictedtology that covers abou9, 784 worldwide locations [19],

in Figure 7. In Figure 7(a), the storage incurred IRytree and it employs the focus-detecting algorithm [1] to locate
grows linearly with|L|, consistent to the observation mad@ne location for each document. As different locations cover
on Equation (6). The same trends fdybridg and KR*tree different granularity, we associate each location withype
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(e.g., state, super large city) according to the governmentSince the query time and I/O cost of retrieving the result
administration types and the population sizes, and asshene documents is independent on the algorithms adopted, tleey ar
locations of the same type cover the regions of the same siercluded from our simulation results. Each experiment runs
In this evaluation, six types of locations are defined and the.00 random queries with each query containing up to four
sizes are shown in Table Il. The overall search space is tpugkeywords related to finance, politics, travel and food. Each
set t03000km x 3000km. Take a documend; that is geo- query on average has91 keywords, andl1, 174 documents
coded to Chicago city as an example. The spatial scopk ofof Factiva data set, and0,437 documents of Latimes'94
(i.e., Lq,) is set to a square centeredlai,;.qqo With the side data set are textually relevant to a query on average. All the
length set ta200km. Here,lchicago 1S the point location that queries are run independently such that no query results and
represents the center of Chicago, which is pre-defined by tikermediate states would be left in the system to benefit
internal geographic ontology. Finally, Table 1l summaszhe subsequent ones. The second set of experiments is to examine
properties of two sample document sets. the index construction cost and the storage overhead of
TABLE I IR-tree in comparison with that of others.
LOCATION TYPE AND AREA SIZE

[ Cocation type | Area size \ 2) Search Efficiency:In the first set of experiments, we
State 500km x 500km investigate the impacts of three factors on the search perfo
Super large city] 200km x 200km mance. They are (i) the size of the query spatial scefie
kﬂarg.e city 100km x_100km (i) the number of requested documehtsand (iii) the relative

edium city 80km x 80km ) . .
Small city 50km % 50km importance of textual relevance to spatial relevance. Their
County 20km x_20km settings are shown in Table 1V in which the underlined values

are the default settings. In each experiment, we only vagy on
TABLE IlI parameter value while fixing the others at their defaultéesm

PROPERTIES OF SAMPLE DOCUMENT SETS explicitly stated. We do not report the performanceHgbrid,

[ATimes94 | Factiva as it performs much worse thatybridg for all of the cases.
No. of indexed documents 110,273 380,760 As an example, for Factiva, wheh = 100, « = 0.5 and
Average no. of words per doc || 504 522 ; 2 2 ;
No_of ndexed document wordh 90,986 103286 |S] varies from10“ to _50()_, the average search time and_ I/O
Total size (MB) 271 5560 cost njcurred forHybrid, is ;hown in Table V. Comparing
No. of locations 2119 4007 with Fig 10, we can easily find out thatybridg outperforms

Hybrid, significantly. The similar results are observed for the
We implementIR-tree and store the index on disk usingrest experiments. The reason behind is that to compute TF-
keyword based storage scheme, denotedRsyee. In addi- IDF we have to find all of the documents located inside
tion, we implement the hybrid indeklybridg that presents a query spatial scope in order to decide idé value (as
an R-tree on top of inverted files arkR*-tree (denoted as defined in Equation (2)). Aslybrid; maintains R-trees under
KR*-tree) for comparison. Notice that since the origingk* inverted files, all of the documents that contain any of the
tree can only support search for documents that contdin query keywords have to be accessed while the majority of
guery keywords, we improve its query processing algoritbm them are located outside the query spatial scope.
handle the search for documents that can corgamequery
keywords, for comparison. The improved algorithm keeps all
the candidate nodes with each containing at least of
the query keywords in the node selection process and thenParameters
retrieves all the documents from these candidate nodes for Spatial scope size.§))
top-£ document ranking. In our experiment, we fix the disk Request no. of documents)(
. . ! The rate of textual rel.«f)
page size atKB, use 4-byte integers to represent a document
ID, a node ID, a TF value (i.etf;'%y or tfy 4), @ DF value
(i.e., idfw,p s), a pointer individually, and use two 4-byte
floating points to store coordinates in a two-dimensionatsp
All the algorithms were implemented in Microsoft Visual [ IS]

TABLE IV
EXPERIMENT PARAMETERS

| Values |
102, 202, 1002, 5002 (unit: kn?)
10, 30, 50, 100300

0, 0.25,0.50.75, and 1

TABLE V
SEARCH PERFORMANCE VS |S| FORHYBRID (k = 100, « = 0.5)

| Search Time(MS)[ I/O Cost (# Page Accessed)

C++, and all the experiments were conducted on Intel Xeon 103 622.8 904.2
2.0GHz computers equipped with 8GB main memory running 207 7238 11724
Mi ft Windows Server 2003 100 8098 39275

ICroso - 5007 9445 9657.1

In the following, we present the results of two sets
of experiments. The first set is to examine the searéifect of k. First, we vary the requested number of document,
performance ofiR-tree against that of others in terms ofk, from 10 to 300 while |S| is fixed at100km x100km and
average search time and average I/O cost. The formerqids fixed at0.5. Figure 9 shows the experimental results of
the average duration between the time the query is issustithree approaches in terms of the average search time and
to the time all of the result documents are identified ovewverage I/O cost againgt The first finding is thaHybridg
all of the evaluated queries, and the latter stands for therforms the worst whileéRtree performs the best in all the
average number of index pages accessed by each queages. Consider the search tinkR*-tree takes aroundt8%
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Fig. 11. Search performance vs.(|.S| = 100km x100km, k = 100)

of Hybridg’s search time whileRtree takes aroun®0% of sizes|S| (ranging from 10km x10km to 500km x500km),
Hybridg’s search time under Factiva. For LATimes'98;tree  with & fixed at 100 and « fixed at 0.5. The number of
takes aroun@0% of Hybridgr's search time andR*-tree takes documents that are spatially relevant%as listed in Table VI,

around41% of Hybridgr’s search time. and the experiment result is plotted in Figure 10.
The second finding is that the I/O cost of bathbridg and TABLE VI

KR*tree is not affected byt while that of IR-tree increases SPATIAL SELECTIVITY

as k increases. This is becaustbridr evaluates all of the | 1S [ [ATimes'94 | Factiva |

documents that are spatially and textually relevant to thery 10km x 10km 819.5 1872.13

regardless ok. ThoughKR*-tree only explores the documents 20km x 20km 946.66 2458.17

100km x 100km 2267.86 4808.12

in the leaf nodes which are spatially and textually relevant e 50k e

to the query, it still needs to retrieve all the documents in
those nodes first to get the tapdocuments. HowevelR- In generalR-tree performs the best whilelybridg does the
tree adopts a ranking-based document retrieval. It evaluaigerst, i.e., the performance trend is consistent with timatew
the documents based on the likelihood that a document willriousk values. It is observed that the superiorityIBftree

be included into the final result, and documents which aeserHybridz becomes more significant whéfi| increases. In
more likely to become result documents will be evaluatale figure,IR-tree incurs40% of Hybridg’s search time when
earlier. The advantage of rank-based document retrieval oyS| = 20km x20km, but only17% of Hybridg's search time
blind evaluation becomes more significant when the diffeeenwhen|S| = 500km x500km. This is because the tdpsearch
betweenk and the cardinality of the candidate set is larger. Agigorithm adopted inR-tree only accesses some, but not all,
an illustration, whensS| = 100km x 100km, Hybridg retrieves of the candidate documents. AS$| becomes larger, more
440 documents an&R*-tree evaluate222 documents for all documents are covered by queries, resulting in larger dateli
thek settings under Factiva data set. On the other himadlee  sets. Consequentliybridg suffers from the exhaustive scans
evaluatesl82 documents wherk = 30 and 203 documents of every single candidate document independeit &onsider
when k = 100. Overall, IR-tree performs much better thanthe results for Factiva. Whej$| = 100km x100km andk =
both Hybridr and KR*-tree in terms of 1/O cost. 100, Hybridg and KR*-tree evaluate440 and 222 documents,
Effect of Query Scope Sizé(S|). Next, we evaluate the perfor- respectively, whilelR-tree evaluates203 documents. When
mance of the approaches under different query spatial scapé = 500km x500km andk = 100, Hybridg and KR*-tree
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evaluate2, 210 and960 documents, respectively, whilB-tree VI. CONCLUSION

evaluatesi01 documents. . . _ In this paper, we focus on the efficiency issue of geographic
Effect of «. Third, we evaluate the impact of with & fixed  gocument search. We propose an efficient indexing structure

at 100 and|S]| fixed at100km x100km. The result is shown namely, |R-tree, along with a topdocument search algorithm
in Figure 11. Again,IR-tree outperforms bothHybridr and o, geographic document search.

KR*-tree significantly under all cases. Since bdihbridg and  \ve are prototyping IR-tree as a public geographic document
KR*-tree need to rank all of the candidate documents befokgarch facility and building a testbed based on IR-tree for
determining the topi- relevant documents, their performancegiyre research. We also plan to further enhance the IR-tree
do not change much under different values. However, ingex based on various access patterns.

the performance ofR-tree drops slightly asa increases.
Notice that even when only textual relevance, but not spatia

relevance, is considered (i.ey, = 1), IR-tree still performs | § . "
; [gn Ht] E. Amitay, N. Har'El, R. Sivan, and A. Soffer. Web-a-whe€&eotagging
much better than others, which indicates that the documeht /" 2% ' IrSIGIR'04 pages 273280, 2004.

summaries do provide good guidance of document retrievgd) v. N. Anh, O. de Kretser, and A. Moffat. Vector-Space Rigkwith
based on textual relevance. Effective Early Termination. Ir8IGIR’01, pages 35-42, 2001.

; [3] V.N.Anh and A. Moffat. Pruned Query Evaluation using femputed
3) Index Construction Cost and Storage Overheauthe Impacts. INSIGIR'06 pages 372-379, 2006.

last set of experiments, we evaluate the construction aubt a(4] R. Baeza-Yates and B. Ribeiro-NetdVlodern Information Retrieval
storage overhead of different index structures, with tesul  Addison Wesley, 1999.

; R ; [5] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient Query Pessing
presented in Table VIl and Table VIIR-tree takes a bit longer in Geographic Web Search Engines. SIGMOD'06 pages 277288,

than KR*tree because it consumes more time to aggregate »qos.
the information of DF and TF. In terms of storage overhead§$] Dow Jones Factivaht t p: // www. facti va. com

*_ R 7] R. Fagin, A. Lotem, and M. N. Optimal. Optimal aggregatiogalthms
for KR*-tree and IR-tree, we separate the document summar)l for middieware. InPODS'01 pages 102113, 2001,

from an R-tree to show the storage overheads of the differef) | p. Felipe, V. Hristidis, and N. Rishe. Keyword search epatial
components of the index. Notice thi&-tree requires around databases. IICDE'08, pages 656-665, 2008.

; ; ; V. Gaede and O. Gnther. Multidimensional Access Method#A\CM
25% extra space compared with the hybrid approaches, sin¢d Computing SUrveya0(2):170-231, 1998.

it maintains the summary information of DF and TF values @fg] u. Guntzer, W.-T. Balke, and W. Kiessling. Optimizing multi-fee
different keywords in the internal nodes. On the other hand, queries for image databases. \iaDB'00, pages 419-428, 2000.

*_ 1] A. Guttman. R-Trees: A Dynamic Index Structure for Sgaiearching.
as KR*tree only stores the IDs of the tree nodes for each In SIGMOD'84 pages 47-57, 1984.

query keyword, it needs less storages tiRitree. Given the [12] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. ProcegsBpatial-
requirement of high search performance in search engines Keyword (SK) Queries in Geographic Information RetrievallRE

and the fact thatiR-tree significantly improves the search Systems. ISSDBM07 pages 16-25, 2007,

. . . {h3] D. Hiemstra. A Probabilistic Justification for Using TFIRF Term
performance as shown in the previous set of experiments, theé weighting in Information Retrieval. Int. J. on Digital Libraries

extra storage overhead is well paid off. 3(2):131-139, 2000.
TABLE VII [14] G. R. Hjaltason and H. Samet. Distance Browsing in Spatiabases.
TODS 24(2):265-318, 1999.
INDEX CONSTRUCTIONCOST (UNIT: HOUR) [15] C. B. Jones, A. |. Abdelmoty, D. Finch, G. Fu, and S. VaitheTSPIRIT
- ; - Spatial Search Engine: Architecture, Ontologies and Spétdexing.
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