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SECTION I 

INTRODUCTION 

Many applications, particularly in a business environment, need highly available and reliable 

multiple hard disks to store huge amounts of data.

of Inexpensive Disks (RAID) can be employed to satisfy this requirement [1]. RAID is 

widely used in many companies, universities, and government organizations. However, the 

disks in RAID may fail in a few years because of random damage and other reasons. To 

protect the data in RAID, constructing erasure codes for tolerating multiple disk failures is 

very important. 

In order to retrieve the information lost in

disks (in coding theory, this is known as the capacity of erasure channel [2]).

Reed-Solomon code [3] can achieve this capacity. However, the encoding and decoding of 

Reed-Solomon code involve operations o

desirable to have binary linear codes that only involve exclusive

operations. For , i.e., for tolerating two disk failures, many good codes have been 

developed [4], [5], [6], [7], [8], [9], [1

codes. Array codes are a class of binary linear codes, where information and parity bits are 

placed in a two-dimensional (or multidimensional) array instead of a one

The information and parity bits are defined over an Abelian group

operation. Usually, . The bits are just binary bits and addition is an XOR operation 

[14].The best results are EvenOdd codes [

However, these codes all have distance 3, meaning that they can be used for tolerating two 

disk failures. Recently, a generalization of EvenOdd codes has been developed [

However, for  the encoding and decoding are yet to be developed. In practical 

applications of RAID, the size of each individual symbol (i.e.,

vector: During update operations, we will want to update a minimal number of redundant 

symbols when a single information symbol is updated. That means the parity

should be of the form

In this paper, we develop a new class of binary MDS array

used in tolerating three disk failures in RAID. The codes are similar to Reed
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Many applications, particularly in a business environment, need highly available and reliable 

hard disks to store huge amounts of data. A new technique called Redundant Arrays 

of Inexpensive Disks (RAID) can be employed to satisfy this requirement [1]. RAID is 

widely used in many companies, universities, and government organizations. However, the 

isks in RAID may fail in a few years because of random damage and other reasons. To 

protect the data in RAID, constructing erasure codes for tolerating multiple disk failures is 

In order to retrieve the information lost in  failed (erased) disks, we need at least

disks (in coding theory, this is known as the capacity of erasure channel [2]).

Solomon code [3] can achieve this capacity. However, the encoding and decoding of 

Solomon code involve operations over finite fields and are thus very slow. It would be 

desirable to have binary linear codes that only involve exclusive-OR (XOR) 

, i.e., for tolerating two disk failures, many good codes have been 

developed [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. These codes are called MDS array 

codes. Array codes are a class of binary linear codes, where information and parity bits are 

dimensional (or multidimensional) array instead of a one-dimensional vector. 

and parity bits are defined over an Abelian group  with an addition 

The bits are just binary bits and addition is an XOR operation 

[14].The best results are EvenOdd codes [5], [14],  [12], and 

However, these codes all have distance 3, meaning that they can be used for tolerating two 

Recently, a generalization of EvenOdd codes has been developed [

the encoding and decoding are yet to be developed. In practical 

applications of RAID, the size of each individual symbol (i.e., ) can be as big as a whole

vector: During update operations, we will want to update a minimal number of redundant 

symbols when a single information symbol is updated. That means the parity

In this paper, we develop a new class of binary MDS array codes, which can be efficiently 

used in tolerating three disk failures in RAID. The codes are similar to Reed
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Many applications, particularly in a business environment, need highly available and reliable 

A new technique called Redundant Arrays 

of Inexpensive Disks (RAID) can be employed to satisfy this requirement [1]. RAID is 

widely used in many companies, universities, and government organizations. However, the 

isks in RAID may fail in a few years because of random damage and other reasons. To 

protect the data in RAID, constructing erasure codes for tolerating multiple disk failures is 

disks, we need at least redundant 

disks (in coding theory, this is known as the capacity of erasure channel [2]). The well-known 

Solomon code [3] can achieve this capacity. However, the encoding and decoding of 

ver finite fields and are thus very slow. It would be 

OR (XOR) 

, i.e., for tolerating two disk failures, many good codes have been 

0], [11], [12], [13]. These codes are called MDS array 

codes. Array codes are a class of binary linear codes, where information and parity bits are 

dimensional vector. 

with an addition 

The bits are just binary bits and addition is an XOR operation 

 [13]. 

However, these codes all have distance 3, meaning that they can be used for tolerating two 

Recently, a generalization of EvenOdd codes has been developed [14]. 

the encoding and decoding are yet to be developed. In practical 

) can be as big as a whole 

vector: During update operations, we will want to update a minimal number of redundant 

symbols when a single information symbol is updated. That means the parity-check matrix 

 

codes, which can be efficiently 

used in tolerating three disk failures in RAID. The codes are similar to Reed-Solomon codes. 
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The binary MDS array codes are a class of binary linear codes, where information bits form 

an  array and parity bits form an

RAID,  indicates the number of “data,” which can be bytes or computer words, and are 

stored on a disk,  is a very large prime, and

disks on which information “data” will be st

rate is , i.e., it achieves the capacity of erasure channel [

parity-check codes. Therefore, the encoding and decoding are very fast.

This paper is organized as follows: In

(CPM) and their algebra, which are very useful in the subsequent sections. In

introduce the Reed-Solomon-like MDS array codes based on the Vender

circular permutation matrices, whe

both encoding and decoding are very fast.

Section 4, a very fast decoding procedure is presented. Finally, conclusions are presented in

Section 5. 

 

SECTION II 

NOTATIONS AND MAIN LEMMAS

In this section, we introduce and briefly review some mathematical results, which are very 

important in understanding the new codes and their fast encoding and decoding algorithms.

2.1 Circular Permutation Matrices and 

In this paper, for a matrix 

order of rows (columns) is from 0 to

Let  be an odd prime. Let

an  zero matrix. Now, we define the

where  is a  vector of 1s and

that

over . We have
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The binary MDS array codes are a class of binary linear codes, where information bits form 

array and parity bits form an  array. In applications of these new codes in 

indicates the number of “data,” which can be bytes or computer words, and are 

is a very large prime, and  denotes the number of information 

disks on which information “data” will be stored. In RAID,  should be 

, i.e., it achieves the capacity of erasure channel [1]. These codes are low

check codes. Therefore, the encoding and decoding are very fast. 

This paper is organized as follows: In Section 2, we introduce circular permutation matrices 

(CPM) and their algebra, which are very useful in the subsequent sections. In

like MDS array codes based on the Vender-monde matrices and 

circular permutation matrices, where the parity check matrices satisfy (1.1). For these codes, 

both encoding and decoding are very fast. When , it is reduced to the codes in [5]. In

Section 4, a very fast decoding procedure is presented. Finally, conclusions are presented in

LEMMAS 

In this section, we introduce and briefly review some mathematical results, which are very 

important in understanding the new codes and their fast encoding and decoding algorithms.

2.1 Circular Permutation Matrices and Their Algebra 

, we always assume that 

order of rows (columns) is from 0 to . 

be an odd prime. Let  be an  and

zero matrix. Now, we define the 

  

vector of 1s and  is an  vector of 0s. It can be easily checked 

form a group with matrix multiplication 

 

 

2 

The binary MDS array codes are a class of binary linear codes, where information bits form 

ray. In applications of these new codes in 

indicates the number of “data,” which can be bytes or computer words, and are 

denotes the number of information 

. The code 

]. These codes are low-density 

we introduce circular permutation matrices 

(CPM) and their algebra, which are very useful in the subsequent sections. In Section 3, we 

monde matrices and 

(1.1). For these codes, 

, it is reduced to the codes in [5]. In 

Section 4, a very fast decoding procedure is presented. Finally, conclusions are presented in 

In this section, we introduce and briefly review some mathematical results, which are very 

important in understanding the new codes and their fast encoding and decoding algorithms. 

, i.e., the 

and  be 

 as

vector of 0s. It can be easily checked 

form a group with matrix multiplication 
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For example, let 

Let

In the following, if no confusion arises,

and , respectively.  

We also define

Thus, . 

From (2.1), we have 

Lemma 2.1 

Let , then

Clearly, these matrices form an Abelian group with the traditional multiplication over

. The unity element is 

 

It can be easily checked that 

such that  = 1. Thus, we have

Thus, the rank of  is at least

exactly two 1s. Therefore, the rank of

New efficient MDS array codes for RAID Pt 1 

, we have the group as follows:

 

  

In the following, if no confusion arises, , , and  are used in place of 

 

 

Clearly, these matrices form an Abelian group with the traditional multiplication over

, i.e., identity matrix. We have

 

 has rank . For any , there is

= 1. Thus, we have

is at least . On the other hand, each column and each row has 

exactly two 1s. Therefore, the rank of  is , i.e., it is a singular 
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, , 

 

Clearly, these matrices form an Abelian group with the traditional multiplication over  

, there is 

 

. On the other hand, each column and each row has 

 matrix. 
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We define a quasi-left-inverse matrix of

 

Let

where  denotes  zero matrix.

To derive the explicit form of 

It can be easily checked that

and

 

Definition 2.1 

Let . A quasi-left-inverse matrix

Example 2.1 

Let us consider the case of 

and

because . 

From the definition, we have

We have the following result: 

Lemma 2.2 

Proof 

See Appendix. 

New efficient MDS array codes for RAID Pt 1 

rse matrix of , denoted by 

  

  

zero matrix. 

To derive the explicit form of , we introduce a function: For 

  

  

inverse matrix  is defined by

  

, . Thus,
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, as follows:

,
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It can be easily checked that the rank of

the other hand, each row of 

Therefore, 

Lemma 2.3 

 and  have rank

Remark 

 is the matrix formed after the deletion of the last column of

Now, we are going to derive the relation between

We define a special permutation matrix

We have the following lemma:

Lemma 2.4 

Proof 

Let . Then, from

 and  if and only if 

From (2.8) in Lemma 2.2, we have

Lemma 2.5 

Furthermore,  is a 

Proof 

New efficient MDS array codes for RAID Pt 1 

It can be easily checked that the rank of  is . Thus, the rank of 

 has exactly two 1s. 

have rank  for . 

is the matrix formed after the deletion of the last column of 

Now, we are going to derive the relation between  and 

We define a special permutation matrix  :

  
We have the following lemma: 

  

. Then, from (2.9), we have 

, i.e., . Thus, . 

Lemma 2.2, we have 

 and

 where

  
is a nonsingular matrix. 
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 is at least . On 

. 

. 
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See Appendix. 

Example 2.2 

Let , . Then, we have

Thus, we have

From (2.9), we have

 

From (2.7), we have 

the same reason, we can determine all the values of

 

It can be easily checked that 

Definition 2.2 

A modified quasi-left-inverse matrix of

defined by
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. Then, we have  because 

  
  

  

, because, 

the same reason, we can determine all the values of . Thus, we have

  

, i.e.,

  

inverse matrix of  for , denoted by 

 where
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. Furthermore,

. For 

, is 
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This modified quasi-inverse matrix is very important in our decoding algorithm.

Example 2.3 

Let , we have

It can be easily checked that 

It can also be checked that

i.e., 

From this example, it can be easily found that

We have the relation between 
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inverse matrix is very important in our decoding algorithm.

, i.e.,

  

 and

From this example, it can be easily found that

  

  and  : 
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inverse matrix is very important in our decoding algorithm. 
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Lemma 2.6 

Let  be the sum of all columns of

weight of row  of 

Furthermore,  is a nonsingular matrix.

 

Proof 

See Appendix. 

From the above lemma, we know that there is a 

(2.12) is true. Let us consider the matrix

Since for each , there are nonsingular

from Definitions 2.1 and 2.2, we have

On the other hand, the rank of

Lemma 2.7 

The matrix

Now, we analyze some operations which are very important in the encoding process. 

Let . 

Lemma 2.8 

To implement 

and , we do not need any XOR

Proof 

See Appendix. 

Lemma 2.9 

There need to be  and 

 and 

Proof 

See Appendix. 
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be the sum of all columns of , i.e.,

 is odd and otherwise 0. We have

 where 

is a nonsingular matrix. 

From the above lemma, we know that there is a modified quasi-left-inverse matrix such that

is true. Let us consider the matrix 

, there are nonsingular  and 

we have

On the other hand, the rank of  is . Then, the rank of  is also . Therefore, we have

 has rank 

Now, we analyze some operations which are very important in the encoding process. 

, we need  XOR operations, and to implement

, we do not need any XOR operations. 

 XOR operations to implement 

, respectively. 

 

8 

, i.e.,  if the 

. 

inverse matrix such that 

, where . 

. Then, 

  

. Therefore, we have 

, for . 

Now, we analyze some operations which are very important in the encoding process. 

XOR operations, and to implement 
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2.2 The Reed-Solomon Codes

In the theory of error-correcting codes, the Reed

defined by the Vender-monde matrix and are Maximum Distance Separable (MDS) codes.

MDS codes are also called 

First, we briefly review the Vender

distinct from each other. A submatrix con

A linear code  defined by

The code length is , the code dimension is

is  (or 

When , adding three columns, we have the following matrix

The linear code  defined by

Solomon code. This code is also an MDS code.

 

SECTION III 

THE EXTENDED REED-SOLOMON

In this section, we introduce the Reed

Reed-Solomon-like codes on CPM.

We first define the following binary matrix:

is an  binary matrix. It can be regarded as an

where each block-column contains
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Solomon Codes 

correcting codes, the Reed-Solomon codes are very important. They

monde matrix and are Maximum Distance Separable (MDS) codes.

 codes (see [15], p. 316). 

First, we briefly review the Vender-monde matrix:

 where  s, for

distinct from each other. A submatrix consisting of any columns of  is a full rank matrix. 

defined by  as a parity check matrix is called a Reed

, the code dimension is , and the minimum distance 

). It is also an MDS code. 

ding three columns, we have the following matrix

  
defined by  as a parity check matrix is called an extended Reed

Solomon code. This code is also an MDS code. 

SOLOMON-LIKECODES BASED ON CPM 

section, we introduce the Reed-Solomon-like codes based on CPM and the extended 

like codes on CPM. 

We first define the following binary matrix:

 where

binary matrix. It can be regarded as an 

column contains  columns, and each block-row contains
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Solomon codes are very important. They are 

monde matrix and are Maximum Distance Separable (MDS) codes. 

s, for , are 

is a full rank matrix. 

as a parity check matrix is called a Reed-Solomon code. 

, and the minimum distance 

as a parity check matrix is called an extended Reed-

like codes based on CPM and the extended 

where . This 

 block matrix, 

row contains  rows. 
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Example 3.1 

Let , i.e., , 

We have the following theorem:

Theorem 3.1 

Any  block-columns form a full rank submatrix, i.e., the columns of any

are linearly independent. 

Proof 

Let us consider the submatrix 

New efficient MDS array codes for RAID Pt 1 

, and , we have

 

 and

  
We have the following theorem: 

columns form a full rank submatrix, i.e., the columns of any 

  consisting of block-columns 
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 block-columns 

 : 
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Multiplying  on the left side by the sequence matrices:

an  0-matrix,

an  0-matrix. From

are full rank, i.e., the ranks are all

rank matrix. 

 

Since the summations of all rows of

(i.e., ), and the bottom row of

each block-row in  can be deleted. The reduced matrix is an

check matrix. When the bottom row in each block

New efficient MDS array codes for RAID Pt 1 

  

on the left side by the sequence matrices:

 where 

matrix,  is reduced to the following matrix:

 where

matrix. From Lemma 2.3, the submatrices in the diagonal block columns 

are full rank, i.e., the ranks are all . Thus, the reduced matrix has rank 

Since the summations of all rows of  and all rows of  are rows of 1s, respectively 

), and the bottom row of  is a row of 0s (i.e., ), the bottom row in 

can be deleted. The reduced matrix is an 

check matrix. When the bottom row in each block-row in  is deleted, it can be regarded as 
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 represents 

where  is 

, the submatrices in the diagonal block columns 

, i.e.,  is a full 

1s, respectively 

), the bottom row in 

 binary parity-

is deleted, it can be regarded as 
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multiplied by . Hence, we have the following matrix

parity-check matrix:

This is an  binary matrix.

 

Example 3.2 

Let , i.e., , 

Now, we are going to introduce the extended Reed

Let  be an Abelian group and let 0 be the identity element. Let

define

New efficient MDS array codes for RAID Pt 1 

. Hence, we have the following matrix , which is equivalent to

binary matrix. 

, and , we have

 

 and

  
introduce the extended Reed-Solomon-like codes based on CPM. 

be an Abelian group and let 0 be the identity element. Let 
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, which is equivalent to  as a 

  

like codes based on CPM. 

, . We 
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Let  be a vector over

, we define

Definition 

Let  be the following linear code over

, , and

obtained by adding  parity

 vectors, , , and , are parity

 for , are information vectors.

In many applications, the Abelian group

When , this code is reduced to the EvenOdd code [

Abelian group array codes. At most

codes can be efficiently used for tolerating multiple disk 

this paper, we are interested in the case of

defined by (3.6) as a parity-check matrix.

The encoding process is to find

From Lemmas 2.8 and 2.9, there needs to 

 

SECTION IV 

DECODING OF THE EXTENDED

Assume that a codeword 

for , are lost. Then, the received codeword is given by

New efficient MDS array codes for RAID Pt 1 

be a vector over  and 

be the following linear code over an Abelian group defined by

 where 

parity-check block columns. For these codes, the first

, are parity-check vectors, and the other  vectors, i.e.,

, are information vectors. 

applications, the Abelian group  can be computer words with bit

, this code is reduced to the EvenOdd code [5], [14]. These codes are MDS 

Abelian group array codes. At most  erasure error vectors  can be corrected. Thus, these 

codes can be efficiently used for tolerating multiple disk failures in 

this paper, we are interested in the case of , i.e., the extended Reed-Solomon

check matrix. 

The encoding process is to find , given , by

  
there needs to be  XOR operations. 

EXTENDED REED-SOLOMON-LIKE CODES BASED ON

 is transmitted and that 

, are lost. Then, the received codeword is given by

 where
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 be a vector over

  

 i.e.,  is 

check block columns. For these codes, the first 

vectors, i.e., 

can be computer words with bit-XOR operations. 

]. These codes are MDS 

can be corrected. Thus, these 

 architectures. In 

Solomon-like codes 

BASED ON CPM 

 packets, say 

, are lost. Then, the received codeword is given by
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We define the syndromes of the received codeword

, 

Let

It follows that   

Since  and (4.1), we have

i.e.,

The decoding process can be briefly summarized as follows: Given a received codeword

and the locations of lost packets

then determine the values of the lost packets

In order to solve this problem, we now are going to derive a recursive algorithm for solving 

the linear equations with the Vender

following simple example. 

Assuming that there are three errors, for decoding we consider t

Case 1. The three errors are on the information disks, i.e.,

In this case, recovering the information bits is reduced to solving the following equations:

First, consider the forward steps. Left multiply both sides of the above equa

New efficient MDS array codes for RAID Pt 1 

We define the syndromes of the received codeword  as

 where 

, where  and . 

 and

 

, we have

 

The decoding process can be briefly summarized as follows: Given a received codeword

and the locations of lost packets , we first compute syndromes from

then determine the values of the lost packets  for  by solving

this problem, we now are going to derive a recursive algorithm for solving 

the linear equations with the Vender-monde matrix. First, we begin our derivation with the 

Assuming that there are three errors, for decoding we consider the following cases:

The three errors are on the information disks, i.e., 

In this case, recovering the information bits is reduced to solving the following equations:

  
First, consider the forward steps. Left multiply both sides of the above equa

 where  is a  zero matrix. But, sometimes
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The decoding process can be briefly summarized as follows: Given a received codeword 

, we first compute syndromes from (4.1) and 

 (4.2). 

this problem, we now are going to derive a recursive algorithm for solving 

monde matrix. First, we begin our derivation with the 

he following cases: 

. 

In this case, recovering the information bits is reduced to solving the following equations:

First, consider the forward steps. Left multiply both sides of the above equation by the matrix

zero matrix. But, sometimes  denotes 
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a  zero matrix, if no confusion arises. We have

Left multiplying both sides of

It is equivalent to 

where , , , and  denote 

 

Now, we have rearranged the original coefficient matrix into an upper triangular matrix. 

Observe the right sides of (4.11)

 

needs  additions in . Thus, in 
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zero matrix, if no confusion arises. We have

  

Left multiplying both sides of (4.11) by  we obtain

  

  
, , , and , respectively.

Now, we have rearranged the original coefficient matrix into an upper triangular matrix. 

(4.11)-(4.12), where we carried out 

  operations. From Lemma 2.9, each such operation 

. Thus, in these two forward steps  additions are needed.
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we obtain

respectively. 

Now, we have rearranged the original coefficient matrix into an upper triangular matrix. 

, each such operation 

additions are needed. 
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Next, we perform the two backward steps. Left multiplying both sides of

considering , where

which can be rewritten as

Following the same approach, we have

Observe the right sides of (4.13)

 

From Lemma 2.9 and Lemma 2.10, in the backward step,

needed. 

Thus, to solve this set of linear equations, a total of

Case 2. There is an error on the parity

information disks , and . 
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Next, we perform the two backward steps. Left multiplying both sides of (4.12)

  

, where  (See Section 2

  

Following the same approach, we have

  
(4.13)-(4.15), where we carried out 

 operations and 3

and Lemma 2.10, in the backward step,  additions in

Thus, to solve this set of linear equations, a total of  additions in

There is an error on the parity-check disk and the other two errors are on the 
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(4.12) by

Section 2), we have

  

 operations. 

additions in  are 

additions in  are needed. 

check disk and the other two errors are on the 
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When the error is on the last parity

linear equations:

It is equivalent to

i.e.,

have

When the error is on the first parity

should be changed by 

When the error is on the middle parity

should be changed by  and

The decoding process consists of two steps: calculating the syndromes from (4.1') and 

recovering the lost data from (

and  XOR operations for the second step. Thus, a total of

operations are needed for decoding.

 

SECTION V 

CONCLUSIONS 

In this paper, we have presented a class of MDS array codes, which are based on circular 

permutation matrices in the Vender

parity-check matrix. These codes are very efficient for tolerating up to thre

RAID. For tolerating two disk failures in RAID, these codes are equivalent to EvenOdd codes 

[5]. There need to be  XOR operations for encoding, and

operations for decoding. When 32 codewords are encoded/decoded simultaneously, a 3

improvement can be achieved in efficiency.

However, this approach cannot be generalized for tolerating four or more disk failures in 

RAID architectures. 

 

APPENDIX 

PROOF OF LEMMA 2.2. 
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When the error is on the last parity-check disk, it is reduced to solving the following set of 

  

 where  and 

  

When the error is on the first parity-check disk, it is reduced to (4.16). But,

 and  for , respectively. 

When the error is on the middle parity-check disk, it is reduced to (4.16). But,

and  for , respectively. 

The decoding process consists of two steps: calculating the syndromes from (4.1') and 

(4.2). There needs to be  XOR operations for the first step, 

XOR operations for the second step. Thus, a total of 

operations are needed for decoding. 

In this paper, we have presented a class of MDS array codes, which are based on circular 

permutation matrices in the Vender-monde matrix. The parity-check matrix is a low

check matrix. These codes are very efficient for tolerating up to thre

For tolerating two disk failures in RAID, these codes are equivalent to EvenOdd codes 

XOR operations for encoding, and 

operations for decoding. When 32 codewords are encoded/decoded simultaneously, a 3

improvement can be achieved in efficiency. 

However, this approach cannot be generalized for tolerating four or more disk failures in 
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reduced to solving the following set of 

  

. Thus, we 

(4.16). But,  and 

(4.16). But,  and 

The decoding process consists of two steps: calculating the syndromes from (4.1') and 

XOR operations for the first step, 

 XOR 

In this paper, we have presented a class of MDS array codes, which are based on circular 

check matrix is a low-density 

check matrix. These codes are very efficient for tolerating up to three disk failures in 

For tolerating two disk failures in RAID, these codes are equivalent to EvenOdd codes 

 XOR 

operations for decoding. When 32 codewords are encoded/decoded simultaneously, a 32-fold 

However, this approach cannot be generalized for tolerating four or more disk failures in 
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Let 

We need to prove that

From the multiplication of matrices, we have

where , i.e.,

From (2.8), we have 

(A.1). Thus, we have

From (2.7), we have

When , we have

Now, let us consider the following cases:

Case 1.  and 

have  and 

If  and , then from (2.7) and (A.5) we have

If  and , then from (2.7) and (A.5), we have

Case 2.  : We have 

(2.7) we have 

Case 3.  and  : We 

 for , and 

The proof is completed. 

Proof of Lemma 2.5 

Let . From (2.8), we have

Let 

hand,  if and only if 

New efficient MDS array codes for RAID Pt 1 

, where  and 

  

multiplication of matrices, we have

, i.e.,

. There are two 1s in  :  and

  

Now, let us consider the following cases: 

 : If , then . From (2.7) and (A.5), we 

. Hence, . 

, then from (2.7) and (A.5) we have

 and , i.e., . 

, then from (2.7) and (A.5), we have

 and , i.e., 

 . Since 

, i.e., . 

: We have . Since 

, we have  and , i.e.,

. From (2.8), we have  if and only if 

, then we have . On the other 

. Hence, . 
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. 

 

  

and  from 

  

  

(2.7) and (A.5), we 

 

. 

, from 

, i.e., . 

. 

. On the other 
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Let . Then, we have

if , we have 

Thus, , i.e., 

that . 

On other hand, it can be easily checked that

Thus,  is also a nonsingular matrix.

Proof of Lemma 2.6 

From (2.6), we have

where . 

From (2.1'), we have

where 

are  s. 

From the above equations, we have

From (2.6), we have

From the definitions of  and

The columns of  are columns of

column ), where the column order is

is . On the other hand, each row of

nonzero columns of  are columns of 1s. Thus, 

Therefore, 

From (A.6), we have
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. Then, we have . From 

. Combining the above two equations, we have

  

, if and only if . From (2.8), we know 

 

On other hand, it can be easily checked that  and  are nonsingular matrices. 

is also a nonsingular matrix. 

, in which column  and the last column 

From the above equations, we have

  

  

and , we have

  
are columns of 0s, except column  and the last column (i.e., 

), where the column order is  and the total number of columns 

. On the other hand, each row of  has no 1 or has an even number (

are columns of 1s. Thus, columns  and  
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 if and only 

. Combining the above two equations, we have

. From (2.8), we know 

are nonsingular matrices. 

 

 

and the last column 

and the last column (i.e., 

and the total number of columns 

has no 1 or has an even number ( ) of 1s and 

 are columns of 0s. 
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The columns of 

column. From the definition of

Now, we consider 

column and each row of 

) of  has two 1s and they are in column

in the above  rows, all columns except column

Therefore, 

From (A.7)-(A.11), we have

means 

It can be easily checked that 

Proof of Lemma 2.8 

Let 

Thus,  additions are needed. Let

Thus, there is no need for addition.

Proof of Lemma 2.9 

Let . From

It can be implemented as

Thus,  additions are needed to obtain

Let 

From (A.14) and Lemma 2.6, to implement the above operation there needs to be

Thus, it is clear that to implement
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 are columns of 0s, except column 

column. From the definition of , these two columns should be  s. Thus, we have

  

. It is known that 

 has two 1s. On the other hand, the bottom row (i.e., row

has two 1s and they are in column  and the last column. This means that 

rows, all columns except column  and the last column have two 1s. 

  

 that 

. 

 is a nonsingular matrix. 

. From (2.1'), we have

  
additions are needed. Let . From (2.1'), we have

  
Thus, there is no need for addition. 

. From Lemma 2.5, we have

  

 where

additions are needed to obtain . 

. From (2.11'), we have

  
, to implement the above operation there needs to be

Thus, it is clear that to implement ,  additions are needed.

The authors would like to thank Mr. Hua Qian and Ms. Anna Robin for helpful discussions.
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 and the last 

s. Thus, we have

. It is known that each 

has two 1s. On the other hand, the bottom row (i.e., row 

and the last column. This means that 

and the last column have two 1s. 

where . 

, to implement the above operation there needs to be additions. 

additions are needed. 

The authors would like to thank Mr. Hua Qian and Ms. Anna Robin for helpful discussions. 
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