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SECTION I
INTRODUCTION

Many applications, particularly in a business environment, need highly available and reliable
multiple hard disks to store huge amounts of data. A new technique called Redundant Arrays
of Inexpensive Disks (RAID) can be employed to satisty this requirement [1]. RAID is
widely used in many companies, universities, and government organizations. However, the
disks in RAID may fail in a few years because of random damage and other reasons. To
protect the data in RAID, constructing erasure codes for tolerating multiple disk failures is
very important.

In order to retrieve the information lost in + failed (erased) disks, we need at least ;redundant
disks (in coding theory, this is known as the capacity of erasure channel [2]). The well-known
Reed-Solomon code [3] can achieve this capacity. However, the encoding and decoding of
Reed-Solomon code involve operations over finite fields and are thus very slow. It would be
desirable to have binary linear codes that only involve exclusive-OR (XOR)

operations. For r = 2, i.e., for tolerating two disk failures, many good codes have been
developed [4], [5], [6], [ 7], [8], [9], [10], [11], [12], [13]. These codes are called MDS array
codes. Array codes are a class of binary linear codes, where information and parity bits are
placed in a two-dimensional (or multidimensional) array instead of a one-dimensional vector.

The information and parity bits are defined over an Abelian group Gla) with an addition
operation. Usually, 9 = 2. The bits are just binary bits and addition is an XOR operation
[14].The best results are EvenOdd codes [5], [14], X -codes [12], and B-codes [13].
However, these codes all have distance 3, meaning that they can be used for tolerating two
disk failures. Recently, a generalization of EvenOdd codes has been developed [14].
However, for ™ = 3 the encoding and decoding are yet to be developed. In practical
applications of RAID, the size of each individual symbol (i.e., 77:) can be as big as a whole
vector: During update operations, we will want to update a minimal number of redundant
symbols when a single information symbol is updated. That means the parity-check matrix

1 0 .. 1 |F|'|_] h K |F£|..J

I
] 1 ca. M Jri'-_s_1 .Iri'.g_ Vs .FI_:-I.J
H=1. . . . . , . - (1.1}

should be of the form U0 Lo Ry b
In this paper, we develop a new class of binary MDS array codes, which can be efficiently
used in tolerating three disk failures in RAID. The codes are similar to Reed-Solomon codes.
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The binary MDS array codes are a class of binary linear codes, where information bits form
an m x m array and parity bits form an m x 3 array. In applications of these new codes in
RAID, s indicates the number of “data,” which can be bytes or computer words, and are

stored on a disk, (m+1)isa very large prime, and n denotes the number of information
disks on which information “data” will be stored. In RAID, n should be 2(} ~ 5(). The code

[
rate is n+3, 1.e., it achieves the capacity of erasure channel [1]. These codes are low-density
parity-check codes. Therefore, the encoding and decoding are very fast.

This paper is organized as follows: In Section 2, we introduce circular permutation matrices
(CPM) and their algebra, which are very useful in the subsequent sections. In Section 3, we
introduce the Reed-Solomon-like MDS array codes based on the Vender-monde matrices and
circular permutation matrices, where the parity check matrices satisfy (1.1). For these codes,
both encoding and decoding are very fast. When - = 2, it is reduced to the codes in [5]. In
Section 4, a very fast decoding procedure is presented. Finally, conclusions are presented in
Section 5.

SECTION 11
NOTATIONS AND MAIN LEMMAS

In this section, we introduce and briefly review some mathematical results, which are very
important in understanding the new codes and their fast encoding and decoding algorithms.
2.1 Circular Permutation Matrices and Their Algebra

In this paper, for a matrix M = (my; }fxi, we always assume that U = 2.7 =1 =1 je_ the

order of rows (columns) is from 0 to ! — 1.

Let = m + 1 pe an odd prime. Let Im be an 11t x reidentity matriz gnd On be
an m x m zero matrix. Now, we define the €lernental cyclic mairicEmp g

0ol |
.E”, Il | (2 | ,]
Frn 0

where 1 isa 1 X m vector of 1s and 07 is an m X 1 vector of 0s. It can be easily checked
Ty By F2 E™
that { we—1 1 - l}

[TTEE B it 171

form a group with matrix multiplication

tri 1 -1
: = I.'.'.-—]-. =k

over GF[E) We have =1 tri—1 i+ 1"
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For example, let P = + 1 =3, we have the group as follows:

I o n I 1} [} b " [N I 0 [} a . I

Hi 1 " I n I “l " [N Hi LK n a " 1

. =
L Hi i N 8 n Lt n I ) LN Hi LA N n a u 8
N

Hi 1 ) i n L n a L1l 8

- I
-f.l.ll-l—l - [ " ] - (22)
Let 0.1 (= L1ws

In the following, if no confusion arises, {, £/, and I are used in place of {m+1, Emi1,
and fm+1, respectively.

We also define '@ = amodp.
Thus, 0<({a} <p— 1.

From (2.1), we have

Lemma 2.1

=0 i 21)
Let £ = {‘3i=j}p><p, then
Clearly, these matrices form an Abelian group with the traditional multiplication over
GF(2) The unity element is [, i.e., identity matrix. We have

ExEBE =F xE =FE%* and ' =1

It can be easily checked that (I+ E} has rank s:. For any l<a=m thereisl=b=m

fi-1

I-ZEU):I;E"“:I | E.

frE"} (
such that (@B} = 1. Thus, we have =1
Thus, the rank of {f + E° ) 1s at least rrz. On the other hand, each column and each row has
exactly two 1s. Therefore, the rank of {I + £ J is m, 1.e., it is a singular P * P matrix.

New efficient MDS array codes for RAID Pt 1



We define a quasi-left-inverse matrix of '[I + E¥ ), denoted by '[I + E‘”}_l, as follows:

| L1 R
(- By Bvy = = (. (2.3)
00
_.T
LA On 1 .
§70-0 : (2.4)
[T

Let
where m denotes e % 11r Zero matrix.

To derive the explicit form of {I + Eﬂ}_l, we introduce a function: For i 7 U',

ey ={let Lp~t 1) (2.5]

It can be easily checked that {mde) | U=a=mp={0.1.....m} (2-6)

Tyl = . (2.4
and

Definition 2.1
Letrt# 0 A quasi-left-inverse matrix (I 4+ E*)7' = (aij)is defined by
o, { 1 form,f) < m.(i) (2.7)

R N
1 otheruise,

Example 2.1

Let us consider the case of # = 2, £ = 1.2 Thys, ™ Ll =lz+ -1l ==

and Tlr) =(lr=1)3 - 1) = {3r+2),

because (2_1} = 3.

1 [KE 1] K] L 1 [N L 1]
11 00 T R Y A T
-5 |1t 11 00 Vi 2ot I SRS S B
1 1 1 1 1 il 1 L L 1]
111 1 11 1 1]
From the definition, we have
We have the following result:
Lemma 2.2
Y
wa—] . Lo 1 A .
T+ BT+ BN = =} (28]
—
[} 0
Proof
See Appendix.
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It can be easily checked that the rank of {J is 1e. Thus, the rank of '[f + E‘”} is at least +s. On
the other hand, each row of {I + E’i} has exactly two 1s.

Therefore,

Lemma 2.3 N
'[I + E‘”} and {I + E”}I have rank s for # 7 U,

Remark
{I + E”}I 1s the matrix formed after the deletion of the last column of {I + E* }

Now, we are going to derive the relation between (4 T E) " and (I + B#)7F,

We define a special permutation matrix I, = (pi; }PXP :

1 forj=m.li) .
Py { {1 othermise, {2.9)

We have the following lemma:

Lemma 2.4
I, =11 (2.10)
Proof

Let TTL, = (e )oo. Then, from (2.9), we have % = 2k—o PidPsik = Pima(i)
and @i; = lif and only if T"ﬂ{l} = 7";:{}}, i.e.,? =.. Thus, {di:j}pxp =1

From (2.8) in Lemma 2.2, we have

Lemma 2.5
I+ By, = (1 + B (2,11}
and
O+ By ' = (f — (211 hore
10 0 0 07
110 ... 00D
o 111 ... 00
Utk =1. . . -
1 11 ... 110
1 11 ... 1 1]
-1

Furthermore, {I + E#} is a nonsingular matrix.

Proof
|

New efficient MDS array codes for RAID Pt 1 5



See Appendix.

Example 2.2
. — -1y _
Letp=m+1= 5, =2 Then, we have # =3 because (xp)= 1. Furthermore,
mulel = melx) = (3w + 2.

ThuS, we have i‘r-gl[ﬂj =12 i‘r-gl::].:] =], :'r-g{E] =3, T {Rj =1, i‘r-gl[-i:] =4

o 0 1 06 0
Lo o0 00
=30 0 0 1 0
G 1 0 0 0
¢ 0 0 01

From (2.9), we have

From (2.7), we have @0.0 = @0.i = 0.3 = 1 because, mull) < m,(3) < m,(0) = “’n{m. For
the same reason, we can determine all the values of @i.;. Thus, we have

110 10
01 000
7-E%'=11 1110
01010
11111

It can be easily checked that (I +E) "L =T+ E)" je.

ST B B [ T R
I TR B B! o1 oA
1 Le il 1= |1 1 1 1 [yl
T CR N (F I | R W
__'!'I [ Y I 1 B L 1 1 1 1 1 ]
(o 0 1 0 o] [t oo oo oo o]
1 [ | R F A | 1 o0 0
= |00 1} 1 onf—11 1 1 il It
T R | R O [ T R
_fJ 0 I} I | ] _I 1 1 | 1 ]
Definition 2.2
A modified quasi-left-inverse matrix of {f + E#} for 1 7 U', denoted by {I + E#}_ , 18
Tl
O=
—_— —
(I + B9 QT+ B = ). (2.12) U

defined by where

__________________________________________________________________________________________________|
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This modified quasi-inverse matrix is very important in our decoding algorithm.

Example 2.3
L I T B 1 | a1 0
| O | 1 A I 1
=== o 00 o end SR 0 L 10
1 VI T} roloa 10
Let p=0.pt = 2’ we have w101 LI T S B

It can be easily checked that (I+E) ' x (I+E?%) = @ ie.

| A | L T | Loonoaon |
noLonono0 a 1 0 0 010 o0 1
T T I VS T S TR N I S R N s
nooLono 1 01 0 1 0 0nonoa 1|
[ B T I
T
1 ] 1 1 ] il 1 1 ql 1
[ R T BTN IR T B R
I 1 il 1 ] i 1t ¥] 1 1
_I:' ool I 1_ __[] 1t (W | II_.
v o0 1 ol [ro0 o oooa 1]
I | 1l (K] 1 i L [N 1
1 i L I =110 1t 1 ] 1
[ 1 1 1 il 0l 1 i) 1 1
It can also be checked that L I R
0 1 00
1 01 1 0
2.1
+E% 7 =11 11 1 0
1 0 1 0
) 71 3 00 01
1.e.,{f‘|‘E} Q{I‘I‘E} = and
From this example, it can be easily found that
1 il 1 1 il L 1 1 1 1] 1 1 1 1 N
1 a1 1 0 o100 111 1 0
1 1 1 1 i) -1 1 1 1 {1 [ e 1| [ | Il .
i 1 1 1 il il 1 1 1 I 1] [ | ] W]
y] il I N 1 1 1 1 1 1 1 1 1 1 ]

We have the relation between (£ + E*) ™" and (1 + E#)~1.

__________________________________________________________________________________________________|
New efficient MDS array codes for RAID Pt 1 7



Lemma 2.6

Let V1 = (v v, - - vm)" be the sum of all columns of {7 + E*)™" je. vi = lif the
weight of row i of (£ 4+ E")7"is odd and otherwise 0. We have
o | oy L P
(f— L") I+ £ "+ V, (2.13) where V = K T?’T?’Tﬁi‘]

Furthermore, (I+E*) Y isa nonsingular matrix.

Proof
See Appendix.

From the above lemma, we know that there is a modified quasi-left-inverse matrix such that
J— t =
(2.12) is true. Let us consider the matrix My = {‘r + EH }{Hjsz{"r + Eﬂf}}, where #; # U,

| Sy
Since for each H;, there are nonsingular ({ — ™) and {f + B } 1. Then,
!

(H (I + 1-:“-]‘]> I+ B M =0
from Definitions 2.1 and 2.2, we have e
On the other hand, the rank of & is sr.. Then, the rank of Mt is also .. Therefore, we have

Lemma 2.7
!
M, (H{I + f_f;f-'-'])f, (2.14)
The matrix i has rank s, for #i 7 U,
Now, we analyze some operations which are very important in the encoding process.
Let o = {1!1}. (LT 1-',,,}.
Lemma 2.8

To implement (I + E*) x o 2T

T .
and I, T , we do not need any XOR operations.

, we need ¥ XOR operations, and to implement £# x

Proof
See Appendix.

Lemma 2.9

There need to be m and [ + P) XOR operations to implement (74 E#)! x
and (1 + E#)"1x 7T 4 ﬁ, respectively.

T

Proof
See Appendix.

__________________________________________________________________________________________________|
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2.2 The Reed-Solomon Codes

In the theory of error-correcting codes, the Reed-Solomon codes are very important. They are
defined by the Vender-monde matrix and are Maximum Distance Separable (MDS) codes.
MDS codes are also called Ptinal codes (see [15], p. 316).

First, we briefly review the Vender-monde matrix:

m 1 1 1 s 1]
T At i L
- 2 e ped -
I — | T L3 e {2.13)
=1 —1 r—1 r-1
a T ! i '
L 3 . where i s, for 1 1= 1 are

distinct from each other. A submatrix consisting of any rcolumns of HV is a full rank matrix.
A linear code C rs defined by Hv as a parity check matrix is called a Reed-Solomon code.
The code length is 1, the code dimension is & = n — =, and the minimum distance
isd=r+1(ord=n —k+1). Itis also an MDS code.

When r = 3, adding three columns, we have the following matrix

Lm0 1 1 1 ... 1
Hpp = |00 1 0 &y x| (2.16])
i1 rf rj ri . Ti

The linear code € Ers defined by HHEV as a parity check matrix is called an extended Reed-
Solomon code. This code is also an MDS code.

SECTION III
THE EXTENDED REED-SOLOMON-LIKECODES BASED ON CPM

In this section, we introduce the Reed-Solomon-like codes based on CPM and the extended

Reed-Solomon-like codes on CPM.

We first define the following binary matrix:

{ l’__ I_, I_ﬁ_ I B
|1 EI  ET BT . E'D
i I E°r F'r E'T ... E™I |, (3.1
A L T 'r_ where r < n < m. This

isanT(m +1) x (n +1)m binary matrix. It can be regarded as an " * (7 + 1) plock matrix,

where each block-column contains r: columns, and each block-row contains {m + 1} TOWS.

__________________________________________________________________________________________________|
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Example 3.1
Letrn =4 ie,p=02n

1 0 0 0 0 0 0 o0 0o o0 o0 1
NDIUL'I ﬂlU[l[l UUUU{J
=0 0 1 0|, =0 1 O 0].g=(1 0 0 0

00 01 0 0 1 0 01 00

0 0 0 0o o 1 0 0 1 0

00 1 0 0 1 0 0
w{J‘[IIJI H_EIIJI[I
Er=|l0 0 0 0f|.er=(0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 L 00 0 apa

LI T A T I Y A I 1 O O W I I [ |
L1 I T | T A - o A ¥ R VO A P |

onda T aonIT a0 T anil i
LI L T VT A VR W A S B I I A I (R R VI ||

a0 Lo a0 own1T nma1n
7 v 4 (1 O I A A T o A 1 W N | R A

[0 I WA | e A O | A WA I V0 R A O M

Lofto gou1 oLlon ouwhnd 1i1n
LA T I T W VT RO I O T (R I A E
L o A o I I A A (A I VWO V1
[ | A Y | s ¥ I M O A A W R M |
LW O T T I W T 4 VI VI RO (N RV E I

We have the following theorem:

Theorem 3.1
Any r block-columns form a full rank submatrix, i.e., the columns of any r block-columns
are linearly independent.

Proof

Let us consider the submatrix 1+ consisting of block-columns 1.2, . . . . Ly

__________________________________________________________________________________________________|
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I 7 I I
ey ey oy T
H:" = -h'lg":l .Ir h-lg'r.'l .lr .-I:a'r'!' I h‘lgln: 'r ] (3:2]
E[:"—] iy f E(:"— 1% _:r_ E(:'—I‘,-.r;!,_:r_ E[:"—] jE j"_
Multiplying Hr on the left side by the sequence matrices:
(0 o 0] I T s B s
TS ! £ ok [ B SIY
0 Y o ET 0 g0
o000 i i} o a0 R
Lad b0 (3 i Lo o o Bz
[ S o 0]
Fo ! i) L] il
I TR | TS
I V! i
L o g where (2 represents

an {m + 1} X {m + U 0-matrix, H, is reduced to the following matrix:

i I i

!
Il P | FOM AR [ TS R BT}
Il I L B R = S I I R Bt [ i B R I R
n - \ tl s |
i I il LRI vl 1_[ Iu'—j-. Al
-

where (7 is
an {m + 1} X 11 O-matrix. From Lemma 2.3, the submatrices in the diagonal bloc}g columns

are full rank, i.e., the ranks are all m:. Thus, the reduced matrix has rank rm, i.e., H,. is a full
rank matrix.

Since the summations of all rows of E°J and all rows of I are rows of 1s, respectively

(ie., {111 - 1}), and the bottom row of I is a row of Os (.e., {DDD- . D}), the bottom row in
each block-row in H can be deleted. The reduced matrix is an ™7 X m(n + 1) binary parity-
check matrix. When the bottom row in each block-row in 1:-_} is deleted, it can be regarded as

New efficient MDS array codes for RAID Pt 1 11



multiplied by I Hence, we have the following matrix H , which is equivalent to Hasa

i —

_-Ir.'.'.' J.r'rn -fr,-,-.- .lr_._._. Caa Il’.'-' i
I, I'EI IVELT et ... I'E']
L L L Y
I, ;F'f'Er-—lf f}'Ez[:-—nf fI'EH(J'—l’:IE' o f:'Erlqj-—ljlj'

parity-check matrix: (3.3)

This is an 771 X (n +1)m binary matrix.

Example 3.2
Letrn =4, ie, P =09 n=4 and r = 3, we have
L O 0 0 0o 0 00 o 0 0 1
; D'IDDF.EFILDUUFI:” o0 0 0
oo 1 o) o1 0 of 1 0 0 0
o o o1 00 1 0 0o 1 0 0
0 o0 1 0 0 1 0 0
T o o 01 F gy IU 0 1 0
Do 00 0o 0 0 1
L 0O 00 00 0 0] 4nd

A T O Y T L VO S R R S B HA |
L N e L L A O A
o T | VN | A W A O I A |
L O O N L T ARSI |

—

(O N T A L R VY T R VL 0 WA I I P
R T O | A Y T | O VI |V A IV
L O I | L T T I A
L O O 1 O | L I I (N VI

L W | (VI (A
L O T O I |V N N VA TR R | BRI
L e O O I VI
L O 1 T O I I A R O IO

Now, we are going to introduce the extended Reed-Solomon-like codes based on CPM.
Let (G ) be an Abelian group and let O be the identity element. Let be{l. 1} g€ G we

I forb=1
bxy=y><b={g forb—1. (3.4)

define

__________________________________________________________________________________________________|
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—5
o = {1-‘1}- Ugaesus 1-‘::-1} be a vector over (G and ' = {:bu- bro.... bn—l} be a vector over

Let
bhox =7 = b | (3.5)
GF{E} we define = ”'J(] s ‘!J|]:| o {F}| =1 } g8 {j}”_J " i‘.=|.,_|}.
Definition
Let ¢ be the following linear code over an Abelian group defined by
. —T
(-j={C=I:?H:?’]:?'_’y"':?rr—:i)|H*Uf = }!'
where 7= (eit-cizee o Cim)
i
L A i I i I
- —_ — — - - - - i _—

[ P R 5 O (RN L S L Tl S L Sl PR =[r‘|H ]~

G O d B PET O FEVY T FE
 Cif €6 and (3.6) ie., H"is

obtained by adding r = 3 parity-check block columns. For these codes, the first r = 3

vectors, ?l}, ?l, and ?-2, are parity-check vectors, and the other n + 1 vectors, i.e., E).;i

ford=j=n+ 3, are information vectors.
In many applications, the Abelian group (& can be computer words with bit-XOR operations.

When r = 2, this code is reduced to the EvenOdd code [5], [14]. These codes are MDS
Abelian group array codes. At most ;- erasure error vectors ?s can be corrected. Thus, these
codes can be efficiently used for tolerating multiple disk failures in A7 [ architectures. In
this paper, we are interested in the case of r = 13, i.e., the extended Reed-Solomon-like codes
defined by (3.6) as a parity-check matrix.

) ) == = = = —
The encoding process is to find ca- 1. €2, given €3: ©4.* = * - Cay3 by
o
- g
N
ol = HY ] (3.7
) ;
7y
o1 3

From Lemmas 2.8 and 2.9, there needs to be Jmrznn XOR operations.

SECTION 1V
DECODING OF THE EXTENDED REED-SOLOMON-LIKE CODES BASED ON CPM

A
Assume that a codeword E={?ﬂ" E)’1' R ?n+3} is transmitted and that ¢ packets, say ?m
fori=1.2,..., t=r = 3, are lost. Then, the received codeword is given by

F:{T:' PF )
o 0 ?:E{#l*.f"'h“':#-']"

New efficient MDS array codes for RAID Pt 1 13



We define the syndromes of the received codeword ¥ as

S - =
1[1' JI"I =8 1 [4‘1} Whereﬁ={5ﬂ. S‘[.?g}
, _S}!' = {Sg:u. Sid... ., Sim—1. Sg:m}’ where %i.g € & and Sim = D.
_| '
6= (F0. T, T z”a={_“, EF b id
Let o e and I TN IR T
It follows that © ¥ +&.
H'y! =57, 4.1
Since H*e! = B\T and (4.1), we have @1
— — — + wl
I r o I C Fy
Ee ] o A o oy =
E[r .l]ga- ;F ot 'l ];rgf ) ‘ E[I’ Il]u.-;; ? _>:;LJ;-
"' S |
ie., (1.2)
The decoding process can be briefly summarized as follows: Given a received codeword ¥
and the locations of lost packets #1. 2. . .. . Ht, we first compute syndromes from (4.1) and

then determine the values of the lost packets ?Iii forl =1 =1t by solving (4.2).

In order to solve this problem, we now are going to derive a recursive algorithm for solving
the linear equations with the Vender-monde matrix. First, we begin our derivation with the
following simple example.

Assuming that there are three errors, for decoding we consider the following cases:
Case 1. The three errors are on the information disks, i.e., 0= <pg<pz=n,

In this case, recovering the information bits is reduced to solving the following equations:

CHA

I . I - I . ?g.l_ & |.r:| .

Feop o Fe }.'_. _E‘.u;!.f- ?ﬂ-".? - |7 .][],.

Ernp  plep prap| |, =0

g
First, consider the forward steps. Left multiply both sides of the above equation by the matrix
i O o
Ere 0
0 Er T where (7 is a  * P zero matrix. But, sometimes ¢ denotes

__________________________________________________________________________________________________|
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a P * T zero matrix, if no confusion arises. We have

I I I c}m
R+ E”'—’]? (I + E“*)f e
I S f:-'“-’-]f Rl e — h’“-“]? [
—ilH] —s (4' I :I
LT i
— | []‘ L EM _.[m 2 _yil i
+ EMR _"l'uj ?:1.:'
ra O
o 1 0],
C - . (I D | .
Left multiplying both sides of (4.11) by we obtain
7 I I Ty
() (B -|—E"'3]f (& 1 E”“}f s
(} ) [ 4 R R 4 H-“"}f h
—I}':l.]:: _.:'[['I:'
o) o
—il 3| =
E 5
—)._l'l n F'.” —)I]J ?Lfll
(4.12)
It is equivalent to
i i i 2.,
O BRI BT E(I 4 ESOF s
() O EST 4+ Fhey ] + Rl ] | T
a0
o
_ |
& I 1
)
[4.12

where a, b, ¢, and @i denote #1, f12 + pi1, {13 + pr2 + pi1, and i ~ K, respectively.

Now, we have rearranged the original coefficient matrix into an upper triangular matrix.
Observe the right sides of (4.11)-(4.12), where we carried out

b) —}- 1
2+1)= 3{?( + Ep. ( i Htype operations. From Lemma 2.9, each such operation
needs ¥ additions in (5. Thus, in these two forward steps 3p additions are needed.
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Next, we perform the two backward steps. Left multiplying both sides of (4.12) by

{0 (.f + £ '“':I ]{f + ey lb' ha o gn
o1 (1 fome sy Vg :
0 0 !
considering @ X I' = I, where (I+ E)"HI + E*) = Q (See Section 2), we have
I o+
ER(] 4 o “I}I?m _
ORIy Sy ST S e B Y e

— [}

P =L g N [
5 I {j" | Er ,r-|} l[_j' | B ,u_.:l i IrI?EJ ?“

. . A .
—! . . 2 = —ldl
R N I = =50
—y — 3]
L 5 5
{4.13)
?’.“-I + ?H: |
BT B f_ﬂr.rfu
—
= i a
i gy (4.14)
E 5
_ —iH A
ki I 5 L
‘ . S i -1
which can be rewritten as mi B -2
Following the same approach, we have
— B} 1= Epp—— Xl
r.‘m ?f]]+(I+EJ'] E“'H] ?:.]]
— _ SENE E— Al i
i“ﬂ - Syt o8y R
gy ?;ﬂ-; —er_JJJ
{1.15)

Observe the right sides of (4.13)-(4.15), where we carried out
(241) =3(I + E*=)'E* x ¥ J-type operations and 3T+ ) — type operations.

From Lemma 2.9 and Lemma 2.10, in the backward step, 3'[3”1 + PJ' additions in (& are
needed.

Thus, to solve this set of linear equations, a total of '[EP + 3”1} additions in (& are needed.

Case 2. There is an error on the parity-check disk and the other two errors are on the
information disks {1, and ft2.
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When the error is on the last parity-check disk, it is reduced to solving the following set of

T 7 » —+{1H
E};nf _E,u-_mf |: {':}“- :| = i1.|| BB [116}
g pep] L] LT

5
PoT o] - ErU BN b
K¢ U:m.__p;r}_;r =] ?.i[]:-+ a1 IO
It is equivalent to

7 il il[2] e
O E”{I-l—ErL} i - ?_-il_:

) 1 ] — —_
ie., where © = p1 and 92.1 = H2 — {11, Thus, we

-
£ 11 —
— =
s
—}lﬂ"

have
When the error is on the flrst parlty check disk, it is reduced to (4.16). But, ” piand S

linear equations:

_-.l.l.:' —-—E"Iif-l—ﬂ'hl} I-—al]l
Fe(l + iy et

should be changed by £** " 4 and £ e+1 fori= 1.2, respectively.

— (0}
When the error is on the middle parlty -check disk, it is reduced to (4.16). But, E*iand “ 1

should be changed by E** and El ? fori=1.2 , respectively.

The decoding process consists of two steps: calculating the syndromes from (4.1') and
recovering the lost data from (4.2). There needs to be 3rrzrt XOR operations for the first step,

and 9(m + 1) XOR operations for the second step. Thus, a total of (3mn +9(m + 1)) XOR
operations are needed for decoding.

SECTION V
CONCLUSIONS

In this paper, we have presented a class of MDS array codes, which are based on circular
permutation matrices in the Vender-monde matrix. The parity-check matrix is a low-density
parity-check matrix. These codes are very efficient for tolerating up to three disk failures in
RAID. For tolerating two disk failures in RAID, these codes are equivalent to EvenOdd codes

[5]. There need to be drin XOR operations for encoding, and (3mn + 9(m + 1}} XOR
operations for decoding. When 32 codewords are encoded/decoded simultaneously, a 32-fold
improvement can be achieved in efficiency.

However, this approach cannot be generalized for tolerating four or more disk failures in
RAID architectures.

APPENDIX
PROOF OF LEMMA 2.2.
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Let (i Joxp = {ﬂi:j}pxp{ﬂi:j}pxp, where (@ij)pxp = (I + E*) ™ ang (¢ Jpsp = (I + E#}

10 0 L0 017
10 ... 01
o o 1 ... 01
{f.l} ':I||_|x||_| —_ - . ' . N f
oo o ... 11
We need to prove that Lo 0 0 ... 0 0l
=1
h"_l' = [EEN L I:-"L 1 )
From the multiplication of matrices, we have k-n
where '© { }PXF {I_I_E } Ly g = Uig = 1. (_-"‘1..2]
From (2.8), we have big = Zk:ﬂ- aikCk5. There are two 1s in Ckj : Cij and “{3+1)7 from
by =i+ LNy |:.|'1.3:I

(A.1). Thus, we have

L (. - Pl — 1 — i — Ll A4
From (2.7), we have Tl gl — {0+ p o+ L P e (Ad)

i) = =1y b - 1= {{j+ 1y 1) — 1

When J # T we have =mdidtpl) L
Now, let us consider the following cases:

{A.3)

Case 1.0 =i < mandd < m.[fi=j then i = @i T% i+, From (2.7) and (A.5), we
have @i; = Land %ili+s) = U Hence, bij = 1,

Ifi # Jjand ““u } =Ty } then from (2.7) and (A.5) we have

T li) < ) = w5+ pd).
‘ : ’ and Tig = @ity =0 e by =0,

Ifi # Jjand ““n } =Ty } then from (2.7) and (A.5), we have
'?TJI-[?-] = fr,u{(j + J”}:I = T:,l:'f -”I and ﬂ’i,}- — ﬂ'i{}+,|'-i:l — ]_ le bi} — [_}

Case 2.: =] =1 : We have Pm.m = @mm + mu-1, Since “#{m} =m =7, (1 — 1}', from
(2.7) we have Hmm =0mpu-1 = 1 e, bmm =10

Case 3.i < m and J = ™ : We have Pim = Gism Qi1 Since Tu(m) = m = m,(i)
—1)=0=m,(i)

fori{:m,andﬂﬁ{# we have @im =D and @ip—1=1je Bim =1

The proof is completed.

Proof of Lemma 2.5
Let U + E}' t= ﬂ”}pxp From (2.8), we have @ij = Lif and only if 7L
iRVl
Let (I+E) H = (B !J}Pxp then we have Pij = Ek:ﬂ @ikPi.k. On the other
hand, Pik = Lif and only if k=mlJ } Hence, Pid = @im(3),
-
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Let IL,(b;; }Px}i = (cig }pxp. Then, we have Fij = > k—oPikbii. From Pik = Lif and only
ith = 7"#{1} we have €id = Pmu(i)i. Combining the above two equations, we have

G = by, = a

Tald) Tl

Thus, €id = L, i.c., @ntilomatid = L if and only if 7u{7) = 7u(i). From (2.8), we know
that '[f:ij}ﬁxri = {:I + EV }_l.

On other hand, it can be easily checked that I+ E}_l and Llu are nonsingular matrices.
Thus, (I+E*) s alsoa nonsingular matrix.

Proof of Lemma 2.6

o o
Q=[£: : }—mw Oy 1 ]—HL
0 Y] 1
From (2 6), we have -

Where [GP”“ 1 le]

QU+ F*) = (I + U1 + B
From (2 1), we have =T+ B+ U+ By =(T+ E*)+ W,

_ 9T, Br7rer. T

(A6

Where

—
7.

, in which column {m - #} and the last column

are
From the above equations, we have

((F+ E") " VIQUE + B9
S (T EY e V(T — F W) = (T + BT+ B
P ENTIW o VT B 4 VT
(A7)

From (2.6), we have o+ H“]_]'{I + £ - Q. (AS)
From the definitions of 1" and ¥1", we have

o T T T T T T
viw =77 o e T e e )

The columns of V I are columns of Os, except column {m - F} and the last column (i.e.,
column ), where the column order is U1 ..., Mt and the total number of columns
is (m + 1). On the other hand, each row of I has no 1 or has an even number (7:) of 1s and

nonzero columns of ¥ are columns of 1s. Thus, columns '[m - #) and sz are columns of Os.
Therefore,

LJH__I — Dj'j‘.-c]'r- {"!'LH}

—
I-E "W =(I+E97'0 ...0
From (A.6), we have ( ) U+ B
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The columns of '[I + EF}_II’V are columns of 0Os, except column {m - :U} and the last
column. From the definition of ?, these two columns should be ¥ s. Thus, we have
L oy

. .
J-Ey'W=[0 .0 70 ...0 %
I+ E'“} = [T}T?T ces TH?T]{I + Eﬂ}. It is known that each

column and each row of {f + E¥ ) has two 1s. On the other hand, the bottom row (i.e., row

Now, we consider V{

) of (I + E") has two 1s and they are in column 7 — H and the last column. This means that
in the above 1 rows, all columns except column 7 — i and the last column have two Is.
Therefore,

C o
VII+E =[0 .. 0 %0 .0 T (A1)

. N L
From (A.7)-(A.11), we have L+ B+ VU + B =@

means (I + E*)~' = (I + E*)7' 4V,

that

It can be easily checked that (I+E*) " isa nonsingular matrix.

Proof of Lemma 2.8
Let (7 + E*) x 7T =07 =(ug.uy. ... . )" From (2.1"), we have

W, i o, for 0<i<m. (A.12)
Thus, #* additions are needed. Let E# x 7T = %7 From (2.1"), we have
U= Jor <l < m. (A13)

Thus, there is no need for addition.

Proof of Lemma 2.9
Let [T+ E}_l x 7T = ?T. From Lemma 2.5, we have

o= v for 0=i=m. (A.14)
1l

for i=0tom do @, =r_1 + 05

It can be implemented as where -1 = U,

Thus, s additions are needed to obtain .
Let (I + E*)7" x 7T = R\T. From (2.11"), we have

T+ B w =T BT

From (A.14) and Lemma 2.6, to implement the above operation there needs to be sr:additions.
Thus, it is clear that to implement '['[I + EF}_I x 7T+ ﬁ), {m + P) additions are needed.
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