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Nowadays, location-related information is highly accessible to mobile users via issuing
Location-Dependent Spatial Queries (LDSQs) with respect to their locations wirelessly to
Location-Based Service (LBS) servers. Due to the limited mobile device battery energy, scarce
wireless bandwidth, and heavy LBS server workload, the number of LDSQs submitted over
wireless channels to LBS servers for evaluation should be minimized as appropriate. In this
paper, we exploit query containment techniques for LDSQs (called LDSQ containment) to
enable mobile clients to determine whether the result of a new LDSQ Q′ is completely
covered by that of another LDSQ Q previously answered by a server (denoted by Q′pQ) and to
answer Q′ locally if Q′pQ. Thus, many LDSQs can be reduced from server evaluation. To
support LDSQ containment, we propose a notion of containment scope, which represents a
spatial area corresponding to an LDSQ result wherein all semantically matched LDSQs are
answerable with the result. Through a comprehensive simulation, our proposed approach
significantly outperforms existing techniques.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The popularity of Location-Based Services (LBSs) has been rapidly increasing over the past decade [1]. Nowadays, location-
related information (such as local news, traffic report, weather, tourist guides, etc.) becomes highly accessible at any place
anytime. We refer to location-related information maintained and provided by LBS servers as a collection of stationary spatial
objects (or objects, for short) and requests for location-related information as Location-Dependent Spatial Queries (LDSQs). Common
LDSQs include range queries, window queries, nearest neighbor (NN) queries and kNN queries [32]. Then, a mobile client accesses
nearby objects by submitting an LDSQ along with its location (as a query point) wirelessly to an LBS server. The server evaluates
the LDSQ according to the query point and returns the result set (i.e., qualified objects for the query) to the client.

Since their locations are not always fixed, clients may need to reissue LDSQs to the server when they are relocated, so as to refresh
corresponding LDSQ results according to their new locations. However, wireless environments are highly resource constrained. First,
wireless bandwidth shared bymobile clients is scarce.High contentionon thebandwidth leads to a longquery latency. Second, short-life
batteries and significant power consumption in wireless communications cannot afford mobile clients to frequently issue LDSQs and
download query results. For instance, StrongARM SA-1100 processor [2] consumes only 200 mW. In contrast, RangeLAN2 PC wireless
card consumes 750 mW and 1500 mW [26] when it receives and sends data, respectively. Third, LBS servers may be overloaded in
serving a large mobile client population simultaneously. Thus, mobile clients cannot stay connected to LBS servers.

As we can observe, LDSQs issued at slightly different positions may receive similar or even equal results. Thus, the result set of
an LDSQ, if maintained properly, is useful to answer subsequent LDSQs locally. As long as they can be completely answered by

Data & Knowledge Engineering 70 (2011) 842–865

⁎ Corresponding author. Tel.: +1 508 910 6543; fax: +1 508 999 9144.
E-mail address: ken.ck.lee@umassd.edu (K.C.K. Lee).

0169-023X/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2011.06.001

Contents lists available at ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r.com/ locate /datak

Published in  Data & Knowledge Engineering
Volume 70, Issue 10, October 2011, Pages 842-865
https://doi.org/10.1016/j.datak.2011.06.001

http://dx.doi.org/10.1016/j.datak.2011.06.001
mailto:ken.ck.lee@umassd.edu
http://dx.doi.org/10.1016/j.datak.2011.06.001
http://www.sciencedirect.com/science/journal/0169023X


clients, some LDSQs can be saved from server evaluation, thereby reducing the energy and bandwidth contention and alleviating
server workload. In fact, mobile clients are nowpowerful to locally evaluate LDSQs if they do not need additional data from servers.
Nevertheless, how to effectively determine whether an LDSQ can be fully answered by a maintained query result is an important
research problem; and we are addressing this problem in this paper.

1.1. Query containment for LDSQs

In this work, we exploit query containment techniques for LDSQs and name these techniques as Location-Dependent Spatial
Query Containment (abbreviated as LDSQ containment). Different from conventional query containment extensively studied in
database query optimizations [5,6,13], our LDSQ containment aims at determining whether the result of an LDSQ, Q′, (denoted by
R′) is contained by that of another LDSQ, Q (denoted by R); formally, R′pR. In this research, we assume no predictable user
movement; and thus we do not predetermine whether and what LDSQs would be issued in the future and do not preload their
results in advance. This assumption is realistic to many daily applications. For instance, in a tourist information system, a tourist
may first search for points of attraction within her vicinity. She may then move towards one selected point of attraction while
occasionally issuing the LDSQ to ensure her moving path. The tourist's direction is not necessarily indicated to the LBS server for
some reasons (e.g., location privacy [12]). Dealing with this scenario, we only consider that a mobile client can answer any LDSQ if
its result R′ is contained by another LDSQ result R, maintained by the client. By this means, some LDSQs can be locally evaluated by
the clients and, on the other hand, the quantity of LDSQs submitted to a server for evaluation can be reduced.

To illustratehowanLDSQcanbeansweredwith aprevious LDSQresult, Fig. 1(a) showsa rangequeryQ issuedat aquerypointqupon
a set of objects (i.e., {a, b, c, d, e, f, g, h}).1 Let cir(q, r) representQ's circular search region centered at qwith radius r. The result setR is {c, d}
and the other objects (e.g. g and h) are non-result objects. For another range query Q′ with a search area cir(q′, r′), it is quite trivial to
determine R′pR if cir(q′, r′)pcir(q, r). Indeed, there are some other cases, in which R′pR though cir(q′, r′)Jcir(q, r). As a complete
analysis, we list all six cases categorized according to possible relationships between q and q′ and those between r and r′ below:

• Case 1. q′=q and r′=r. The radii and query points of Q′ andQ are identical, which immediately implies that cir(q′, r′)=cir(q′, r′).
Here, it is certain that R′=R as they cover exactly the same searched area.

• Case 2. q′=q and r′b r. This case implies that the search area of Q′ is fully contained by that of Q (i.e., cir(q′, r′)⊂cir(q′, r′)) and
hence R′ must be contained by R. As illustrated in Fig. 1(b), both Q1 and Q are issued at the same query point, q, and r1br, thus
R1pR.

• Case 3. q′=q and r′N r. The radius ofQ′ is larger than that ofQwhile both queries are issued at the samequery point. Since only those
objects inside cir(q, r) are locally available to the client, it is possible that cir(q′, r′) contains additional objects beyond cir(q, r).

• Case 4. q′≠q and r′=r. Both Q and Q′ have the same search area size but are at different query points. This case is common in
mobile applications where a client issues the same range query while moving. In this case, the result of Q′ is only contained by
that of Q if the non-overlapped portion (i.e., cir(q′, r′)−cir(q, r)) contains zero objects. Fig. 1(b) demonstrates this case that Q2

with r2=r but q2≠q gets R2={d}⊂R.
• Case5.q′≠q and r′b r. This case considers both the changeof searcharea sizes and the changeof querypoints. This scenariohappens,
for instance, when amobile clientmoves to a location and issues a query of a smaller search range. Consider that cir(q′, r′)Jcir(q, r).
Then, R′ is contained by R if and only if the area cir(q′, r′)−cir(q, r) does not contain any object, similar to Case 4. Notice that
cir(q′, r′)pcir(q, r) is a special case of this condition. Q 3 depicted in Fig. 1(b) provides an example. Area cir(q3, r3)−cir(q, r)
contains zero object and hence R3={c}⊂R.

• Case 6. q′≠q and r′N r. This case occurs when a mobile client moves to a location and issues a query of a larger search range. In
this case, Q′ may cover some additional objects beyond cir(q, r).

This analysis inspires our proposed concept of LDSQ containment. It is noteworthy that some existing approaches (as will be
reviewed in Section 2) can only handle a few of the above cases. For example, semantic region [8,33] only deals with Case 1, Case 2
and Case 5, while valid scope [24,41] handles Case 1 and Case 4. Our proposed LDSQ containment deals with all the cases (except

a) b)

Fig. 1. Illustration of overlapped query results.

1 The object distribution example is borrowed from [21].
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Case 3 and Case 6) at the same time, significantly improving the effectiveness in determining whether LDSQs can be locally
answered and thus overall system performance.

On the other hand, when r′N r (i.e., Case 3 and Case 6), the new search space cir(q′, r′) definitely covers a larger area than
cir(q, r). Because only objects inside cir(q, r) are available, the client needs to contact the server for possibly additional objects
located inside cir(q′, r′) but outside of cir(q, r). After all objects with cir(q′, r′) are collected, other range queries fully covered
by cir(q′, r′) can be answered. In many applications, initial queries usually cover broader areas in order to provide coarse
views of queried areas. Then, subsequent queries are used to drill down certain areas with smaller scopes. As other research
studies, these two cases are not addressed in this work.

1.2. Containment scope

To facilitate LDSQ containment determination, we introduce a notion of containment scope. Given a set of objects O distributed
in an area S, a containment scope for the result R of an LDSQ Q , denoted by SQ(pS), represents a spatial area. If Q′ is issued within
SQ and Q′'s search area size is not larger than Q's, Q′ is definitely answerable by R. Fig. 2(a) depicts a containment scope SQ for the
result set R of a range query Q of our example. Now, as shown in Fig. 2(b), because of conditions (1) r1≤ r and (2) q1∈ SQ, the result
set R1={d} for Q1 can be completely derived by only evaluating the objects included in R. Similarly, as r2≤ r, r3≤ r, and q2, q3 ∈ SQ
hold, Q2 and Q3 can also be answered with R locally, with R2={d} and R3={c}, respectively.

On the other hand, the representation of a containment scope SQ has a direct impact on (1) the wireless communication cost for
transmitting SQ fromthe server to a client, (2) computational overhead incurredby a client in decidingwhether a newquerypoint q′∈ SQ,
and (3) local client storage cost. Thus, this representation issue is important and isworth our researcheffort. Intuitively, a containment
scope can be represented as a polygon (i.e., a collection of edges and vertices). However, in some situations, a complex polygon that
contains many vertices and edges is formed that incurs larger transmission and storage costs. Even worse, polygon-based
representation does not provide an exact containment scope for certain LDSQs, e.g., range queries that have circular search areas.

Rather, we represent a containment scope by some object locations. Recall that given a query Qwith a result set R, a new query
whose search area does not include any non-result object is guaranteed to have its result fully contained by R. Here, we identify
only a representative subset of non-result objects (called complementary set) that sufficiently constitutes the formation of a
containment scope. A client preserves a result set R and a complementary set for R, both of which represent a containment scope of
R. Referring to Fig. 2(a), the containment scope is represented by a result set {c, d} and a complementary set {a, b, e, f}. Other non-
result objects (e.g., g and h) are not downloaded to the client so that both communication and client storage costs can be saved.

1.3. Paper organization

Thus far, we have used range queries to illustrate the concept of LDSQ containment and the notion of containment scopes. In
fact, the concept of LDSQ containment is broadly applicable to a variety of LDSQs. While the formulation of containment scopes is
highly related to the types of LDSQs, we detail our approaches for various LDSQs in this paper. We conduct an extensive evaluation
through simulations to validate the efficiency of the proposed approaches.

The remainder of the paper is organized as follows. Section 2 reviews related works and discusses the differences of LDSQ
containment from the existing approaches. Section 3 provides the system model and outlines LDSQ processing algorithms as the
basis of our discussion. Section 4 discusses LDSQ containment for range and window queries; and Section 5 discusses that for NN
and kNN queries. Section 6 analyzes the performance of the LDSQ containment. Section 7 evaluates our proposed LDSQ
containment in comparison with the existing approaches through simulations. Finally, as the conclusion of the paper, Section 8
lists our contributions presented and states our future research plans.

2. Related work

The ideaof LDSQcontainment is borrowed fromquery containment [5,6,13],which is developed todeterminewhether a query result
(or a materialized database view) is sufficient to answer a query based only on their query expressions. Differently, LDSQ containment

a) b)

Fig. 2. Containment scope and containment test.
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introduced in this paper considers query types, query parameters, query points andmore importantly, the spatial distribution of objects
that leads to an important notion of containment scopes. Related to LDSQ containment are some researchworks. Continuous LDSQs are
evaluated over time and their results are updated when query points are changed and/or objects move. Meanwhile, semantic regions
[8,22,30,33] and valid scope [21,24,41] are designed to assert whether LDSQs produce the same previous query results. Both of them are
themost related to our LDSQ containment, though they followdifferent design principles and assumptions.We review all of them in the
following. Besides [18] provides a comprehensive review of location-dependent query processing.

2.1. Continuous queries

In general, there are two major types of approaches for continuous queries. The first type of approaches assumes that the
movements of clients and objects are not predictable [7,10,11,14,16,28,29,34,39,40,42,44]. Thus, LDSQs are reevaluated whenever
their results become invalidated when a query point changes or some object locations change. Usually LBS servers need to keep
track of all queries; andmobile clients stay connected to the servers for query result updates. To avoid unneeded location updates,
some techniques, like safe regions [16,29] that are areas wherein objects are located and object locations would not affect any
queries, are explored. Usually the size and shape of safe regions are predefined. Differently, our containment scope is formulated
and computed based on queries and object locations. The second type of approaches assumes that queries and objects are moving
in predictable ways [17]. Various algorithms [3,19,20,23,35,36] for continuous queries were proposed to compute query results
according to client and object trajectories. Our work does not assume any given client trajectories.

2.2. Semantic region

Themain idea of semantic regions is to determinewhether the queried area of an LDSQ Q′ (denoted by AQ′) is covered by that of
another LDSQ Q (denoted by AQ). As long as A′QpAQ, the result for Q′, should be fully contained by that for Q. This semantic region
technique for window queries was first explored in [8]. As shown in Fig. 3(a), the result for a window query Q , R={c, d} is
preserved together with the description AQ as the semantic region for R. As another window query Q1 has searched area AQ1

fully
covered by AQ, Q1 is guaranteed to be fully answeredwith R only. The same idea for kNNwas studied in [33]. In [33], a safe distance,
based on triangular inequality, has been developed to examine if a kNN query result is subsumed by existing mNN objects. Given
mNN objects, o1,o2…om, obtainedwith respect to a query point q, kNN query issued at q′ can be answered if the displacement from
q to q′ is bounded by a safe distance, i.e., (|om, q|− |ok , q|)/2 where k≤m2.2 Fig. 3(b) shows a safe distance, i.e., (|d, q|− |c, q|)/2, for
an NN query over 2NN objects, i.e., c and d.

However, the idea and technique of semantic regions are overly conservative. In Fig. 3(a), another window query Q2 with search
area only partially covered by AQ is strictly considered to be not fully answered by the query result. In fact, it covers the sameQ's result
set. The safe distance for kNN queries is purely based on the result objects, without considering any non-result object. In Fig. 3(b),
another 2NN query, issued at q′ which is more than (|d, q|− |c, q|)/2 away from q, is considered to be not covered by the 2NN query
result. It actually covers the same two result objects c and d. In contrast, LDSQ containment can handle all these cases better.

2.3. Valid scope

A valid scope corresponding to the result set of a query Q represents an area such that an identical LDSQ issued inside the area
should have R as its result set. A valid scope can be determined by an intuitive approach [41] that simulates the client movement
for all possible directions from the query point to probe those non-result objects which affect result validity. Based on this idea, a
number of time-parameterized (TP) queries [35] are issued to identify non-result objects right after a query result is determined.
We refer to these as TP query based approaches. For window query, the initial valid scope for its result is formed as the intersection
of Minkowski regions [9] among all result objects. Here, a Minkowski region is a rectangular region centered at an object with its
extent equal to that of the query window. Then, a number of TP-window queries with identical window size are issued from the
current query point towards all vertices of the current form of valid scope. If any TP-window query touches a non-result object o′

a) b)

Fig. 3. Semantic regions.

2 We use |p, q| to represent Euclidean distance between points p and q.
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before reaching its target vertex, the valid scope is trimmed by o′ Minkowski window. Fig. 4(a) shows a formation of the valid
scope for a window query, in which arrows represent the directions of TP-window queries towards the current valid scope, i.e.,
intersection of c's and d's Minkowski windows. This valid scope refinement repeats until no more non-result object can be probed
to further refine the valid scope. For NN query, TP-NN queries are issued to formulate the valid scope of an NN query result. A
number of TP-NN queries are issued towards all vertices of a valid scope, which is initialized as an entire area. If any non-result
object is probed before a TP-NN query reaches the vertex of the current form of valid scope, the valid scope is refined. Fig. 4(b)
shows the valid scope for an NN query derived by TP-NN queries. Due to exhaustive TP query invocations, the TP query based
approaches always incur a long processing time and high I/O cost.

Alternatively, efficient geometry-based valid scope computation algorithms [21,24] have recently been proposed. Different
from TP query based approaches, these approaches exploit the geometrical relationship between result object and non-result
objects to formulate a valid scope. Themain idea of these approaches is to explore a search area gradually from a given query point.
The objects collected in an initial search space are result objects. Later, non-result objects located in the rest of the search space are
checked against the result objects. Those non-result objects constituting the formation of a valid scope are collected while the
others are discarded. Fig. 5(a) provides an example of valid scope computation for a window query. The geometry-based
approaches can also support range queries that the TP query based approaches cannot. Additional to online computation, for NN
query, the valid scope of an NN query (i.e., Voronoi cell [9]) can be pre-calculated, and each object is stored with a Voronoi cell, as
shown in Fig. 5(b). When an NN query is evaluated, the Voronoi cell of the result object is provided to the client [43]. As will be
discussed later, our online containment scope computation algorithms follow the same design principles as geometry-based
approaches. However, since the definition of containment scope differs from that of valid scope, the algorithms for containment
scope computation presented in this paper are not the same as those for valid scopes.

a) b)

Fig. 4. TP query based valid scope computation.

a) b)

Fig. 5. Geometry-based approach and Voronoi cell.

Table 1
Summary of existing approaches and LDSQ containment (where Q′ is a new LDSQ and Q is an old LDSQ).

Range query Window query kNN query

Semantic region AQ′pAQ Z R′pR [8] jq; q0 j≤ jom; qj−jok; qj
2

⇒R0 � R [33]

Valid scope (TP query based) [41] Not supported Q′=Q(#)⋀q∈ VR Z R′=R
Valid scope (geometry-based) [21] Q′=Q(#)⋀q∈ VR Z R′=R
LDSQ Q′ matches Q ⋀ q∈ SQ(q) Z R′pR

(#) where Q’ and Q are of the same type and with the same query parameters.
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Finally, we summarize the differences among those most related approaches, namely, semantic regions and valid scopes, in
terms of the main ideas and the supported types of queries in Table 1.

3. Preliminaries

To exploit LDSQ containment, we extend a conventional LBS client/server system model, as shown in Fig. 6, with three add-on
components: (1) a containment scope processor at the server side, (2) a containment tester and (3) a local LDSQ processor both at
the client side.

Since the computation of a containment scope (as collecting complementary objects) requires the knowledge of both result
objects and all non-result objects, the containment scope processor at an LBS server computes containment scopes for LDSQs. We
implement the containment scope processor with efficient containment scope computation algorithms and integrate them
seamlessly with the LDSQ processor to optimize the overall processing cost. Without loss of generality, all objects in an LBS server
are indexed on their spatial coordinates by an R-tree [25], for its wide acceptance and efficiency. In R-tree, objects are recursively
grouped and indexed by index nodes. Next, a best-first traversal algorithm [15] on R-tree is adopted to answer LDSQs. The best-
first algorithm efficiently retrieves objects for LDSQs in an ascending order of their mindists [31] to given query points. This is
efficient for both LDSQ processing and containment scope computation because of two reasons. First, when a search terminates,
the remaining priority queue preserves all non-result objects, based on which a containment scope for the query result can be
derived. Next, the processing of LDSQs and the formation of their corresponding containment scopes can be seamlessly integrated
into a single index traversal, as will be discussed later.

Thereafter, the server returns R together with a corresponding containment scope SQ to the client as the response. Later, when the
client issues a new LDSQ Q′, it first consults the containment tester to test against the result set of previously issued LDSQ Q and its
containment scope, i.e., R and SQ. The containment tester implements containment test algorithmdesigned for different types of LDSQs.
Then, it submits Q′ to the server onlywhen the containment tester indicates R′JR and downloads additional queried objects from the
server. Otherwise, the local LDSQ processor returns required objects for Q′ from the result set that passes the containment test.

4. LDSQ containment for range and window queries

Since range queries and window queries share a lot of similarities, we, in this section, first formulate containment scope,
develop containment scope computation algorithm and containment test algorithm, and propose optimization techniques for
range queries. Later, we extend those techniques to handle window queries.

4.1. Formulation of containment scope for range query

Every range query Qrange(q, r) searches for objects located inside a specified circle cir(q, r) with query point q as its center and
radius r. Formally, the result set R of Qrange(q, r) equals {o|o∈O ,o∈ cir(q, r)}. Alternatively, we can see that a set of objects {o}, with
their Minkowski circles cir(o, r) covering q, form the same query result. Fig. 7(b) illustrates the Minkowski circles of all the objects.
As q is only located inside cir(c, r) and cir(d, r), objects c and d form the result set.

Recall that the valid scope VR for a result set R is the area wherein R remains valid for a same LDSQ issued within VR (see
Section 2). That is exactly an area covered by the Minkowski circles of all the result objects but not covered by those of any non-
result objects. Formally, VR can be expressed as follows:

VR =
\
o∈R

cir o; rð Þ−
[

o0∈O−R

cir o0; r
� �

where the first term
\
o∈R

cir o; rð Þ represents the intersection of all the Minkowski circles of the result objects, i.e., a common area

where all the result objects are covered by a query; and the second term
[

o0∈O−R

cir o0; rð Þ refers to an area where at least one non-

result object is included as a result object. Revisit our example. The valid scope for Rrange(q, r)={c,d} is depicted in Fig. 7(b). For any
q′ ∈ VR, Rrange(q′ r)={c, d}.

Fig. 6. System model for supporting LDSQ containment.
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Unlike valid scope, containment scope maximizes the reusability of individual result objects of Rrange(q, r) by considering not
only the same range queries issued at different query point with the same range distance r, but also those semantically contained
by Qrange(q, r). Let R′ (pRrange(q, r)) denote the result set of an LDSQ that can be answered by Rrange(q, r). The containment scope,
denoted by Srange(q, r), is derived in Eq. (1):

Srange q; rð Þ =
[

∀R0�Rrange q;rð Þ
VR0 =

[
∀R0�Rrange q;rð Þ

\
o∈R0

cir o; rð Þ−
[

o0∈0−R0
cir o0; r
� � !

=
[

∀R0�Rrange q;rð Þ

\
o∈R0

cir o; rð Þ−
[

∀R0�Rrange q;rð Þ

[
o0∈0−R0

cir o0; r
� �

=
[

o∈Rrange q;rð Þ
cir o; rð Þ−

[
o0∈O−Rrange q;rð Þ

cir o0r
� �

:

ð1Þ

Here, thefirst term
[

o∈Rrange q;rð Þ
cir o; rð Þ denotes a total area covered by any result object,whereas the second term

[
o0∈O−Rrange q;rð Þ

cir o0; rð Þ

denotes an area covered by non-result objects. This implies more range queries issued at various locations can be answered
using Rrange(q, r) and thus more savings are expectedly attained. In our example, the containment scope for Rrange(q, r)
(see Fig. 2(b)) is larger than the valid scope (as shown in Fig. 7(b)).

As we can observe from Eq. (1), the derivation of Srange(q, r) requires a complete evaluation of all the non-result objects against
individual result objects, which inevitably incurs non-negligible overhead. To reduce the number of non-result objects accessed,
we re-formulate the calculation of Srange(q, r) in Eq. (1) based on the set relationship between any two sets A={a1…a|A|} and B=

{b1…b|B|}, i.e., (1) A−B≡A−(A∩B), and (2) A∩B≡ SjAj
i=1

aif g∩Bð Þ≡ SjBj
j=1

SjAj
i=1

aif gT bj
� �� �

. The improved formation of Srange (q, r) is

expressed in Eq. (2).

Srange q; rð Þ =
[

o∈Rrange q;rð Þ
cir o; rð Þ−

[
o0∈O−Rrange q;rð Þ

[
o∈Rrange q;rð Þ

cir o; rð Þ
\

cir o0r
� �0

@
1
A

0
@

1
A ð2Þ
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Fig. 7. Range query circle and Minkowski circles of objects.

Fig. 8. Algorithm RangeQueryContainmentScope.
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From Eq. (2), we can see that only those non-result objects o’ having Minkowski circles overlapping at least one result object's
Minkowski circle are needed. Those non-result objects are termed complementary objects.

4.2. Containment scope computation for range query

Based on Eq. (2), we derive online containment scope computation algorithm, namely, RangeQueryContainmentScope, as
outlined in Fig. 8. While the algorithm can be seamlessly integrated with the best-first search algorithm, for simplicity, we discuss
it as a stand-alone algorithm. After a search completes, a result set, R, and a priority queue, P, which holds all the non-result objects
in a non-decreasing order of mindists to q, are taken as inputs to our algorithm.

The algorithm iteratively examines the head entry (�, d) from Pwith � and d representing an R-tree index node or an object and
its distance from q, respectively. When � (i.e., a node or an object) has its Minkowski circle overlapping with the Minkowski circle
of any result object, a detailed examination is performed (lines 4–8). If an entry is a node, it is explored and all its children are
inserted to P for further examination (lines 4–6). Otherwise, it must be an object, and is added to a complementary set C (lines 7–
8) if it constitutes a part of the containment scope. When P becomes empty, the algorithm outputs C and terminates. As in
Lemma 1, the entire search area for all complementary objects and result objects is bounded by cir(q, 3r) for Qrange(q, r).

Lemma 1. The largest search space for complementary objects for a given range query Qrange(q, r) is bounded by a circle cir(q, 3r). □

Proof. As illustrated in Fig. 9, for a range query, Qrange(q, r), the maximum distance between any result object and the query point
q does not exceed r. As two circles cir(o, r) and cir(o′, r) for two objects o and o′ overlap only when |o, o′|≤2r, the longest distance
between the query point and a complementary object for a range query Qrange(q, r) must be 3r. ■

Fig. 10 illustrates how the algorithm runs for a range query Qrange(q,| q, c|). Right after Qrange(q,| q, c|) is evaluated, the result set
R contains c and d and the priority queue Pmaintains (a, b, N3, g). Those objects are depicted in Fig. 10(a). First, a, the head entry of
P is examined. Since cir(a, r) overlaps cir(c, r), a is included in C. Next, N3's Minkowski range overlaps the result objects' circles as
shown in Fig. 1. Its children, e, f, and h are put into P to update P to (b, e, f, g, h), as depicted in Fig. 1. Later, b is dequeued and its
circle overlaps with cir(d, r). Then, b is included in C. Subsequently, e and f are dequeued. As their Minkowski circles overlap with
those of result objects, C is updated to {a, b, e, f}. Finally, g and h are dequeued to empty P. As theMinkowski circles of g and h do not
overlap with that of any result object, the algorithm finishes and returns the complementary objects (i.e., a, b, e, and f). The
containment scope is shown in Fig. 10(d).

4.3. Removable complementary objects

By identifying complementary objects, non-result objects can be ignored frompresenting a containment scope. However, some of
collected complementary objects (called removable complementary objects) may not have an impact on the shape of a containment
scope, although they satisfy Eq. (2). This is because their impact is entirely hidden by that of other complementary objects. Fig. 3

Fig. 9. Maximum search space cir (q, 3r) for complementary objects.
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Fig. 10. Determining containment scope (range query).
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depicts two complementary objects o1 and o2. With respect to a result object o, the overlap between cir(o, r) and cir(o1, r) completely
covers that between cir(o, r) and cir(o2, r). In this case, o2 is a removable complementary object. We can ignore o2 while the same
containment scope is formed. Removal of those removable complementary objects can reduce the transmission and storage costs for
the complementary objects and some index I/O costs in containment scope computation. In this subsection, we explore the issue of
removable complementary object identification.

Basically, a complementary object o′ is removable if overlaps between cir(o′, r) and cir(o, r) for all result objects o are fully
covered by some other complementary objects. Here, we discuss two possible cases where complementary object o′ is removable.
For the first case that o is the result object and o1 and o2 are two complementary objects, that an overlap between cir(o, r) and
cir(o2, r) is fully covered by that between cir(o, r) and cir(o2, r) can be determined with their arcs on cir(o, r). As shown in
Fig. 11(b), the arc

⌢
ab of o1 entirely covers

⌢
cd of o2 on the same cir(o, r). Thus, o2 is asserted to be removable. The second case

happens when a complementary object is jointly covered by more than one other complementary object. Fig. 11(c) shows an
example. To determine if o3 is removable due to other complementary objects o1 and o2, we exploit another property as
follows. We determine an intersection point p between the perimeter of cir(o1, r) and cir(o2, r) inside cir(o, r). If |o3, p|Nr, o3 is
certainly hidden by the union of cir(o1, r) and cir(o2, r) with respect to o.

Similarly, complementary objects enclosed in an index node can be examined. Fig. 12(a) illustrates the intersection arc for an
index node N on a result object o fully covered by that for a complementary object o1. Fig. 12(b) exemplifies that the arc for a node
N on a result object o is covered by those for two complementary objects o1 and o2 and the distance from N to p, the intersection
point of the overlaps with respect to o1 and o2, is longer than r. In these two examples, all N's enclosed objects are removable and
thus N is ignored.

Based on the discussed idea, we devise Algorithm RangeQueryRemovableCheck, which can be incorporated into Algorithm
RangeQueryContainmentScope, to identify removable complementary objects. The pseudo-code is outlined in Fig. 13. It takes an
entry �, which can be an index node or object, and examines it against all existing complementary objects stored in C for each result
object. If � is not removable, it reports false; otherwise true. The algorithm examines � against each result object o iteratively and
conducts two checks. The first check (line 3) examines the existence of a complementary object cwhose arc⌢co fully covers that for
�, i.e.,⌢�o . If such c exists, �may be removable. The second check (lines 4–6) tests � against two other complementary objects whose
union of arcs fully covers⌢�o . If � has its distance to an intersection point p (of the perimeters of the complementary objects) not
longer than r, � is not removable (line 6).3 If hidden it remains false after the two checks, � is determined to be not removable and
the algorithm terminates without examining all the remaining result objects (line 7). Otherwise, � is determined to be hidden after
examining all result objects, and it can be removed.
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Fig. 11. Detection of removable complementary objects.

a) b)

Fig. 12. Detection of redundant complementary objects in R-tree index nodes.

3 There should be two intersection points on the perimeters of two circles and here, we use one inside the result object.
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The filtering of removable complementary objects is, however, time consuming due to exhaustive object comparisons. In our
performance evaluation, we will discuss its performance, compared with the previously presented containment scope
computation algorithm that simply collects all non-result objects as long as their Minkowski circles overlap with those of
result objects.

4.4. Containment test for range query

Given a range query result and its containment scope that is represented by result objects and complementary objects, the
containment test algorithm determines whether a new range query can be answered by the result. The pseudo-code is listed in
Fig. 14. Whenever a client receives a new range query Q′, it needs to conduct two checks before sending Q′ to the server. The first
check is a semantic check to see whether Q′ is semantically contained by the previous query via comparing their radii (line 1). The
second one is to check whether its query point is located inside the Minkowski circles of any result objects and outside those of all
complementary objects (lines 2–3). The query that passes these two checks will be answered locally.

4.5. LDSQ containment for window query

Due to the similarity between range and window queries, we directly extend the developed concepts and techniques for range
query result to window query result. Given a window query Qwindow(q, l, w), rect(q, l, w) represents a rectangular windowwhich is
centered at q, with length and width of 2l and 2w, respectively. Hence, the result set of Qwindow(q, l, w) is {o|o∈ O, o∈ rect(q, l, w)}.
Modifying Eq. (2) for the context of window queries, we express the containment scope for a window query result Rwindow(q, l, w)
denoted by Swindow(q, l, w), as in Eq. (3).

Swindow q; l;wð Þ =
[

o∈Rwindow q;l;wð Þ
rect o; l;wð Þ−

[
o0∈O−Rwindow q;l;wð Þ

[
o∈Rwindow q;l;wð Þ

rect o; l;wð Þ
\

rect o0; l;w
� �0

@
1
A

0
@

1
A ð3Þ

The best-first traversal can also be utilized to process window query and to compute the containment scope for the result
together. An example window query is depicted in Fig. 15(a), with rect(q, l, w) as the search area, {c, d} as the result set, and the

Fig. 13. Algorithm RangeQueryRemovableCheck.

Fig. 14. Algorithm RangeQueryContainmentTest.
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dash line rectangle showing the upper bound of the search space for complementary objects. As stated in Lemma 2, the
complementary objects and the final containment scope are depicted in Fig. 15(b).

Lemma 2. The maximum search space for complementary objects for a given window query Qwindow(q, l, w) is bounded by a rectangle
rect(q, 3l, 3w). □

Proof. For a window query, Qwindow(q, l, w), the possibly farthest result object, o will be l (or w) from q on x- (y-) dimension.
Centering at o, rect(o, l, w) can touch a complementary object, o′, 2l (2w) away from it. Hence, the longest distance from o′ to q is
3l (3w). ■

Further, some removable complementary objects with Minkowski rectangles hidden by those of other complementary
objects can be ignored. The idea of how to determine if a complementary object is removable is illustrated in Fig. 16(a) and (b). In
Fig. 16(a), whenever the overlapped area between a result object o and a complementary object o2 is fully covered by that between
o and any other complementary object o1, o2 can be removed. In some cases as shown in Fig. 16(b), removable complementary
objects are detected when their Minkowski rectangles are covered by complementary objects in part but are entirely covered by
the union of other complementary objects.

Finally, given a new window query Qwindow(q′, l′, w′) whose search area is rect(q′, l′ w′), the containment test examines if l′≤ l
and w′≤w, and if no complementary object is covered by rect(q′, l′, w′). The query is sent to the server when any check in the
containment test fails.

5. LDSQ containment for k nearest neighbor query

In this section, we turn our focus to LDSQ containment for kNN queries. We formulate the containment scope for kNN query
result, and we derive the corresponding algorithms for on-line containment scope computation and containment test.

5.1. Formulation of containment scope for k NN query

A kNN query Qnn(q, k) returns k objects nearest to q. Formally, the result set of Qnn(q, k), Rnn(q, k), is {o|o ∈OnnpO,|Onn|=
k ∧ ∀o∈Onn ∀o′∈O-Onn|o, q|≤ |o′, q|}. Now, suppose that an NN query (i.e., k=1) is issued at a query point q and its result object
is o. With respect to any non-result object, o′, the entire search space S can be partitioned into two disjointed half-planes HPo,o′
and HPo′,o along the perpendicular bisector ⊥o,o′ between o and o′, where HPo,o′ covers o and HPo′,o covers o′. Fig. 17(a) shows
two half-planes HPd,f and HPf,d formed based on the perpendicular bisector ⊥d,f. Any point located inside the half-plane HPd,f
should have d closer to it than f. Thus, an area where o is guaranteed to be the closest to q among all the objects can be

a) b)

Fig. 15. Containment scope for window query.

a) b)

Fig. 16. Redundant complementary objects.
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determined as an intersection area of all half-planes of o formed against all the other objects, i.e., S∩(∩o′∈O-{o}HPo,o′). This area
is known as Voronoi cell [9,27], which is also a containment scope and a valid scope for the NN query result.

Generalizing this idea, we consider a kNN query issued at q and its result set R. We obtain half-planes formed by each result
object o ∈ R and each non-result object o′ ∈ O−R. The valid scope VR wherein R remains valid is formulated as:

VR = S∩
\

o∈Ro0

\
∈O−R

HPo;o0 ;

or

VR = S−
[

o∈Ro0

[
∈O−R

HPo0 ;o:

Fig. 17(b) shows the valid scope for the result set (i.e., {c,d}) for a 2NN query, that is an intersection between the Voronoi cell of
c and that of d. Differently, the containment scope is formed as a collection of valid scopes covering a kNN result Rnn(q,k) and all
possible subsets R′ where R′pRnn(q,k). Hence, the containment scope, Snn(q,k), is formulated in Eq. (4).

Snn q; kð Þ =
[

R0�Rnn q;kð Þ
VR0 =

[
R0�Rnn q;kð Þ

S−
[

o∈R0o0

[
∈O−R0

HPo0 ;o

 !
=

[
o∈Rnn q;kð Þ

S−
[

o0∈O− of g
HPo0 ;o

0
@

1
A: ð4Þ

As Eq. (4) indicates, the containment scope is expressed as a subtraction of a union of half-planes formed between individual
result objects and other non-result objects from an entire search space. In other words, this is the union of Voronoi cells of
individual result objects. As shown in Fig. 17(c), the containment scope for a 2NN query result is composed of Voronoi cells of c and
d, that is observably larger than the corresponding valid scope.

Despite all the half-planes are considered in Eq. (4), many of them can be safely discardedwithout affecting the formation of the
containment scope. That means not all non-result objects are needed. To identify and eliminate those removable half-planes that
have no impact on a containment scope, we exploit the largest empty circle property of Voronoi cell. Every circumcircle cir(v, |v,o|)
that centers at a vertex v of a Voronoi cell for an object o and has |v, o| as its radius must touch o and other two objects on its
perimeter. Then, v is a true vertex if and only if its circumcircle cir(|v, |v, o|) encloses no objects. Based on this largest empty circle
property, we develop an efficient containment scope calculation algorithm for k NN query.

g g g g

b b b b

d d d d
q q q q

c c c
c

a a a a

e e e e
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f f fh h
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Fig. 17. Containment scope for kNN query result.

Fig. 18. Algorithm kNNQueryContainmentScope.
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5.2. Containment scope computation for kNN query

With the best-first based NN search algorithm, all entries remained in the priority queue P are non-result objects, after k NN
objects are found. The containment scope computation algorithmwhose pseudo-code is depicted in Fig. 18 takes a query point q, a
result set R and a priority queue P as inputs. The basic idea is to construct the Voronoi cell for each result object oi represented by a
set of vertices maintained in an array element V [i] that in turn are contributed by complementary objects kept in an array element
C [i]. All the Voronoi cells for result objects are initialized as convex hulls to cover an entire search space, and get refined when
objects are examined in the process.

Since result objects might contribute to the Voronoi cells of other result objects, we put all the result objects back to the priority
queue P before the processing. First, we initialize a convex hull for each result object oi (1≤ i≤k) as the entire rectangular search
space with four vertices. Then, the algorithm repeatedly examines each entry � that could be a node or an object from P. If it is a
node and it is covered by a largest empty circle formed by a vertex of any convex hull, � is explored and all its child nodes are
enqueued for later examination (lines 4–6). If � is an object, it is checked against all the convex hulls. For those convex hulls with
any largest empty circle covering the object, they, together with corresponding complementary objects, are updated (lines 8–10).
To examine if � is inside a largest empty circle v of a convex hull with respect to a result object o, we compare the distance between
� and v, (i.e., |�, v|) and that between o and v (i.e., |o, v|). The process continues until P becomes empty or all the pending entries are
out of all the existing largest circles.

To illustrate how the algorithm derives a containment scope for a kNN query result, Fig. 19 gives an example in which a 2NN
query is issued at point q and its result set contains objects c and td. To simplify the discussion, we only explain the formation of the
Voronoi cell of d, and that of c can be formed in the same fashion. Initially, the convex hull for d is set to the entire area Swith four
vertex v1, v2 v3, and v4, as shown in Fig. 19(a), and the priority queue P={d, c, a, b, N3, g}.4 Next, the algorithm examines objects
and index nodes in a priority queue P according to the ascending order of their mindist to q. First, d is dequeued. As it is the result
object, we skip the detailed examination step. Second, c is dequeued and it is covered by the largest empty circle centered at v4.
Then, the convex hull is trimmed by the half-plane HPc,d and is refined to a new set of vertices v1, v2 v3, v6, and v5, with c inserted
into C as a tentative complementary object (see Fig. 19(b)). Afterwards, other objects are examined in the same fashion, and the
final convex hull (i.e., Voronoi cell) of d is shown in Fig. 18. Objects a, b, c, f and g are the complementary objects for d. The Voronoi
cell of c is derived simultaneously. The final complementary objects are a, b, e, f and g. Notice that c and d are excluded as they are
result objects.

v

v v

v

N

a) Initial convex hull for d

v

v v

vv

v

N

b) Trimmed convex hull by HPc,d

c) Voronoi cell of d d) Containment scope for {c,d}

Fig. 19. Determining the containment scope (2NN query).

4 Different from range query and window query, all the result objects are inserted back to P as each of them might affect the formation of the Voronoi cell of
some other result object.
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5.3. Containment test for kNN query

With a complementary set C and a kNN query result set maintained by a client, it is straightforward to determine whether k′NN
can be answered locally. The logic of the test as depicted in Fig. 20 is to examine if k′≤k (line 1) and if no complementary object
would be covered (lines 3–4). In the test, we put result objects and complementary objects into an ordered list based on an
ascending order of their distances to a query point, q′. If all of the first k′ objects are result objects, the test is satisfied and those
collected objects are the result set of k′NN query issued at q′. Otherwise, the k′NN query needs to be sent to the server for
evaluation.

6. Performance analysis

In this section, we conduct a theoretical analysis to quantify the overhead incurred for LDSQ containment in terms of
containment scope computation and its transmission for range, window and kNN queries, and determine the benefit gained. To
facilitate our discussion, Table 2 summarizes the notations used hereafter.

First, we denote ρ as the probability that a new LDSQ cannot be answeredwith a previous query result by a client; in other words, a
new LDSQ has a probability (1-ρ) to be answered locally. Since a containment scope is derived for every new query result, the server
processing cost and communication cost can be estimated as ρ·procQ+C and ρ·(commR+commc), respectively. Compared with a
conventional system (i.e., bare query processing) that evaluates every LDSQ, supporting LDSQ containment only incurs additional
containment scope computation cost (i.e.,ρ·procC) andextra communication cost for delivering complementaryobjects to a client (i.e.,
ρ·commC). LDSQ containment is beneficial if ρ·procC and ρ·commC are smaller than procQ and commR, respectively.

To facilitate our analysis, we assume that all objects O are in fixed storage size so and they are evenly distributed in a two-
dimensional unit space (i.e., [1]). The average distance between any two adjacent objects, denoted by δ, can be approximated asffiffiffiffiffiffi

1
jOj

s
, according to [37]. With respect to a query point q, we assume that all the objects oi ∈ O are in a non-descending order of di,

with di = jq; oij≈
ffiffiffiffiffiffiffiffiffi
i

πjOj

s
according to [4]. Besides, all the objects are indexed by an R-tree with fan out f on their spatial coordinate

of size sc.

6.1. Performance analysis for range and window queries

In this section, we focus our analysis on range queries followed by a brief discussion on window queries. Here, we estimate (i)
ρrange, (ii) procQ ,range and procC.range, and (iii) commR,range and commC,range.

Table 2
Summary of notations.

Notations Description

O A set of objects and its cardinality is |O|.
R A result set and its cardinality is |R|.
C A complementary set and its cardinality is |C|.
so The size of an object that includes both data content and spatial coordinate.
sc The size of a complementary object (with only a spatial coordinate) (8 bytes).
ρ The probability that an LDSQ cannot be answered locally.
procQ The processing cost of evaluating an LDSQ only.
procQ+C The processing cost of evaluating an LDSQ and a computing corresponding containment scope.
procc The processing cost of computing a containment scope (i.e., procQ+C-procQ).
commR The communication cost (in terms of bytes) of transferring result objects to the client (i.e., sois|R|).
commC The communication cost of transmitting complementary objects to the client (i.e., sc|C|).

Algorithm k NNQueryContainmentTest(Q nn (q , k ),
Q nn (q, k ), R nn (q, k ), C )

Input. query point (q ), number of NNs (k ), result set (R n n (q, k )), complementary objects (C )
Local. ordered list of objects (L );
Output. boolean (true: Q nn (q , k ) is fully covered)
Begin
1. if (k > k ) then output false;
2. put objects in both R nn (q, k ) and C to L ;
3. sort all objects in L in ascending distance order from q ;
4. if ∃o ∈ head (L, k ) , o ∈ C then output false;
5. else output true;
End.

Fig. 20. Algorithm kNNQueryContainmentTest.
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6.1.1. Estimation of ρrange
Assume that a client initially submits a range queryQrange(q, r)with a search area cir(q, r), and it obtains a result Rrange(q, r) (or Rrange

for simplicity in the following) and a containment scope Srange(q, r) in the client locally. When the client submits a new range query
Qrange(q′, r′) with r′=r, the result of Qrange(q′, r′) will be contained by Rrange(q, r) if q′ ∈ Srange(q′, r′). Without loss of generality, we
assume that q′ is uniformly distributed in the space and hence ρrange(q′, r)=(1-|Srange(q, r)|) (i.e., the area outside of Srange(q, r)).

Suppose that r is reasonably large, and so |Rrange| covers a number of result objects which are evenly distributed within cir(q, r).
The area covered by the Minkowski circles of all the result objects is approximately cir(q, 2r), i.e., the maximum size of a
containment scope for R if no complementary object exists. Then, the containment scope is formed by trimming this area with the
Minkowski circles of complementary objects. As depicted in Fig. 21(a), a containment scope can be considered as a fan of
“arrowhead-like” shapes formed individually by the query point and partial perimeters of Minkowski circles of complementary
objects. Then, determining the size of a containment scope involves two tasks, namely, (A) determining the number of
complementary objects |Crange| and (B) estimating the areas of individual “arrowhead-like” shapes, which constitute the
containment scope. For simplicity, we do not consider those removable complementary objects in this analysis.

(A) Estimation of |Crange|. As shown in Fig. 21(b), each non-result object oi forms an angular range Θi with respect to q (i.e.,

2⋅asin r
di

= 2⋅ asinr
ffiffiffiffiffiffiffiffiffi
πjOjp
ffiffi
i

p ). Due to the fact that Θi formed by object oi may overlap with Θj formed by object oj, we denote the

angular range that is uniquely contributed by a non-result object oi asΘiwhereΘi≤Θi. With the assumption that non-result objects
are uniformly distributed around q and the generated angular ranges also follow the uniform distribution, we estimate Θi′ as

1−
∑

jRrange j+ i−1

j= jRrange j+1
Θj′

2π

0
B@

1
CA Θi. Given the fact that complementary objects are those non-result objects with their Minkowski circles

intersecting with those of result objects (e.g., cir(q, 2r) in this example), the union of all Θi′s (each formed by a complementary
object) covers (0, 2π)with respect to q.

As Crange is {o|Rrange|+1,⋯o|Rrange|+|Crange|}, where ∑
jCrange j

i=1
ΘjRrangej+ i = 2π, the size of the complementary set (i.e., |Crange|) can

be determined as in Eq. (5).

jCrangej = min nj 1≤n≤jOj−jRrangej� �
∧∑

n

i=1
Θ0
i = 2π

	 


= min nj 1≤ n≤jOj−jRrangej� �
∧ ∑

n

i=1
1−

j = ∑
jRrange j + i−1

jRrange j + 1
Θ0
j

2π

0
BBBB@

1
CCCCA 2⋅asin

r
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When r grows, Θi of each complementary object oi increases; and thus, fewer complementary objects are resulted.
(B) Estimation of containment scope area. Now,we determine the area of an “arrowhead-like” shape. Referring Fig. 21(b), A(oi),

which represents the area of the “arrowhead-like” shape formed by object oi, can be computed as the difference between the area of
two triangles and that of a sector. Let αi+βi be a range of angles at q towards the boundary of the Minkowski circle of a
complementary object oi and letΔ(di,αi),∇(di, βi) and∢(di,αi,βi) represent the area of an upper triangle that boundsαi, the area of
a lower triangle that bounds βi, and the area of a sector, respectively as stated in Eq. (6).

A oið Þ = Δ di;αið Þ + ∇ di;βið Þ−∢ di;αi;βið Þ ð6Þ

b)a)

Fig. 21. Estimation of |Srange (q, r)|.
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where

Δ di;αið Þ = 1
2 ⋅disin

αi⋅ dicosαið Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2− disinαið Þ2Þ

q
;

∇ di;βið Þ = 1
2 ⋅ disinβi⋅ dicosβi−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2− disinβið Þ2

q	 

; and

∢ di;αi;βið Þ = asin
disinαi

γ

	 

+ asin

disinβi

γ

	 

− αi + βtð Þ

	 

⋅
r2

2

Based on both Eqs. (5) and (6), we can now compute the probability that queries are sent to the server for processing, ρrange, i.e.,
1–|Srange(q, r)| as stated in Eq. (7).

ρrange = 1−jSrange q; rð Þj = 1− ∑
oi∈Crange

A oið Þ = 1− ∑
oi∈Crange

Δ di;αi;ð Þ + ∇ di;βið Þ−∢ di;αi;βið Þð Þ ð7Þ

6.1.2. Estimation of procQ,range and procC,range
We estimate the total processing cost of a range query and corresponding containment scope computation, i.e., procQ+C,range

in terms of number of index page accesses, since it is the major processing cost. While the search needs to cover both |Rrange|

and |Crange|, the search area becomes cir(q, ω) where ω =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRrangej+ jCrangej

πjOj

s
. According to the R-tree cost model [37], the

number of R-tree node accesses equals the sum of the expected node accesses at all levels, while the expected node access is
the product of number of index nodes times node access probabilities (that is the expanded MBB's area). Here, the node
accesses for base query processing and query processing integrated with containment scope computation are stated in Eqs. (8)
and (9), respectively.

procQ ;range = ∑
⌈logNf ⌉

t=1
Nt⋅ s2t + 4rst + π⋅ r2

� �h i
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 !" #

ð8Þ
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N
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þ π·ω2
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where st is the expected side length of each node's MBB at level t and it equals
ffiffiffiffiffi
Dt

p
= 1 +

ffiffiffiffiffiffiffiffiffiffi
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p
−1ffiffiffi
f
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ffiffiffiffiffiffi
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p
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f
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f
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N
f
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N
f
⌉ determines the height of an R-tree index.

Then, the net cost incurred by the containment scope computation (i.e., procC,range) is ∑
⌈logf Nf ⌉

t=1
Nt·

4 ω−rð Þ
ffiffiffiffi
Dt

p
Nt

+ π· ω−rð Þ2
	 

 �

(i.e.,

Eqs. (9)–(8)). For a large r, |Crange| is expected tobe small and thusω is close to r; and in this case, procC,range is expected to bevery small.

6.1.3. Estimation of commR,range and commC,range

Further, we examine the communication cost incurred by LDSQ containment. Compared with bare query processing, LDSQ
containment consumes extra bandwidth to download the spatial coordinates of complementary objects, commC,range=sc ∙ |Crange|.
While (1−ρrange) LDSQs can be answered locally, the communication cost saved is (1−ρrange)∙commR,range≈ |Srange(q, r)| ∙ |Rrange| ∙
so≈ |srange(q, r)| ∙(πr2|O|) ∙ so. Given the fact that the size of a result object is larger than that of object coordinate (i.e., so≫sc) and
the number of complementary objects (i.e., |Crange|) is small, the extra communication cost caused by LDSQ containment is
reasonably insignificant, i.e., commC,range≪(1−ρrange) ∙commR,range.

6.1.4. Analysis for window queries
Since window queries are very similar to range queries except that window queries adopt rectangular search areas rather than

circles, the performance analysis for window queries can be conducted based on the above methodology for range queries. To
facilitate the analysis, we consider window queries Qwindow (q, l, w) whose search areas are squares, i.e., l=w. Then, we can

consider that window queries with square search areas are equivalent to range queries with r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21⋅2w

π

r
. Hence, the probability

that a window query needs to be submitted to the server, ρwindow, the server processing overhead in computing a containment
scope, procC,window, and the communication overhead for transferring complementary objects, commC,window, can all be derived
based on the above techniques. To save space, we omit the detailed discussion.

6.2. Performance analysis for kNN queries

Next, we analyze the performance for kNN queries. We consider a kNN query Qknn (q, k) whose result Rknn (q, k) (or Rknn for
simplicity in the following) has a containment scope Sknn (q, k). In the following, we estimate (1) the probability ρknn that a query
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needs to be sent to the server, (2) the processing cost procQ,knn incurred in evaluating a kNN query Qknn (q, k), and the processing
cost procC,knn for formulating its containment scope Sknn (q, k), (3) the communication cost commR,knn for transmitting a query
result to the client, and the communication cost commC,knn for downloading the complementary objects to the client.

As objects are uniformly distributed in the space, each object has an equal likelihood to be included into the result set of a

kNN query Qq,knn. Hence, the size of the containment scope, i.e., |Sknn (q, k)|, can be approximated as
1

kjOj and the probability that a

new Qq, knn is not contained by a preserved containment scope and needs to be sent to server for processing can be estimated as
(1-|Sknn (q, k)|), as stated in Eq. (10).

ρknn = 1−Sknn q; kð Þ = 1− 1
kjOj ð10Þ

It is observed that ρknn increases as |O| and/or k increase which is consistent with our expectation. Thus, the containment scope
for a larger k is expected to be smaller which forces more queries to be sent to the server for processing.

Then, we estimate the total processing cost in evaluating Qknn (q, k) and computing Sknn (q, k in terms of node accesses. The

search area that covers kNN objects with respect to q is expected to be a circle cir (q, dk) with a radius dk (i.e.,

ffiffiffiffiffiffiffiffiffi
k

πjOj

s
). Further, since

complementary objects are those neighbors around the result objects and as previously discussed, the expected distance between

objects is δ (i.e.,

ffiffiffiffiffiffi
1
jOj

s
), the expected search area for both result objects and complementary objects is cir(q, dk+δ), i.e., equivalent

to cir q;

ffiffiffiffiffiffiffiffiffi
k

πjOj

s
+

ffiffiffiffiffiffi
1
jOj

s !
. With the R-tree cost model [37], we determine procQ,knn and procQ+C,knn as the number of node accesses

in Eqs. (11) and (12), respectively.
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The number of node accesses needed for deriving containment scope Sknn (q, k), i.e.,procC,knn, takes only

∑
⌈logf

N
f ⌉

l=1
4

ffiffiffiffiffi
Dl

p
Nl

δð Þ + 2·dk·δ + π·δ2Þ
" #

. This in fact is not significant, compared with procQ,knn.

Last, based on a fact that k result objects are located inside the circle cir(q, dk) and the overall search range for
complementary objects and result objects is cir(q, dk +δ), the number of complementary objects, |Cknn|, can be approximated as
π ⋅ |O| ⋅((dk+δ)2−dk

2). Then, the transmission overhead for complementary objects, commC,knn=|Cknn| ∙ sc. Notice that this
containment scope can save the communication overhead of |sknn (q, k)| ∙k ∙ so.

6.3. Discussion

As we analyzed, the incurred overhead is not significant compared with bare query processing that processes every query at
the server. Further, as the effectiveness of LDSQ containment is dependent on certain query parameters (e.g., q′, r, l, w, or k), the
presented theoretical analysis is useful for a system to decide whether to adopt the bare LDSQ processing or LDSQ containment
scope. In the next section, we validate our cost model through simulations.

7. Experiments

This section evaluates the effectiveness of our proposed LDSQ containment through simulations, with the primary focus on
(1) overall system performance improvement, and (2) the processing overhead at the server when different approaches are used.
The experiment results all indicate that LDSQ containment produces outstanding performance in comparison with those mostly
related approaches reviewed in Section 2.

7.1. Experiment setup

In our evaluation, we implemented different approaches for comparison, as summarized in Table 1. They include bare query
processing, semantic scope (for range and window query [8,22,30] and for extitkNN query [33]), valid scope (TP query based
approaches) (for window and kNN queries only) [35], valid scope (geometry based approach) [21], additional to LDSQ
containment introduced in this paper. We label them as Bare, Semantic, Valid (TPQ), Valid (Geo) and LDSQC, respectively, in the
following discussion. In some circumstances, we use Valid to refer both Valid (TPQ) and Valid (Geo) if they generate the same
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results and the context is clear. Except Bare, Semantic and Valid as well as LDSQC respectively define semantic scope, valid scope
and containment scope, are collectively called auxiliary scopes in this evaluation.

In detail, Bare is a baseline approach that clients submit all their queries to the server for processing and it involves no auxiliary
scope computation. Semantic checkswhether the new query area is completely covered by the previous one for range andwindow
queries. For kNN queries, Semantic collectsm (equal to k+1) nearest objects (i.e., k result objects plus the spatial coordinate of the
nearest non-result object). Both Valid (TPQ) and Valid (Geo) form a valid scope for an LDSQ result, but they adopt different valid
scope computation algorithms. Finally, for LDSQC, we evaluate the removable complementary object filtering logic for range and
window queries (see Section 4.3) and label this approach as LDSQCOpt. Then, LDSQC is referred to as LDSQ containment with non-
optimized containment scopes, which might include some removable complementary objects. For kNN queries, there are no
removable complementary objects.

Our evaluations use both synthetic and real object sets. Synthetic object sets are used to test the sensitivity of our approaches to
various object cardinalities and distributions as well as query parameters. Those synthetic object sets are produced with object
locations based on Uniform distribution and Gaussian distribution, in which themean and the standard deviation are fixed at 500 and
100, respectively. Realistic object sets are used to examine the practicality of our approaches in real environments. The real object set
that is obtained from the United States Census Bureau TIGER/Line dataset [38] includes the locations of ~110 k shopping malls across
the United States. All of the object sets are normalized to a two-dimensional service area of 1000×1000 units. Further, we fix the
storage sizes of an object content and an object location (spatial coordinates) at 256 bytes and 8 bytes, respectively, in the
experiments. To save space,we present the representative set of results based on synthetic object setswith 1 k, 10 k, and 100 k objects
inUniformdistribution (denotedbyUni), 10 k objects inGaussiandistribution (denoted byGau) and real object set (denotedbyReal).

Following the object distributions, we generate client positions at which queries are issued and processed. We include 10
clients initially placed at different random positions and they navigate in 100 steps in the area based on a random walk model. In
every step, a client chooses a random direction to move towards and proceeds with the distance varying between 0 and D units.
The value of D varies from 1, to 5 and to 10. After the completion of onemovement step, the client issues one query, so 100 queries
in total. The three discussed types of queries, namely, range, window, and kNN queries are evaluated. The radii of range queries r
are varied from 10, 15, up to 20 (units). The search area of window queries is set to be square-shaped and its side length l is
increased from 10, 15, up to 20 (units). The k of kNN queries is set to 1, 4, 16 and 64.We implemented all the approaches with GNU
C++.We ran our simulations (each consisting one LBS server and some clients) on 30 Solaris Blade-1000Workstations equipped
with 750 MHz CPUs and 1 GB RAM each running the SunOS 5.10 operating system. This configuration enabled us to measure the
server performance, bandwidth consumption and number of server (client) answered queries. All the experimented object sets
are indexed by R-tree [25] with a disk page size of 4 KB. Particularly, themaximum capacities for non-leaf nodes and leaf nodes are
204 and 340, respectively. In addition, a cache with its size equal to 5% of the R-tree index size managed with LRU replacement
policy is used to alleviate server I/O costs for Valid (TPQ) that needs repeated index accesses.

Here, we consider the four commonly used performance metrics: (1) query submission rate, (2) bandwidth consumption, (3) I/O cost,
and (4) server execution time. Query submission rate is the ratio of the number of server processed LDSQs to the total amount of
experimented LDSQs. Bandwidth consumptionmeasures the amount of data (in kilobytes) transmitted over a downlinkwireless channel
from the server to the client, assuming that the bandwidth consumed in submitting client queries on an uplink channel is negligible. I/O
cost counts the number of accessed R-tree indexed nodes that the server has to read from disk to answer a query and to form a
corresponding auxiliary region if needed. Further, server execution time (in unit ofmilliseconds)measures the duration from the time an
LDSQ is started to be processed to the timewhen a result and a corresponding auxiliary scope if needed is computed.We have evaluated
the client processing time taken in determiningwhether LDSQs can be answered locally. In general, the average processing time about all
the approaches ranges around 0.1 ms to 0.25 ms. To save space, we do not include these measurements in the discussion.

Inwhat follows, we examine the performance of clients who issue LDSQswhilemovingwhen different approaches are adopted.
Then,we evaluate the impact of object densities on the overall systemperformance. In general, we shall see that LDSQ containment
can effectively enable clients to assert if queries can be answeredwith a previous result, thus saving overall systemprocessing costs.

7.2. Exp. 1. Performance evaluation on fixed query parameters

The first experiment set studies the overall system performance for clients issuing queries with identical parameters, while the
distanceDmoved between steps is varied. First, Fig. 22 plots the performance for range queries with radii fixed at 15. Valid (TPQ) that

Table 3
Experiment parameters.

Parameter Value

Approaches Bare, Semantic, Valid (TPQ), Valid (Geo), LDSQC, and LDSQC Opt
Service area [1000, 1000]
Object sets Uni (1 k, 10 k, 100 k), Gau (10 k) and Real
Query types Range (radius r=10, 15, 20),

Window (square, side length l=10, 15, 20),
kNN (k=1, 4, 16, 64)

Client Maximum distance D moved per step (1, 5, 10)
Index cache 5%, of index size for Valid (TPQ)
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does not support range queries is not included. In general, as shown in Fig. 22(a), Bare submits all queries to the server so its query
submission rate reaches 100%. Semantic asserts the reuse of an LDSQ result only when the new search area is bounded by a semantic
region.However, in our evaluation, clients aremoving and they issue queries at different locations. As the query range isfixed, no LDSQ
result is reusable which explains why it results in 100% query submission rate. Consequently, neither Bare nor Semantic can help
moving clients to reuseprevious LDSQ results. On the contrary, Valid (Geo) andLDSQCenable a better reuse of aprevious LDSQ result to
answer new LDSQs. As shown in thefigure, they significantly reduce the query submission rates.When themaximumdistancemoved,
tD, increases, the likelihood that new LDSQs are covered by previous LDSQs reduces, and hence the query submission rate increases.

The result of bandwidth consumption is shown in Fig. 22(b). Due to their high query submission rates, both Bare and Semantic
incur the largest bandwidth consumption among all the evaluated approaches. LDSQC consumes less bandwidth than Valid (Geo)
as a direct result of its lower query submission rate. Besides, Fig. 22(c) and (d) shows the result in terms of average I/O cost and
execution time incurred by evaluation of server received queries. As Bare and Semantic do not derive any auxiliary scopes at the

a) b)

c) d)

Fig. 22. Performance evaluation on fixed range queries (r=15).

a) b)

c) d)

Fig. 23. Performance evaluation on fixed window queries (l=15).
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server, their processing and I/O costs are the minimal as anticipated. On the other hand, Valid (Geo) and LDSQC incur longer
execution times and higher I/O costs. In addition, LDSQCOpt incurs even longer execution time because of computationally
expensive removable complementary object detection. To identify the extra cost incurred by filtering removable complementary
objects, we can compare it with LDSQC. As shown in Fig. 22(d), LDSQC can considerably shorten the execution timewhile incurring
only a few (about 1) extra page accesses and slightly extra bandwidth consumed (due to the small spatial coordinate sizes of non-
result objects). As such, we can see that no removable complementary object filtering is an efficient alternative to determine
containment scopes. Although more extra I/O costs incurred for each single query, LDSQC reduces server processing time. This
improvement becomes huge for large populations of mobile clients.

Second, we investigate the system performance improvement for window queries, with the window side length l fixed at 15.
Here, Valid (TPQ) is included. Basically, the experiment results as shown in Fig. 23 are very similar to those of range query and can
be explained with similar reasons. We only highlight that despite Valid (TPQ) and Valid (Geo) provide identical valid scopes, thus
resulting in the same query submission rate, they result in totally different processing and I/O costs. Valid (TPQ) evaluates a large
number of TP window queries, leading to higher processing and I/O costs than Valid (Geo), which needs only one index lookup.
Again, for window query, LDSQCOpt is the best in terms of query submission rate and bandwidth consumption. LDSQC speeds up
the processing cost at a small expense of I/O cost and bandwidth consumption.

The last part of the experiment set evaluates theperformancegain for kNNquerywhere k is set to 4. The results are shown in Fig. 24.
Semantic for kNNquery is based onmNNquery (wherem=k+1), so in this experiment it supports the reuse ofmNNquery results for
new kNNqueries issued nearby, and it shows an improvement in the query submission rate in Fig. 24(a). However, it is still worse than
Valid (TPQ), Valid (Geo) and LDSQC,which derivemore precise auxiliary scopes. As explained, Valid (TPQ) incurs very high processing
and I/O costs.With a fixed extitk, containment scopes and valid scopes offer the samebasic functionality and consequently provide the
same query submission rate. When query parameters are varied, a lot more new queries can reuse the information maintained in
containment scope. Thus, LDSQC can outperform both Valid (TPQ) and Valid (Geo) as will be presented next.

7.3. Exp. 2. Performance evaluation on varied query parameters

The second experiment set investigates the effect of varied query parameters on the system performance for all the evaluated
approaches. Here, clients randomly pick query parameters (see Table 3) independently of previous LDSQs. As anticipated and in
contrast to the previous experiment set, the results of LDSQs with different query parameters may be covered by a previous LDSQ
result. Valid (TPQ) and Valid (Geo), which only support the reuse of results based on result equality, suffer in this experiment.
Besides, Semantic and LDSQC, which can detect if the result of one LDSQ is contained by a previous one, are expected to outperform
the others when query parameters can vary.

From Fig. 25(a),we can observe that Valid (TPQ) (forwindow and kNNqueries only) andValid (Geo) incur higher submission rates
than Semantic and LDSQC as expected. Semantic in general incurs a higher submission rate than LDSQC (including LDSQCOpt). That
implies LDSQC and LDSQCOpt are relativelymore effective. As the consequence of having the lowest query submission rate, LDSQC and
LDSQCOpt incur the lowest bandwidth consumption as shown in Fig. 25(b). On the other hand, LDSQC and LDSQCOpt have high

a) b)

c) d)

Fig. 24. Performance evaluation on fixed kNN queries (k=4).
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computational and I/Ocosts as indicated in Fig. 25(c) and(d). Since LDSQC incurs shorter processing timewith slightlymorebandwidth
than LDSQCOpt, we consider LDSQC though including removable complementary objects as the better alternative to LDSQCOpt.

7.4. Exp. 3. Performance evaluation on object density

In the third and final experiment set, we investigate the system performance against various object densities. As the object density
has adirect impacton theaveragedistances betweenobjects, it in turn affects theauxiliary scope size. In these experiments,wevary the
cardinalities of objects that are uniformly distributed on the same service area between 1 k, 10 k and 100 k. The experiment results
shown in Fig. 26 are obtained by the same settings as Exp. 2(a) while the maximum distance that clients can move is fixed at 5.

While the object density increases, the effectiveness of all the approaches is reduced as reflected by their query submission rate
(as shown in Fig. 4). This is caused by the diminished auxiliary scope sizes. The bandwidth consumption increases as depicted in

a) b)

c) d)

Fig. 26. The impact of object density on the query performance.

a) b)

c) d)

Fig. 25. Impact of client mobility with varied query parameters.
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Fig. 26(b). On the server side, the increased number of objects causes a rise of both the I/O cost and the execution time as plotted in
Fig. 26(c) and (d), respectively. Finally, in general, LDSQC still outperforms all the other approaches.

In summary, LDSQC performs the best among all the evaluated approaches for both fixed and varied query parameters. This is
primarily because it makes every client capable of determining if a new LDSQ is covered by the result of previous LDSQs. Also,
LDSQC can clearly improve server execution time while incurring only a little extra bandwidth consumption and I/O cost,
compared with LDSQCOpt. As a result, LDSQC is determined to be the best approach of supporting LDSQs on stationary objects in
mobile and wireless environments.

8. Conclusion

LBSs have been receiving much attention and fostering a large commercial market. Generally speaking, in an LBS system,
mobile clients access location-related information (such as local news, traffic news, tourist guides, points of interest, etc.) as a
collection of stationary objects from an LBS server through issuing LDSQswith respect to their locations. On the other hand, mobile
environments are very resource limited. As such, consumption of client energy and wireless bandwidth, and LBS server workload
should be alleviated. To achieve this, we, in this paper, have introduced a new concept named LDSQ Containment and developed
the notion of containment scope, accordingly. In summary, we have made the following six original and important contributions:

1. As the first attempt to explore both the semantics of LDSQs and the knowledge of object distributions, we have developed and
introduced the new concept of Location-Dependent Spatial Query Containment (or LDSQ containment), which can effectively
determine whether an LDSQ can be answered with the results of previous queries, thereby eliminating unnecessary LDSQs to
the server, shortening query response time, and reducing client energy consumption and bandwidth contention.

2. We have presented an enhanced LBS system model that supports LDSQ containment. We have also developed a notion of
containment scope that represents a spatial area associatedwith an LDSQ result set Rwherein any new LDSQ Q’ has a result set R’
fully covered by R. Further, we have devised LDSQ containment test algorithms based on containment scope (that is composed
of result objects and complementary objects' spatial coordinates) to determine if any new LDSQ result is fully covered by the
previous one for clients.

3. We have devised efficient on-line containment scope computation algorithms for range, window and kNN queries. Our
computation algorithms integrate containment scope computationswith LDSQprocessing to optimize server processing overhead.

4. We have provided optimized containment scopes for range and window queries to eliminate removable complementary
objects, so as to reduce the bandwidth consumption and client storage overhead.

5. We have analyzed the effectiveness of LDSQ containment in terms of the performance gains and the overheads.
6. We have conducted extensive empirical experiments to evaluate system performance in comparison with existing techniques

designed for reusing previous LDSQ results. In general, LDSQ containment is shown to outperform existing approaches under
many circumstances.

We believe that our proposed LDSQ containment concept will lead us to other advanced data management and query
processing techniques for LDSQs and LBSs in the future. Currently, we are extending our effort to elaborate the concept to support
client answering LDSQs with multiple LDSQ results and support LDSQ containment for other complex LDSQs.
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