
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

10-2001

Mining multi-level rules with recurrent items using
FP'-Tree
Kok-Leong ONG

Wee-Keong NG

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Paper is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ONG, Kok-Leong; NG, Wee-Keong; and LIM, Ee Peng. Mining multi-level rules with recurrent items using FP'-Tree. (2001). Third
International Conference on Information Communications and Signal Processing (ICICS 2001). Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/904

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Mining Multi-Level Rules with Recurrent Items Using FP′-Tree

Kok-Leong Ong Wee-Keong Ng Ee-Peng Lim

Centre for Advanced Information Systems, Nanyang Technological University
Nanyang Avenue, Singapore 639798, SINGAPORE

awkng@ntu.edu.sg

Abstract

Association rule mining has received broad research in the

academic and wide application in the real world. As a re-

sult, many variations exist and one such variant is the min-

ing of multi-level rules. The mining of multi-level rules has

proved to be useful in discovering important knowledge that

conventional algorithms such as Apriori, SETM, DIC etc.,

miss. However, existing techniques for mining multi-level

rules have failed to take into account the recurrence relation-

ship that can occur in a transaction during the translation of

an atomic item to a higher level representation. As a result,

rules containing recurrent items go unnoticed. In this paper,

we consider the notion of ‘quantity’ to an item, and present

an algorithm based on an extension of the FP-Tree to find

association rules with recurrent items at multiple concept lev-

els.

1 Introduction

Association rule mining was introduced in 1993 [1] by
Agrawal et al. and a year later, Agrawal and Srikant
proposed the Apriori [2, 6] algorithm for fast associa-
tion rule mining. Essentially, an association rule is a
rule of the form X ⇒ Y where X,Y ⊆ I and I =
{x1, x2, . . . , xn}, the set of unique items in the database
D containing a set of transactions. A transaction T ∈ D
is a tuple of the form 〈tid, {xi, xj , . . . , xk}〉, where tid is
the transaction ID and {xi, xj , . . . , xk} ⊆ I. Hence, a
rule of the form {sunshine-bread, marigold-butter} ⇒
{daisy-milk} can produce the interpretation “A customer
who buys Sunshine bread and Marigold butter also buys Daisy
milk”. Such a rule is valuable to the domain expert in many
ways. For example, the manager may decide to shelf bread,
butter and milk in close vicinity so as to enhance the shop-
ping experience of the customer. Alternatively, the store
manager may use the rule discovered to bundle goods such
that the combination appeals to the consumers and that in
turn, helped to increase sales and profit.
However, mining rules at the atomic (i.e., primitive) level

proved to be less rewarding then mining rules at multiple
concept levels. Han and Fu observe two problems with min-
ing rules at the atomic level [4]. First, large support is likely
to exist at a higher level concept rather than a low one. This
means that it is difficult to find strong rules at the atomic
level or one has to reduce the support threshold substantially.

Reducing support creates two problems — the generation of
too many rules, and the reduced efficiency due to a larger set
of candidates to generate and test. Second, it is unlikely to
find many strong rules at the atomic level due to the small
average support for each atomic item within a large item
set. As a result, mining of association rules should occur
at different conceptual levels appropriate for the domain ex-
pert. With a multi-level view to the rules, a domain expert
is likely to find knowledge that is useful within a shorter time
frame. This is because the domain expert can proceed from
any level, moving into details on concepts that are of interest
to him or her.

While rules at different concept levels provide new insights
to the basket data, we observed that the translation of an
atomic item to its conceptual form results in recurrent items
within a transaction. Current multi-level algorithms ignore
this quantitative value. For example, if a transaction con-
tains strawberry and chocolate milk, the translation results
in a single conceptual item — milk. In the more precise case,
the transaction should indicate two units of milk, instead of
justmilk. As observed by Zaiane et al. [11], important knowl-
edge can be obtained by considering the recurrence behavior
of objects within an image. In the case of the supermarket
scenario, finding a pattern like three beverages appearing to-
gether with four snacks certainly gives more insight to the
domain expert over just beverages and snacks occurring to-
gether.

To discover rules as described above, existing algorithms
proposed in [2, 4] are inadequate. In this paper, we address
the above in two steps. First, we introduce the notion of
‘quantity’ as an attribute to an item. Hence, every transac-
tion now holds the item and its recurrence value. We then
propose an algorithm based on the FP-Tree structure [5, 7]
to mine multi-level rules containing recurrent items. Unlike
the multi-level algorithms in [4, 9], which is fundamentally
a generate and test process, the FP-Tree allows rules to be
discovered without candidate generation. This reduces the
mining of all levels to two database scans and a fraction of
the memory required by the Apriori. We extend the algo-
rithm for FP-Tree to mine multi-level rules with recurrent
items. We called this extension the FP′-Tree.

The rest of the paper is organized as follows. In the next
section, we discuss the concepts and notations of multi-level
rules with recurrent items. Section 3 looks at the FP′-Tree,
an extension of the efficient FP-Tree structure, to find multi-
level rules with recurrent items. Finally, we conclude our
work in Section 4.

1

2 Notations

Most algorithms on mining association rules use the a-priori
property to traverse a part of the search space while ensuring
that the rules discovered are complete. This efficiency is
achieved by using two measures — support and confidence.

Definition 1 The support (ϕ) of an itemset X is the fre-
quency that X appears in the database D. A transaction T
in D supports X (denoted by X 4 T) if all elements of X
appear in T . Unlike the Apriori, where each transaction con-
tributes the same support count (ϕ̂, see Definition 5) to
X (i.e., 1), each transaction contributes a different support
count when recurrent items are considered. As a result, the
support of an itemset X is given by the following expression:

ϕ(X) =

|D|∑

i=0

ϕ̂(X,Ti)

|D|

Definition 2 The confidence (σ) of a rule X ⇒ Y is the
strength of the statement “if X appears in a transaction,
then Y can also be found in that transaction”. Formally,
σ(X ⇒ Y) is the conditional probability of Y given that X
has occurred, and is given by

σ(X ⇒ Y) =
P (X ∪ Y)
P (X)

Although a single support and confidence threshold can
be specified for all levels, a better alternative is to define
individual support and confidence measures for each level
because the average support for each item increases as we
ascend the concept tree. Formally, we observe the following
about the support of an item at different concept levels.

Definition 3 Let α(p, q) be a function that returns true if
p is a higher level concept of q. Given two items xi and xj
at level `k that translates to the same conceptual item yp
at level `k+1, then ϕ(yp) = ϕ(xi) + ϕ(xj) − ϕ({xi, xj}). A
generalization of the above is as follows:

ϕ(p ∈ I`′>`) >
∑
ϕ(q ∈ I` | α(p, q))− |β(p)|

where β(p) is defined as

β(p) = {r ⊆ Ti | ∀r
′ ∈ r → α(p, r′) ∧ |r| > 2}

|D|
i=0

which leads to the observation that

∀`, `′ ∈ L,ϕ(xi ∈ I`) 6 ϕ(xj ∈ I`′>`)

As a result of the above, it makes sense to conclude the
decision to have different support and confidence thresholds.
In addition to the notion of support and confidence, the con-
sideration of recurrent items changes the way two items are
perceived as similar. While current algorithms recognize the
similarity of two items by their string literal, we go beyond
this scope by including the comparison of its quantity. This
is necessary for the purpose of constructing unique nodes for
storing the correct support count in the FP′-Tree. There-
fore, in the context of the FP′-Tree, we have the following
definitions.

<concept-tree>
 <beverages>
 <non-gassy-drinks />
 <milk>
 <uht-milk>
 <strawberry-milk />
 <chocolate-milk />
 <vanilla-milk />
 <plain-milk />
 </uht-milk>
 <fresh-milk />
 </milk>
 <gassy-drinks />
 <beer />
 </beverages>
</concept-tree>

. . .

Non-Gassy

Beverages

Drinks Milk Gassy
Drinks Beer

UHT Milk

Strawberry
Milk

Chocolate
Milk

Vanilla
Milk

Fresh Milk

Plain
Milk Level 1

Level 2

Level 3

Level n

Figure 1: A concept tree and its XML representation.

Definition 4 Given an item x, the recurrence value (ψ)
of x with respect to the transaction T and the itemset X is
ψ(x, T) and ψ(x,X) respectively.

Definition 5 Given two items xi and xj in the FP
′-Tree,

xi and xj are similar (µ) if both xi and xj has the same
literal, and are equal (%̂) if and only if

µ(xi, xj) ∧ ψ(xi) = ψ(xj).

Once items are differentiated, it is then possible to com-
pute the support count. Most algorithm simply increments
the support of an itemset if X 4 T holds. It does not con-
sider how many times an itemset can be counted within the
same transaction. Zaiane et al. noted this when the concept
of recurrent objects in images were studied [11]. As men-
tioned in the beverage/snack example, we believe the notion
of quantity is equally applicable in the transaction scenario.
We observed that the support count of an itemset with re-
current items can be computed in the following manner.

Definition 6 Given a transaction T that supports an item-
set X, the support count (ϕ̂) is given by

ϕ̂(X,T) = min

(⌊
ψ(y | µ(y ∈ T, xi ∈ X))

ψ(xi ∈ X)

⌋∣∣∣∣
|X|

i=0

)

We notice that the introduction of quantity (ψ) as an at-
tribute of an item results in some implications. First, we can
compute the support of an itemset X in O(|X|) time. This
speedup, with respect to the technique in [11], is respectable
when large number of itemsets needs to be checked against
a huge database. Second, it reduces the number of physical
nodes needed to represent all the patterns in the FP′-Tree.
Consider a simple situation X = {xi, xi, xi, xj}. A naive
modification of the FP-Tree will require four nodes to repre-
sent the pattern X. However, the FP′-Tree requires only two
(i.e., xi(3), xj(1)) where the number within the bracket in-
dicates the recurrence value of the item. Another important
data structure that determines the abstraction of an item
at some concept level. A number of ways to represent the
concept tree exists [9, 10]. In this paper, we propose the use
of XML where facilities to query and manipulate the XML
structure already exists. Adding to the fact that XML doc-
uments are text files that can be easily edited, it becomes an
attractive option for our purpose. Figure 1 shows the con-
cept tree and the equivalent XML document. We define a
function λ() that uses the concept tree in Figure 1 as follows.

2

Definition 7 The mapping function (λ) translates a
given transaction T , an itemset X or an item x to the con-
cept level ` such that α(λ(T, `), t ∈ T), α(λ(X, `), x ∈ X)
and α(x′ = λ(x, `), x) holds respectively (See Definition 3

for α).

Notice that it is possible to hold the FP′-Tree in memory
due to its compact structure. Hence, it follows intuitively
that each FP′-Tree at the higher concept level is smaller in
size based on the number of nodes due to the merging of
items into higher level concepts. If every FP′-Tree can be
stored in main memory as assumed above, then the amount
of database scan reduces to the initial requirement for con-
structing the base tree. Subsequent FP′-Trees are then con-
structed from the base tree and hence, no further I/O is
required.

3 Mining multi-level rules with

recurrent items

In the previous section, we have introduced the various nota-
tions and concepts for the purpose of mining multi-level rules
with recurrent items using an extension of the FP-Tree. So
far, the introduction in the last section focuses on defining
the domain concepts. In this section, we present an algo-
rithm to integrate the definitions. Due to space constraints,
we shall briefly describe the fundamentals of the FP-Tree.
The reader can refer to [5, 7] for a more complete discussion
of the data structure and algorithm.

The frequent pattern tree (FP-Tree) is a tree like data
structure that is a compact representation of the database.
Since we are only interested in the frequent items, we can
create a subset of the database by scanning it once and
collecting items that meet or exceed the specified support
threshold. Suppose that this structure is small enough, we
will be able to store the representation in the main mem-
ory and avoid the need to pay for I/O overheads that the
Apriori requires. Furthermore, with frequent items repeat-
ing in the transactions, it is actually possible to store the
frequent item only once and the occurrences in the database
registered. The FP-Tree takes advantage of this property
and allows transactions to share a common prefix among
the common items. For example, if T1 = {a, b, d, e, h} and
T2 = {a, b, d, g, h} then the common prefix of the two trans-
actions is {a, b, d} and we only need to stored it once. The
constructed FP-Tree is similar to the one shown in Figure 3
except that the FP-Tree structure does not have a “Trans-
action count” table.

Instead of candidate generation and then paying for the
I/O cost to determine if a pattern is frequent, the frequent
pattern growth algorithm traversed the FP-Tree to deter-
mine the set of frequent patterns. To generate a rule con-
taining an item x, the algorithm begins from the header ta-
ble and finds all paths containing x. The prefix nodes of
x are then extracted to form the conditional pattern base.
Thinking for a moment that each conditional pattern base
is a transaction, we can construct a conditional pattern tree
like how we construct the initial FP-Tree. The paths in the
conditional pattern tree are then enumerated to obtain all

Input: Transaction database with recurrent items D, support threshold (ϕ1) at
the atomic level.

Output: The base tree, FP’-Treeϕ1

Method:

1. Scan D and collect the support count of each 1-itemset X using ϕ̂(X, T ∈
D). Add the frequent items that satisfies ϕ1 to F` and sort F` in descend-
ing order.

2. Create the root of the FP’-Tree T , and label it as null. For each transaction
T ∈ D, do the following.

(a) Let T ′ = {x | µ(x ∈ T, y ∈ F`)} where x is sorted according to
the order of F`.

(b) Let the sorted frequent items in T ′ be [H′|h|H], where H′ is the
set of ancestor nodes of h, and H the remaining elements in the
list. Call insertTree([null|h|H],T).

(c) The function insertTree() performs the following. If T has a child
N such that %̂(N, h) holds, then increment N’s count by 1; else
create a new node N and set its count to 1, it’s parent link be linked
to T , the parent node’s next ptr set to N, and its node-link to the
nodes that meet Definition 4 via the node-link structure. Then,
for each path p ∈ T − {[H′|h|H]}, H = H′ ∪ {h}, P = p ∩µ H,
and ∀eh ∈ H, ∃ep ∈ p → µ(eh, ep):

i. If H ⊂ϕ P and N is newly created then h.count += ϕ̂(H,P)

ii. If H ⊃ϕ P then q.count += ϕ̂(P,H) if and only if
∃q ∈ p → µ(q, h)

and ∃p′ ∈ P → parent(p′) = null and P is a consecutive
pattern of p.

iii. If H =ϕ P then

If |H| < |p| and N is newly created then h.count +=
ϕ̂(H,P)

If |H| > |p| then q.count += ϕ̂(P,H) if and only if
∃q ∈ p → µ(q, h)

and ∃p′ ∈ P → parent(p′) = null and P is a consecu-
tive pattern of p.

(d) If h is the last node in the path p and h.next ptr is null (i.e., the
node for h has been just created), then set h.next to the address of
the constant 1 in the path count table; else set h.next to the address
of the constant that is 1 higher than the current value pointed by
h.next.

(e) Call insertTree([H′ ∪ {h}|h′|H − {h′}], N) recursively if H is
non-empty.

Figure 2: Algorithm for base tree construction.

combinations of patterns containing the item x. We con-
tinue this principal idea and applied the procedure to mine
patterns containing recurrent items. An example will be dis-
cussed in Section 3.3.

3.1 Generating the Base Tree

Assume that the set of support and confidence thresholds
are already defined by the user, and that the concept tree
represented in XML has already been created. The process
begins with the construction of the base tree. We begin by
running the algorithm in Figure 2 using the support thresh-
old defined for the atomic level (ϕ1). In this case, we have to
consider the recurrence value of an item within the transac-
tion resulting in the difference between our algorithm versus
the original.
First, each transaction T now holds the item and its recur-

rence value. When computing the frequent 1-itemsets, the
respective support count are obtained using ϕ̂(X,T) where
X is the frequent 1-itemset. In the second pass through
the database, items in the transaction are ordered based on
the frequency of their 1-itemset. The algorithm has been
modified to use the definition of equal (%̂) and the support
computation (ϕ̂) defined earlier. For illustration purposes,
the FP′-Treeϕ1 constructed in Figure 3 is the result of run-
ning the base tree construction algorithm over the database
in Table 1 with a support count of 3. Each transaction in

3

TID Transaction Details

100 b(3), a(2), e(1)
200 b(1), e(1)
300 b(3), e(1)
400 b(9), e(5)
500 b(6), a(4)
600 b(9), f(3)
700 b(6), a(4)

Table 1: The sample database.

the database now contains the item and its recurrence value
within the brackets.

In the first pass, the support count of each item is obtained
and placed into F`. For our example, F` = {b:37, a:10, e:8,
f:3}. Since the support count is 3, all the items at the current
level qualify for the FP′-Tree construction (the number after
the colon indicates the support count). In the second pass,
we read each transaction, prune items not in F`, and ordered
them according to the sequence in F` (step 2(a)). Starting
with the item in T ′ having the highest support count for its 1-
itemset, we insert the item into the FP′-Tree according to the
definition of step 2(b) and 2(c). Beginning with transaction
100, we first prune items in the transaction not in F`. Since
all items are in F`, we next arrange them in the order of
F`. Starting with the first item ‘b(3)’, and that the FP′-
Tree is now empty, we create a new node N = 〈b(3):1〉,
set its support count to 1, set the next ptr to null, set
the parent pointer to the root of the tree and update the
node link structure. Since there are no other paths other
than itself, steps (i), (ii) and (iii) are not executed. This
continues for the other two nodes in T ′. When the last node
‘e(1)’ is inserted, it’s next ptr is set to the address where
the constant 1 is located in the “Transaction count” table.

Proceeding on with the second transaction, we create a
node representing ‘b(1)’ since it does not exist at the root
of the tree. Now that a path other than the one that the
current node exists, we need to perform steps (i) to (iii).
The symbol ∩µ represents the intersection of two sets based
on their similarity while X ⊂ϕ Y holds if ∀x ∈ X, ∃y ∈ Y →
ϕ(x) 6 ϕ(y) ∧ µ(x, y). Likewise for X ⊃ϕ Y . Once 〈b(1):1〉
is created, we have H = {null} ∪ {〈b(1):1〉}, P = {b(3):1}.
Hence, step (i) is executed and the support count of ‘b(1)’
is incremented by ϕ̂(H,P) updating the node to 〈b(1):4〉.
The reason for updating the count lies in the way recurrent
items are counted. In this case, since one b occurs three
times in ‘b(3)’, its support count due to transaction 100 is 3.
Add to the support count due to transaction 200, we have
a total support count seen by ‘b(1)’ to be 4. When ‘e(1)’
is added, H = {b(1):4, e(1):1} and P = {b(3):1, e(1):1}.
Again, step (i) is executed and only the support count of
‘e(1)’ is incremented. This continues for all transactions until
every transaction is processed and placed into the tree.

Note that step (c) is where most of the extension takes
place. Further details of step (c) can be analyzed from the
algorithm. However, it would be sufficient for the reader
to understand that the principle of step 2(c) is to correct
the support count due to the difference in computation of
support against transactions that occur before and after its
insertion. Once the base tree is constructed, we can proceed

Figure 3: The FP’-Tree.

to generate the atomic level rules from the base tree using
the enumeration technique discussed in [5]. Before we go
into this, we look at the construction of higher level FP′-
Tree from the base tree.

3.2 FP′-Tree Construction

While the FP-Tree discovers rules at the atomic level, it does
not perform mining at multiple concept levels. The trivial
approach to provide this facility with FP-Tree is to work on
an interface that rescans the database every time a different
concept level is to be mined. This translates to a total of 2+`
passes where ` is the number of levels to mine. With typi-
cal memory at orders of magnitude faster than the disk, the
extra ` passes through the database is clearly undesirable.
Hence, we seek an alternative where we construct a higher
concept FP′-Tree from its lower level concept FP′-Tree. Al-
though the algorithm presented in this paper includes the
notion of recurrent items, deriving a version for the FP-Tree
is relatively straightforward.

Figure 4 shows the algorithm to construct a FP′-Tree
given concept level `′ and a support threshold ϕ`′ . Let `
be a lower concept level of `′ (i.e., ` < `′). In step 1, we
generate F`′ from F` by first mapping each item in F` to
its high level representation at `′. We then sum the support
count of repeating concepts, pruning away items in F`′ that
do not meet ϕ`′ . Finally, we sort F`′ in descending order. In
step 2, we use the FP′-Tree at level ` to create transactions
holding the conceptual items at level `′. This is achieved
by abstracting each node in the FP′-Tree to level `, deleting
those that do not appear in F`′ , and removing duplicates by
combining the similar ones and their recurrence value. This
is done in steps 2(a), 2(b) and 2(c). When all nodes in the
path p ∈ T` have been translated, we call insertTree() by
the number of times indicated by the “Transaction Count”
table. This repeats until all paths in the FP′-Tree at level `
are traversed.

3.3 Finding Frequent Itemsets

The enumeration process to finding frequent pattern is sim-
ilar to that of the FP-Tree. For the sake of completeness,

4

Input: Concept tree at level ` T`, support threshold for level `
′ (ϕ`′).

Output: The FP’-Treeϕ
`′

for level `′

Method:

1. Let F` be the set of frequent 1-itemsets for the concept level `.
Let F`′ = {∅}. For each x ∈ F`, x

′ = λ(x, `′), if F`′ does not
contain x′ then insert x′ into F`′ and set its support to that of
x; else increment the support of x′ in F`′ by the support of x.

2. For each x′ ∈ F`′ , if ϕ(x
′) < ϕ`′ then remove x′ from F`′ . Sort

F`′ in descending order.

3. For each path p ∈ TB , create a new path p′. Then, for each
node n ∈ p, do the following:

(a) Create a new node n′ such that n′ = λ(n, `).

(b) Set ψ(n′) =
∑
ψ(mi | µ(n,mi))|

|p|
i=0.

(c) If n′ /∈ p′ then p′ = p′ + {n′}; else ψ(m′ ∈ p′) = ψ(m′)+
ψ(n′) where µ(m′, n′) holds. Let p = p− {m | µ(n′,m)}
and repeat step (a) and (b) until p = {∅}.

(d) Let the sorted items in p′ be [H′|h|H] where H′, h and
H are defined as in step (b) of the base tree construction
algorithm. Repeat the call insertTree([null|h|H]) to do
step (c) and (d) of the base tree construction algorithm
by the number of times indicated by the next ptr of the
last node of p.

Figure 4: Algorithm for concept tree construction.

we illustrate with an example. Suppose we are interested in
finding frequent patterns containing ‘e(1)’ (i.e., itemsets with
a single item e) and that the support threshold is 3. Follow-
ing the “Header” table, we derive 〈e(1):1〉, 〈e(1):8〉, 〈e(1):5〉
and three paths in the FP′-Tree: 〈b(3):10, a(2):5, e(1):1〉,
〈b(1):37, e(1):8〉 and 〈b(3):10, e(1):5〉. The first path ap-
pears once in the database by definition of ϕ̂ while the other
paths appears 8 and 5 times respectively.

We first derive the conditional pattern base. In this case,
the conditional pattern base for ‘e(1):1’, ‘e(1):8’ and ‘e(1):5’
is 〈b(3):1, a(2):1〉, 〈b(1):8〉 and 〈b(3):5〉 respectively. Con-
structing the conditional FP′-Tree, leads to two branches:
〈b(1):8〉 and 〈b(3):5〉. Hence, the frequent patterns contain-
ing ‘e(1)’ and has a support count exceeding the threshold
are 〈b(1), e(1)〉:8 and 〈b(3), e(1)〉:5. Using the same princi-
ple, all rules in the database can be discovered on the fly by
going through the header table once.

4 Conclusions

The defining work [4, 10] on multi-level concept mining has
explored various algorithms based on an extension of the
Apriori. Around the same time, the notion of recurrent
items was proposed for mining objects in an image where ob-
jects occurring more than once has an implicit meaning. We
believe the notion of recurrent items in multimedia data is
equally applicable to the quantity of an item in a supermar-
ket scenario, and the abstraction process should maintain
this information. While the solution to mining multi-level
rules and recurrent items exists, they are developed along
separate paths. An algorithm that combines the two variants
appear lacking. Moreover, both techniques use a variation of
the Apriori and thus suffers from the bottleneck of candidate
generation when the support threshold is low.

Recently, the FP-Tree and frequent pattern mining tech-
nique was proposed as an alternative to the Apriori. In
particular, frequent pattern mining eliminates the need for
candidate generation and test. Hence, empirical tests con-
ducted showed dramatic improvements in performance over
the Apriori in terms of speed, I/O and memory consumption.
However, the FP-Tree only supports mining of primitive pat-
terns and facilities for mining recurrent items and multi-level
rules are missing. We noted the potential of extending the
algorithm, much like how Apriori was extended for the multi-
level and the recurrence case. This paper reports the results
of our work done.

References

[1] R. Agrawal, T. Imielinski and A. Swami. “Mining
Association Rules Between Sets of Items in Large
Databases”, in Proc. of the ACM Int. Conf. on Man-
agement of Data, Washington, USA, May 1993.

[2] R. Agrawal and R. Srikant. “Fast Algorithm for Mining
Association Rules”, in Proc. of the 20th VLDB Confer-
ence, Santiago, Chile, 1994.

[3] Y. Fu and J. Han. “Meta-Rule-Guided Mining of Associ-
ation Rules in Relational Databases”, in Int. Workshop
on Knowledge Discovery and Deductive and Object-
Oriented Databases, Singapore, Dec. 1995.

[4] J. Han and Y. Fu. “Discovery of Multiple-Level Associ-
ation Rules from Large Databases”, in Proc. of the 21st
VLDB Conference, Zurich, Switzerland, 1995.

[5] J. Han and J. Pei. “Mining Frequent Patterns by
Pattern-Growth: Methodology and Implications”, in
SIGKDD Explorations 2(2), Dec. 2000.

[6] J. Hipp, U. Guntzer, G. Nakhaeizadeh. “Algorithms for
Association Rule Mining — AGeneral Survey and Com-
parison”, in SIGKDD Explorations 2(1), Jun. 2000.

[7] J. Han, J. Pei and Y. Yin. “Mining Frequent Patterns
without Candidate Generation”, in Proc. of the ACM
Int. Conf. on Management of Data, Dallas, TX, May
2000.

[8] G. Psaila and P. L. Lanzi. “Hierarchy-based Mining of
Association Rules in Data Warehouses”, in Proc. of the
ACM Symp. on Applied Computing , Como, Italy, Mar.
2000.

[9] R. Srikant and R. Agrawal. “Mining Quantitative As-
sociation Rules in Large Relational Tables”, in Proc. of
the ACM Int. Conf. on Management of Data, Montreal,
Canada, Jun. 1996.

[10] S. Thomas and S. Sarawagi. “Mining Generalized As-
sociation Rules and Sequential Patterns Using SQL
Queries”, in Proc. of the 4th Int. Conf. on Knowledge
Discovery and Data Mining , New York, 1998.

[11] O. R. Zaiane, J. Han and H. Zhu. “Mining Recurrent
Items in Multimedia with Progressive Resolution Re-
finement”, in Proc. of Int. Conf. on Data Engineering ,
San Diego, Mar. 2000.

5

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2001

	Mining multi-level rules with recurrent items using FP'-Tree
	Kok-Leong ONG
	Wee-Keong NG
	Ee Peng LIM
	Citation

	paper.dvi

