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Abstract. Boneh, Canetti, Halevi, and Katz showed a general method
for constructing CCA-secure public key encryption (PKE) from any
selective-ID CPA-secure identity-based encryption (IBE) schemes. Their
approach treated IBE as a black box. Subsequently, Boyen, Mei, and Wa-
ters demonstrated how to build a direct CCA-secure PKE scheme from
the Waters IBE scheme, which is adaptive-ID CPA secure. They made di-
rect use of the underlying IBE structure, and required no cryptographic
primitive other than the IBE scheme itself. However, their scheme re-
quires long public key and the security reduction is loose. In this paper,
we propose an efficient PKE scheme employing identity-based techniques.
Our scheme requires short public key and is proven CCA-secure in the
standard model (without random oracles) with a tight security reduc-
tion, under the Decisional Bilinear Diffie-Hellman (DBDH) assumption.
In addition, we show how to use our scheme to construct an efficient
threshold public key encryption scheme and a public key encryption with
non-interactive opening (PKENO) scheme.

Keywords: Chosen Ciphertext Security, Public Key Encryption,
Identity-Based Encryption.

1 Introduction

Chosen-ciphertext security (CCA-security, for short) [31,16] is now considered as
a standard notion of security for public key encryption (PKE) in practice. There
have been several efficient PKE schemes shown to be secure in the random
oracle (RO) model [3]. Unfortunately, the RO model is heuristic, and a proof of
security in the RO model does not directly imply anything about the security
of a PKE scheme in the real world. In fact, it has been demonstrated that there
exist cryptographic schemes which are secure in the RO model but which are
inherently insecure when the random oracle is instantiated with any real hash
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function [8,29,19,2]. Throughout this paper, we focus on PKE schemes whose
security are proven in the standard model (without random oracles).

Dolev, Dwork, and Naor [16] were the first to come up with a CCA-secure PKE
scheme in the standard model. Later Cramer and Shoup [11] proposed the first
practical CCA-secure PKE scheme in the standard model, under the Decisional
Diffie-Hellman (DDH) assumption. Interestingly, Elkind and Sahai [17] showed
that both techniques can be viewed as special cases of a single paradigm.

Canetti, Halevi, and Katz [9] presented a new paradigm for constructing CCA-
secure PKE schemes using IBE as a building block. The idea is to use, for each
encryption, a fresh random verification key of a one-time signature scheme as
the “identity” for IBE encryption. In order to tie the IBE ciphertext to this
verification key, the ciphertext is signed using the corresponding signing key. If
the IBE scheme is selective-ID CPA secure then the resulting PKE scheme is
CCA secure. Boneh and Katz [6] further improved the efficiency of the scheme by
using a MAC instead of a one-time signature. Kiltz [25] showed that a tag-based
encryption (TBE) scheme is sufficient for the transformation in [9] to obtain a
CCA-secure PKE scheme.

Boyen, Mei, and Waters [7] showed how to build a direct CCA-secure PKE
scheme from the Waters IBE scheme [33]. Unlike the Canetti-Halevi-Katz (CHK)
scheme [9] and the Boneh-Katz (BK) scheme [6] that use IBE as a black box,
their approach is endogenous, very simple, and compact. They constructed a
CCA-secure PKE scheme, referred to as the BMW scheme, in which a cipher-
text consists of just three group elements without attached signature or MAC.
Compared with the CHK scheme and the BK scheme, the main difference is to
use the first two elements of the ciphertext to determine a one-time “identity”,
instead of a fresh random “identity” generated by a one-time signature as in
the CHK scheme or encapsulation as in the BK scheme. When proving secu-
rity of the scheme, they took advantage of the CPA security of the Waters IBE
scheme in the adaptive-ID security model (as opposed to the weaker selective-ID
model). The drawback of the BMW scheme, however, is that the user needs long
public key and the security is reduced only loosely to the Decisional Bilinear
Diffie-Hellman (DBDH) assumption. Note that, an inefficient security reduction
would imply either a lower security level or the requirement of larger key and
ciphertext sizes to obtain the same security level.

1.1 Hybrid Encryption

Cramer and Shoup [12,32] formalized the notion of hybrid encryption, where a
public key cryptosystem is used to encapsulate the (session) key of a symmetric
cipher which is subsequently used to conceal the data. This is also known as
the KEM/DEM approach. A folklore composition theorem (formalized in [12])
shows that if both KEM and DEM are CCA-secure then the hybrid encryp-
tion is CCA-secure. Kurosawa and Desmedt [27] came up with a hybrid en-
cryption scheme improving the performance of the Cramer-Shoup scheme both
in computational efficiency and in ciphertext length. Abe, Gennaro, Kurosawa
and Desmedt [1] established the Tag-KEM/DEM framework, and explained the
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security of Kurosawa-Desmedt scheme in this framework. Hofheinz and Kiltz
[21] presented another paradigm for constructing hybrid encryption with strictly
weakened KEM. The DDH assumption still is required for these extensions ex-
cept for one of Hofheinz and Kiltz’s schemes which depends on the n-linear DDH
assumption.

Kiltz [26] presented a practical CCA-secure KEM scheme whose security is
proven under the gap hashed Diffie-Hellman (GHDH) assumption. Cash, Kiltz
and Shoup [10] proposed CCA-secure hybrid encryption schemes under the com-
putational Diffie-Hellman (CDH) or hased Diffie-Hellman (HDH) assumption by
using the twin DH problem (which is also applicable to a wide range of crypto-
graphic primitives). Note that the CDH and HDH assumptions are weaker than
the DDH assumption. Based on Naor-Pinkas broadcast encryption (BE) scheme
[28], Hanaoka and Kurosawa [20] proposed more efficient CCA-secure hybrid en-
cryption schemes under the CDH or HDH assumption. Recently, Hofheinz and
Kiltz [22] proposed a practical CCA-secure hybrid encryption scheme whose se-
curity can be reduced to the assumption that factoring is intractable. However,
all these hybrid encryption schemes are not suited for constructing threshold
public key encryption and public key encryption with non-interactive opening
schemes.

1.2 Our Contribution

In this paper, we propose a more efficient PKE scheme employing identity-based
techniques. The proposed scheme has small public key size and is proven CCA-
secure in the standard model with a tight security reduction, under the DBDH
assumption. We follow a similar method in the proof simulation as that in the
CHK, BK and BMW schemes. After the step phase there is a certain set of well-
formed ciphertexts that the simulator can decrypt corresponding to “identities”
that the simulator knows the private keys. The remainder of the well-formed
ciphertexts, that the simulator cannot decrypt corresponding to “identities” for
which the simulator does not know the private keys, can be used as challenge
ciphertexts in the simulation.

Our scheme has the desirable property that it allows the validity of cipher-
texts to be checked publicly. Using this property, we extend our scheme to an
efficient threshold public key encryption scheme and an efficient PKE with non-
interactive opening (PKENO) scheme. An overview comparing the efficiency of
our PKE scheme to those of other PKE schemes employing identity-based tech-
niques is given in Table 1.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we present some
definitions and a related complexity assumption. We describe and analysis our
PKE scheme in Section 3. In Section 4, we introduce two extensions of practical
interest to our PKE scheme. Finally, we state our conclusion in Section 5.
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Table 1. Comparison of public key encryption schemes employing identity-based tech-
niques. “exp” denotes an exponentiation operation. (Some of the exponentiations are
actually multi-exponentiations.) “pr” denotes a pairing operation. The CHK [9] and
BK [6] schemes are instantiated with the first Boneh-Boyen IBE scheme from [4]. (Kiltz
[24] showed that the CHK transformation maps the first and second Boneh-Boyen IBE
schemes from [4] to nearly one single encryption scheme.)

Scheme PK size Encryption Decryption Ciphertext size TPKE PKENO

CHK[9] 3|G|+1|GT | 3 exp + Sig 1 exp + 1 pr + Ver 2|G|+1|GT |+vk+sig
√ √

BK[6] 3|G|+1|GT | 3 exp 1 exp + 1 pr 2|G|+1|GT |+com+tag × ×
BMW[7] 162|G|+1|GT | 3 exp 1 exp + 1 pr 2|G|+1|GT | √ √

Ours 4|G|+1|GT | 3 exp 1 exp + 1 pr 2|G|+1|GT |+1|Zp| √ √

2 Preliminaries

For a group G, we denote the size of a group-element representation as |G|. We
say that a function f(λ) is negligible if for every c > 0 there exists an λc such
that f(λ) < 1/λc for all λ > λc.

2.1 Bilinear Pairings

Let G be a cyclic multiplicative group of prime order p and GT be a cyclic
multiplicative group of the same order p. A bilinear pairing is a map e : G×G→
GT with the following properties:

– Bilinearity: ∀g1, g2 ∈ G, ∀a, b ∈ Z∗
p, we have e(ga

1 , gb
2) = e(g1, g2)ab;

– Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) �= 1;
– Computability: There exists an efficient algorithm to compute e(g1, g2) for
∀g1, g2 ∈ G.

2.2 Complexity Assumption

Definition 1 (DBDH Problem). Given a group G of prime order p with gen-
erator g and elements ga, gb, gc ∈ G, e(g, g)z ∈ GT where a, b, c, z are selected
uniformly at random from Z∗

p. A fair binary coin β ∈ {0, 1} is flipped. If β = 1,
it outputs the tuple (g, ga, gb, gc, T = e(g, g)abc). If β = 0, it outputs the tu-
ple (g, ga, gb, gc, T = e(g, g)z). The Decisional Bilinear Diffie-Hellman (DBDH)
problem is to guess the value of β.

An adversary A has at least an ε advantage in solving the DBDH problem if

|Pr[A(ga, gb, gc, T = e(g, g)abc) = 1]− Pr[A(ga, gb, gc, T = e(g, g)z) = 1]| ≥ ε

where the probability is over the randomly chosen a, b, c, z and the random bits
consumed by A. We refer to the distribution on the left as PBDH and the one
on the right as RBDH .
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Definition 2 (DBDH assumption). We say that the (ε, t)-DBDH assumption
holds in a group G if no algorithm running in time at most t can solve the DBDH
problem in G with advantage at least ε.

2.3 Collision-Resistant Hashing

Formally, we say that a function H : X → Y is a target-collision resistant (CR)
hash function, if for all PPT A, AdvCR

A (λ) is negligible in λ, where AdvCR
A (λ) =

Pr[x, x′ ← A(H) : x′ �= x ∧H(x′) = H(x)].

2.4 Public Key Encryption

A public key encryption scheme is a tuple of algorithms described as follows:

KeyGen(λ). Takes as input a security parameter λ. It outputs a public/private
key pair (PK, SK).

Encrypt(PK, m). Takes as input a public key PK and a message m. It outputs
a ciphertext.

Decrypt(SK, C). Takes as input a private key SK and a ciphertext C. It outputs
a plaintext message or the special symbol ⊥ meaning that the ciphertext is
invalid.

We insist that all public key encryption schemes satisfy the obvious correctness
condition (that decryption “undoes” encryption).

The strongest and commonly accepted notion of security for a public key
encryption scheme is that of indistinguishability against an adaptive chosen ci-
phertext attack (IND-CCA). It is defined using the following game between an
attack algorithm A and a challenger.

Setup. The challenger runs KeyGen(λ) to obtain a public/private key pair (PK,
SK). It gives the public key PK to the adversary.

Query phase 1. The adversary A adaptively issues decryption queries C. The
challenger responds with Decrypt(SK, C).

Challenge. The adversary A submits two (equal length) messages m0, m1. The
challenger selects a random bit β ∈ {0, 1}, sets C∗ = Encrypt(PK, mβ) and
sends C∗ to the adversary as its challenge ciphertext.

Query phase 2. The adversary continues to adaptively issue decryption queries
C, as in Query phase 1, but with the natural constraint that the adversary
does not request the decryption of C∗.

Guess. The adversary A outputs its guess β′ ∈ {0, 1} for β and wins the game
if β = β′.

We define A’s advantage in attacking the public key encryption scheme PKE
with the security parameter λ as AdvPKE

A (λ) = |Pr[β = β′]− 1
2 |.

Definition 3. We say that a public key encryption scheme PKE is (t, q, ε)-IND-
CCA secure, if for all t-time algorithms A making at most q decryption queries
have advantage at most ε in winning the above game.
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2.5 Public Key Encryption with Non-interactive Opening

A public key encryption with non-interactive opening (PKENO) scheme is a
tuple of algorithms described as follows:

KeyGen(λ). Takes as input a security parameter λ. It outputs a public/private
key pair (PK, SK).

Encrypt(PK, m). Takes as input a public key PK and a message m. It outputs
a ciphertext.

Decrypt(SK, C). Takes as input a private key SK and a ciphertext C. It outputs
a plaintext message or the special symbol ⊥ meaning that the ciphertext is
invalid.

Prove(SK, C). Takes as input a private key SK and a ciphertext C. It outputs
a proof π or the special symbol ⊥ meaning that the ciphertext is invalid.

Ver(PK, C, m, π). Takes as input a public key PK, a ciphertext C, a message m
and a proof π. It outputs a result res ∈ {0, 1}meaning accepted and rejected
proof, respectively. In particular 1 ← Ver(PK, C,⊥, π) must be interpreted
as the verifier being convinced that C is an invalid ciphertext.

We insist that all PKENO schemes satisfy the obvious correctness condition (that
decryption “undoes” encryption). In addition, we require, for a honestly gener-
ated key pair (PK, SK) and all ciphertexts C, 1 ← Ver(PK, C, Decrypt(SK, C),
Prove(SK, C)).

The notion of security for a PKENO scheme is indistinguishability against
chosen-ciphertext and prove attacks (IND-CCPA) and satisfies computational
proof soundness. IND-CCPA is defined using the following game between an at-
tack algorithm A and a challenger.

Setup. The challenger runs KeyGen(λ) to obtain a public/private key pair (PK,
SK). It gives the public key PK to the adversary.

Query phase 1. The adversaryA adaptively issues decryption or proof queries
on C. The challenger responds with Decrypt(SK, C) or Prove(SK, C).

Challenge. The adversary A submits two (equal length) messages m0, m1. The
challenger selects a random bit β ∈ {0, 1}, sets C∗ = Encrypt(PK, mβ) and
sends C∗ to the adversary as its challenge ciphertext.

Query phase 2. The adversary continues to adaptively issue decryption or
proof queries C, as in Query phase 1, but with the natural constraint that
decryption or proof queries on C∗ are not allowed.

Guess. The adversary A outputs its guess β′ ∈ {0, 1} for b and wins the game
if β = β′.

We define A’s advantage as AdvIND-CCPA
PKENO,A(λ) = |Pr[β = β′]− 1

2 |.
Definition 4. We say that a PKENO scheme is IND-CCPA secure, if for every
adversary A, the advantage AdvIND-CCPA

PKENO,A(·) is negligible.

Computational proof soundness is defined using the following game between an
attack algorithm A and a challenger.
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Setup. The challenger runs KeyGen(λ) to obtain a public/private key pair (PK,
SK). It gives the key pair (PK, SK) to the adversary.

Challenge. The adversary A submits a message m. The challenger sends C =
Encrypt(PK, m) to the adversary.

Output. The adversary A outputs (m′, π′).

We define A’s advantage in forging proof by Advsnd
PKENO,A(λ) = Pr[1← Ver(PK, C,

m′, π′) ∧m′ �= m].

Definition 5. We say that a PKENO scheme satisfies computational proof sound-
ness, if for every adversary A, the advantage Advsnd

PKENO,A(·) is negligible.

Definition 6. We say that a PKENO scheme is secure, if it is IND-CCPA secure
and satisfies computational proof soundness.

2.6 Threshold Public Key Encryption

A threshold public key encryption (TPKE) scheme is a tuple of algorithms de-
scribed as follows:

Setup(n, k, λ). Takes as input the number of decryption servers n, a threshold
k where 1 ≤ k ≤ n and a security parameter λ. It outputs a public key PK,
a verification key VK and private key SK = (SK1, . . . , SKn) which is a vector
of n private key shares. The verification key VK is used to check validity of
responses from decryption servers.

Encrypt(PK, m). Takes as input a public key PK and a message m. It outputs
a ciphertext.

ShareDecrypt(SKi, C). Takes as input a private key share SKi and a ciphertext
C. It outputs a decryption share μi = (i, dC,i) or the special symbol (i,⊥).

ShareVerify(VK, C, μi). Takes as input the verification key VK, a ciphertext C
and a decryption share μi. It outputs valid meaning that μi is a valid
decryption share of C or invalid.

Combine(PK, VK, C, {μ1, . . . , μk}). Takes as input the public key PK, the verifi-
cation key VK, a ciphertext C and k decryption shares μ1, . . . , μk. It outputs
a plaintext message or the special symbol ⊥.

We require, for all ciphertext C, ShareVerify(VK, C, ShareDecrypt(SKi, C)) =
valid. In addition, let μ1, . . . , μk are k distinct valid decryption shares of C,
where C = Encrypt(PK, m), then we require Combine(PK, VK, C, {μ1, . . . , μk}) =
m.

Security against chosen ciphertext attack is defined using the following game
between an attack algorithm A and a challenger.

Init. The adversary outputs a set S ⊂ {1, . . . , n} of k− 1 decryption servers to
corrupt.

Setup. The challenger runs Setup(n, k, λ) to obtain a triple (PK, VK, SK). It
gives PK, VK, and all (j, SKj) for j ∈ S to the adversary.
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Query phase 1. The adversary A adaptively issues decryption queries (C, i).
The challenger responds with ShareDecrypt(SKi, C).

Challenge. The adversary A submits two (equal length) messages m0, m1. The
challenger selects a random bit β ∈ {0, 1}, sets C∗ = Encrypt(PK, mβ) and
sends C∗ to the adversary as its challenge ciphertext.

Query phase 2. The adversary continues to adaptively issue decryption queries
(C, i), as in Query phase 1, but with the natural constraint that the adver-
sary may not request the decryption of C∗.

Guess. The adversary A outputs its guess β′ ∈ {0, 1} for b and wins the game
if β = β′.

We define A’s advantage as AdvTPKE
A (λ) = |Pr[β = β′]− 1

2 |.
Definition 7. We say that a threshold public key encryption scheme TPKE is
secure, if for every adversary, the advantage AdvTPKE

A (·) is negligible.

3 The Proposed PKE Scheme

Our scheme is motivated by the recent signature scheme by Hohenberger and
Waters [23]. Recall that in the CHK, BK and BMW schemes, for each encryp-
tion, the encryptor first generates a one-time “identity”, and then encrypts the
message with respect to the “identity”. In the CHK and BK schemes, the one-
time “identity” is generated randomly by the encryptor; in the BMW scheme,
the first two elements of a ciphertext are hashed to form the one-time “identity”.
In our proposed PKE scheme, we make use of two “identities”. One “identity”
is generated randomly as in the CHK and BK schemes, while the other “iden-
tity” is generated based on the approach in the BMW scheme. The benefit of
doing this is twofold. Compared with the CHK and BK schemes, our ciphertexts
are short without attached signature or MAC; and compared with the BMW
scheme, our scheme has small public key size and is proven secure with a tight
security reduction.

Our scheme consists of the following algorithms:

KeyGen(λ). Given the security parameter λ, a bilinear map group system 〈p, G,
GT , e〉 is constructed. Pick a generator g of G, select random α, x, y, z ∈ Zp

and set g1 = gα, u = gx, v = gy, d = gz. Next, choose random element
g2 ∈ G. Finally, choose a collision-resistant hash function H : GT ×G→ Zp.
The published public key is

PK = (p, G, GT , e, g, H, Z = e(g1, g2), u, v, d),

and the private key is SK = (gα
2 , x, y, z).

Encrypt(PK, m). Given PK and a message m ∈ GT , randomly choose s, r ∈ Zp

and compute
C0 = m · Zs, C1 = gs, C2 = (utvrd)s,

where t = H(C0, C1). Finally, output the ciphertext C = (C0, C1, C2, r) ∈
GT ×G

2 × Zp.
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Decrypt(SK, C). Given SK = (gα
2 , x, y, z) and a ciphertext C = (C0, C1, C2, r),

compute t = H(C0, C1). Then check whether

(C1)tx+ry+z = C2.

If not, output ⊥, else output

C0/e(C1, g
α
2 ).

Theorem 1. The above public key encryption scheme is (t, q, ε) IND-CCA se-
cure, assuming the (t′, ε′)-DBDH assumption holds in G (the multiplicative group
of prime order p), where

t′ = t + O(q), ε′ ≥ ε− AdvCR
A − q/p.

Proof. Suppose there exists a (t, q, ε)-IND-CCA adversary A against our public
key encryption scheme. We are going to construct another PPT B that makes
use of A to solve the DBDH problem with probability at least ε′ and in the time
at most t′.
B is given as input a random 5-tuple (g, ga, gb, gc, T ) that is either sampled

from PBDH (where T = e(g, g)abc) or from RBDH (where T is uniform and
independent in GT ). Algorithm B’s goal is to output 1 if T = e(g, g)abc and 0
otherwise. Algorithm B runs A executing the following steps.

Setup. B chooses random xv, xd, yu, yv, yd ∈ Zp and sets g1 = ga, g2 = gb, u =
gbgyu , v = gbxvgyv , d = gbxdgyd . Then, choose a target-collision resistant
hash function H : GT ×G→ Zp. The public key

PK = (p, G, GT , e, g, H, Z = e(g1, g2), u, v, d)

is passed to A. The private key is SK = (gα
2 = ga

2 = gab, x = b + yu, y =
bxv + yv, z = bxd + yd) which is unknown to B.

Query phase 1. When A issues decryption query on a ciphertext C = (C0, C1,
C2, r), B first computes t = H(C0, C1) and checks whether

e(C1, u
tvrd) = e(g, C2).

If not, output ⊥. Check whether t + rxv + xd = 0. If so, B aborts and
randomly outputs a bit, else chooses random γ ∈ Zp and computes

d1
C = g

−(tyu+ryv+yd)/(t+rxv+xd)
1 (utvrd)γ ,

d2
C = g

−1/(t+rxv+xd)
1 gγ .

Let γ̃ = γ − a
(t+rxv+xd) . Then we have

d1
C = ga

2 (utvrd)γ̃ , d2
C = gγ̃ .

Finally, B outputs
C0 · e(C2, d

2
C)/e(C1, d

1
C).
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Challenge. The adversary A outputs two equal-length plaintexts (m0, m1). B
flips a fair coin, β ∈ {0, 1} and constructs the ciphertext as follows:
1. It computes

C∗
0 = mβ · T, C∗

1 = gc, t∗ = H(C∗
0 , C∗

1 ).

2. Then, it sets r∗ = −(t∗ + xd)/xv and computes C∗
2 = (gc)(t

∗yu+r∗yv+yd).
3. Finally, return the ciphertext C∗ = (C∗

0 , C∗
1 , C∗

2 , r∗).
Since C∗ = (mβ · T, gc, (ut∗vr∗

d)c, r∗), the challenge ciphertext is a valid
encryption of mβ with the correct distribution whenever T = e(g, g)abc =
e(g1, g2)c (as is the case when the input 5-tuple is sampled from PBDH). On
the other hand, when T is uniform and independent in GT (which occurs
when the input 5-tuple is sampled from RBDH) the challenge ciphertext C∗

is independent of β in the adversary’s view.
Query phase 2. A continues to adaptively issue decryption query C = (C0, C1,

C2, r), B performs the following steps:
1. Check if C = C∗. If so, output ⊥.
2. Check if C = (C0, C

∗
1 , C∗

2 , r∗) and H(C0, C1) = t∗. If so, B aborts and
randomly outputs a bit.
Note that, if A were able to produce such a ciphertext, this would repre-
sent a collision in the hash function H , and so the probability that this
event occurs is negligible.

3. Check if t + rxv + xd = 0 where t = H(C0, C1). If so, B aborts and
randomly outputs a bit, else B responds as in Query phase 1.

Observe that the values xv and xd are initially hidden by blinding
factors yv and yd, respectively.
When the adversary A issues decryption query C = (C0, C1, C2, r):
– if e(C1, u

tvrd) �= e(g, C2), B outputs ⊥ and do not leak any infor-
mation about either xv or xd.

– else e(C1, u
tvrd) = e(g, C2), B computes (d1

C = ga
2 (utvrd)γ̃ , d2

C = gγ̃)
and outputs

C0 · e(C2, d
2
C)

e(C1, d1
C)

= C0 · e(C2, g
γ̃)

e(C1, ga
2(utvrd)γ̃)

= C0 · e(C2, g)γ̃

e(C1, ga
2) · e(C1, utvrd)γ̃

=
C0

e(C1, ga
2 )

.

So, the adversary could not obtain any information about either xv

or xd from the decryption queries.
For the challenge ciphertext, the adversary could obtain the informa-

tion that t∗+r∗xv +xd = 0. However, there are exactly p possible (xv, xd)
pairs that satisfy this equation and each of them are equally likely.
Thus, information-theoretically, the probability that t + rxv + xd = 0 is
at most 1/p.

Guess. The adversary A outputs a bit β
′
. B concludes its own game by out-

putting a guess as follows. If β
′
= β then B outputs 1 meaning T = e(g, g)abc.

Otherwise, it outputs 0 meaning T �= e(g, g)abc.
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The probability that B does not abort during the simulation is at most AdvCR
A +

q/p. When the input 5-tuple is sampled from PBDH (where T = e(g, g)abc) and
B does not abort then A’s view is identical to its view in a real attack game.
On the other hand, when the input 5-tuple is sampled from RBDH (where T is
uniform in GT ) and B does not abort then the advantage that A wins the attack
game is 1/2. The running time of A is dominated by the paring computation in
response to A’s decryption queries.

This concludes the proof of Theorem 1.

4 Practical Extensions

In this section, we describe two interesting extensions to our PKE scheme. In
the following, we only present the extended schemes. Their security proofs can
be performed in a similar manner as in Section 3 and are therefore omitted.

4.1 Public Key Encryption with Non-interactive Opening

Public key encryption with non-interactive opening (PKENO) was recently in-
troduced in [13,14] as a means to enable publicly-verifiable decryption. In a
PKENO scheme, the receiver of a ciphertext C can, convincingly and without
interaction, reveal what the result was of decryption C, without compromising
the confidentiality of non-opened ciphertexts. The construction of PKENO can
be obtained by using public key encryption with witness-recovering decryption
(PKEWR) [30]. Here the receiver can efficiently reconstruct the “randomness”
that was used for encryption. This randomness then serves as the proof. Verifica-
tion performs re-encrypting using the randomness and the message. The proof is
valid if the result equals the ciphertext. The existing constructions of PKEWR
[30] in the standard model, however, are relatively inefficient since the ciphertext
size is linear in the message length.

Damg̊ard, Hofheinz, Kiltz and Thorbek [14] proposed two efficient construc-
tions of PKENO schemes. The first proposal is a generic construction and
resembles the CHK transformation [9]. The idea is to use, for each PKENO
encryption, a fresh random verification key of a one-time signature scheme as
the “identity” for IBE encryption. The private key corresponding to the “iden-
tity” serves as the proof. Verification performs decryption using the private key.
The second proposal is a concrete scheme based on the CCA-secure key encapsu-
lation mechanism by Boyen, Mei and Waters [7]. Recently, Galindo [18] showed
the second scheme in [14] is insecure and proposed a fix based on direct CCA-
secure PKE from identity-based techniques by Boyen, Mei and Waters [7]. Their
scheme needs long public keys. Based on our PKE scheme, we propose a more
efficient PKENO scheme as detailed in the following.

KeyGen(λ). Given the security parameter λ, a bilinear map group system 〈p, G,
GT , e〉 is constructed. Pick a generator g of G, select random α, x, y, z ∈ Zp

and set g1 = gα, u = gx, v = gy, d = gz. Next, choose random element
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g2 ∈ G. Finally, choose a collision-resistant hash function H : GT ×G→ Zp.
The published public key is

PK = (p, G, GT , e, g, H, Z = e(g1, g2), u, v, d),

and the private key is SK = (gα
2 , x, y, z).

Encrypt(PK, m). Given PK and a message m ∈ GT , randomly choose s, r ∈ Zp

and compute

C0 = m · Zs = m · e(g1, g2)s, C1 = gs, C2 = (utvrd)s,

where t = H(C0, C1). Finally, output the ciphertext C = (C0, C1, C2, r) ∈
GT ×G2 × Zp.

Decrypt(SK, C). Given SK = (gα
2 , x, y, z) and a ciphertext C = (C0, C1, C2, r),

compute t = H(C0, C1). Then check whether

(C1)tx+ry+z = C2.

If not, output ⊥, else output

C0/e(C1, g
α
2 ).

Prove(SK, C). Given SK = (gα
2 , x, y, z) and a ciphertext C = (C0, C1, C2, r),

compute t = H(C0, C1). Then check whether

(C1)tx+ry+z = C2.

If not, output ⊥, else randomly choose γ ∈ Zp and output π = (d1
C , d2

C) ∈ G2,
where

d1
C = gα

2 (utvrd)γ , d2
C = gγ .

Ver(PK, C, m, π). Given PK, a ciphertext C = (C0, C1, C2, r), a message m and
a proof π = (d1

C , d2
C), compute t = H(C0, C1). Then check whether

e(C1, u
tvrd) = e(g, C2), e(g, d1

C) = Z · e(utvrd, d2
C) and

m = C0 · e(C2, d
2
C)/e(C1, d

1
C).

If not, output 0, else output 1.

4.2 Threshold Public Key Encryption

In a threshold public key encryption (TPKE) scheme [15], the private key corre-
sponding to a public key is shared among a set of n decryption servers. In such a
scheme, a message is encrypted and sent to a group of decryption servers, in such
a way that the cooperation of at least k of them (where k is the threshold) is
necessary in order to recover the original message. In a non-interactive threshold
scheme, no communication is needed amongst the decryption servers perform-
ing the partial decryptions. Such schemes have many applications in situations
where one cannot fully trust a unique person, but possibly a pool of individuals.
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Recall that the Cramer-Shoup scheme [11] provides efficient CCA-secure en-
cryption without random oracles. The scheme requires that the private key be
used to check ciphertext validity during decryption. In a threshold environment
none of the decryption servers possess the private key needed to perform this va-
lidity check. Consequently, constructing a threshold version of the Cramer-Shoup
scheme is non-trivial.

Boneh, Boyen and Halevi [5] showed that CCA-secure threshold public key en-
cryption schemes (without random oracles) are easier to derive from selective-ID
CPA secure identity based encryption than from the Cramer-Shoup paradigm.
The main reason is that in the IBE-to-CCA transformation [9], the validity check
performed during decryption requires only the public key. Consequently, each de-
cryption server can check ciphertext validity on its own and only release a partial
decryption of valid ciphertexts. Note that the more efficient transformation of
Boneh and Katz [6] does not have this property and is thus less suitable for
threshold decryption.

Boyen, Mei and Waters [7] gave a very simple and efficient CCA-secure thresh-
old key encapsulation mechanism (KEM) based on the Boneh-Boyen IBE frame-
work. However, designing a full threshold PKE from a threshold KEM is not an
easy task. Let us have a glimpse on it. A standard (hybrid) PKE scheme can
be obtained by using the KEM to securely transport a random session key that
is fed into a symmetric encryption scheme to encrypt the plaintext message.
If both the KEM and the symmetric encryption scheme are chosen-ciphertext
secure, then the resulting hybrid PKE is also chosen-ciphertext secure. A sym-
metric encryption scheme secure against chosen-ciphertext attacks can be built
from relatively weak primitives, i.e. from any (one-time) symmetric encryption
scheme by essentially adding a MAC. Unfortunately, sharing a MAC is not trivial
in general, and will often lead to costly computations.

In our PKE scheme, the decryptor needs to verify the ciphertext before at-
tempting to decrypt it. This check is efficiently performed using a single expo-
nentiation in G, but requires knowledge of the private key (the exponents x, y, z).
In fact, the validity check could have been performed publicly, using additional
application of the bilinear map, by checking whether e(C1, u

tvrd) = e(g, C2).
Since under such a modification the ciphertext validity check no longer requires
the private key, our PKE scheme is suitable for non-interactive threshold de-
cryption. The following is the detailed construction of the threshold version of
our PKE scheme. It bears some resemblance to the threshold schemes in [5] due
to its roots in identity-based techniques.

Setup(n, k, λ). Given the security parameter λ, a bilinear map group system
〈p, G, GT , e〉 is constructed. Select random generators g, g2, u, v, d of G and a
random degree k− 1 polynomial f ∈ Zp[X ]. Set α = f(0) ∈ Zp and g1 = gα.
Choose a collision-resistant hash function H : GT ×G→ Zp. The published
public key is

PK = (p, G, GT , e, g, H, Z = e(g1, g2), g2, u, v, d).
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For i = 1, . . . , n the secret key SKi of server i is defined as SKi = g
f(i)
2 . The

public verification key VK is the n-tuple (gf(1), . . . , gf(n)).
Encrypt(PK, m). Given PK and a message m ∈ GT , randomly choose s, r ∈ Zp

and compute

C0 = m · Zs = m · e(g1, g2)s, C1 = gs, C2 = (utvrd)s,

where t = H(C0, C1). Finally, output the ciphertext C = (C0, C1, C2, r) ∈
GT ×G2 × Zp.

ShareDecrypt(SKi, C). Given SKi and a ciphertext C = (C0, C1, C2, r), decryp-
tion server i computes t = H(C0, C1). Then check whether

e(C1, u
tvrd) = e(g, C2).

If not, output μi = (i,⊥), else randomly choose γ ∈ Zp and output the
decryption share μi = (i, (d1

C,i, d
2
C,i)), where

d1
C,i = SKi · (utvrd)γ , d2

C,i = gγ .

ShareVerify(VK, C, μi). Given VK = (h1, . . . , hn) where hi = gf(i), a cipher-
text C = (C0, C1, C2, r) and a decryption share μi = (i, (d1

C,i, d
2
C,i)) of the

ciphertext C, compute t = H(C0, C1). Then check whether

e(C1, u
tvrd) = e(g, C2) and e(g, d1

C,i) = e(hi, g2) · e(utvrd, d2
C,i).

If not, output invalid, else output valid.
Combine(PK, VK, C, {μ1, . . . , μk}). Given PK, VK, a ciphertext C = (C0, C1,

C2, r) and the partial decryptions μ1, . . . , μk, first check that all decryption
shares μi = (i, (d1

C,i, d
2
C,i)) bear distinct server indices i, and that they are

all valid, i.e., that all ShareVerify(VK, C, μi) = valid; otherwise output ⊥.
Without loss of generality, assume that the shares μ1, . . . , μk were generated
by the decryption servers i = 1, . . . , k, respectively. Then compute the La-
grange coefficients λ1, . . . , λk ∈ Zp so that α = f(0) =

∑k
i=1 λif(i), and

set

d1
C =

k∏

i=1

(d1
C,i)

λi , d2
C =

k∏

i=1

(d2
C,i)

λi .

Finally, output
C0 · e(C2, d

2
C)/e(C1, d

1
C).

5 Conclusions

We described an efficient CCA-secure public key encryption scheme whose per-
formance is competitive with previous CCA-secure public key encryption schemes
employing identity-based techniques. Our scheme is based on the identity-based
encryption schemes of Boneh and Boyen [4], and the signature scheme of Hohen-
berger and Waters [23]. In addition, we showed that our scheme is well suited
for constructing TPKE and PKENO schemes. In fact, our approach can be ap-
plied to obtain more efficient CCA-secure hierarchical identity based encryption
(HIBE) scheme based on the Waters CPA-secure HIBE scheme [33].
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