
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2010

Evolution of a Bluetooth Test Application Product
Line: A Case Study
Narayanasamy RAMASUBBU
Singapore Management University, nramasub@smu.edu.sg

Rajesh Krishna BALAN
Singapore Management University, rajesh@smu.edu.sg

DOI: https://doi.org/10.1145/1882291.1882309

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Paper is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
RAMASUBBU, Narayanasamy and BALAN, Rajesh Krishna. Evolution of a Bluetooth Test Application Product Line: A Case Study.
(2010). Proceedings of the 18th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE), November 7-11, 2010,
Santa Fe, NM. 107-116. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/647

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1882291.1882309
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F647&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Evolution of a Bluetooth Test Application Product Line:
A Case Study

Narayan Ramasubbu, Rajesh Krishna Balan
Singapore Management University

80 Stamford Road, Singapore 178902
[nramasub, rajesh] @ smu.edu.sg

ABSTRACT
In this paper, we study the decision making process involved in the
five year lifecycle of a Bluetooth software product produced by a
large, multi-national test and measurement firm. In this
environment, customer change requests either have to be added as
a standard feature in the product, or developed as a special
customized version of the product. We first discuss the influential
factors, such as evolving standards, market share, installed-base,
and complexity, which collectively determined how the firm
responded to product change requests. We then develop a
predictive decision model to test the collective impact of these
factors on determining whether to standardize or customize a
customer’s change request. Finally, we develop and test a
customization cost estimation model, for use by software product
teams, which specifically accounts for factors unique to the
customization stage of a product lifecycle.

Categories and Subject Descriptors
D.2.9 [Management]: Life cycle, programming teams, software
process models, software quality assurance

General Terms
Economics, Management

Keywords
Software process, software engineering economics, complexity,
product development, product life cycle, software evolution

1. INTRODUCTION
A packaged software product refers to a software application that is
developed for mass distribution, and not specifically designed to
fulfill the unique needs of an individual customer. Packaged
software manifests itself in many domains including Customer
Relationship Management (CRM), Enterprise Resource Planning
(ERP), and Supply Chain Management (SCM) systems. As such,
packaged software is a big business – for example, the worldwide
market for packaged systems software products alone is estimated
to be more than $10 billion [10]. In addition to the stages of a
typical software development lifecycle (requirements analysis –
design – build – test – maintain), a packaged software product
lifecycle includes the standardization and customization phases,
which have not yet drawn much attention from the software
engineering research community.

Customization refers to the process of modifying the generic
product functionalities found in a packaged software application to
fulfill the unique needs of a customer. Over time, the packaged
software product vendor might release these individual, customer-
specific modifications to all its installed-base by ‘standardizing’ the
feature in its future release. When a customer raises a change
request, a packaged software product vendor, thus, has to decide
whether to fulfill the customer request by offering a customized
solution to the individual customer, or to offer a standardized
solution by releasing a new feature in a future version of the
product. This standardization-customization decision becomes
significantly complex in the presence of heterogeneous customer
needs, compatibility constraints, and evolving standards.

In this paper, we analyze the standardization-customization
decisions made by a vendor over the lifecycle of its Bluetooth test
and measurement software product. The lifecycle of this product
was marked by several uncertainties including the rapidly evolving
Bluetooth standards specifications and a diverse customer base.
Thus, it provides a rich empirical context to understand the factors
that influence the standardization-customization decisions of a
vendor. Further, by analyzing how the firm responded to change
requests from customers, in the face of evolving standard
specifications, we are able to draw lessons and recommendations
for both product management and managing complexity in
software product development.

The three main contributions of this paper are:

1. We present a detailed study showing how a technology
company organized its processes to deal with constantly
changing specifications originating from standards evolution
and diverse customer requirements.

2. We develop and test a predictive decision model accounting
for the factors that influence the standardization-customization
decision of a software product vendor, and thus advance a step
towards a generalizable theory of software product line
evolution.

3. We develop and test a customization cost estimation model
that fairly accurately predicts the customization costs of
packaged software product, contributing to the advancement
of our understanding of the economic aspects of modeling
variability in product line evolution.

2. RESEARCH SITE

2.1. Company and Product Overview
Our research site, Measuretronics (not a real name due to non-
disclosure agreements), operates in about twenty countries. This
large company has over $1.5 billion in recent annual sales and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11...$10.00.

holds about seven hundred active technology patents.
Measuretronics invests about a third of its revenues in research and
development across five businesses (oscilloscopes, logic analyzers,
video test products, telecommunications equipment, and optical
sensor products). The firm has about 400 customers in various
industries including electronic standards compliance testers,
semiconductor chip manufacturers, communication equipment
manufacturers, and telecommunication application developers. The
product we study in this research was developed by
Measuretronics, and is called the “Bluetooth protocol analyzer”.
Bluetooth is a short range wireless communication standard that
allows connectivity between electronic equipment [3]. The
Bluetooth protocol analyzer is a test and measurement equipment
used during the production of Bluetooth consumer products.
Typical customers of the Bluetooth protocol analyzer are not
consumer end users, but the firms producing Bluetooth-enabled
consumer goods. Firms producing Bluetooth devices need to test
the interoperability of their devices with other Bluetooth devices
that may be used in the consumer's personal area network. This test
procedure involves analyzing the radio frequencies transmitted and
received between the networked devices. The Bluetooth protocol
analyzer facilitates this procedure by intercepting the traffic
between Bluetooth devices and enables detailed engineering and
statistical analysis of the intercepted communication data.

The Bluetooth protocol analyzer product consists of a hardware
component and a software component. The hardware component
comprises of an air-sniffing probe to intercept wireless
communication traffic between Bluetooth devices, a cable-sniffing
interface to intercept wired communication traffic, and serial and
parallel data port interfaces for connecting to a personal computer.
The software component involves a firmware operating system that
is stored in the memory of the hardware component, and a
packaged software product that needs to be installed on a client
personal computer. The physical hardware and the firmware
together intercept and capture data from traffic between two
Bluetooth devices. This data is passed to the client software
package for further analysis. The software package is used to
define specifications, represent results in a graphical manner, and
prepare testing reports.

The development of this product was started in 1999 and continued
until 2004 when the product was eventually shelved by
Measuretronics. It should be noted that the Bluetooth protocol
specification, was constantly changing during this time period. For
example, the Bluetooth Special Interest Group (SIG) was only
formed in 1998. The Bluetooth 1.0 specification was released in
1999, the 1.2 specification was adopted in 2003, and the 2.0
specification was adopted in 2004. A full history of the Bluetooth
standard and feature changes is available elsewhere [2].

2.2. Product Development Process
The base product development process followed at Measuretronics
involved three major steps. The first step involved collection and
consolidation of customer requirements. The firm uses an online
system called “customer support network” to log all customer
requests and feedback. When a customer enters the details of a
request in the system, a unique ticket number is created. These
feature request tickets are consolidated on a weekly basis. The
second step in the product development process involves a
thorough analysis of the feature request tickets. This involves
removing duplicate tickets, grouping tickets from different

customers that have similar content, and validating the content of
each customer ticket. If the requested feature is already present in
any of the released versions, a response is sent to the customer and
the feature request ticket is closed.

In the last step, the product management team works in tandem
with the development team to a) analyze the technical feasibility of
the change request, b) check if the requested feature is shipped by a
competitor, and c) generate an appropriate customer survey for the
requested feature. The customer survey is designed to obtain
installed-base feedback on the proposed feature, and is emailed to
the existing customers of the product. Customers are asked to give
feedback on whether they find the proposed feature (or change)
useful. To discourage casual feedback or non-response, customers
are also informed of the impact of the proposed change in terms of
code modifications and future service pack installations. After
consolidation of installed base opinion, a final decision is made on
the fulfillment of the request.

2.3. Data Collection
As a first step, we established the research protocols for the study,
which included details on participant selection, roles and
responsibilities among participants, interview structure, archival
data collection rules, structuring learning opportunities, and
implementing recommendations. We adopted a participatory action
research methodology. Participatory action research enables
researchers to co-investigate or involve the communities whose
practices they study in their research activities. These activities
include data collection, record keeping, model building, solutions
development and implementation. This research methodology
allows researchers to obtain a deep understanding of the problem
context, with a view to make improvements in the practices, even
when they do not, a priori, have well defined solutions or theories.

We formed a three-member core team consisting of one of the
authors and one manager each from the program management and
engineering division of our research site. The program manager
was the senior most personnel involved in the development of the
Bluetooth protocol analyzer product, and had a global view of
product development process. The engineering manager worked
independent of the program manager (i.e., did not have direct
reporting responsibility), and had in-depth knowledge about the
technicalities of the product. The core team was responsible for the
overall conduct of this study, and recruited additional participants
at different stages of the study. Learning opportunities were
structured using a three-phase cycle consisting of diagnose-take
action-evaluate stages.

During the course of the study, the core team conducted ten
structured interview sessions with project leaders, engineers and
product managers of the Bluetooth protocol analyzer team. The
first four of our interviews happened during the active product
release cycles (one each from 1999-2003). The rest of the
interviews were conducted after the active product lifecycle years
(the most recent one in December 2009). Our archival data
collection process was spread throughout the product release years,
until early this year. We recorded all the interviews, and the
archival data was organized using a version control system to help
us not lose track of the activities spreading multiple years. One of
reasons for the long delay between end of the product lifecycle and
this case study reporting process is the mandatory requirement of a
five-year gap as per the firm’s non-disclosure agreement signed

with us. Further, the firm was recently acquired by another multi-
national company leading to new regulations and clearance
procedures. Because we facilitated good record keeping, and were
able to pull-up objective data from the process database at any
time, we are confident that the long gap in the reporting process
does not threaten the reliability and validity of our research data.
Moreover the core research team including the participants from
the firm did not change throughout this project, which further
facilitated good organizational memory for this study.

Each structured interview session with the project managers and
software developers lasted about an hour. Before each interview
session, the core research team organized the questions and
collected all relevant archival data related to the discussion. Each
of our archival data analysis and interview sessions had a
“diagnose’’ phase and a “evaluate” phase. The “diagnose” phase of
the sessions were structured to understand the specific practices of
the product team during the prior release cycles and discuss the
experiences of the team. In the “evaluate” phase participants had to
correlate their experiences with the archival data of the process
database and reflect on the matches and deviations. The data
collected through these sessions, along with the archival process
database at the firm form the basis for this case study analysis.
Thus, our collected data spans the entire life cycle of the Bluetooth
analyzer product and includes the following:

• In-depth records of the functional features and specification

changes of the Bluetooth protocol analyzer. These were obtained
from the company’s product database.

• In-depth process records detailing the product development
processes and choices made. These were obtained from the
company’s process databases and the structured interviews.

• Interviews with product managers, program developers,
customers, and Bluetooth domain experts to provide more
qualitative insights on our data points. These interviews also
helped us validate the quality of the process data collected.

On an average, the Bluetooth product line team at Measuretronics
had a full time equivalent head count of 13 personnel (8
developers, 1 usability engineer, 2 project managers, 1 program
manager, and 1 product marketing manager). The core product
team worked with other divisions of the firm, including the
program management office and marketing department, and
occasionally borrowed more resources from other divisions.

There were 203 customer generated product requests made during
the product’s lifecycle. With the assistance of the product
management team at our research site, we filtered out duplicate
requests and ended up with 154 unique customer requests. We then
analyzed the processing history of these requests and categorized
them in to two divisions: (1) customer requests that were decided to
be standardized into the next product release, and (2) customer
requests that were processed as customization projects through
contractual relationships with individual customers. There were 92
instances where the firm decided to process customer requests as
standardized product features in future releases, and 62 customer
requests that were handled as customization projects. We then
collected cost and development personnel related data from the 62
customization projects. The product and program management
departments could not furnish data for 9 of these projects. So our
final data set includes data on 154 standardization-customization

decisions during the product lifecycle, and 53 customization
projects executed by the firm.

Our final data collection step was the analysis of the software code
to collect data on complexity and individual program related
metrics. An exhaustive analysis was made for 56 different versions
of the source code. The metrics we collected were verified
individually by two domain experts at our research site. Whenever
there was a mismatch, the source code was pulled again from the
repository and checked for inconsistencies. Later, these collected
metrics were authenticated using an independent object oriented
metrics collection tool. Any mismatch that arose from the
authentication was checked by a technical expert at our research
site and rectified.

3. FACTORS INFLUENCING SOFTWARE

STANDARDIZATION- CUSTOMIZATION
In this section, we discuss the influential factors affecting the
standardization-customization decisions at Measuretronics. We
identified these factors by analyzing our case data, and by
interviewing product management and engineering teams about
their decision making process when presented with individual
customer requests.

3.1. Evolving Standards
Being a test and measurement company, Measuretronics had to
develop its test application even when the Bluetooth standard
specifications were not well established and accepted. Under this
uncertainty, Measuretronics product management was constantly
facing customers who requested features that violated Bluetooth
standards existing at that time. Releasing features which violated
Bluetooth standards would jeopardize Measuretronics’ official
position in the Bluetooth standards making process. At the same
time, some of the feature requests came from business units of
influential, multinational customers who were loyal to
Measuretronics for multiple years. Finally, there were other
competitors in the market who boldly offered features that violated
the Bluetooth standards of the time (and marketed those violations
as positive features). Hence it was difficult for the Measuretronics
product management team to enforce a uniform policy on features
that violated Bluetooth standards. In the absence of a uniform
standards-violation policy, the engineering team started playing an
important role, along with the product management team, in
deciding the fate of feature requests. This created additional
coordination overheads in the product decision-making process.

Figure 1. Effect of Standards

The error bars indicate standard deviations. Person days
are calculated for a team of 10 developers.

0	

500	

1000	

1500	

2000	

Pe
rs
on

	
 D
ay
s	

No	
 Standard	
 Viola1on	

With	
 Standard	
 Viola1on	

Average	
 Wai1ng	
 Time	
 Average	
 Development	
 Time	

Figure 1 shows that the customer requests that asked for features
violating the existing Bluetooth standards usually took significantly
longer to be fulfilled. We also observed that the heuristics
employed by the product management and engineering teams for
determining the features that violated standards depended on
several other factors, including competition, compatibility, the
nature of change involved, and complexity considerations. We
discuss these factors subsequently, and model their collective
impact on the standardization-customization decision in Section 4.

3.2. Competition
Our analysis of how Measuretronics reacted to competition shows
interesting patterns as shown in Figure 2. The “No Competition”
bars describe features for which Measuretronics had no competition
while the “With Competition” bars describe features for which
there was viable competition. First, we notice that more than half of
the features in Measuretronics’s product had no viable competition.
It is interesting to note that although the average wait-time for a
customer request to be implemented was about the same with or
without competition, the development time for product features that
had competition was significantly lower as compared to the
development times of features that were unique to Measuretronics.
This indicates that the Measuretronics product teams were
particularly sensitive to competitive pressures, and wanted to stay
ahead in the market by uniquely positioning the product. We also
note that the firm kept its standard violations to a minimum in the
presence of competition – again to uniquely position the product as
being better standards-compliant than its competitors.

Figure 2. Effect of Competition

Note: Y-axis units vary and are stated below each pair

3.3. Compatibility
For every customer request that is received, Measuretronics also
assessed whether the proposed feature would cause incompatibility
with previous releases of the product, i.e., violate backward
compatibility. We noticed that in the initial stages of the product
evolution, Measuretronics was more diligent in providing backward
compatibility. Features that violated backward compatibility were
more often stripped in the standard version, and were provided
through a custom release for specific customers. However, as the
market share of Measuretronics’s product increased rapidly, several
features with severe backward compatibility problems were
standardized across the board for all customers. For example, we
noticed a 25% increase in backward incompatible features in the
fifth release of the product as compared to the previous four
releases. While part of the reason for increase in violations of

backward compatibility could be because of the way Bluetooth
standards evolved, it also appears that Measuretronics used its
dominant market share position to standardize incompatible
features in a general release.

3.4. Nature of Change
The increased participation of engineering teams in product
management decisions at Measuretronics, as noted before in
Section 3.1, added an interesting dynamic to the analysis of
customer feature requests. Along with the marketing and
profitability considerations, the engineering nature of potential
product changes also became a central focus. Our observation of
the product release strategy meetings revealed that the
Measuretronics teams carefully classified the effect of a customer
requested feature on a release in to four categories of changes: (1)
Incremental changes, (2) Modularity changes – changes which
affected significant portions of self contained modules of the
product, (3) Architectural changes – changes which significantly
affected the fundamental software architecture of the product, and
(4) Radical changes – changes which significantly disrupted the
entire product ecosystem including the software, hardware and
development platforms.

To see if this engineering consideration of changes had any impact
on fulfillment of customer requested features, we analyzed the
customer waiting times and feature development times for each
category of changes. The pattern of waiting and development times
across the four different categories of changes is shown in Figure 3.
We notice that Measuretronics gave priority attention to changes
that affected modularity and architectural changes (lowest
development time bars – even lower than incremental changes),
indicating that there was an active effort to maintain the structural
complexity of the system.

Figure 3. Nature of Change

3.5. Complexity
In our interviews with the Measuretronics teams, complexity was
repeatedly mentioned as one reason why certain customer requests
went unfulfilled even when the marketing reasons for fulfilling
those requests were compelling. Also, we noticed that a simple
complexity-based heuristic was used by the Measuretronics
engineering teams to decide on fulfilling customer requests.
Customer requests that were functionally complex – i.e., those
demanding complex algorithms and data structures tended to be
satisfied through customization. On the other hand, customer
feature requests that involved high levels of structural complexity –

55	
 35	

160	

724	

45	
 10	

150	

414	

0	

100	

200	

300	

400	

500	

600	

700	

800	

%	
 Features	

Introduced	

Count	
 of	

Standard	

Viola1ons	

Avg.	
 Wai1ng	

Time	
 (Person	

Days)	

Avg.	

Development	

Time	
 (Person	

Days)	

No	
 Compe11on	

With	
 Compe11on	

0	

200	

400	

600	

800	

1000	

1200	

Incremental	

Change	

Modularity	

Change	

Architectural	

Change	

Radical	
 	
 	
 	
 	
 	

Change	

Pe
rs
on

	
 D
ay
s	

Wai1ng	
 Time	

Development	
 Time	

i.e., those involving complex cross modular interfaces tended to be
fulfilled through standardized general releases. The application of
this simple complexity-based heuristic to decide the
standardization-customization strategy seems to stem from
Measuretronics’s quality management considerations. Managers
rationalized that fixing errors arising from higher levels of
functional complexity often required close relationship with
customers to understand their full implementation set-up (the
networked devices and the related software applications). Hence,
product managers preferred custom solutions for customer requests
that involved high levels of functional complexity. On the other
hand, Measuretronics engineering team had better internal
capabilities to understand the overall structure of their product than
any one single customer. Hence, when a customer feature
demanded structural alterations, standardizing structural changes
was seen as more appropriate than a customized solution.

4. STANDARDIZATION-CUSTOMIZATION

DECISION MODEL
Our interaction with the Measuretronics managers helped us
discover the key factors that influenced their decisions. While we
discussed these individual factors in the previous section, a
standardization-customization decision is, however, based on the
collective influence of all these factors – including the complex
interactions between these variables. In this section, we present
how we built and tested a standardization-customization decision
model that takes in to account the collective influence of the factors
discovered through our managerial interviews. Developing and
testing such an empirical decision model, based on our case study,
is a significant step towards a generalizable theory of the software
product line evolution. Our empirical model of the standardization-
customization decision complements other specification-based,
process-centric, and architecture-centric approaches prevalent in
the software product line evolution research [8, 9, 18, 19]. Our
approach specifically highlights the collective and interactive
effects of both software complexity and economic or market-
related factors on product line evolution.

Figure 4 shows a pictorial representation of our standardization-
customization decision model with the standardization-
customization decision on the right-hand side and the variables
representing our major hypotheses on the left-hand side. We also
introduce three control variables in our model: size of the change
request, customer influence, and the product version. We explain
each of these in the following sub-sections.

4.1. Output Variable: Standardized or
Customized Solution.
This output variable captures the standardization-customization
decision that Measuretronics has to make on a customer’s request.

This is essentially a binary choice: to process the customer’s
request as a standard product feature in a future release (coded as 1),
or as a separate customization project (coded as 0).

4.2. Input Variables
Installed-Base Impact. Whenever a change request is processed
by Measuretronics, a survey is sent out to all customers to check if
the requested change will be of any use to them. This variable gives
the % of installed-base customers who indicated that the proposed
change would be of use to them. If the proposed change is
implemented in a future release, customers will have to install a
patch even if they don’t intend to use the new feature. Hence
customers do not have any incentive to blindly accept any changes
proposed by Measuretronics. This variable ranges from 0-100.

Standards Constraint. Upon the receipt of a customer request,
Measuretronics verifies whether the request violates the standard
Bluetooth Protocol standard at the time when the request was
logged. We employed an indicator variable coded as 1 if the
customer request violates the current Bluetooth protocol; 0
otherwise.

Compatibility Constraint. For every customer request that is
received, Measuretronics also assesses whether the proposed
feature will cause incompatibility with previous releases of the
product, i.e., violate backward compatibility. We created an
indicator variable coded as 1 if the proposed change request will
cause incompatibility with previous public releases; 0 otherwise.

Market Share. This variable captures the market share (in %) of
Measuretronics in the Bluetooth test product segment at the time
when a customer request was logged. We obtained this variable
from the product management division of Measuretronics. This
variable ranges from 0 to 100.

4.3. Control Variables
Change Size & Nature of Change. We coded the nature of change
based on our description in Section 3.4. We measure the extent of
the change needed to fulfill a customer’s request using the number
of function points that are required to be developed or modified in
order to implement the change request. In our data set we
encountered situations where the function point data for a change
request was zero. This is because some of the change requests only
involved changing configuration settings and no addition or
deletion of actual software code.

Customer Influence. A customer raising a change request with
Measuretronics is required to indicate the importance of the request.
This variable is coded on a Likert scale ranging from 1 to 5 and
measures the perceived importance of the requested feature for a
customer’s business. The values of the scale were as following:

Figure 4. Standardization-Customization Decision Model

Installed-Base Impact

Compatibility Constraint

Standards Constraint

Market Share

Standardized or
Customized Solution?

Control Variables
Nature of Change; Change Size;
Customer Influence; Product Version

(1) The change is preferred by the customer but is not essential for
day-to-day productive operations of the customer. The
customer does not intend to be a test partner for implementing
the change;

(2) The change is preferred by the customer but is not essential for
day-to-day productive operations of the customer. The
customer agrees to be a test partner for implementing the
change;

(3) The change is needed for the day-to-day operations of the
customer. The customer is willing to accept roundabout or
alternate ways of implementing the feature and does not intend
to be a pilot and test partner for the change. The customer
cannot allocate resources to simulate a production environment;

(4) The change is needed for the day-to-day operations of the
customer. The customer is NOT willing to accept roundabout
or alternate ways of implementing the feature but can wait until
the feature is released in future versions. The customer is
willing to simulate a test production environment;

(5) The feature requested is essential and time critical. The
customer is willing to allocate resources for piloting. The
customer might stop using the vendor’s product if the feature is
not made available.

Product Version. There were 56 different versions of the packaged
software product line. Hence this variable ranges from 1 to 56.

4.4. Interaction Effects
Our standardization-customization decision model also
hypothesizes two interaction effects involving the market share of
the product at the time when a customer request is logged. We
expect that the market share of the product influenced the way
Measuretronics made standardization-customization decisions
especially when faced with decisions that involve violating
compatibility with prior versions or any industry recommended
Bluetooth standards.

5. VALIDATING THE STANDARDIZATION-

CUSTOMIZATION DECISION MODEL

In this section we statistically test our proposed standardization-
customization decision model using the data we collected through
our case study. The empirical formulation of our standardization-
customization decision model is shown in Equation 1:

Probability (Standardized or Customized Solution?) =
 Ф [α0 + α1*Installed-base impact + α2*Compatibility
constraint + α3*Standards constraint + α4*Market share +
α5*Customer influence + α6*Market share * Compatibility
constraint + α 7*Market share * Standards constraint +
α 8*Change size + α9*Version + α10*Nature of change + δ]
…(Equation-1)

The summary statistics of the data collected is shown in Table 1.
Since the dependent variable (standardization-customization
decision) is a binary choice, we used a probit regression model for
estimating Equation 1. The results of the probit regression are
presented in Table 2. The statistical test results indicate that our
hypothesized standardization-customization decision model is valid
– note the highly significant p-value for the model significance F-
test in Table 2. In probit regression, the coefficients of the variables
(α0 - α10) indicate an increase or decrease of log odds (probit score)
of the dependant variable in standard deviations units – which is
harder to interpret. For easier interpretation, we converted the

probit effects to probability effects by calculating the effect of one
unit increase in an independent variable on the probability of the
vendor making a standardization decision holding all other
variables at their mean levels. Table 3 shows these easier to
interpret probability effects.

Robustness Checks. We performed a variety of robustness tests,
including the influence of outliers (using Cook’s distance), multi-
collinearity effects (variance inflation factors and condition
numbers), heteroskedacity checks (robust errors) to confirm the
validity of our empirical results, and did not find any problems.

5.1. Decision Model Results
An analysis of the decision model results presented in Table 3
provides the following insights:

1. Effect of Market Share: A vendor with high market share

(monopoly) in a heterogeneous demand environment will
respond to customer change requests more through custom
solutions than through product standardization. Specifically, we
see that for every 1% increase in market share of its product,
there is a decrease of 2% in the probability that Measuretronics
would provide a standardized product offering for its
diversified customer base (refer to coefficient α4 in Table 3).

2. Role of Standards: When a customer requests a feature that
violates industry standards, then the vendor is likely to fulfill
the need only through a customized solution. This is true even
when the market share of the vendor is high (monopoly).
Specifically we find that a customer request that violates
standards has a 61% lesser chance of getting accepted as a
standard feature (See coefficient α3 in Table 3).

3. Role of Compatibility Needs: When a customer requests a

feature that is not compatible with prior versions of the
vendor’s product, the vendor is likely to fulfill the need through
a customized solution. However, when the market share of the
vendor is high (monopoly), the vendor might consider
standardizing a feature even when presented with compatibility
constraints. Holding all other variables at their mean level, we
find that customer requests that have a compatibility constraint
have 52% lower probability for getting standardized in a
packaged software product (See coefficient α2 in Table 3).
However in the presence of higher market share, the probability
of a customer request that has compatibility constraints getting
accepted in to the standard version of the product increases by
25% (See coefficient α6 in Table 3).

4. Needs of Customers: We observe that customers who declare

a feature as essential to their operations have a significantly
higher probability (+27%) of having their requests standardized
(See coefficient α5 in Table 3).

6. PRODUCT VARIABILITY COST MODEL
Costs of standardization are typically recovered through the
product pricing mechanisms across several product releases
common to all customers. However, costs involved in product line
variability or customized solutions are typically borne by specific
customers who, in turn, typically make purchasing decisions based
on the product line variability pricing schemes. Hence it is
important for Measuretronics to provide reasonably accurate and
reliable cost estimates for product line variability (i.e., customized
services). While several models of general cost estimation exist in
the software engineering literature [4], to the best of our knowledge,

existing cost estimation models do not specifically address the
costs involved in software product line variability by specifically
taking in to account the customization lifecycle of a packaged
software product. In this section, we develop and test a
customization cost estimation model specifically suited for
packaged product line variability. The empirical formulation of our
cost estimation model is presented in Equation 2. Figure 5 shows a
pictorial representation of our proposed customization cost
estimation model. We explain each of these components of our
model in the following sub sections.

Table 1. Decision Model Summary Statistics
Variable Unit Mean Std. Dev. Min Max

Standardized or
Customized
Solution?

1 or 0
(decision) 0.60 0.49 0 1

Installed-Base
Impact % 43.64 27.65 5 100

Compatibility
Constraint

1 or 0
(Present or

absent)
0.47 0.50 0 1

Standards
Constraint

1 or 0
(Present or

absent)
0.29 0.46 0 1

Market Share % 24.31 21.44 10 60
Customer
Influence Likert Scale 3.95 0.96 1 5

Market Share X
Compatibility

Constraint

(Interaction
variable) 12.25 19.94 0 60

Market Share X
Standards
Constraint

(Interaction
variable) 8.09 17.62 0 60

Change Size Function
Points 62.73 64.47 0 292

Nature of change

Incremental
(0) or

Architectural
(1)

0.49 0.49 0 1

Version Unit less
number 28.22 16.93 1 56

Customization Cost = β0 + β1*Functional Complexity +
β2*Structural Complexity + β3* Compatibility Constraint
+ β4* Customer Knowledge + β5* Quality + β6* Personnel
Experience + β7* Size + β8* Version + ε …(Equation-2)

Product Variability Costs. We measure product variability costs
in terms of the customization cost, i.e., the total person hours spent
in the customization project for a customer. The effort spent for
fulfilling customer requests at Measuretronics was tracked through
a project planning and employee resource planning software. We
extracted the relevant information from this system using the

customer request id. The information was later verified by the
project leaders of the customization teams.

Table 2. Decision Model Results

Variable

Coefficient
P-
Value

Installed-Base Impact α1 -0.019** 0.007

Compatibility Constraint α2 -1.54** 0.003

Standards Constraint α3 -1.88** 0.001

Market Share α4 -0.06** 0.000

Customer Influence α5 0.77** 0.000
Interaction effect:
Market Share X
Compatibility Constraint

α6

0.035* 0.016
Interaction effect:
Market Share X
Standards Constraint

α7

-0.003 0.821

Change Size α8 -0.008** 0.001

Version α9 0.018 0.290

Nature of change α10 3.507* 0.010

Constant α0 0.59 0.454
Number of Observations = 154

Model significance test = 109.72** ; P-Value= 0.000

Table 3. Probability of standardizing a feature

Variable
Effect of one unit change on

the probability to standardize
a customer request

Installed-Base Impact α1 -0.007**

Compatibility Constraint α2 -0.52**

Standards Constraint α3 -0.61**

Market Share α4 -0.02**

Customer Influence α5 0.27**
Interaction effect:
Market Share X
Compatibility Constraint

α6 0.25*

Interaction effect:
Market Share X
Standards Constraint

α7 -0.02

Change Size α8 -0.003**

Version α9 0.007

Nature of Change α10 -0.3*
Note: For Tables 2 & 3, results significant at 5% are indicated by *;
results significant at 1% are indicated by **. Other values, which are
not in bold, are not statistically significant. We use a two-tailed
hypothesis test.

Functional Complexity. Past research has classified functional
complexity in to logical and data complexity [1]. Logical

Figure 5. Customization Cost Research Model

Functional Complexity

Structural complexity

Compatibility Constraint

Customer Knowledge

Product variability Cost
(Customization cost)

Personnel Experience;
Size; Product Version

Quality

complexity is the measure of complexity of decision-making and
algorithmic logic in a program. Data complexity is a measure of the
data processing complexity of a program. In a system software
package such as the one involved in this research, logic and
algorithmic functions dominate a program rather than the data
processing functionality. Unlike enterprise applications such as
ERP or CRM software, the Bluetooth protocol analyzer package
that we studied had very minimal data processing capabilities. Thus,
we used a logical complexity measure, McCabe’s number [15], as
the functional complexity of the software. McCabe’s number
measures the complexity of code based on the number of edges, the
number of nodes and the number of connected components in a
program flow graph. This measure is thus an indication of the
number of decision trees available in the system. McCabe’s
complexity number is given by V = e – n + 2p. (e is the number of
edges, n is the number of nodes, and p is the number of predicates
in the program flow graphs).

Structural Complexity. Structural complexity results from the
cross-references in the individual components of the packaged
application. Past empirical software engineering studies have
acknowledged the influence of coupling and cohesion on
maintenance performance [1, 6]. Our product was designed using
the object oriented programming paradigm. We, thus, used the
object oriented metric from the Chidamber-Kemerer metric suit,
Coupling Between Objects (CBO), as the measure of structural
complexity [7].

Compatibility Constraint. As mentioned in Section 4.4, for every
customer request that is received, Measuretronics also assesses
whether the proposed feature will cause incompatibility with
previous releases of the product, i.e., violate backward
compatibility. We created an indicator variable coded as 1 (0
otherwise) if the proposed change request will cause
incompatibility with previous public releases.

Customer Knowledge. At Measuretronics, any prior experience
with a customer was documented by the product management team
in the form of structured notes stored in the knowledge
management repository for future engineering reference and
pursuing marketing leads. We gathered the customer identification
number from the customer requests and used this to retrieve all the
customer notes that the product management and developers had
stored till date. We use the total number of such structured notes
available for a customer as an input variable in the model.

Quality. We measure quality as the number of errors that have
been reported for the components that are relevant to the customers’
change request. It is important to accommodate quality in our cost
estimation model because more error prone components might
require more time to test than less error prone modules.

Personnel Experience. We gathered information about the
technical experience and Bluetooth domain experience of the
personnel who participated in processing the customization request
from the user. This variable was calculated as the average of the
technical and domain experience (in years) of the team that
processed the customization request.

Size. We measured the scope of a change request using the number
of function points that are required to be developed or modified in
order to implement the change request.

Product Version. There were 56 different releases of the packaged
software product. Hence this variable ranges from 1 to 56.

6.1. Product Variability Cost Model Results

We used an ordinary least-squares regression to estimate Equation
2. Table 4 presents the summary statistics for our model. The
results of the regression are presented in Table 5. The model
specified in equation 2 is highly significant and robust (Notice the
highly significant P-value for the model test in Table 5). The
explanatory or predictive power of the model is high and the
overall mean Magnitude of Relative Error (MRE) for the model
was 19%, which is lower than those reported for other estimation
models [6]. Our model thus accurately predicts the man-hours (to
within 19% of the actual value on average) needed for fulfilling a
particular customization solution. An analysis of the results shown
in Table 5 reveals the following insights:

Effect of functional complexity: Higher levels of functional
complexity are associated with higher customization costs.
Specifically we find that for every unit increase in McCabe’s
number, the effort needed to satisfy a customization change request
goes up by fifteen minutes if handled by a team with an average of
five years of experience holding other variables at their mean levels.

Effect of structural complexity: Higher levels of structural
complexity are associated with higher customization costs. In our
analysis, we find that for every unit increase in the Coupling-
Between-Object metric, customization costs go up by about 4%,
holding everything else at their mean levels (see β2 in Table 5).

Compatibility constraints: Customer requests that require
solutions that are incompatible with other publicly released
versions of the product will usually result in higher customization
costs. On average, we found that developing customized solutions
with compatibility constraints required 175% more effort than
those that did not face incompatibility problems (see β3 in Table 5).

Customer specific knowledge: Higher levels of customer specific
knowledge available with a vendor usually results in a small, yet,
significantly lower customization costs for that customer’s requests
(an average of 0.5% reduction in costs; see β4 in Table 5). We
believe this was due to the structured way in which knowledge was
organized at our research site. All customer specific information
was organized in the form of similar sized notes with key
references to customer request ids, product feature ids, and stored
in a central repository that was accessible to all personnel. This
way of organizing knowledge helped to reduce costs by ensuring
uniformity in understanding customer needs between personnel
involved in development and maintenance activities of the product.

Effect of Quality: Error prone components from prior releases are
associated with higher customization cost. Our results show that a
unit increase in the incidence of errors in the modules being
modified for the custom solution increases customization cost by
about 11% (see β5 in Table 5).

Effect of Experienced Personnel: We find that higher technical
and domain experience of the development team involved in
customization is associated with lowered customization costs. Our
results indicate that an increase in one year of average team
experience lowers customization costs by 28% (see β6 in Table 5).

Table 4. Summary Statistics for Customization Cost Model
Variable Unit Mean Std. Dev. Min Max

Customization
Cost

Person-
hours 287.35 277.52 8 1000

Quality Count of
errors 8.24 7.06 1 29

Structural
Complexity

Coupling-
Between-
Objects

18.53 22.77 0 105

Functional
Complexity

McCabe’s
number 174.94 312.23 1 1792

Compatibility
Constraint

Indicator –
(1- present;
0- absent)

0.41 0.50 0 1

Customer
Knowledge

Count of
similar

sized notes
109.29 134.27 0 695

Size Function
Points 1211.28 2323.21 54 15688

Personnel
Experience Years 5.21 1.75 2.5 8

Version Count 28.25 15.52 2 55

Table 5. Customization Cost Results
Variable Coefficient. P-value

Functional
Complexity β1 0.25** 0.035

Structural Complexity β2 3.57** 0.017
Compatibility

Constraint β3 175.59*** 0.004

Customer Knowledge β4 -0.53** 0.036

Quality β5 10.88** 0.024

Personnel Experience β6 -28.08* 0.073

Size β7 0.022 0.123

Version β8 -1.97 0.302

constant β0 247.95** 0.024
Number of Observations = 51

Model Significance test F-stat (8, 42) = 9.28***, P-value = 0.000
Adj.R-Squared = 56.99%; Mean MRE = 19%

Note: Results significant at 5% are indicated by **; results significant at 1%
are indicated by ***. Other values, which are not in bold, are not
statistically significant. We use a two-tailed hypothesis test (i.e., we did
not assume any positive or negative direction of the result while testing).

7. DISCUSSION

Putting Lessons in to Practice. While our results discussed in
previous sections were specific to this case study, the lessons learnt
can be cautiously generalized to the broader product line evolution
context – eventually paving way for a generalized theory of
software product line evolution through replications and
confirmation in other contexts. We summarize our
recommendations on putting our lessons learnt to practice in the
following steps:

1. Costs involved in product commonalities (standardization) and

product variabilities (customization) need to be rigorously
calculated and debated. Our empirical models are a step
forward in this direction.

2. Product line governance needs to include collective product
decision-making aligning the incentives for solving engineering
problems and meeting market opportunities. Our case study

illustrated such a collective decision making process in one
firm.

3. Benefits of pleasing customers through customized solutions
need to be balanced with the risks of violating technical
standards and increasing complexity due to product line
variabilities. These risks need to be appropriately transferred to
customers (though pricing as shown in our product variability
cost model) or through controlled product feature obsolescence.

4. Appropriate investments for organizational learning such as
knowledge management systems and resource rotation between
development and maintenance improves the general capability
of the product management team, and prepares them for
collective decision-making.

We discuss the broader implications brought out by the lessons
from our case study and empirical models in the rest of this section.

Collective Product Decisions. Making software product
management decisions is challenging because managers have to
simultaneously consider a multitude of factors including technical
complexity, economic incentives, and market forces. Our case
study data enumerates the influence of these factors on the
evolution of a complex software product. The generalizable
standardization-customization decision model and product
variability cost model we have illustrated using the case study data
can be used to add rigor to the software product management
decision making process. This would enable managers to
systematically estimate the implications of complexity and the
nature of change requested by customers, along with other market
considerations such as market share and competition, to make
optimal software product management decisions. Overall, this
research fills an important gap in the toolbox of software managers
who are involved in decision making of software product lines.

Timing the Product Feature Obsolescence. We find that a
universal policy to enforce compatibility of standard product
releases is not an optimal strategy for packaged software product
lines. We found that standardizing an incompatible feature in to a
packaged software product, especially when a customer requested
the feature and when the vendor owns a high market share, could
be a winning strategy. Under these specific conditions,
standardizing incompatible features in future versions of the
product, instead of fulfilling such requests through product
variabilities (customized solutions), could motivate the larger
installed-base to purchase newer product versions, and help product
management teams to plan for controlled obsolescence of older
product versions.

Economic Incentives of Managing Complexity. A packaged
software product vendor would typically hold the core source
components of a product platform for multiple years. We
demonstrate that there is an economic incentive to reduce structural
complexity as the product matures over the years. Measuring and
acting on the impact of complexity during the early design phase
would save costs later in the product lifecycle because expenses
related to providing hot fixes throughout different versions of the
product are minimized. One way to reduce the impact of structural
complexity on product variability costs would be to separate out
design components according to the holistic requirement needs of
consumers, and modularize these components in different packages
[20]. This would reduce the cross-referential changes needed for
more volatile business components, and thus minimize costs of
developing and testing customized solutions.

Invest in Organizational Memory. We learned from our research
that identifying and resolving compatibility constraints in
downstream activities, such as customization, is a difficult task.
This difficulty multiplies in magnitude when the personnel
involved in developing the customized solutions are different from
the original system designers and application developers (the
current situation at our research site). The probability of critical
design knowledge being lost between these different teams is quite
high and special effort is needed to synchronize the understanding
of the product between the product management team, application
developers, and custom project developers. Overall, our experience
at this research site reinforces the benefits that teams can derive by
using structured knowledge management practices in software
development and product management.

8. RELATED WORK

We draw inspiration from four streams of literature for this study.
Our modeling approach in this study is based on economic
modeling of software development and maintenance activities
published in the software engineering economics literature [1, 12].
We extend prior work in this area by considering the packaged
software standardization-customization decision and estimation of
customization costs. We draw ideas from the product development
literature to identify the factors that influence the standardization
and customization of software products. The product development
literature covers perspectives from diverse fields of marketing,
organization science, engineering design, and operations [5, 11, 13].
Our third literature reference is the software product line stream of
research [8]. Prior research in requirements engineering [14, 17]
and software change management [16] also serve as a motivating
foundation for this study. Our study, bridges the approaches from
these four different research streams in an attempt to advance
towards a generalizable theory of software product line evolution.

9. CONCLUSION

In this paper, we first showed the factors that a packaged software
vendor considers when deciding whether to satisfy a customer’s
change request by either a) offering a customized solution to the
individual customer, or b) offering a standardized solution by
releasing a new feature in a future version of the product. We then
developed a predictive decision model that allows managers to
decide whether customization or standardization is the appropriate
response to a customer change request. In addition, we built a
product variability cost estimation model that allows managers to
accurately predict the cost of a customized solution. Our research,
by accounting for intermeshed market effects and complexity
dynamics in software products, makes an important advancement
towards a generalizable theory of software product line evolution.

10. REFERENCES

[1] R. D. Banker and S. A. Slaughter, "The Moderating Effects

of Structure on Volatility and Complexity in Software
Enhancement," Information Systems Research, vol. 11, pp.
0219-0240, 2000.

[2] Bluetooth-SIG,
"http://www.Bluetooth.Com/Bluetooth/Sig/History_of_the_S
ig.htm," accessed on 5-Sep-09

[3] Bluetooth,
"http://www.Bluetooth.Com/Bluetooth/Technology/"
accessed on 5-Sep-09

[4] B. Boehm, C. Abts, and S. Chulani, " Software Development
Cost Estimation Approaches — a Survey," Annals of
Software Engineering, vol. 10, pp. 177-205, 2000.

[5] S. L. Brown and K. M. Eisenhardt, "Product Development:
Past Research, Present Findings, and Future Directions,"
Academy of Management Review, vol. 20, pp. 343-378, 1995.

[6] D. Card and R. Glass, Measuring Software Design Quality.
Englewood Cliffs, NJ: Prentice Hall, 1990.

[7] S. Chidamber and C. F. Kemerer, "A Metrics Suite for
Object-Oriented Design," IEEE Transactions on Software
Engineering, vol. 20, pp. 476-493, 1994.

[8] P. Clements, C. Gacek, P. Knauber, and K. Schmid,
"Successful Software Product Line Development in a Small
Organization," in Software Product Lines: Practices and
Patterns, P. Clements and L. Northrop, Eds.: Addison
Wesley Longman, 2001.

[9] G. C. Gannod and R. R. Lutz, "An Approach to Architectural
Analysis of Product Lines," in 22nd International
Conference on Software Engineering, Limerick, Ireland,
2000.

[10] IDC, "Wordlwide Software Market 2009-2013 Forecast,"
IDC2298780, 2009.

[11] K. C. Kang, J. Lee, and P. Donohoe, "Feature-Oriented
Product Line Engineering," IEEE Software, vol. 19, pp. 58-
65, 2002.

[12] M. S. Krishnan, C. H. Kriebel, S. Kekre, and T.
Mukhopadhyay, "An Empirical Analysis of Productivity and
Quality in Software Products," Management Science, vol. 46,
pp. 0745-0759, 2000.

[13] V. Krishnan and K. T. Ulrich, "Product Development
Decisions: A Review of the Literature," Management Science,
vol. 47, pp. 0001-0021, 2001.

[14] T. v. d. Maßen and H. Lichter, "Requiline: A Requirements
Engineering Tool for Software Product Lines," LNCS, vol.
3014, pp. 168-180, 2004.

[15] T. J. McCabe, "A Complexity Measure," IEEE Transactions
on Software Engineering, vol. SE-2, pp. 308-320, 1976.

[16] K. Mohan and B. Ramesh, "Change Management Patterns in
Software Product Lines," Communications of the ACM, vol.
49, pp. 68-72, 2006.

[17] B. Regnell, P. Beremark, and O. Eklundh, "A Market-Driven
Requirements Engineering Process: Results from an
Industrial Process Improvement Programme," Requirements
Engineering, vol. 3, pp. 121-129, 1998.

[18] K. Schmid, "A Comprehensive Product Line Scoping
Approach and Its Validation," in 24th International
Conference on Software Engineering, Orlando, Florida, 2002.

[19] M. Svahnberg and J. Bosch, "Evolution in Software Product
Lines: Two Cases," Journal of Software Maintenance:
Research and Practice, vol. 11, pp. 391-422, 1999.

[20] K. T. Ulrich and D. J. Ellison, "Holistic Customer
Requirements and the Design-Select Decision," Management
Science, vol. 45, pp. 0641-0658, 1999.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2010

	Evolution of a Bluetooth Test Application Product Line: A Case Study
	Narayanasamy RAMASUBBU
	Rajesh Krishna BALAN
	Citation

	fse053s-ramasubbu-27June2010

