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ABSTRACT 
In this paper, we study the decision making process involved in the 
five year lifecycle of a Bluetooth software product produced by a 
large, multi-national test and measurement firm. In this 
environment, customer change requests either have to be added as 
a standard feature in the product, or developed as a special 
customized version of the product. We first discuss the influential 
factors, such as evolving standards, market share, installed-base, 
and complexity, which collectively determined how the firm 
responded to product change requests. We then develop a 
predictive decision model to test the collective impact of these 
factors on determining whether to standardize or customize a 
customer’s change request. Finally, we develop and test a 
customization cost estimation model, for use by software product 
teams, which specifically accounts for factors unique to the 
customization stage of a product lifecycle.   

Categories and Subject Descriptors 
D.2.9 [Management]:  Life cycle, programming teams, software 
process models, software quality assurance 

General Terms 
Economics, Management 

Keywords 
Software process, software engineering economics, complexity, 
product development, product life cycle, software evolution 
 
1. INTRODUCTION 
A packaged software product refers to a software application that is 
developed for mass distribution, and not specifically designed to 
fulfill the unique needs of an individual customer. Packaged 
software manifests itself in many domains including Customer 
Relationship Management (CRM), Enterprise Resource Planning 
(ERP), and Supply Chain Management (SCM) systems.  As such, 
packaged software is a big business – for example, the worldwide 
market for packaged systems software products alone is estimated 
to be more than $10 billion [10]. In addition to the stages of a 
typical software development lifecycle (requirements analysis – 
design – build – test – maintain), a packaged software product 
lifecycle includes the standardization and customization phases, 
which have not yet drawn much attention from the software 
engineering research community.  

 
Customization refers to the process of modifying the generic 
product functionalities found in a packaged software application to 
fulfill the unique needs of a customer. Over time, the packaged 
software product vendor might release these individual, customer-
specific modifications to all its installed-base by ‘standardizing’ the 
feature in its future release. When a customer raises a change 
request, a packaged software product vendor, thus, has to decide 
whether to fulfill the customer request by offering a customized 
solution to the individual customer, or to offer a standardized 
solution by releasing a new feature in a future version of the 
product. This standardization-customization decision becomes 
significantly complex in the presence of heterogeneous customer 
needs, compatibility constraints, and evolving standards.  
 
In this paper, we analyze the standardization-customization 
decisions made by a vendor over the lifecycle of its Bluetooth test 
and measurement software product. The lifecycle of this product 
was marked by several uncertainties including the rapidly evolving 
Bluetooth standards specifications and a diverse customer base. 
Thus, it provides a rich empirical context to understand the factors 
that influence the standardization-customization decisions of a 
vendor. Further, by analyzing how the firm responded to change 
requests from customers, in the face of evolving standard 
specifications, we are able to draw lessons and recommendations 
for both product management and managing complexity in 
software product development. 
 
The three main contributions of this paper are: 
 

1. We present a detailed study showing how a technology 
company organized its processes to deal with constantly 
changing specifications originating from standards evolution 
and diverse customer requirements. 

2. We develop and test a predictive decision model accounting 
for the factors that influence the standardization-customization 
decision of a software product vendor, and thus advance a step 
towards a generalizable theory of software product line 
evolution. 

3. We develop and test a customization cost estimation model 
that fairly accurately predicts the customization costs of 
packaged software product, contributing to the advancement 
of our understanding of the economic aspects of modeling 
variability in product line evolution. 

 
2. RESEARCH SITE  
 
2.1. Company and Product Overview 
Our research site, Measuretronics (not a real name due to non-
disclosure agreements), operates in about twenty countries. This 
large company has over $1.5 billion in recent annual sales and 
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holds about seven hundred active technology patents. 
Measuretronics invests about a third of its revenues in research and 
development across five businesses (oscilloscopes, logic analyzers, 
video test products, telecommunications equipment, and optical 
sensor products). The firm has about 400 customers in various 
industries including electronic standards compliance testers, 
semiconductor chip manufacturers, communication equipment 
manufacturers, and telecommunication application developers. The 
product we study in this research was developed by 
Measuretronics, and is called the “Bluetooth protocol analyzer”. 
Bluetooth is a short range wireless communication standard that 
allows connectivity between electronic equipment [3]. The 
Bluetooth protocol analyzer is a test and measurement equipment 
used during the production of Bluetooth consumer products. 
Typical customers of the Bluetooth protocol analyzer are not 
consumer end users, but the firms producing Bluetooth-enabled 
consumer goods. Firms producing Bluetooth devices need to test 
the interoperability of their devices with other Bluetooth devices 
that may be used in the consumer's personal area network. This test 
procedure involves analyzing the radio frequencies transmitted and 
received between the networked devices. The Bluetooth protocol 
analyzer facilitates this procedure by intercepting the traffic 
between Bluetooth devices and enables detailed engineering and 
statistical analysis of the intercepted communication data. 
 
The Bluetooth protocol analyzer product consists of a hardware 
component and a software component. The hardware component 
comprises of an air-sniffing probe to intercept wireless 
communication traffic between Bluetooth devices, a cable-sniffing 
interface to intercept wired communication traffic, and serial and 
parallel data port interfaces for connecting to a personal computer. 
The software component involves a firmware operating system that 
is stored in the memory of the hardware component, and a 
packaged software product that needs to be installed on a client 
personal computer. The physical hardware and the firmware 
together intercept and capture data from traffic between two 
Bluetooth devices. This data is passed to the client software 
package for further analysis. The software package is used to 
define specifications, represent results in a graphical manner, and 
prepare testing reports. 
 
The development of this product was started in 1999 and continued 
until 2004 when the product was eventually shelved by 
Measuretronics. It should be noted that the Bluetooth protocol 
specification, was constantly changing during this time period. For 
example, the Bluetooth Special Interest Group (SIG) was only 
formed in 1998. The Bluetooth 1.0 specification was released in 
1999, the 1.2 specification was adopted in 2003, and the 2.0 
specification was adopted in 2004. A full history of the Bluetooth 
standard and feature changes is available elsewhere [2]. 
 
2.2. Product Development Process 
The base product development process followed at Measuretronics 
involved three major steps. The first step involved collection and 
consolidation of customer requirements. The firm uses an online 
system called “customer support network” to log all customer 
requests and feedback. When a customer enters the details of a 
request in the system, a unique ticket number is created. These 
feature request tickets are consolidated on a weekly basis. The 
second step in the product development process involves a 
thorough analysis of the feature request tickets. This involves 
removing duplicate tickets, grouping tickets from different 

customers that have similar content, and validating the content of 
each customer ticket. If the requested feature is already present in 
any of the released versions, a response is sent to the customer and 
the feature request ticket is closed.  
 
In the last step, the product management team works in tandem 
with the development team to a) analyze the technical feasibility of 
the change request, b) check if the requested feature is shipped by a 
competitor, and c) generate an appropriate customer survey for the 
requested feature. The customer survey is designed to obtain 
installed-base feedback on the proposed feature, and is emailed to 
the existing customers of the product. Customers are asked to give 
feedback on whether they find the proposed feature (or change) 
useful. To discourage casual feedback or non-response, customers 
are also informed of the impact of the proposed change in terms of 
code modifications and future service pack installations. After 
consolidation of installed base opinion, a final decision is made on 
the fulfillment of the request. 
 

2.3. Data Collection 
As a first step, we established the research protocols for the study, 
which included details on participant selection, roles and 
responsibilities among participants, interview structure, archival 
data collection rules, structuring learning opportunities, and 
implementing recommendations. We adopted a participatory action 
research methodology. Participatory action research enables 
researchers to co-investigate or involve the communities whose 
practices they study in their research activities. These activities 
include data collection, record keeping, model building, solutions 
development and implementation. This research methodology 
allows researchers to obtain a deep understanding of the problem 
context, with a view to make improvements in the practices, even 
when they do not, a priori, have well defined solutions or theories. 
 
We formed a three-member core team consisting of one of the 
authors and one manager each from the program management and 
engineering division of our research site. The program manager 
was the senior most personnel involved in the development of the 
Bluetooth protocol analyzer product, and had a global view of 
product development process. The engineering manager worked 
independent of the program manager (i.e., did not have direct 
reporting responsibility), and had in-depth knowledge about the 
technicalities of the product. The core team was responsible for the 
overall conduct of this study, and recruited additional participants 
at different stages of the study. Learning opportunities were 
structured using a three-phase cycle consisting of diagnose-take 
action-evaluate stages.  
 
During the course of the study, the core team conducted ten 
structured interview sessions with project leaders, engineers and 
product managers of the Bluetooth protocol analyzer team. The 
first four of our interviews happened during the active product 
release cycles (one each from 1999-2003). The rest of the 
interviews were conducted after the active product lifecycle years 
(the most recent one in December 2009). Our archival data 
collection process was spread throughout the product release years, 
until early this year. We recorded all the interviews, and the 
archival data was organized using a version control system to help 
us not lose track of the activities spreading multiple years. One of 
reasons for the long delay between end of the product lifecycle and 
this case study reporting process is the mandatory requirement of a 
five-year gap as per the firm’s non-disclosure agreement signed 



  

with us. Further, the firm was recently acquired by another multi-
national company leading to new regulations and clearance 
procedures. Because we facilitated good record keeping, and were 
able to pull-up objective data from the process database at any 
time, we are confident that the long gap in the reporting process 
does not threaten the reliability and validity of our research data. 
Moreover the core research team including the participants from 
the firm did not change throughout this project, which further 
facilitated good organizational memory for this study. 
 
Each structured interview session with the project managers and 
software developers lasted about an hour. Before each interview 
session, the core research team organized the questions and 
collected all relevant archival data related to the discussion. Each 
of our archival data analysis and interview sessions had a 
“diagnose’’ phase and a “evaluate” phase. The “diagnose” phase of 
the sessions were structured to understand the specific practices of 
the product team during the prior release cycles and discuss the 
experiences of the team. In the “evaluate” phase participants had to 
correlate their experiences with the archival data of the process 
database and reflect on the matches and deviations. The data 
collected through these sessions, along with the archival process 
database at the firm form the basis for this case study analysis. 
Thus, our collected data spans the entire life cycle of the Bluetooth 
analyzer product and includes the following: 
 
• In-depth records of the functional features and specification 

changes of the Bluetooth protocol analyzer. These were obtained 
from the company’s product database. 

• In-depth process records detailing the product development 
processes and choices made. These were obtained from the 
company’s process databases and the structured interviews.  

• Interviews with product managers, program developers, 
customers, and Bluetooth domain experts to provide more 
qualitative insights on our data points. These interviews also 
helped us validate the quality of the process data collected. 

 
On an average, the Bluetooth product line team at Measuretronics 
had a full time equivalent head count of 13 personnel (8 
developers, 1 usability engineer, 2 project managers, 1 program 
manager, and 1 product marketing manager). The core product 
team worked with other divisions of the firm, including the 
program management office and marketing department, and 
occasionally borrowed more resources from other divisions. 
 
There were 203 customer generated product requests made during 
the product’s lifecycle. With the assistance of the product 
management team at our research site, we filtered out duplicate 
requests and ended up with 154 unique customer requests. We then 
analyzed the processing history of these requests and categorized 
them in to two divisions: (1) customer requests that were decided to 
be standardized into the next product release, and (2) customer 
requests that were processed as customization projects through 
contractual relationships with individual customers. There were 92 
instances where the firm decided to process customer requests as 
standardized product features in future releases, and 62 customer 
requests that were handled as customization projects. We then 
collected cost and development personnel related data from the 62 
customization projects. The product and program management 
departments could not furnish data for 9 of these projects. So our 
final data set includes data on 154 standardization-customization 

decisions during the product lifecycle, and 53 customization 
projects executed by the firm.  
 
Our final data collection step was the analysis of the software code 
to collect data on complexity and individual program related 
metrics. An exhaustive analysis was made for 56 different versions 
of the source code. The metrics we collected were verified 
individually by two domain experts at our research site. Whenever 
there was a mismatch, the source code was pulled again from the 
repository and checked for inconsistencies. Later, these collected 
metrics were authenticated using an independent object oriented 
metrics collection tool. Any mismatch that arose from the 
authentication was checked by a technical expert at our research 
site and rectified.  
 
3. FACTORS INFLUENCING SOFTWARE 

STANDARDIZATION- CUSTOMIZATION 
In this section, we discuss the influential factors affecting the 
standardization-customization decisions at Measuretronics. We 
identified these factors by analyzing our case data, and by 
interviewing product management and engineering teams about 
their decision making process when presented with individual 
customer requests.  
 
3.1. Evolving Standards 
Being a test and measurement company, Measuretronics had to 
develop its test application even when the Bluetooth standard 
specifications were not well established and accepted. Under this 
uncertainty, Measuretronics product management was constantly 
facing customers who requested features that violated Bluetooth 
standards existing at that time. Releasing features which violated 
Bluetooth standards would jeopardize Measuretronics’ official 
position in the Bluetooth standards making process. At the same 
time, some of the feature requests came from business units of 
influential, multinational customers who were loyal to 
Measuretronics for multiple years. Finally, there were other 
competitors in the market who boldly offered features that violated 
the Bluetooth standards of the time (and marketed those violations 
as positive features). Hence it was difficult for the Measuretronics 
product management team to enforce a uniform policy on features 
that violated Bluetooth standards. In the absence of a uniform 
standards-violation policy, the engineering team started playing an 
important role, along with the product management team, in 
deciding the fate of feature requests. This created additional 
coordination overheads in the product decision-making process.  
 

 
Figure 1. Effect of Standards  

The error bars indicate standard deviations. Person days 
are calculated for a team of 10 developers. 
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Figure 1 shows that the customer requests that asked for features 
violating the existing Bluetooth standards usually took significantly 
longer to be fulfilled. We also observed that the heuristics 
employed by the product management and engineering teams for 
determining the features that violated standards depended on 
several other factors, including competition, compatibility, the 
nature of change involved, and complexity considerations. We 
discuss these factors subsequently, and model their collective 
impact on the standardization-customization decision in Section 4.  
 
3.2. Competition 
Our analysis of how Measuretronics reacted to competition shows 
interesting patterns as shown in Figure 2. The “No Competition” 
bars describe features for which Measuretronics had no competition 
while the “With Competition” bars describe features for which 
there was viable competition. First, we notice that more than half of 
the features in Measuretronics’s product had no viable competition. 
It is interesting to note that although the average wait-time for a 
customer request to be implemented was about the same with or 
without competition, the development time for product features that 
had competition was significantly lower as compared to the 
development times of features that were unique to Measuretronics.  
This indicates that the Measuretronics product teams were 
particularly sensitive to competitive pressures, and wanted to stay 
ahead in the market by uniquely positioning the product. We also 
note that the firm kept its standard violations to a minimum in the 
presence of competition – again to uniquely position the product as 
being better standards-compliant than its competitors. 

 
Figure 2. Effect of Competition 

Note: Y-axis units vary and are stated below each pair 

3.3. Compatibility 
For every customer request that is received, Measuretronics also 
assessed whether the proposed feature would cause incompatibility 
with previous releases of the product, i.e., violate backward 
compatibility.  We noticed that in the initial stages of the product 
evolution, Measuretronics was more diligent in providing backward 
compatibility. Features that violated backward compatibility were 
more often stripped in the standard version, and were provided 
through a custom release for specific customers. However, as the 
market share of Measuretronics’s product increased rapidly, several 
features with severe backward compatibility problems were 
standardized across the board for all customers. For example, we 
noticed a 25% increase in backward incompatible features in the 
fifth release of the product as compared to the previous four 
releases. While part of the reason for increase in violations of 

backward compatibility could be because of the way Bluetooth 
standards evolved, it also appears that Measuretronics used its 
dominant market share position to standardize incompatible 
features in a general release.  
 
3.4. Nature of Change 
The increased participation of engineering teams in product 
management decisions at Measuretronics, as noted before in 
Section 3.1, added an interesting dynamic to the analysis of 
customer feature requests. Along with the marketing and 
profitability considerations, the engineering nature of potential 
product changes also became a central focus.  Our observation of 
the product release strategy meetings revealed that the 
Measuretronics teams carefully classified the effect of a customer 
requested feature on a release in to four categories of changes: (1) 
Incremental changes, (2) Modularity changes – changes which 
affected significant portions of self contained modules of the 
product, (3) Architectural changes – changes which significantly 
affected the fundamental software architecture of the product, and 
(4) Radical changes – changes which significantly disrupted the 
entire product ecosystem including the software, hardware and 
development platforms.  
 
To see if this engineering consideration of changes had any impact 
on fulfillment of customer requested features, we analyzed the 
customer waiting times and feature development times for each 
category of changes. The pattern of waiting and development times 
across the four different categories of changes is shown in Figure 3. 
We notice that Measuretronics gave priority attention to changes 
that affected modularity and architectural changes (lowest 
development time bars – even lower than incremental changes), 
indicating that there was an active effort to maintain the structural 
complexity of the system.  
 

 
Figure 3. Nature of Change 

3.5. Complexity 
In our interviews with the Measuretronics teams, complexity was 
repeatedly mentioned as one reason why certain customer requests 
went unfulfilled even when the marketing reasons for fulfilling 
those requests were compelling. Also, we noticed that a simple 
complexity-based heuristic was used by the Measuretronics 
engineering teams to decide on fulfilling customer requests. 
Customer requests that were functionally complex – i.e., those 
demanding complex algorithms and data structures tended to be 
satisfied through customization. On the other hand, customer 
feature requests that involved high levels of structural complexity – 
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i.e., those involving complex cross modular interfaces tended to be 
fulfilled through standardized general releases. The application of 
this simple complexity-based heuristic to decide the 
standardization-customization strategy seems to stem from 
Measuretronics’s quality management considerations. Managers 
rationalized that fixing errors arising from higher levels of 
functional complexity often required close relationship with 
customers to understand their full implementation set-up (the 
networked devices and the related software applications). Hence, 
product managers preferred custom solutions for customer requests 
that involved high levels of functional complexity. On the other 
hand, Measuretronics engineering team had better internal 
capabilities to understand the overall structure of their product than 
any one single customer. Hence, when a customer feature 
demanded structural alterations, standardizing structural changes 
was seen as more appropriate than a customized solution.  
 
4. STANDARDIZATION-CUSTOMIZATION 

DECISION MODEL 
Our interaction with the Measuretronics managers helped us 
discover the key factors that influenced their decisions. While we 
discussed these individual factors in the previous section, a 
standardization-customization decision is, however, based on the 
collective influence of all these factors – including the complex 
interactions between these variables. In this section, we present 
how we built and tested a standardization-customization decision 
model that takes in to account the collective influence of the factors 
discovered through our managerial interviews. Developing and 
testing such an empirical decision model, based on our case study, 
is a significant step towards a generalizable theory of the software 
product line evolution. Our empirical model of the standardization-
customization decision complements other specification-based, 
process-centric, and architecture-centric approaches prevalent in 
the software product line evolution research [8, 9, 18, 19]. Our 
approach specifically highlights the collective and interactive 
effects of both software complexity and economic or market-
related factors on product line evolution. 
 
Figure 4 shows a pictorial representation of our standardization-
customization decision model with the standardization-
customization decision on the right-hand side and the variables 
representing our major hypotheses on the left-hand side. We also 
introduce three control variables in our model: size of the change 
request, customer influence, and the product version. We explain 
each of these in the following sub-sections.  
 
4.1. Output Variable: Standardized or 
Customized Solution.  
This output variable captures the standardization-customization 
decision that Measuretronics has to make on a customer’s request.  

This is essentially a binary choice: to process the customer’s 
request as a standard product feature in a future release (coded as 1), 
or as a separate customization project (coded as 0).  
 
4.2. Input Variables 
Installed-Base Impact. Whenever a change request is processed 
by Measuretronics, a survey is sent out to all customers to check if 
the requested change will be of any use to them. This variable gives 
the % of installed-base customers who indicated that the proposed 
change would be of use to them. If the proposed change is 
implemented in a future release, customers will have to install a 
patch even if they don’t intend to use the new feature. Hence 
customers do not have any incentive to blindly accept any changes 
proposed by Measuretronics. This variable ranges from 0-100. 
 
Standards Constraint. Upon the receipt of a customer request, 
Measuretronics verifies whether the request violates the standard 
Bluetooth Protocol standard at the time when the request was 
logged. We employed an indicator variable coded as 1 if the 
customer request violates the current Bluetooth protocol; 0 
otherwise. 
 
Compatibility Constraint. For every customer request that is 
received, Measuretronics also assesses whether the proposed 
feature will cause incompatibility with previous releases of the 
product, i.e., violate backward compatibility.  We created an 
indicator variable coded as 1 if the proposed change request will 
cause incompatibility with previous public releases; 0 otherwise.  
 
Market Share. This variable captures the market share (in %) of 
Measuretronics in the Bluetooth test product segment at the time 
when a customer request was logged. We obtained this variable 
from the product management division of Measuretronics. This 
variable ranges from 0 to 100. 
 

4.3. Control Variables 
Change Size & Nature of Change. We coded the nature of change 
based on our description in Section 3.4. We measure the extent of 
the change needed to fulfill a customer’s request using the number 
of function points that are required to be developed or modified in 
order to implement the change request. In our data set we 
encountered situations where the function point data for a change 
request was zero. This is because some of the change requests only 
involved changing configuration settings and no addition or 
deletion of actual software code.  

Customer Influence. A customer raising a change request with 
Measuretronics is required to indicate the importance of the request. 
This variable is coded on a Likert scale ranging from 1 to 5 and 
measures the perceived importance of the requested feature for a 
customer’s business. The values of the scale were as following: 

Figure 4. Standardization-Customization Decision Model 
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(1) The change is preferred by the customer but is not essential for 
day-to-day productive operations of the customer. The 
customer does not intend to be a test partner for implementing 
the change; 

(2) The change is preferred by the customer but is not essential for 
day-to-day productive operations of the customer. The 
customer agrees to be a test partner for implementing the 
change; 

(3) The change is needed for the day-to-day operations of the 
customer. The customer is willing to accept roundabout or 
alternate ways of implementing the feature and does not intend 
to be a pilot and test partner for the change. The customer 
cannot allocate resources to simulate a production environment;  

(4) The change is needed for the day-to-day operations of the 
customer. The customer is NOT willing to accept roundabout 
or alternate ways of implementing the feature but can wait until 
the feature is released in future versions. The customer is 
willing to simulate a test production environment;  

(5) The feature requested is essential and time critical. The 
customer is willing to allocate resources for piloting. The 
customer might stop using the vendor’s product if the feature is 
not made available.  

Product Version. There were 56 different versions of the packaged 
software product line. Hence this variable ranges from 1 to 56. 
 

4.4. Interaction Effects 
Our standardization-customization decision model also 
hypothesizes two interaction effects involving the market share of 
the product at the time when a customer request is logged. We 
expect that the market share of the product influenced the way 
Measuretronics made standardization-customization decisions 
especially when faced with decisions that involve violating 
compatibility with prior versions or any industry recommended 
Bluetooth standards.  
 
5. VALIDATING THE STANDARDIZATION-

CUSTOMIZATION DECISION MODEL 
 
In this section we statistically test our proposed standardization-
customization decision model using the data we collected through 
our case study. The empirical formulation of our standardization-
customization decision model is shown in Equation 1:  
 

Probability  (Standardized or Customized Solution?)  =  
 Ф [α0 + α1*Installed-base impact + α2*Compatibility 
constraint + α3*Standards constraint + α4*Market share + 
α5*Customer influence + α6*Market share * Compatibility 
constraint + α 7*Market share * Standards constraint +  
α 8*Change size + α9*Version + α10*Nature of change + δ] 
…(Equation-1) 

 

The summary statistics of the data collected is shown in Table 1. 
Since the dependent variable (standardization-customization 
decision) is a binary choice, we used a probit regression model for 
estimating Equation 1. The results of the probit regression are 
presented in Table 2. The statistical test results indicate that our 
hypothesized standardization-customization decision model is valid 
– note the highly significant p-value for the model significance F-
test in Table 2. In probit regression, the coefficients of the variables 
(α0 - α10) indicate an increase or decrease of log odds (probit score) 
of the dependant variable in standard deviations units – which is 
harder to interpret. For easier interpretation, we converted the 

probit effects to probability effects by calculating the effect of one 
unit increase in an independent variable on the probability of the 
vendor making a standardization decision holding all other 
variables at their mean levels. Table 3 shows these easier to 
interpret probability effects.  
 
Robustness Checks. We performed a variety of robustness tests, 
including the influence of outliers (using Cook’s distance), multi-
collinearity effects (variance inflation factors and condition 
numbers), heteroskedacity checks (robust errors) to confirm the 
validity of our empirical results, and did not find any problems.  

5.1. Decision Model Results 
An analysis of the decision model results presented in Table 3 
provides the following insights: 
 
1. Effect of Market Share: A vendor with high market share 

(monopoly) in a heterogeneous demand environment will 
respond to customer change requests more through custom 
solutions than through product standardization. Specifically, we 
see that for every 1% increase in market share of its product, 
there is a decrease of 2% in the probability that Measuretronics 
would provide a standardized product offering for its 
diversified customer base (refer to coefficient α4 in Table 3). 
 

2. Role of Standards: When a customer requests a feature that 
violates industry standards, then the vendor is likely to fulfill 
the need only through a customized solution. This is true even 
when the market share of the vendor is high (monopoly). 
Specifically we find that a customer request that violates 
standards has a 61% lesser chance of getting accepted as a 
standard feature (See coefficient α3 in Table 3).  

 
3. Role of Compatibility Needs: When a customer requests a 

feature that is not compatible with prior versions of the 
vendor’s product, the vendor is likely to fulfill the need through 
a customized solution. However, when the market share of the 
vendor is high (monopoly), the vendor might consider 
standardizing a feature even when presented with compatibility 
constraints. Holding all other variables at their mean level, we 
find that customer requests that have a compatibility constraint 
have 52% lower probability for getting standardized in a 
packaged software product (See coefficient α2 in Table 3). 
However in the presence of higher market share, the probability 
of a customer request that has compatibility constraints getting 
accepted in to the standard version of the product increases by 
25% (See coefficient α6 in Table 3).  

 
4. Needs of Customers: We observe that customers who declare 

a feature as essential to their operations have a significantly 
higher probability (+27%) of having their requests standardized 
(See coefficient α5 in Table 3).  

 
6. PRODUCT VARIABILITY COST MODEL 
Costs of standardization are typically recovered through the 
product pricing mechanisms across several product releases 
common to all customers. However, costs involved in product line 
variability or customized solutions are typically borne by specific 
customers who, in turn, typically make purchasing decisions based 
on the product line variability pricing schemes. Hence it is 
important for Measuretronics to provide reasonably accurate and 
reliable cost estimates for product line variability (i.e., customized 
services). While several models of general cost estimation exist in 
the software engineering literature [4], to the best of our knowledge, 



  

existing cost estimation models do not specifically address the 
costs involved in software product line variability by specifically 
taking in to account the customization lifecycle of a packaged 
software product. In this section, we develop and test a 
customization cost estimation model specifically suited for 
packaged product line variability. The empirical formulation of our 
cost estimation model is presented in Equation 2.  Figure 5 shows a 
pictorial representation of our proposed customization cost 
estimation model. We explain each of these components of our 
model in the following sub sections.  

Table 1. Decision Model Summary Statistics 
Variable Unit Mean Std. Dev. Min Max 

Standardized or 
Customized 
Solution? 

1 or 0 
(decision) 0.60 0.49 0 1 

Installed-Base 
Impact % 43.64 27.65 5 100 

Compatibility 
Constraint 

1 or 0 
(Present or 

absent) 
0.47 0.50 0 1 

Standards 
Constraint 

1 or 0 
(Present or 

absent) 
0.29 0.46 0 1 

Market Share % 24.31 21.44 10 60 
Customer 
Influence Likert Scale 3.95 0.96 1 5 

Market Share  X 
Compatibility 

Constraint 

(Interaction 
variable) 12.25 19.94 0 60 

Market Share  X 
Standards 
Constraint 

(Interaction 
variable) 8.09 17.62 0 60 

Change Size Function 
Points 62.73 64.47 0 292 

Nature of change 

Incremental 
(0) or 

Architectural 
(1) 

0.49 0.49 0 1 

Version Unit less 
number 28.22 16.93 1 56 

 

Customization Cost = β0 + β1*Functional Complexity + 
β2*Structural Complexity  + β3* Compatibility Constraint  
+ β4* Customer Knowledge  + β5* Quality + β6* Personnel 
Experience + β7* Size + β8* Version + ε   …(Equation-2) 

Product Variability Costs. We measure product variability costs 
in terms of the customization cost, i.e., the total person hours spent 
in the customization project for a customer. The effort spent for 
fulfilling customer requests at Measuretronics was tracked through 
a project planning and employee resource planning software. We 
extracted the relevant information from this system using the 

customer request id. The information was later verified by the 
project leaders of the customization teams. 

Table 2. Decision Model Results 

Variable 
 

Coefficient 
P-
Value 

Installed-Base Impact α1 -0.019** 0.007 

Compatibility Constraint α2 -1.54** 0.003 

Standards Constraint α3 -1.88** 0.001 

Market Share α4 -0.06** 0.000 

Customer Influence α5 0.77** 0.000 
Interaction effect:  
Market Share  X 
Compatibility Constraint 

α6 

0.035* 0.016 
Interaction effect:  
Market Share  X  
Standards Constraint 

α7 

-0.003 0.821 

Change Size α8 -0.008** 0.001 

Version α9 0.018 0.290 

Nature of change α10 3.507* 0.010 

Constant α0 0.59 0.454 
Number of Observations = 154 

Model significance test = 109.72** ; P-Value= 0.000 
 

Table 3. Probability of standardizing a feature 

Variable  
Effect of one unit change on 

the probability to standardize 
a customer request 

Installed-Base Impact α1 -0.007** 

Compatibility Constraint α2 -0.52** 

Standards Constraint α3 -0.61** 

Market Share α4 -0.02** 

Customer Influence α5 0.27** 
Interaction effect:  
Market Share  X 
Compatibility Constraint 

α6 0.25* 

Interaction effect:  
Market Share  X 
Standards Constraint 

α7 -0.02 

Change Size α8 -0.003** 

Version α9 0.007 

Nature of Change α10 -0.3* 
Note: For Tables 2 & 3, results significant at 5% are indicated by *; 
results significant at 1% are indicated by **. Other values, which are 
not in bold, are not statistically significant. We use a two-tailed 
hypothesis test. 

Functional Complexity. Past research has classified functional 
complexity in to logical and data complexity [1]. Logical 

Figure 5. Customization Cost Research Model 
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complexity is the measure of complexity of decision-making and 
algorithmic logic in a program. Data complexity is a measure of the 
data processing complexity of a program. In a system software 
package such as the one involved in this research, logic and 
algorithmic functions dominate a program rather than the data 
processing functionality. Unlike enterprise applications such as 
ERP or CRM software, the Bluetooth protocol analyzer package 
that we studied had very minimal data processing capabilities. Thus, 
we used a logical complexity measure, McCabe’s number [15], as 
the functional complexity of the software. McCabe’s number 
measures the complexity of code based on the number of edges, the 
number of nodes and the number of connected components in a 
program flow graph.  This measure is thus an indication of the 
number of decision trees available in the system. McCabe’s 
complexity number is given by V = e – n + 2p. (e is the number of 
edges, n is the number of nodes, and p is the number of predicates 
in the program flow graphs). 
 
Structural Complexity. Structural complexity results from the 
cross-references in the individual components of the packaged 
application. Past empirical software engineering studies have 
acknowledged the influence of coupling and cohesion on 
maintenance performance [1, 6]. Our product was designed using 
the object oriented programming paradigm. We, thus, used the 
object oriented metric from the Chidamber-Kemerer metric suit, 
Coupling Between Objects (CBO), as the measure of structural 
complexity [7].  
 
Compatibility Constraint. As mentioned in Section 4.4, for every 
customer request that is received, Measuretronics also assesses 
whether the proposed feature will cause incompatibility with 
previous releases of the product, i.e., violate backward 
compatibility.  We created an indicator variable coded as 1 (0 
otherwise) if the proposed change request will cause 
incompatibility with previous public releases.  
 
Customer Knowledge. At Measuretronics, any prior experience 
with a customer was documented by the product management team 
in the form of structured notes stored in the knowledge 
management repository for future engineering reference and 
pursuing marketing leads. We gathered the customer identification 
number from the customer requests and used this to retrieve all the 
customer notes that the product management and developers had 
stored till date. We use the total number of such structured notes 
available for a customer as an input variable in the model.  
 
Quality. We measure quality as the number of errors that have 
been reported for the components that are relevant to the customers’ 
change request. It is important to accommodate quality in our cost 
estimation model because more error prone components might 
require more time to test than less error prone modules.  
 
Personnel Experience. We gathered information about the 
technical experience and Bluetooth domain experience of the 
personnel who participated in processing the customization request 
from the user. This variable was calculated as the average of the 
technical and domain experience (in years) of the team that 
processed the customization request. 
 
Size. We measured the scope of a change request using the number 
of function points that are required to be developed or modified in 
order to implement the change request. 

Product Version. There were 56 different releases of the packaged 
software product. Hence this variable ranges from 1 to 56. 
 
 

6.1. Product Variability Cost Model Results 
 
We used an ordinary least-squares regression to estimate Equation 
2. Table 4 presents the summary statistics for our model. The 
results of the regression are presented in Table 5. The model 
specified in equation 2 is highly significant and robust (Notice the 
highly significant P-value for the model test in Table 5). The 
explanatory or predictive power of the model is high and the 
overall mean Magnitude of Relative Error (MRE) for the model 
was 19%, which is lower than those reported for other estimation 
models [6]. Our model thus accurately predicts the man-hours (to 
within 19% of the actual value on average) needed for fulfilling a 
particular customization solution. An analysis of the results shown 
in Table 5 reveals the following insights: 
 
Effect of functional complexity: Higher levels of functional 
complexity are associated with higher customization costs. 
Specifically we find that for every unit increase in McCabe’s 
number, the effort needed to satisfy a customization change request 
goes up by fifteen minutes if handled by a team with an average of 
five years of experience holding other variables at their mean levels. 

Effect of structural complexity: Higher levels of structural 
complexity are associated with higher customization costs. In our 
analysis, we find that for every unit increase in the Coupling-
Between-Object metric, customization costs go up by about 4%, 
holding everything else at their mean levels (see β2 in Table 5).  

Compatibility constraints: Customer requests that require 
solutions that are incompatible with other publicly released 
versions of the product will usually result in higher customization 
costs. On average, we found that developing customized solutions 
with compatibility constraints required 175% more effort than 
those that did not face incompatibility problems (see β3 in Table 5). 

Customer specific knowledge: Higher levels of customer specific 
knowledge available with a vendor usually results in a small, yet, 
significantly lower customization costs for that customer’s requests 
(an average of 0.5% reduction in costs; see β4 in Table 5). We 
believe this was due to the structured way in which knowledge was 
organized at our research site. All customer specific information 
was organized in the form of similar sized notes with key 
references to customer request ids, product feature ids, and stored 
in a central repository that was accessible to all personnel. This 
way of organizing knowledge helped to reduce costs by ensuring 
uniformity in understanding customer needs between personnel 
involved in development and maintenance activities of the product.  

Effect of Quality: Error prone components from prior releases are 
associated with higher customization cost. Our results show that a 
unit increase in the incidence of errors in the modules being 
modified for the custom solution increases customization cost by 
about 11% (see β5 in Table 5).  

Effect of Experienced Personnel: We find that higher technical 
and domain experience of the development team involved in 
customization is associated with lowered customization costs. Our 
results indicate that an increase in one year of average team 
experience lowers customization costs by 28% (see β6 in Table 5). 

 
 



  

Table 4. Summary Statistics for Customization Cost Model 
Variable Unit Mean Std. Dev. Min Max 

Customization 
Cost 

Person-
hours 287.35 277.52 8 1000 

Quality Count of 
errors 8.24 7.06 1 29 

Structural 
Complexity 

Coupling-
Between-
Objects 

18.53 22.77 0 105 

Functional 
Complexity 

McCabe’s 
number 174.94 312.23 1 1792 

Compatibility 
Constraint 

Indicator – 
(1- present; 
0- absent) 

0.41 0.50 0 1 

Customer 
Knowledge 

Count of 
similar 

sized notes 
109.29 134.27 0 695 

Size Function 
Points 1211.28 2323.21 54 15688 

Personnel 
Experience Years 5.21 1.75 2.5 8 

Version Count 28.25 15.52 2 55 
 

Table 5. Customization Cost Results 
Variable  Coefficient. P-value 

Functional 
Complexity β1 0.25** 0.035 

Structural Complexity β2 3.57** 0.017 
Compatibility 

Constraint β3 175.59*** 0.004 

Customer Knowledge β4 -0.53** 0.036 

Quality β5 10.88** 0.024 

Personnel Experience β6 -28.08* 0.073 

Size β7 0.022 0.123 

Version β8 -1.97 0.302 

constant β0 247.95** 0.024 
Number of Observations = 51 

Model Significance test F-stat (8, 42) = 9.28***, P-value = 0.000 
Adj.R-Squared  = 56.99%; Mean MRE = 19%  

 
Note: Results significant at 5% are indicated by **; results significant at 1% 
are indicated by ***. Other values, which are not in bold, are not 
statistically significant. We use a two-tailed hypothesis test (i.e., we did 
not assume any positive or negative direction of the result while testing).  

 
7. DISCUSSION 

 
Putting Lessons in to Practice. While our results discussed in 
previous sections were specific to this case study, the lessons learnt 
can be cautiously generalized to the broader product line evolution 
context – eventually paving way for a generalized theory of 
software product line evolution through replications and 
confirmation in other contexts. We summarize our 
recommendations on putting our lessons learnt to practice in the 
following steps: 
  
1. Costs involved in product commonalities (standardization) and 

product variabilities (customization) need to be rigorously 
calculated and debated. Our empirical models are a step 
forward in this direction.  

2. Product line governance needs to include collective product 
decision-making aligning the incentives for solving engineering 
problems and meeting market opportunities. Our case study 

illustrated such a collective decision making process in one 
firm. 

3. Benefits of pleasing customers through customized solutions 
need to be balanced with the risks of violating technical 
standards and increasing complexity due to product line 
variabilities. These risks need to be appropriately transferred to 
customers (though pricing as shown in our product variability 
cost model) or through controlled product feature obsolescence.  

4. Appropriate investments for organizational learning such as 
knowledge management systems and resource rotation between 
development and maintenance improves the general capability 
of the product management team, and prepares them for 
collective decision-making.  

 

We discuss the broader implications brought out by the lessons 
from our case study and empirical models in the rest of this section.  
 
Collective Product Decisions. Making software product 
management decisions is challenging because managers have to 
simultaneously consider a multitude of factors including technical 
complexity, economic incentives, and market forces. Our case 
study data enumerates the influence of these factors on the 
evolution of a complex software product. The generalizable 
standardization-customization decision model and product 
variability cost model we have illustrated using the case study data 
can be used to add rigor to the software product management 
decision making process. This would enable managers to 
systematically estimate the implications of complexity and the 
nature of change requested by customers, along with other market 
considerations such as market share and competition, to make 
optimal software product management decisions. Overall, this 
research fills an important gap in the toolbox of software managers 
who are involved in decision making of software product lines.  
 
Timing the Product Feature Obsolescence. We find that a 
universal policy to enforce compatibility of standard product 
releases is not an optimal strategy for packaged software product 
lines. We found that standardizing an incompatible feature in to a 
packaged software product, especially when a customer requested 
the feature and when the vendor owns a high market share, could 
be a winning strategy. Under these specific conditions, 
standardizing incompatible features in future versions of the 
product, instead of fulfilling such requests through product 
variabilities (customized solutions), could motivate the larger 
installed-base to purchase newer product versions, and help product 
management teams to plan for controlled obsolescence of older 
product versions.  
 
Economic Incentives of Managing Complexity. A packaged 
software product vendor would typically hold the core source 
components of a product platform for multiple years. We 
demonstrate that there is an economic incentive to reduce structural 
complexity as the product matures over the years. Measuring and 
acting on the impact of complexity during the early design phase 
would save costs later in the product lifecycle because expenses 
related to providing hot fixes throughout different versions of the 
product are minimized. One way to reduce the impact of structural 
complexity on product variability costs would be to separate out 
design components according to the holistic requirement needs of 
consumers, and modularize these components in different packages 
[20]. This would reduce the cross-referential changes needed for 
more volatile business components, and thus minimize costs of 
developing and testing customized solutions.  



  

 
Invest in Organizational Memory. We learned from our research 
that identifying and resolving compatibility constraints in 
downstream activities, such as customization, is a difficult task. 
This difficulty multiplies in magnitude when the personnel 
involved in developing the customized solutions are different from 
the original system designers and application developers (the 
current situation at our research site). The probability of critical 
design knowledge being lost between these different teams is quite 
high and special effort is needed to synchronize the understanding 
of the product between the product management team, application 
developers, and custom project developers. Overall, our experience 
at this research site reinforces the benefits that teams can derive by 
using structured knowledge management practices in software 
development and product management. 
 
8. RELATED WORK 
 
We draw inspiration from four streams of literature for this study. 
Our modeling approach in this study is based on economic 
modeling of software development and maintenance activities 
published in the software engineering economics literature [1, 12]. 
We extend prior work in this area by considering the packaged 
software standardization-customization decision and estimation of 
customization costs.  We draw ideas from the product development 
literature to identify the factors that influence the standardization 
and customization of software products. The product development 
literature covers perspectives from diverse fields of marketing, 
organization science, engineering design, and operations [5, 11, 13]. 
Our third literature reference is the software product line stream of 
research [8]. Prior research in requirements engineering [14, 17] 
and software change management [16] also serve as a motivating 
foundation for this study. Our study, bridges the approaches from 
these four different research streams in an attempt to advance 
towards a generalizable theory of software product line evolution.  
 
9. CONCLUSION 
 
In this paper, we first showed the factors that a packaged software 
vendor considers when deciding whether to satisfy a customer’s 
change request by either a) offering a customized solution to the 
individual customer, or b) offering a standardized solution by 
releasing a new feature in a future version of the product. We then 
developed a predictive decision model that allows managers to 
decide whether customization or standardization is the appropriate 
response to a customer change request. In addition, we built a 
product variability cost estimation model that allows managers to 
accurately predict the cost of a customized solution. Our research, 
by accounting for intermeshed market effects and complexity 
dynamics in software products, makes an important advancement 
towards a generalizable theory of software product line evolution. 
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