
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2002

VDL: A language for active mining variants of
association rules
Kok-Leong ONG

Wee-Keong NG

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Paper is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ONG, Kok-Leong; NG, Wee-Keong; and LIM, Ee Peng. VDL: A language for active mining variants of association rules. (2002).
International Workshop on Active Mining AM 2002, in conjunction with the IEEE International Conference on Data Mining ICDM 2002,
9-12 December. 1-6. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/905

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


VDL: A Language for Active Mining Variants of Association Rules

Kok-Leong Ong Wee-Keong Ng Ee-Peng Lim

Nanyang Technological University, Nanyang Ave, N4-B3C-14
Singapore 639798, SINGAPORE

ongkl@pmail.ntu.edu.sg

Abstract

The popularity of association rules has resulted in sev-
eral variations being proposed. In each case, additional
attributes in the data are considered so as to produce more
informative rules. In the context of active mining, different
types of rules may be required over a period of time due to
knowledge needs or the availability of new attributes. The
present approach is the ad-hoc development of algorithms
for each variant of rules. This is time consuming and costly,
and is a stumping block to the vision of active mining. We
argue that knowledge needs and the changing character-
istics of the data requires the ability to re-specify the type
of rules to rediscover over time. This paper proposes a
novel approach to specify the “how-to” of mining different
rule variants without the cost of developing new algorithms.
Called the VDL, it is SQL-like and has the expressive power
demonstrated by our examples, some of which are classical
and others novel. We also give a discussion on the theoreti-
cal model underpinning our proposal.

1. Introduction

The discovery of association rules has been a popular do-
main of study in data mining. We call a ruleX → Y , where
X andY are sets of items, abaserule [1]. Over the years,
different attributes [2, 5, 8, 9, 11, 16] were considered to
create more informative rules which we refer to asvariants.
Usually, a variant of the base rule considers additional at-
tributes to produce more informative rules as illustrated in
our examples below.

Example 1 Let X = {a, d} andY = {e, y} such that
X andY satisfies the support and confidence requirements,
then the base rule would beX → Y or {a, e} → {e, y}. If
we consider the number of times an item occurs inX or Y
(i.e., the recurrence), we have a more informative rule that
may be represented as{2 a, 1 d} → {3 e, 5 y}. We call this

rule [16] a variant of the base rule, and it means that two
occurrences of ‘a’ and an occurrence of ‘d’ leads to three
occurrences of ‘e’ and five occurrences of ‘y’.

Example 2 Assuming the sameX andY in Example 1,
another variant ofX → Y may be obtained if we con-
sider their spatial relationship. One such rule would be
{left (a, d)} → {top (e, y)} which means that whenever
‘a’ appears on the left of ‘d’, ‘e’ will appear on top of ‘y’.
This rule is another variant [8] from the base rule, where
each transaction contains the spatial relationship of each
item with respect to the others.

In the context of active rule mining, the above exam-
ples illustrate an important motivation. Data attributes (e.g.,
the recurrence value in Example 1 and the spatial relation-
ships in Example 2) are continuously added or remove,
and knowledge needs changes over time. While the ana-
lyst may find the base rules useful today, the inclusion of
a new attribute may motivate the need to rediscover rules
with the new attribute in mind. A survey of existing lit-
erature shows various attributes been considered, and each
presents their ad-hoc solution of an algorithm to address the
new attribute’s contribution to mining. Clearly, the cost of
developing algorithms is both costly and time consuming.
This is evident with the availability ofonly base rules in
most commercial data mining tools. And this is a stumping
block towards the vision of active mining where new vari-
ants may be needed over time. To address this problem, the
ad-hoc approach taken by the current community must be
re-evaluated.

Looking at the database industry, we have taken for
granted the availability of SQL to retrieve relevant tuples
from the database. Before SQL and the relational model,
this has been done in an ad-hoc fashion, where individuals
write code to retrieve relevant tuples from proprietary data
models. This chaotic situation is similar to the current state
of data mining for rules. While data mining languages has
been proposed, non to our knowledge propose a declarative



approach on the “how-to” of finding different rule variants.
Taking the cue from the database industry, our contribution
in this paper is to address this issue. The Variant Description
Language (VDL) is our effort to declaratively describe dif-
ferent approaches to finding variants of rules using the Apri-
ori [1] as the model to eliminate the need for developing al-
gorithms. This in turn will enable speedy re-specification of
rules to mine and hence, achieve active mining of new rules
from ever changing data sources.

The remaining sections of the paper is organized as fol-
lows. In the next section, we discuss some related work on
declarative languages. We then illustrate the expressiveness
of our language in Section 3 using examples of which some
are classical and others novel. Section 4 then gives a brief
description of the theoretical models that the language is
built upon. Finally, we summarize our work in Section 5.

2. Related Work

The work in this paper was motivated from Man-
nila’s [10] discussion on a theoretical framework for data
mining. He commented on the ad-hoc situation of data
mining research and called for a systematic framework to
develop KDD applications. A framework for mining rules
was discussed but lacked concrete details. Our work con-
tinues from where Mannila stopped. Although far from a
theoretical foundation, the proposal is a step closer towards
a systematic approach of knowledge discovery.

Closest to our proposal is theMINE RULEoperator pro-
posed by Meo et al [12]. Also SQL-like, the operator en-
ables a uniform and consistent description of the problem
of discovering association rules. Using theMINE RULEop-
erator, the authors demonstrate how it can be used to de-
scribe the different rule mining tasks such as mining base
rules with data constraints or rules at multiple concept lev-
els (which is one of the variants known [5]). Of course, the
difference lie in the objective of the language. Meo’sMINE

RULEoperator is concerned with the uniform description of
different but similar tasks of rule mining where each im-
plementation of the algorithm is in place. Although similar
in motivation, our proposal describes how different param-
eters are considered to find different variants of rules. In
our case, no algorithms exist, and in place is an algorithmic
engine that can, with the VDL, mine future variants.

Around the same time, a more generalized declarative
language to describe different data mining tasks was pro-
posed by Han et al [6]. The language is also SQL-like
and arises from theDBMiner [6] project where different
data mining algorithms were implemented. Unlike Meo’s
MINE RULEoperator, the Data Mining Query Language, or
DMQL in short, presents a consistent and uniform view to
describing different data mining models ranging from clas-
sification, clustering to association rule mining.

3. VDL By Examples

We begin with the conceptual model needed to describe
the task of association rule mining. LetD be a database
of transactions. A transactionT ∈ D contains items from
the universal of all itemsI in D such thatT ⊆ I and
I = {i1, i2, . . . , in} whereij , 1 ≤ j ≤ n are known as
items. LetP = {p1, p2, . . . , pm} be the universe of at-
tributes associated with each item inT in D. Given an item
ix in a transactionTy, Ty.ix.pz returns the attribute value
of pz of ix in Ty. Using this object oriented notation, the
universe ofP is never an empty set and contains at least
one attribute calledLabel representing the description of
an item. Except for the VDL, the label is always implicitly
written in this paper (i.e., an iteme means that it has the
label ‘e’).

With the above definitions, we can now discuss the VDL
using a practical case to illustrate its relevance to active min-
ing of informative rules. The practical case is the transac-
tion database of a typical supermarket. When a customer
buys some products, the whole purchase is mapped to the
concept of a transaction and each product is an item. In the
beginning, what is stored in each purchase are the unique
items bought. Conceptually, the database may looked like
the one in Table 1.

TID Items
1 milk bread butter
2 toothbrush milk bread coke
3 diapers bread coke
4 milk bread beer

Table 1. The transaction database where only
unique items of each purchase are stored.

With the available data, the analyst can obtain a set of
base rules. This can be done using existing data mining
packages. In our proposal, the same set of base rules would
be discovered using the VDL and the algorithmic engine.
Thus, the VDL would be the SQL of databases, and the
algorithmic engine is the implementation of the Apriori
model similar to tables as implementation of the relational
model. In the Apriori model, the idea of finding an asso-
ciation rule lies in the discovery of frequent itemsets. A
frequent itemset can be obtained by (1) generating potential
candidate itemsets that are (2) scanned against the database
to (3) collect the support count. Since a pass through the
database is expensive, itemsets are (4) pruned if we know
that it cannot be frequent in the coming pass. Once the sup-
port is collected, an itemset is (5) evaluated to determine if
it is frequent. If so, it forms the basis of candidate genera-
tion in the next round, and is used to obtain rules satisfying
the confidence measure.



3.1. Mining Base Rules

Base on the above model, the role of the VDL is to ex-
press the five main steps to determine whether a candidate
itemset would be frequent, and hence become the basis of
confidence evaluation. To extract the frequent itemsets for
the base rules, the formulation of the VDL will be as fol-
lows:

GENERATE BaseRules USING
CANDIDATES FROM AprioriJoin(f, Lp)
PRUNE IF EXISTS C - C.c NOT IN Lp
VOTE IF Subset(C, T)
INCREMENT C.Count BY 1
SELECT IF C.Count >= MinSupp

A run of the above VDL produces the set of itemsets that
are frequent. These itemsets form the basis of rule gener-
ation in which the confidence measure is evaluated. Ob-
serve that we have consciously omitted the description of
rule generation as the idea is similar and paper space is an
issue. However, the reader should be able to extrapolate the
methodology to rule generation. TheGENERATEclause at-
taches the description “BaseRules” to the set of evaluation
criteria after it. TheCANDIDATESclause defines how can-
didates should be generated. In this case, we have two pre-
defined concepts namelyf andLp. The set of frequent item-
sets found in the previous pass is represented byLp while f

refers to the candidate 1-itemsets in the bootstrapping phase
and subsequently, are the frequent itemsets of size 1.

The bootstrapping is needed as frequent 1-itemsets are
not known initially, and henceLp is empty. The engine first
identifies the universe of itemsI in D. In the case of Ta-
ble 1, this is determined to beI = {milk, bread, butter,
toothbrush, coke, diapers, beer}. Since we are in the boot-
strapping phase,f are the candidate 1-itemsets. This means
that all items inI will be evaluated according to the remain-
ing set of criteria specified in the VDL. At the end of the
bootstrapping phase,Lp will be properly populated with the
frequent 1-itemsets andf refers to the frequent 1-itemsets
from now on. In Apriori, candidates are scan in a level-wise
manner. Hence, once all frequent 1-itemsets are found, the
next step is to scan for the frequent 2-itemsets. Notice that
theGENERATEclause will generate candidate itemsets con-
taining two items each based on the definition off andLp

(a formal definition of theAprioriJoin is given in Sec-
tion 4).

To obtain optimum performance, pruning is used to de-
termine if a candidate has the possibility of becoming fre-
quent. If we are sure that the candidate cannot be frequent,
then there is no need to waste unnecessary CPU time. This
pruning criteria is expressed in thePRUNEclause. For find-
ing base rules, the expression means that if any itemc in the
candidate itemsetC (another predefined concept) fail to ex-
ists as a frequent itemset in the last pass, then we know that

it fails to satisfy thea-priori property and hence cannot be
frequent. Thus, the engine proceeds to collect the support
count of the current candidateConly if the evaluation in the
PRUNEclause fails.

If the candidate survives the pruning test, it is then
checked against each transaction to determine if it supports
the itemset. This is represented by the symbolT to repre-
sent the current transaction under inspection. If the subset
test holds, then theVOTEclause becomestrue and the en-
gine determines how it should increment the support count
of the current candidate. Notice that the support count of a
candidate is also modelled (similar to items) as an attribute
namedCount , and the increment is computed following the
expression after theBYclause. In this case, the count incre-
ments by1 for each transaction that declares support for
the candidate. At the end of the pass through the database,
the data mining engine determines if the item is frequent by
using the test criteria in theSELECTclause. In this case,
the VDL states that the candidate should be selected if its
support count has surpassed the given minimum support.

Clearly, this approach is preferred over writing code to
achieve the same task. The time and resources saved can
also be better use by the analyst in other aspects of the KDD
process. Of course, the reader may argue that the facilities
of finding base rules are available in data mining packages.
The sub-sections that follows will better illustrate how the
VDL addresses the changing needs of knowledge, and why
the VDL approach becomes an effective solution to address-
ing active mining of relevant and informative rules.

3.2. Mining Weighted Rules

As the holiday season approaches, the marketing man-
ager of the store decides to use data mining to prepare a
marketing campaign. When the analyst presents the results,
the manager was overwhelmed by the number of rules avail-
able. In his opinion (which is also ours), it will take too
much time and effort to draft a campaign based on these
rules. Within limited time, the manager would like to focus
on items of interest such as those under promotion, or items
that give a higher profit margin. The smart analyst knows
that he is able to accomplish this easily with the VDL.

He first requested the marketing manager to identify the
products that he would be interested in gaining insights. He
then creates a new attribute call “weight” such that each
item has a numerical value to indicate its importance with
respect to other items in the database. For example,milk

may be given a weight of1.2 , while toothbrush has a
weight of0.5 . The two numbers model the manager’s pref-
erence in knowing rules containingmilk over rules contain-
ing toothbrush . The analyst then formulates a new way
to mine rules that considers the weight of each item. This
formulation is given as follows.



GENERATE WeightedRules USING
CANDIDATES FROM AprioriJoin(f,

S(k-1) - {S(k-1).s
WHERE S(k-1).s.Count < S(k-1).s.MSB }

VOTE IF Subset(C, T)
INCREMENT C.Count BY C.Count * SUM( {C.c.Weight })
SELECT IF C.Count >= MinSupp

In the above, we introduce another variant that ranked
the importance of each item relative to the others through
the notion of “weights”. To our knowledge, this was first
explored (expressed above) in [2], and a similar idea based
on multiple minimum support was later introduced in [9].
By now, it should be clear that the requirements of the man-
ager can be easily met by writing the VDL. This is where
data mining packages fail if support for such consideration
is unavailable. From the perspective of active mining, it is
thus possible for the analyst to produce the “best fitting” set
of rules quickly. This is important as a slow turnaround pe-
riod may impede the use of the insights in a timely manner.

In this VDL, we introduce two additional conceptsS

and k . As mentioned in Section 3.1, frequent candidates
in the Apriori model are discovered in a level-wise manner.
As such, the conceptk represents the current size of the can-
didate itemsets been investigated. As candidates of sizek

are generated, the algorithmic engine places them into the
collectionS(k) . Hence,S represents the collection of item-
sets of all sizes, andS(j) , j ≥ 1 refers to the collection of
candidates of sizej .

Interestingly, the notion of weights invalidates thea-
priori property. To maintain the downward closure prop-
erty, a measure calledminimum support boundwas intro-
duced. This is a scalar value which we represented as an
attribute (i.e.,MSB) of the itemset. From the view point of
the algorithmic engine, it is not concerned with how theMSB

is computed. In the model, it is simply a value obtained by
means of some computable function. This value may be a
constant, a value populated via SQL, or complex routines
that computes the result. In any case, the engine assumes
the availability of this value when the process starts. Com-
pared to the generation of candidates in the base rules, all
candidates, except those whose support count is less than its
own MSBvalue, are used for candidate generation.

We also introduce the notion ofsetoperations in this for-
mulation. When used together with the braces (i.e.,{}),
the scalar operators such as “+” and “- ” become set oper-
ators as demonstrated in theGENERATEclause. It is also
used to determine the range of variables affected by an op-
eration. For example, theINCREMENTclause computes the
total weight of each item in the candidateC. Without the
braces,C.c.Weight would simply refer to the weight of
one of the item in the candidate at each point of evaluation
for the INCREMENTclause. Using the brace, the semantic
of SUMis instilled, and all the weights of the items inC are
evaluated collectively.

3.3. Mining Recurrent Rules

Suppose the same supermarket upgraded their point-of-
sales terminals a year later to include the capability of stor-
ing the number of items purchased in each transaction. With
this information, the analyst realizes that a more informative
version of the base rule can be obtained by considering the
quantity of each item as illustrated in Example 1. The inclu-
sion of this new attribute, as a result, motivated the need to
reflect a new set of rules that may give the organization bet-
ter competitive advantage. Intuitively, if the rules are used
for target marketing, then we see that the quantity given in a
rule will help decide how much of each item should go into
a bundle. With the base rules initially, the number of items
to include in each bundle is at best a guess from the experi-
ence of the marketing manager. To extract rules containing
recurrent items, we have the following VDL.

GENERATE RecurrentRules USING
CANDIDATES FROM RecurrentJoin(f, Lp)
PRUNE IF EXISTS C - C.c NOT IN Lp
VOTE IF Subset(C, T) AND C.c.Qty <= T.c.Qty

AND C.c.Label = T.c.Label
INCREMENT C.Count BY

Min( {Floor(T.c.Qty / C.c.Qty)
WHERE T.c.Label = C.c.Label })

SELECT IF C.Count >= MinSupp

Since the quantity of an item is now considered, the way
candidates are generated is thus different from that of the
candidates generated for the base rules. Using the practical
example, we must now consider candidates such as the oc-
currence of 2 loafs of bread and 3 packets of milk (which the
AprioriJoin will miss). This consideration is taken into
account usingRecurrentJoin instead. While the pruning
condition remains unchanged, the test for transaction sup-
port has been modified. The testC.c.Qty <= T.c.Qty (of
theVOTEclause) ensures that the transaction declares sup-
port if and only if it has that number of items recorded. As
an example, suppose we want to test whether a candidate
containing 2 loafs of bread and 2 packets of milk is a fre-
quent itemset in the new database depicted in Table 2. Then
transactionT1 can safely declare support since it has 4 loafs
of bread and 6 packets of milk. However,T2 cannot claim
support since it has 3 packets of milk, but only a loaf of
bread. In other words, we cannot “create” this candidate
from T2 and thus,T2 cannot claim support.

To conclude this section, we would like to point the
reader to theBY clause of the above VDL. Notice that it is
not a trivial constant that increments the support count of a
candidate by1. Instead, a transaction that supports an item-
set may have a different support contribution. Continuing
from the earlier example, the candidate contains 2 loafs of
bread and 2 packets of milk. This means that we can “cre-
ate” two such candidates fromT1. That is, we can divide
the bread into two sets of 2 loafs and for each set, we can



TID Items
1 milk(6) bread(4) butter(1)
2 toothbrush(1) milk(3) bread(1) coke(6)
3 diapers(1) bread(1) coke(6)
4 milk(6) bread(1) beer(12)

Table 2. The new database where the num-
ber in the bracket is the quantity of that item
purchased.

assign two packets of milk with two more available. Thus,
the support contribution fromT1 would be2 instead. This
is what has been mathematically modelled in the VDL’sBY

clause.

3.4. Mining Recurrent Weighted Items

It should be clear that as new attributes are considered,
the real needs of the analyst will evolve (and vice versa). As
such, active mining requires the use of the VDL to quickly
achieve the updated set of rules not possible with incre-
mental algorithms proposed to date. More importantly, the
power of a declarative language goes beyond that of de-
scribing individual attributes. In fact, the discussion up to
this point has been based on existing rule variants where al-
gorithms are in placed. The VDL is thus a “summary” of
the existing algorithm’s behavior.

Here, we show that the VDL’s expressiveness goes be-
yond describing existing variants. In fact, the formulation
below is a novel representation of combining different at-
tributes to produce a set of informative rules without cod-
ing. This particular variant is the result of combining the
discussions in the preceding sections. The resultant VDL
considers the interest of the manager (i.e.,Weight ), and the
quantity (i.e.,Qty ) of each item in the process of discovery.
The formulation below is obtained by observing some rules
that allows semi-mechanical construction of the VDL in-
volving variants that were individually described. We have
elaborated the steps in [15], and we shall leave it as an ex-
ercise for the reader to interpret the VDL.

GENERATE RecurrentWeightedRules USING
CANDIDATES FROM AprioriJoin(f,

S(k-1) - {S(k-1).s
WHERE S(k-1).s.Count < S(k-1).s.MSB }

VOTE IF Subset(C, T) AND C.c.Qty <= T.c.Qty
AND C.c.Label = T.c.Label

INCREMENT C.Count BY
Min( {Floor(T.c.Qty / C.c.Qty)

WHERE T.c.Label = C.c.Label }) *
SUM({C.c.Weight })

SELECT IF C.Count >= MinSupp

So far, the individual examples demonstrate how differ-
ent variants can be described. We then show, with the above

formulation, the expressiveness of the language by creating
a novel, but informative variant of association rule through
a simple composition of their VDL description. And as
we unveil each variant’s VDL, we also demonstrate how a
declarative approach is useful in the context of active min-
ing. Through the discussion of mining weighted rules, we
show how we can reflect the knowledge needs of the ana-
lyst, and the mining of rules containing recurrent items il-
lustrates how the evolution of the data influence the discov-
ery of new knowledge. Finally, we conclude with a novel
example, where attributes are combined to demonstrate how
the proposal can scale towards new knowledge needs, be-
yond what the ad-hoc approach can deliver.

4. Theoretical Model

In this section, we briefly discuss the theoretical mod-
els underpinning the design of the VDL. In particular, we
explore the data model representing the database, the algo-
rithmic model that describes the mining methodology, and
the semantics of the language.

The data model, representing the database, has three ta-
bles. In the first, we have a collection of transactions where
each has a unique identifier called theTID and a set of item
descriptions similar to Table 1. In the second table, the
unique key is a combination of theTID and the item de-
scription. Each key, i.e., a〈TID , Label 〉 pair, returns a tu-
ple containing a set of attribute valuesP (e.g.,Weight ) as
defined in Section 3. Conceptually, the first two table are
“read-only” during the execution of the VDL and the third
is an auxiliary table where candidates are entered as they are
generated. Each unique itemset has an entry (in this table)
that contains its set of attribute values (e.g.,Count , Qty ,
MSB). Some of these values are updated when the VDL is
executed while others steer the behavior of the data mining
engine using the conditions defined in the same VDL.

Based on the above, the VDL formulation determines
how the algorithmic engine manipulates the contents of the
three tables. As mentioned, this was designed using the
Apriori as the basis of our work. The motivation of select-
ing the Apriori approach comes from our observation that
most algorithms proposed for various variants were exten-
sion of the Apriori. Hence, it is thus natural and logical
to design our proposal from this model. More importantly,
we observe that the generality of the Apriori provided room
for consideration of new attributes that arises in the future.
Such consideration is difficult with other methods.

As a final note, the expressions expressed in the VDL has
foundations in discrete mathematics, in particular, first or-
der logic and set theory. Even the functionsAprioriJoin

andRecurrentJoin can be described mathematically giv-
ing the VDL a strong foundation in its implementation. For
example,AprioriJoin can be mathematically described



asf×aLp = {f∪X |X ∈ Lp∧∀xi, xj ∈ X , xi.Label ≤
xj .Label ∧ (i < j)}, and a VDL expressed using mathe-
matical notations is thus possible as shown below.

GENERATE RecurrentRules USING
CANDIDATES FROMf×a Lp

PRUNE IF ∃c ∈ C, C − {c} /∈ Lp

VOTE IF C ⊆ T ∧ C.c.Qty ≤ T.c.Qty ∧ C.c = T.c

INCREMENTC.Count BY min({b T.c.Qty
C.ci.Qty

c |C.ci = T.c}|C|i=1)

SELECT IF C.Count ≥ MinSupp

5. Summary

In this paper, we proposed the VDL as the mechanism
to specify the “how-to” of finding rules in databases. With
this approach, we eliminate the need to develop algorithms
which are often costly and time consuming to implement.
By the time an implementation completes, the value of
the knowledge obtain may no longer be relevant or use-
ful. In the competitive economy, knowledge must be con-
stantly updated. Incremental updates of similar knowl-
edge has been relatively well addressed with incremental
algorithms [3, 4]. However, the changing needs of rele-
vant knowledge from the same data source cannot be ig-
nored. Data changes as attributes are created or removed,
and knowledge needs of an organization also changes with
time. In the context of rule mining, this new variants of rules
may be needed to reflect these changes. Hence, a method to
specify the mining of new rules will be required.

The approach proposed in this paper uses the Apriori
algorithm as the conceptual model to finding association
rules. The Apriori model is simple to understand and suf-
ficiently expressive for various variants of rules and their
compositions. While we have demonstrated a few in this
paper, we have actually addressed several others in our tech-
nical report [15] which has not been reflected in this paper
due to the lack of space. The positive aspects of the Apri-
ori model aside, many readers may be concerned with the
performance of the data mining engine. Compared to newer
methods such as theFP-Tree [7], the Apriori solution ap-
pears to be unsuitable. Fortunately, this is not the case.

Favoring the Apriori model, it is easier to write the VDL
for expressing several known variants which uses the Apri-
ori algorithm as the basis of extension. At the same time,
the model supports a more general approach allowing more
complex rules to be specified and new attributes, never con-
sidered before, to be included. Our experience to use the
FP-Tree as the basis of such works proved to be unneces-
sarily complicated and futile [14]. This is due to the high
degree of optimizations made in favor of generality. Fortu-
nately, the model contains room for performance enhance-
ments without loosing the generality to support the VDL.
As a matter of fact, we already have an initial implementa-
tion of a data structure, calledT-Graph [13], which builds

a “transaction graph” representing the database in a com-
pact manner. By traversing the graph, the VDL needs to
scan only a subset of the database and a part of each trans-
action. Our current implementation shows a performance
improvement of nearly an order of magnitude. Effectively,
this leverages our proposal to that of modern mechanisms
such as theFP-Tree , all without giving up the flexibility of
a declarative approach based on a simple model described
in this paper.

References

[1] R. Agrawal and R. Srikant. Fast Algorithm for Mining As-
sociation Rules. InProc. of VLDB, pages 487–499, 1994.

[2] C. H. Cai, A. W. C. Fu, C. H. Cheng, and W. W. Kwong.
Mining Association Rules with Weighted Items. InProc. of
IDEAS Symp., 1998.

[3] D. Cheung, S. Lee, and B. Kao. A General Incremental
Technique for Updating Discovered Association Rules. In
Proc. of DASFAA, Australia, 1997.

[4] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong. Mainte-
nance of Discovered Association Rules in Large Databases:
An Incremental Updating Technique. InProc. of ICDE,
pages 106–114, USA, 1996.

[5] J. Han and Y. Fu. Discovery of Multiple-Level Associa-
tion Rules from Large Databases. InProc. of VLDB, Zurich,
Swizerland, 1995.

[6] J. Han, Y. Fu, W. Wang, K. Koperski, and O. S. Zaine.
DMQL: A Data Mining Query Language for Relational
Databases. InSIGMOD DMKD Workshop, Canada, 1996.

[7] J. Han, J. Pei, and Y. Yin. Mining Frequent Pettern Without
Candidate Generation. InProc. of SIGMOD, Dallas, 2000.

[8] K. Koperski and J. Han. Discovery of Spatial Association
Rules in Geographic Information Databases. InProc. of the
Int. Symp. on Large Spatial Databases, Maine, 1995.

[9] B. Liu, W. Hsu, and Y. Ma. Mining Association Rules with
Multiple Minimum Supports. InProc. of SIGKDD, San
Diego, 1999.

[10] H. Mannila. Methods and Problems in Data Mining. In
Proc. of ICDT, Greece, 1997.

[11] H. Mannila, H. Toivonen, and A. I. Verkamo. Discover-
ing Frequent Episodes in Sequences. InProc. of SIGKDD,
Canada, 1995.

[12] R. Meo, G. Psaila, and S. Ceri. A New SQL-like operator for
Mining Association Rules. InProc. of VLDB, India, 1996.

[13] K.-L. Ong, W.-K. Ng, and E.-P. Lim. A Framework for Ef-
ficient Scalable Mining of Rule Variants. CAIS Technical
Report, Nov. 2001.

[14] K.-L. Ong, W.-K. Ng, and E.-P. Lim. Mining Multi-Level
Rules with Recurrent Items Using FP’-Tree. InProc. of
ICICS, Singapore, Oct. 2001.

[15] K.-L. Ong, W.-K. Ng, and E.-P. Lim. Mining Variants of
Rules Using the CrystalBall Framework.CAIS Technical
Report, Nov. 2001.

[16] O. R. Zaiane, J. Han, and H. Zhu. Mining Recurrent Items
in Multimedia with Progressive Resolution Refinement. In
Proc. of ICDE, San Diego, 2000.


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2002

	VDL: A language for active mining variants of association rules
	Kok-Leong ONG
	Wee-Keong NG
	Ee Peng LIM
	Citation


	tmp.1449278624.pdf.XCEjH

