
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2006

Three Architectures for Trusted Data
Dissemination in Edge Computing
Shen-Tat GOH
Institute for Infocomm Research

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Feng BAO
Singapore Management University, fbao@smu.edu.sg

DOI: https://doi.org/10.1016/j.datak.2005.05.003

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, Information Security Commons, and

the Systems Architecture Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
GOH, Shen-Tat; PANG, Hwee Hwa; DENG, Robert H.; and BAO, Feng. Three Architectures for Trusted Data Dissemination in Edge
Computing. (2006). Data and Knowledge Engineering. 58, (3), 381-409. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1202

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.datak.2005.05.003
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Three architectures for trusted data dissemination
in edge computing

Shen-Tat Goh a,*, HweeHwa Pang a, Robert H. Deng b, Feng Bao a

a Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore
b Singapore Management University, 469 Bukit Timah Road, Singapore 259756, Singapore

Abstract

Edge computing pushes application logic and the underlying data to the edge of the network, with the

aim of improving availability and scalability. As the edge servers are not necessarily secure, there must be

provisions for users to validate the results—that values in the result tuples are not tampered with, that no

qualifying data are left out, that no spurious tuples are introduced, and that a query result is not actually

the output from a different query. This paper aims to address the challenges of ensuring data integrity in
edge computing. We study three schemes that enable users to check the correctness of query results pro-

duced by the edge servers. Two of the schemes are our original contributions, while the third is an adap-

tation of existing work. Our study shows that each scheme offers different security features, and imposes

different demands on the edge servers, user machines, and interconnecting network. In other words, all

three schemes are useful for different application requirements and resource configurations.

Keywords: Data integrity; Edge computing; Data dissemination; Replication

* Corresponding author. Tel.: +65 6874 8457; fax: +65 6776 8109.

E-mail addresses: stgoh@i2r.a-star.edu.sg (S.-T. Goh), hhpang@i2r.a-star.edu.sg (H. Pang), robertdeng@smu.

edu.sg (R.H. Deng), baofeng@i2r.a-star.edu.sg (F. Bao).

mailto:stgoh@i2r.a-star.edu.sg
mailto:hhpang@i2r.a-star.edu.sg
mailto:robertdeng@smu. edu.sg
mailto:robertdeng@smu. edu.sg
mailto:baofeng@i2r.a-star.edu.sg

1. Introduction

Many Web services are served from central locations, and could suffer from a number of bot-
tlenecks ranging from Web and database server loads, to network delays. Server overloads can
usually be alleviated through load balancing on a server farm. In contrast, network latencies
are usually beyond the control of the Web service operators, as traffic to and from remote users
has to pass through long-haul networks operated by multiple network providers that are often
congested. Although aggressive build-up in recent years by telecommunication companies has ex-
panded the capacity of the long-haul networks, new technologies like Gigabit ethernet are making
bandwidth much more affordable in the Metropolitan Area Networks (MAN). Given the relative
price-performance of Wide Area Networks (WAN) versus MAN, the logical approach to reduce
network latency is to push the Web services to the users, into the MANs.

Edge computing is being promoted as a strategy to achieve scalable and highly available Web
services (e.g., [1]). Fig. 1 shows the generic architecture of an edge computing platform. It pushes
business logic and data processing from central data centers, out to proxy servers at the ‘‘edge’’ of
the network and within the MANs. There are several potential advantages: Running applications
at the edge cuts down network latency and produces faster responses to user applications and
partners� Web services. Adding edge servers near user clusters is also likely to be a cheaper way
to achieve scalability than fortifying the servers in the central data center and provisioning more
network bandwidth for every user. Finally, by lowering the dependency on a central data center,
edge computing removes the single point of failure in the infrastructure, reducing its susceptibility
to denial of service attacks and improving service availability.

In theory, edge computing is a natural extension of the Content Delivery Network (CDN)
architecture [2,3]. In practice, pushing application logic to edge servers introduces a number of

Trusted
DB Client

Replicated
Database @
Unsecured
Edge Server

Trusted
Central DBMS

Result
Query

DB

…

Fig. 1. Edge computing set-up.

2

technical challenges, one of which is data security: For applications that run on a database, edge
computing entails the replication of (parts of) the database, to edge servers that perform query
processing on behalf of the central DBMS. Since the edge servers are not necessarily as secure
as the central data center, there must be provisions to check the integrity of query results pro-
duced by the edge servers; specifically,

• Authenticity—The query results originate from a server or cluster authorized by the master
DBMS, and have not been tampered with.

• Accuracy—No spurious tuples are introduced and no qualifying data are left out. Moreover,
no user is intentionally given the output from a different query.

To illustrate, a financial information provider could push historical stock prices, together with
analytics software, to edge servers operated by partner ISPs (Internet Service Provider). Such an
arrangement enables users to run different pricing and risk models off the edge servers directly in-
stead of depending on a central data center that might be situated thousands of miles away, thus
achieving superior responses by reducing communication latency and processing bottlenecks. To
keep out unauthorized users, the data and analytics software could be protected via encryption
and access control. At the same time, legitimate users who act on the results produced by the ana-
lytics software for investment decisions or recommendations would also demand assurance of the
integrity of the results.

Contributions: This paper aims to address the challenges of ensuring the integrity of relational
database query results generated by edge servers in an edge computing platform. We introduce
two novel schemes where the master DBMS can empower a group of edge servers to collectively
certify query results, on the premise that (if necessary) the edge servers can be running different
operating systems and protected by different security products (i.e., firewall, intrusion detection,
etc.), thus increasing the difficulty for attackers to breach all the edge servers concurrently without
being detected. One of the schemes requires the edge servers to execute each query and affix partial
signatures separately; the partial signatures are then combined into a final signature for the query
result. In the other scheme, only one edge server needs to process each query; while producing the
query result, the edge server also compiles a set of digests from a pool that has been pre-generated
by the master DBMS, such that the assembled digests are adequate for a group of edge servers to
check and certify the query result.

To profile the security properties and resource requirements of the proposed schemes, we com-
pare them against a third scheme that is adapted from existing work. Our study shows that the
three schemes present different security and resource tradeoffs, and are useful for different appli-
cation scenarios and resource configurations.

The remainder of this paper is organized as follows: Section 2 introduces our target deployment
model and the associated security threats, in addition to related work on data authentication, with
particular emphasis on authentication in database systems. Our proposed authentication mecha-
nisms are presented in Section 3. Following that, Section 4 analyzes the relative cost-performance
characteristics of the alternative mechanisms. Finally, Section 5 concludes the paper and discusses
avenues for future work.

3

2. Background

This section begins by defining the target system deployment model, and the associated security
threats. Following that, we define a couple of cryptographic primitives that will be used in our
authentication mechanisms, before summarizing related work.

2.1. System model

Fig. 1 shows the set-up of a generic edge computing environment. The central server that hosts
the master database is located within a professionally managed data center. Thus we assume that
the central server is secure and always available, and that attacks and other risks to the central
server are beyond the scope of this work. The database (or parts of it) is replicated to servers sit-
uated at the edge of the network, i.e., edge servers, near the users. Updates to the replica can be
achieved using techniques such as those studied in [4,5]. The users and their application clients can
be (though not necessarily are) firewalled within a trusted LAN and hence protected from external
attackers. Database/SQL queries issued by applications are processed at the edge servers; the re-
sult for each query is returned together with a verification object or signature that the client can
use to verify the integrity of the query result. Finally, the edge servers could be operated by third-
parties or they could even reside in a peer-to-peer platform, so it is possible for a hacker to tamper
with the data on the edge servers.

Given that the edge servers are not secured, one security concern is controlling access to the
data. Obviously, an adversary who gains access to the operating system or hardware of the stor-
age server may be able to browse the stored data, or make illegal copies of the data. Solutions to
mitigate this concern include encryption (e.g., [6]) and steganographic storage (e.g., [7]), and are
complementary to the authentication schemes that we propose here.

Our primary concern in this paper is the threat to the integrity of query results that arises from
the exposed edge servers. For example, an adversary who is cognizant of the data organization in
the storage server may attempt to make logical alterations to the data; an example is to illegally
effect fund transfers between two accounts. Even if the data organization is hidden, for example
through data encryption or steganographic schemes [8,7], the adversary may still sabotage the
database by overwriting physical pages within the storage volume. Therefore it is essential to pro-
vide mechanisms for users to verify the integrity of the query results returned.

2.2. Cryptographic primitives

Our proposed solutions to achieve trusted data dissemination in the face of the threats de-
scribed above, and also many of the related work, are based on the following two cryptographic
primitives:

Hash function: A one-way hash function, denoted as h(Æ), works in one direction: it is easy to
compute a hash value h(m) from a pre-image m; however, it is hard to find a pre-image that hashes
to a particular hash value. A hash function is collision-resistant if it is hard to find two different
pre-images m1 and m2 such that h(m1) = h(m2). SHA-256 [9] is an example of a one-way, collision-
resistant hash function. We will use the terms hash, hash value and message digest
interchangeably.

4

Digital signature: A digital signature algorithm is a cryptographic tool for authenticating the
integrity of the signed message as well as its origin. In the algorithm, a signer keeps a private
key secret and publishes the corresponding public key. The private key is used by the signer
to generate digital signatures on messages, while the public key is used by anyone to verify
the signatures on messages. RSA [10] and DSA [11] are two commonly used signature
algorithms.

(k,n) Threshold signature scheme: The (k,n) threshold RSA signature scheme as proposed in
[12] is defined as follows:

• Key share generation: During system set-up, a dealer generates a RSA public key pk along with
the corresponding private key share ski and public verification key vki for party i, i = 1,2, . . . ,n.
In practice, the dealer may be a computer or a tamper-resistant device trusted by all parties.
The dealer distributes the private key shares as well as the verification keys among the parties,
and subsequently erases its copy of the private key shares.

• Signature share generation: Given a message m, party i, i = 1,2, . . . ,n, generates a signature
share ri(m) using its private key share ski, along with a ‘‘proof-of-correctness’’ qi of the signa-
ture share based on its verification key vki.

• Signature share combination and signature verification: Given the message m, any k signature
shares rj(m) and their proof-of-correctness qj, for j = 1,2, . . . ,k, anyone can verify the correct-
ness of the individual signature shares. If the k shares are all verified to be correct, they are
combined to form the final signature rC(m), which is a standard RSA signature and can be ver-
ified by the RSA public key pk.

Delegation-by-certificate proxy signature scheme: Let (pkO, skO) and (pkP, skP) denote the public
and private key pairs of party O and party P under standard signature schemes SO and SP, respec-
tively. The delegation-by-certificate proxy signature scheme is defined as follows [13]:

• Delegation: In order to designate P as its proxy signer, the original signer O issues a delegation
certificate to P:

d cert ¼ ðf1jpkP jxjrOÞ
where x is a ‘‘warrant’’ specifying restrictions (e.g., validity period) on the messages that the
proxy signer is allowed to sign, f1 is a flag used to signal that d_cert is a delegation certificate,
and rO is O�s signature on f1jpkPjx using its private key skO under the signature scheme SO.
Verification of this signature is then performed by first prepending f1 to pkPjx.

• Proxy signature generation: To sign a message m on behalf of O, P computes a signature
rP(f2jpkOjm) on f2jpkOjm using its private key skP under the standard signature scheme SP,
where f2 is a flag indicating that the signature is a proxy signature. We call the combination
of d_cert and rP(f2jpkOjm) the proxy signature.

• Proxy signature verification: Given m, d_cert, rP(f2jpkOjm) and authentic copies of pkO and
pkP, a verifier first checks the validity of d_cert relative to pkO, and then the validity of
the proxy signature rP(f2jpkOjm) on the message m relative to pkP. Only when both verifica-
tions succeed, will the verifier consider the message m as having been authenticated/signed
by O.

5

2.3. Related work

This paper builds upon the work by Merkle in [14]. We shall explain the Merkle hash tree with
the example in Fig. 2, which is intended for authenticating data values d1, . . . ,d4. Each leaf node
Ni is assigned a digest h(di), where h is a one-way hash function. The value of each internal node is
derived from its child nodes, e.g., N12 = h(N1jN2) where j denotes concatenation. In addition, the
value of the root node is signed. The tree can be used to authenticate any subset of the data values,
in conjunction with a verification object (VO). For example, to authenticate d1, the VO contains
N2, N34 and the signed N1234. The recipient first computes h(d1) and h(h(h(d1)jN2)jN34), then
checks if the latter is the same as the signed N1234. If so, d1 is accepted; otherwise, d1 has been
tampered with.

Merkle hash trees have inspired many proposals on data authentication, including certifying
selective retrievals of XML documents [15,16], for proving the presence or absence of public
key certificates on revocation lists [17,18], and for authenticating JPEG2000 images [19]. The pro-
posal that is most closely related to our work is [20], which describes a scheme for verifying query
results produced by untrusted third-party publishers. The scheme calls for the data owner to peri-
odically distribute signed digests directly to users. The digests are hashes computed recursively
over tree indices on the owner�s database. To prove that the answer to a query is correct, the pub-
lisher constructs a VO using the same tree index that the owner used to compute the signed digest.
The VO provides a hard-to-forge proof that links the answer to the signed digest.

This work by Devenbu et al. [20] is among the first few papers to address the authentication of
query results in database systems. However, when applied directly in our context of edge comput-
ing, their scheme poses a number of limitations that we aim to overcome: First, a Merkle tree is
needed for each of the 2a sort-orders on a table with a attributes; this incurs large storage over-
heads in the database implementation, and makes updates very expensive. Second, a VO needs to
contain links all the way to the digest for the root of the tree index. This means that the VO grows
linearly to the query result and logarithmically to the base table, which can be quite sizable for
large databases. Another potential problem is that projections have to be performed by the clients,
which leads to wasteful data transfers especially if the filtered attributes are BLOBs. Finally, the
approach is weak in terms of access control—even attributes that are supposed to be filtered out
through projection must be offered to users for verification. Moreover, to check for completeness,
tuples beyond the left and right boundaries of the query result must be exposed to the user; this
would undermine any tuple-based access control on the database.

N1234 = h(N12 | N34)

N12 =
h(N1 | N2)

N34 =
h(N3 | N4)

N1 = h(d1) N2 = h(d2) N3 = h(d3) N4 = h(d4)

Fig. 2. Example of a Merkle hash tree.

6

A more recent work by Roos et al. [21] also employs the Merkle hash tree to authenticate range
queries. However, the focus of that paper is on encoding the VO in a more compact form to min-
imize communication overhead; it has the same limitations as the scheme in [20].

Finally, in [22], Barbara et al. proposed a different mechanism for detecting unauthorized
changes to a database. The mechanism derives a checksum for every record, followed by an over-
all database checksum from the record checksums. As long as the database checksum is secured,
the database cannot be tampered with without being detected. This mechanism is designed to sup-
port data authentication by the DBMS itself, not by the recipient of query results. Hence it is not
directly applicable here.

3. Trusted data dissemination networks

In this section, we present three data dissemination solutions that enable query results produced
by edge servers to be checked by users for authenticity and accuracy (as defined in Section 1).

The first solution requires no security guarantees from the edge servers. The second mechanism
recognizes that while no edge server by itself is secure enough, some minimum number of edge
servers can be trusted to process a query, then collectively certify the result. This is based on
the observation that if necessary the edge servers can be running different operating systems
and protected by different security products, thus increasing the difficulty for attackers to compro-
mise all the edge servers concurrently without being detected. The third scheme combines the first
two, in such a way that a single edge server produces the query results and forwards them to a
cluster of verifiers for certification.

Of the three alternatives, the first is adapted from [20]: Instead of building a separate Merkle
tree, we integrate it with the B+-tree to avoid incurring extra I/Os in retrieving and searching sep-
arate index structures. To make the scheme more practical, we also change the verification pro-
cedure to eliminate the need to maintain a Merkle tree for every sort order on a table. The
other two schemes are our original contributions.

3.1. Untrusted edge processor (UEP)

The first scheme, Untrusted Edge Processor (UEP), imposes no security requirement on the
edge servers. Instead, the master DBMS distributes to the edge servers a hierarchy of digests with
each database table, in which the root digest is signed with the private key of the master DBMS
using a digital signature scheme. Based on these digests, an edge server generates an appropriate
verification object (VO) to accompany each query result. The recipient then check the integrity of
the query result, by deriving from it and the VO a digest to match against the signed root digest.
Without the master DBMS� private key, it is computationally infeasible for the edge server to
introduce spurious tuples or to alter the result while still producing a VO that matches the signed
root digest. UEP is representative of the various Merkle hash tree-based solutions, like [20,23,24],
etc.

The UEP scheme is depicted in Fig. 3. As shown in the figure, the master DBMS distributes the
database and certified B-trees (CB-tree) (adapted from [24]) to the edge servers. The CB-tree is
essentially a combination of the B+-tree and the Merkle tree [14]. Specifically, each child pointer

7

in the tree index is augmented with a digest of all the tuple values in the underlying subtree, as
shown in Fig. 4. The root digest, dr, is certified with the master DBMS� private key. Details of
the construction of the CB-tree are as follows:

• For each tuple t in a database table, compute digest dt:

dt ¼ hðDBnamejtablenamejrecordvalueÞ
where h is a one-way hash function on the concatenation of the database name, the table name,
and the value of the tuple. dt is stored with the corresponding tuple pointer in the leaf node of the
B+-tree, as in nodes 3 and 4 in Fig. 4.

Master

DBMS

Internet User

Query Result + VO

Data +

CB-tree

Untrusted

Edge

Processor

Fig. 3. Untrusted edge processor.

Root

Tuples

…

Node 3

t1 t2 t3 t4

d5 = h(t1) d6 d7 d8 = h(t4)

Node 4

Node 1

d1 = h(...|d3|d4|...)

d3 = h(...|d5|d6) d4 = h(d7|d8|...)

Catalog

d2 = h(…)

dr = h(…|d1|d2|…)

Fig. 4. Certified B-tree.

8

• For each leaf node N, a digest dN is derived from the tuple digests within N, i.e.,

dN ¼ hðdt1j � � � jdtij � � �Þ
dN is stored with the corresponding child pointer in N�s parent. An example is node 1 in Fig. 4.

• Similarly, for each internal node N, a digest dN is computed from the digests dNi�s associated
with the node pointers within N:

dN ¼ hðdN1j � � � jdNij � � �Þ

Again, dN in turn is stored with the corresponding child pointer in N�s parent.
• Finally, a root digest dr is computed for the root node, and signed with the master DBMS� pri-

vate key so that it cannot be altered by unauthorized parties.

Whenever a user query arrives, the edge server performs query evaluation as in a conventional
DBMS. Each table is accessed through its CB-tree, and the digests that are needed for authen-
tication are collected into the VO while the edge server traverses down the CB-tree. Starting
from the root node, the digests for all the branches other than the child node in the query path
are included in the VO. This continues until the edge server reaches the smallest subtree that
covers all the result tuples, also known as the enveloping subtree. For each node along both
boundaries of the enveloping subtree, the digests for all the branches that do not lead to any
result tuple are added to the VO. If the result tuples do not occupy one contiguous key range,
for example in the case of a multi-point query, the ‘‘gaps’’ in between the result tuples also have
to be accounted for. This is done by inserting into the VO, for each such gap, the digest for the
top node of the largest subtree that covers the gap but not any result tuple. (By catering for such
gaps in the key range, we eliminate the need to maintain a CB-tree for every sort order on a
table as in [20].)

To illustrate, suppose the query result comprises tuples t1, t2, t3 and t4 in Fig. 4. The VO would
include:

• digests for all the tuples under node 3 other than t1 and t2, so that the verifier can compute d3;
• digests for all the tuples under node 4 other than t3 and t4, so that the verifier can compute d4;
• digests for all the nodes under node 1, other than nodes 3 and 4, so that the verifier can com-

pute d1;
• digests for all the nodes under the root, other than node 1, so that the verifier can compute dr;

and
• the certified dr for the verifier to match against its computed dr.

Moreover, the tree structure is also recorded in the VO to enable the verifier to combine the
digests in the correct order. Since the VO contains digests for the nodes along the path from
the root to the leaf node(s), the size of the VO grows logarithmically to the table size [24].

Unlike tuples that are filtered out by selection operations, attributes that are excluded through
projection operations cannot simply be dropped from the result. This is because all attribute val-
ues in the selected tuples are needed to compute the tuple digests during verification. Therefore,
for each attribute of a selected tuple, either the data value or its digest must be returned as part of
the VO, depending on the relative size of the attribute versus the digest.

9

In the case of a join operation, the edge server will not return the final join result. Instead, for
each table targeted by the join, the edge server sends back the qualifying tuples with an accom-
panying VO. This allows the user client to verify each contributing sub-table, before performing
the final join operation(s) on the sub-tables.

Security features: Suppose an adversary tampers with the database by altering the existing tu-
ples. There are conceptually two ways that he can attempt to avoid detection:

• He can try to ensure that every altered tuple still produces the same digest. By the definition of
one-way hash function, it is computationally infeasible to determine the input argument that
would lead to a given digest, hence this is not a feasible option.

• He can modify the digests leading from each tampered tuple, all the way up to the root
node. However, the digest of the root node is signed with a digital signature, and without
the private key of the DBMS the adversary is not able to produce another valid, signed root
digest.

Similarly, inserting or deleting a tuple would trigger a change to a leaf node, and possibly more
changes up the CB-tree if there are node splits or merges. These changes cannot escape detection
as the adversary is not able to compensate for the mismatch between the new node content and its
previous digest.

Therefore, we conclude that the UEP scheme is effective in detecting any spurious tuples or
tampered data values introduced by a compromised edge server.

Another desirable data authentication feature would have been to ascertain that no qualifying
tuples are left out of a query answer. To achieve that, all the result tuples must occupy one con-
tiguous range under a CB-tree (see [20] for detailed explanation). This requires a CB-tree to be
created on every attribute that may be queried, which entails significant space and maintenance
overheads. Moreover, for a query that involves selections on multiple attributes in a table, only
one selection can be carried out by the edge server; the remaining selections have to be pushed
to the recipient. (Constructing a CB-tree with a search key that concatenates those attributes does
not work, because the qualifying tuples may not occupy one contiguous range under such a CB-
tree.) More importantly, boundary tuples (tuples to the immediate left and right of the key range)
must be offered to the user for inspection. This would undermine any tuple-based access control.
With these limitations, we decided that it is impractical to build into UEP the ability to verify that
all qualifying tuples are included in the query answers.

Finally, UEP is vulnerable to query result substitution, where a compromised edge processor
passes off output from a different query as result for a user query.

3.2. Trusted cluster processors (TCP)

While the edge servers are not as secure as the master DBMS and hence may be compromised
individually, in practice it is less likely for an intruder to gain control of several edge servers simul-
taneously without being detected. The reason is that attacks typically exploit weaknesses in par-
ticular system implementations, so they are not likely to succeed against all the edge servers if they
are installed with different operating systems and protected by different security products (i.e., fire-
wall, intrusion detection, etc.). Although in practice there are limited choices of different operating

10

systems and proven security products, there are still enough combinations to set up small clusters
of, say, a dozen edge servers each, that offer sufficient robustness and availability.

Based on this observation, the trusted cluster processors (TCP) solution permits a pre-specified
minimum number of edge servers to independently process a query and collectively endorse the
authenticity of the result on behalf of the master DBMS. This is achieved using a novel combina-
tion of a (k,n) threshold signature scheme and a proxy signature scheme.

A (k,n) threshold signature scheme is a cryptographic tool that allows any subset of k out of n

parties to generate a signature on a message, but prevents the creation of a valid signature by few-
er than k parties. Since it was first proposed in [25], threshold signature has been studied exten-
sively. However, in most of the schemes, either the signature share generation or verification is
interactive, thus requiring a synchronous communication network, or the size of each individual
signature share grows linearly in the number of parties. In this paper, we employ the (k,n) thres-
hold RSA signature scheme proposed in [12] as it enjoys the following desirable properties:

T1 Unforgeability—Any subset of k out of n parties can generate a signature, but fewer than k
parties cannot generate a valid signature.

T2 Robustness—Invalid signature shares from corrupted parties can be detected so as to prevent
them from disrupting signature generation by uncorrupted parties.

T3 Non-interactivity—Signature share generation and verification can be completely non-
interactive.

T4 Compact share size—The size of an individual signature share is bounded by a small constant
times the size of the RSA modulus.

T5 The resulting signature is a standard RSA signature.

T1 and T2 are proved in the random oracle model [12], T3 and T4 are essential in maintaining
good system performance in practical applications, and T5 allows any client to verify the signa-
ture as long as it supports the standard RSA signature scheme. The definition of (k,n) threshold
RSA signature scheme is given in Section 2.2.

A straightforward implementation of TCP is for the master DBMS to hand over its private key
to each cluster, and have the n processors within the cluster share the private key based on the
(k,n) threshold RSA scheme. Any k processors in the cluster can then collectively produce the
master DBMS�s signature. However, this approach is not a prudent security practice since it gives
the cluster unlimited signing power. We overcome the problem by employing a proxy signature
scheme that permits the master DBMS to delegate its signing rights to the cluster in a tightly con-
trolled manner.

Since its introduction in [26], many proxy signature schemes have been proposed and broken.
In this paper, we use the delegation-by-certificate proxy signature scheme proposed in [13] which
is summarized in Section 2.2. We choose this scheme for three reasons: First, its conceptual sim-
plicity makes it easy to implement. Second, it works with standard signature schemes (e.g., RSA
or DSA) that are widely supported by existing computing platforms. Third, the scheme is proven
to be secure in [13]. Informally, this proxy signature scheme has the following features:

P1 Verifiability—From a proxy signature, a verifier can be convinced of the original signer�s
(i.e., the master DBMS�s) agreement on the signed message.

11

P2 Unforgeability—The original signer and third parties who are not designated as the proxy
signer (i.e., the cluster) cannot create a valid proxy signature.

P3 Identifiability—Anyone can determine the identity of the proxy signer from a proxy
signature.

P4 Undeniability—The proxy signer cannot repudiate a proxy signature it created.
P5 Prevention of misuse—The proxy signing key cannot be used for purposes other than gener-

ating valid proxy signatures.

Fig. 5 depicts the TCP scheme: For each query, one server within the cluster would serve as the
scheduler, while k of the remaining n servers are picked for query processing. For better availabil-
ity and load balancing, the servers could take turns to be scheduler or query processor for different
queries. Here, we extend the delegation-by-certificate proxy signature scheme by replacing the
proxy signer�s standard signature scheme with the (k,n) threshold RSA signature scheme. In
the following, we describe the TCP system set-up, runtime operation, and its security features.

System set-up: Let (pkM, skM) denote the public and private key pair of the master DBMS under
a standard signature scheme. Let (pkC, skC) be the public and private key pair of the cluster under
the (k,n) threshold RSA signature scheme. We assume that pkM and pkC are disseminated to the
users through authenticated channels, e.g., via public key certificates issued by a certificate author-
ity. Furthermore, we assume that there is an authenticated channel such as SSL between each
query processor and the scheduler, in order to prevent interception and replay attacks in their
midst. The set-up of the TCP scheme involves the following steps:

(1) Distribution of private key share: Based on (pkC, skC), a dealer (e.g., a trusted computer or a
tamper-resistant hardware) generates private key share ski and public verification key vki for

Master
DBMS

Query Processors

Scheduler

Internet User

1 2 n

Data +
Key Share

Query
Partial Signature

(k, n) Threshold Signature

Query Result + Signature
Trusted
Edge
Cluster

Result +

Fig. 5. Trusted cluster processors.

12

query processor i, i = 1,2, . . . ,n. The dealer distributes the private key shares and the verifi-
cation keys to the corresponding processors over secure channels and then erases its copy of
the private key and shares.1

(2) Delegation of signing rights: The master DBMS issues a delegation certificate to the cluster of
n processors, d_cert = (f1jpkCjxjrM), where f1 is a flag used to indicate that d_cert is a dele-
gation certificate, x is a warrant specifying the validity period of the delegation as well as the
type of query results the cluster is allowed to sign, and rM is the master DBMS�s signature on
‘‘f1jpkCjx’’.

Runtime operation: The database and all subsequent updates are disseminated to the n query
processors in the cluster; see [4,5] for example for update propagation techniques. This is done
over a secure communication channel such as a virtual private network. Upon receiving a user
query, the TCP proceeds as follows:

(1) The user query is directed to the cluster�s scheduler. Taking into account the load level of the
n query processors, the scheduler selects k of them for the query.

(2) Let aj denotes the result of executing the query by selected processor j, j = 1,2, . . . ,k, and
f2 be a flag used to indicate a proxy signature. Processor j generates a signature share
rj(f2jpkMjaj) using its private key share skj, along with a ‘‘proof-of-correctness’’ qj of the
signature share based on its verification key vkj. (Note that pkM in rj(f2jpkMjaj) can be
replaced by the unique identifier of the master DBMS without affecting the security property
of the signatures.) Processor j sends aj, rj(f2jpkMjaj) and qj to the scheduler.

(3) With aj, rj(f2jpkMjaj) and qj, "j = 1,2, . . . ,k

• The scheduler checks if the k query results aj are identical; if so, it proceeds to the next step.
Denote the identical result as a.

• The scheduler next verifies the correctness of the signature share rj(f2jpkMja) based on the
proof-of-correctness qj. If the k signature shares are all correct, they are combined to form
the final signature rC(f2jpkMja). The scheduler then returns a and the proxy signature
‘‘rC(f2jpkMja), d_cert’’ to the user. Note that rC(f2jpkMja) is a standard RSA signature.

If some of the query results disagree or some of the signature shares cannot be verified to be
correct, the scheduler will solicit additional results and signature shares from the previously
unused processors. This process continues until k identical results and k correct signature
shares are obtained. Also, the scheduler raises an alarm on those processors that failed to
provide correct result or signature share.

(4) Upon receiving a, rC(f2jpkMja) and d_cert, the user checks the validity of d_cert and
rC(f2jpkMja), respectively. The user accepts the query result a as having been authenticated
by the master DBMS only if the verification is successful.

Security features: A query processor can either be intact or corrupted. An intact processor
follows its specified protocol and returns accurate query results and correct signature shares. In
contrast, a corrupted processor may exhibit Byzantine failures, i.e., it deviates arbitrarily

1 If a trusted dealer is not available, the master DBMS can take on the task of key generation. In that case, the

unforgeability property (P2) applies only to third parties, not to the master DBMS/original signer.

13

from its specified protocol. Byzantine failures are the most severe and the most difficult to deal
with [27].

Assuming that less than k query processors out of n in the cluster are corrupted at any given time,
we claim that the query result a which successfully passes user verifications on ‘‘rC(f2jpkMja),
d_cert’’ is both authentic and accurate, according to the definitions at the beginning of this section.

First we note that ‘‘rC(f2jpkMja), d_cert’’ is a proxy signature of the delegation-by-certificate
proxy signature scheme. From property P2 we know that it is unforgeable. From property P1
we know that the user can be convinced of the master DBMS�s agreement on the signed query
result. This proves the authenticity aspect of the query result.

Next, we note that rC(f2jpkMja) is also a threshold signature of the (k,n) threshold RSA signa-
ture scheme. Based on property T1 and Step 3 of the Runtime Operation, a valid threshold sig-
nature rC(f2jpkMja) on the query result can be generated only if k signature shares are verified to
be correct and the k associated query results are all identical. Consequently, if a valid signature is
generated on an inaccurate query result, then at least k corrupted query processors must have col-
luded, i.e., they all provided the same inaccurate query result but correct signature shares on the
result. However, this contradicts our assumption of having less than k corrupted processors and
proves the accuracy aspect of the claim.

Finally, TCP is not based on Merkle tree or CB-tree, thus it does not share the limitations of
[20] and UEP. In particular, TCP allows a user to confirm that no qualifying tuples are dropped
from the query result, without compromising access control as there is no need to release pro-
jected attribute values or boundary tuples for user inspection here. Moreover, TCP is robust
against query result substitution, as an adversary would need to simultaneously induce the sched-
uler and k of the query processors to return the identical wrong result to escape detection.

3.3. Trusted cluster verifiers (TCV)

While the TCP system described above requires several edge servers within a cluster to process
each query concurrently, the trusted cluster verifiers (TCV) solution requires only one query pro-
cessor and multiple light-weight verifiers per query. The idea is for the query processor to generate
a verification object (VO) with each query result, as in UEP, then forward them to some pre-spec-
ified minimum number of verifiers for checking. The signature shares returned by those verifiers
can then be combined to form a proxy signature for the query result. This eliminates the need for
the user to perform projection, join and VO checking, which could require substantial computa-
tion and storage resources (see Appendix A.1). For better availability and load balancing, the
edge servers in a cluster could take turns to be the query processor or verifier for different queries.

The TCV scheme is illustrated in Fig. 6. Here each cluster contains a query processor and n

verifiers. This system employs the same delegation-by-certificate proxy signature scheme and
(k,n) threshold RSA signature scheme as in TCP.

System set-up: The same as in the TCP system, with the only exception that the private key
shares and the public verification keys are issued for the n verifiers, instead of the n query proces-
sors as in the TCP system.

Runtime operation: The database, CB-trees, and any updates to them are disseminated only to
the query processor in the cluster. When a user query arrives at the cluster, the TCV scheme pro-
ceeds as follows:

14

(1) The query processor generates query result a and the accompanying VO (see Section 3.1).
Instead of returning a and VO directly to the user, however, the query processor channels
them to k of the n verifiers.

(2) Each selected verifier j, j = 1,2, . . . ,k, first checks that a and VO match the signed root digest
and then generates a signature share rj(f2jpkMja) using its private key share skj, along with a
‘‘proof-of-correctness’’ qj of the signature share based on its verification key vkj. Verifier j
returns rj(f2jpkMja) and qj to the query processor.

(3) Given rj(f2jpkMja) and qj, "j = 1,2, . . . ,k, the query processor verifies the correctness of each
signature share based on the corresponding proof-of-correctness. If some of the signature
shares are found to be incorrect, the query processor contacts additional verifiers to obtain
the missing signature shares. As soon as k correct signature shares are obtained, they are
combined to form the final signature rC(f2jpkMja). The scheduler then returns a, rC(f2jpkMja)
and d_cert = (f1jpkCjxjrM) to the user.

(4) Upon receiving a, rC(f2jpkMja) and d_cert, the user checks the validity of d_cert and
rC(f2jpkMja), respectively. The user accepts the query result a as having been authenticated
by the master DBMS only if the verification is successful.

In the case of a join operation, the query processor will transmit qualifying tuples in each tar-
geted table, together with an accompanying VO, to the verifiers. The verifiers will then check the
sub-tables, generate the join result, and finally sign it for the query processor.

Security features: According to the proof for UEP, it is computationally infeasible to produce a
VO that matches an incorrect query result so as to escape detection by the verifiers. Since the ver-
ifiers cannot be deceived, they will certify an incorrect query answer only if they have been com-
promised. Assuming that there are less than k corrupted verifiers at any time, we can show that

Master
DBMS

Result Verifiers

Query Processor

Internet User

1 2 n

Key Share

Result
+ VO

Partial
Signature

(k, n) Threshold Signature

Query Result + Signature

Data +
CB-tree

Trusted
Edge
Cluster

Fig. 6. Trusted cluster verifiers.

15

the query result a as certified by rC(f2jpkMja) and d_cert contains no spurious tuples or tampered
data values. The proof follows a similar reasoning as that for the TCP system and is omitted here.

Although TCV too relies on CB-trees for result verification, it is able to let users detect whether
any qualifying tuples have been dropped from the query results, without sacrificing access control
like UEP. This is because here the query processor only needs to offer the projected attribute val-
ues and boundary tuples for inspection by the verifiers, not the users. Unfortunately, the price of
having to maintain one CB-tree per database table still applies. In addition, TCV inherits UEP
vulnerability to query result substitution, where a compromised query processor passes off output
from a different query as result for a user query.

4. Experimental study

Having assessed the trusted data dissemination schemes from a security perspective, we now
evaluate their performance trade-offs. We have conducted a series of experiments using dis-
crete-event simulation models of the three architectures depicted in Figs. 3, 5 and 6. The workload
is modelled after a moderate database size of DBSize = 1 GBytes, consisting of #Rec = 2 million
tuples at RecSize = 512 Bytes each. With a standard block size of jBj = 4 KBytes, the fan-out and
height of the B-tree and CB-tree can be derived. The query generation follows a Poisson process
with a mean inter-arrival time of QueryArr ls. Each query introduced into the system has a un-
ique ID for tracking the query flow and response time. These resource and workload parameters
are summarized in Table 1.

We assume a closed system, i.e., the number of EdgeServ and Users are fixed at the beginning of
each experiment. Each user and edge server contains a set of processors where the speed of each
can be stepped up or down by XSpeed times. The in/out buffer queue length of each node depends
on the amount of available in/out link bandwidth and the processor speed. We assume an infinite
buffer length for the queues, so there are no packet drops. Furthermore, the intranet and internet
links have IntraBW and InterBW Mbps bandwidths, respectively. The signature/digest sizes and

Table 1

Resource and workload models

Parameter Meaning Default

jBj Size of block/node 4 KBytes

jKj Length of search key 16 Bytes

jptrj Size of node pointer 4 Bytes

DBSize Size of database table 1 GBytes

RecSize Length of each tuple 512 Bytes

#Rec Number of tuples 2 mil

#Col Number of attributes 32

fBtree Fan-out factor of B-tree 205

hBtree Height of B-tree 2

fCBtree Fan-out factor of CB-tree 114

hCBtree Height of CB-tree 3

QueryArr Mean query inter-arrival time 1000 s

sfselect Selectivity factor of selection 1 tuple

16

computation speeds are taken from the Crypto++ benchmark published at [28], while the disk
parameters are set to published figures for the IBM 160 GB SATA hard disk. The simulator is
run for a total of SimTime seconds, with observations in the initial WarmUp period being dis-
carded while the link traffic and node usage status stabilize. Table 2 summarizes the system re-
source parameters.

The performance metrics include the average query response time, average link utilization, and
average node utilization. Each query is timed from the moment it is issued by the user, until the
returned result is fully processed by the user. The link utilization is calculated as the total amount
of traffic (Mbytes) per link, divided by the simulation time and link bandwidth. Lastly, the utili-
zation of a node is its cumulative busy periods over the simulation time.

4.1. Baseline experiment

The first experiment is intended to establish a baseline for the three schemes, with the default
parameter settings in Tables 1 and 2. Fig. 7(a)–(e) plot the results against the query inter-arrival
time. As expected, UEPs verification objects cause it to impose the highest load on the internet
link between the user and edge server, TCP is the most demanding on the edge servers due to
its parallel query execution strategy, while TCV shares the query results among the edge servers
and hence induces the heaviest traffic on the intranet links. As for user node utilization in Fig.
7(e), UEP performs only hashing operations there, which is significantly cheaper than the signa-
ture verifications carried out by TCP and TCV. The utilization rate of the various resources, the
highest of which reaches only 30%, confirm that this experiment models a resource-rich environ-
ment, hence the response times are limited only by typical processor and network speeds. In such
an environment, UEP outperforms the other two schemes because users connect directly to the
edge servers, without involvement of any intermediaries. However, UEP is not always the most
efficient as we will see in the next experiment.

Table 2

System parameters

Parameter Description Default

SimTime Total simulation time 100,000 s

WarmUp Warm up time 5000 s

EdgeServ Number of edge servers 20

Users Number of users 20

Xspeed Node speed up factor 1

IntraBW Intranet bandwidth 1 Mbps

InterBW Internet bandwidth 1 Mbps

SignSz RSA signature size 128 bytes

SignGen RSA signature generation 4630 ls

SignVeri RSA signature verification 180 ls

DigestSz MD5 digest size 16 bytes

HashRate Digest hashing rate 214.491 bytes/ls

Seek Disk average seek time 9000 ls

RotDelay Disk average rotational delay 4700 ls

Transfer Disk average transfer rate 7800 ls/blk

17

4.2. Sensitivity to internet bandwidth

In practical deployment scenarios, the internet bandwidth is likely to be the resource that under-
goes the highest load fluctuations. The next experiment is designed to profile the sensitivity of the
various schemes to the available internet bandwidth InterBW. Fig. 8 shows that UEP experiences
the worst deterioration in response time with a reduction in InterBW. This is because the verifica-
tion objects that UEP sends to the users are a lot larger than the compact signatures in TCP and
TCV, causing UEP to be highly sensitive to the internet bandwidth. In contrast, TCP and TCV are
dependent on the capacity of the edge server and the interconnecting network between them, which
are easier to provision. Among the two, TCP is the superior choice for the current resource settings.

4.3. Sensitivity to query selectivity

Next, we turn our attention to the performance impact of query selectivity, by varying it from
0.1% to 0.5% of DBSize. This leads to a corresponding growth in the size of the query results. As
TCV needs to distribute each query result to several edge servers for verification, it experiences a
super-linear slow-down in response time as the intranet links quickly become saturated with traf-
fic, as shown in Fig. 9(a) and (c). UEP and TCP, in comparison, degrade gracefully with larger
query results.

Another interesting observation is that, while UEP clearly has the lowest user node utilization
in the first experiment, its utilization now exceeds that of TCP and TCV. The reason is that the

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50

A
vg

 Q
ue

ry
 R

es
po

ns
e

(s
ec

)

Query Mean Inter-Arrival Time (sec)

UEP
TCP
TCV

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50
In

te
rn

et
 L

in
k

U
til

iz
at

io
n

(%
)

Query Mean Inter-Arrival Time (sec)

UEP
TCP
TCV

0

5

10

15

20

25

10 20 30 40 50

In
tr

an
et

 L
in

k
U

til
iz

at
io

n
(%

)

Query Mean Inter-Arrival Time (sec)

UEP
TCP
TCV

0

5

10

15

20

25

30

35

10 20 30 40 50

E
dg

e
S

er
ve

r
U

til
iz

at
io

n
(%

)

Query Mean Inter-Arrival Time (sec)

UEP
TCP
TCV

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

10 20 30 40 50

U
se

r
N

od
e

U
til

iz
at

io
n

(%
)

Query Mean Inter-Arrival Time (sec)

UEP
TCP
TCV

a b c

d e

Fig. 7. Baseline experiment. (a) Response time; (b) Internet link; (c) Intranet link; (d) Edge server; (e) User.

18

verification object is a tree structure with an integer height that is logarithmic in the query result
size (see Appendix A for the derivation). This height has increased from 1 in the first experiment,
to 2 here. In fact, although the tree height remains the same from selectivity of 0.1% through to
0.5%, it does grow further at higher selectivity settings. With each increase in tree height, the user
node utilization of UEP would surpass TCP and TCV more and more. Therefore, UEP requires
the user clients to possess adequate processing capacity.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6 0.8 1

A
vg

 Q
ue

ry
 R

es
po

ns
e

(s
ec

)

Bandwidth Rate (Mbps)

UEP
TCP
TCV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.4 0.6 0.8 1
In

te
rn

et
 L

in
k

U
til

iz
at

io
n

(%
)

Bandwidth Rate (Mbps)

UEP
TCP
TCV

0

0.04

0.08

0.12

0.16

0.2

0.2 0.4 0.6 0.8 1

In
tr

an
et

 L
in

k
U

til
iz

at
io

n
(%

)

Bandwidth Rate (Mbps)

UEP
TCP
TCV

a b c

Fig. 8. Sensitivity to Internet bandwidth. (a) Response time; (b) Internet link; (c) Intranet link.

0

50

100

150

200

250

300

0.1 0.3 0.5

A
vg

 Q
ue

ry
 R

es
po

ns
e

(s
ec

)

RANGE QUERY SELECTIVITY (%)

UEP
TCP
TCV

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.3 0.5

In
te

rn
et

 L
in

k
U

til
iz

at
io

n
(%

)

RANGE QUERY SELECTIVITY (%)

UEP
TCP
TCV

0

10

20

30

40

50

60

70

80

0.1 0.3 0.5

In
tr

an
et

 L
in

k
U

til
iz

at
io

n
(%

)

RANGE QUERY SELECTIVITY (%)

UEP
TCP
TCV

0

10

20

30

40

0.1 0.3 0.5

E
dg

e
S

er
ve

r
U

til
iz

at
io

n
(%

)

RANGE QUERY SELECTIVITY (%)

UEP
TCP
TCV

0.0004

0.0008

0.0012

0.0016

0.002

0.0024

0.0028

0.1 0.3 0.5

U
se

r
N

od
e

U
til

iz
at

io
n

(%
)

RANGE QUERY SELECTIVITY (%)

UEP
TCP
TCV

a b c

d e

Fig. 9. Sensitivity to query selectivity. (a) Response time; (b) Internet link; (c) Intranet link; (d) Edge server; (e) User.

19

4.4. Sensitivity to edge server speed

For the next experiment, we consider a system configuration comprising a few fast processors
and many slower processors, which is common in practice. Fig. 10 shows the query performance
as the speed of the slower processors is varied with the XSpeed parameter. We observe that UEP
and TCP perform badly when the processor speed is low, because they depend heavily on the
availability of a large group of edge servers for query processing. Between the two, UEP is more
expensive as its query processing involves traversing a CB-tree with a height of 3, compared to
TCP that parses a B-tree of height 2. In contrast, TCV is clearly able to adapt to the resource var-
iation by executing most of the queries at the faster processors. This confirms that TCV could be a
superior choice for systems that are configured with slow edge processors.

4.5. Sensitivity to k of n servers

Lastly, we examine the effect of k in the (k,n) threshold RSA signature scheme, with different
resource configurations. The results are shown in Fig. 11(a)–(c), where the resources considered
are the speed of the edge processors XSpeed and the internet bandwidth InterBW.

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1

A
vg

 Q
ue

ry
 R

es
po

ns
e

(s
ec

)

XSpeed

UEP
TCP
TCV

Fig. 10. Sensitivity to edge server speed.

0

5

10

15

20

25

1 2 3 4 5 6 7

A
vg

 Q
ue

ry
 R

es
po

ns
e

(s
ec

)

K Edge Servers

UEP
TCP
TCV

0

5

10

15

20

25

1 2 3 4 5 6 7

A
vg

 Q
ue

ry
 R

es
po

ns
e

(s
ec

)

K Edge Servers

UEP
TCP
TCV

0

5

10

15

20

25

1 2 3 4 5 6 7

A
vg

 Q
ue

ry
 R

es
po

ns
e

(s
ec

)

K Edge Servers

UEP
TCP
TCV

a b c

Fig. 11. Sensitivity to k of n servers. (a) Default speed and Internet; (b) Low internet bandwidth; (c) Slow processors.

20

In all the figures, as k increases, it affects the results of TCV adversely. This is because, the
processing need at the edge servers and the intranet traffic (with the increasing number of VO)
increase with larger k. This leads to slower responses back to the users. Similarly, TCP
performance decreases, however the effect is not as significant as that compared to the TCV
scheme as the overhead introduced per k value is much smaller. Clearly, UEP is unaffected
through varying k as it does not depend on the threshold signature scheme.

In the first setting, both the speed of the processors and the internet bandwidth are set to the
default values. The result is shown in Fig. 11(a). In this environment, the resources are in abun-
dance and UEP outperforms the other two schemes as it does not involve any intermediaries.

In the next setting, we look at the impact of having a low internet bandwidth at 0.5% of Inter

BW. In this environment, UEP performs badly as most users connect directly to the servers
through the internet and the large VO are returned to the users for verification. This incurs greater
traffic in the internet that results in UEP performing badly. With UEP performing worse, TCP
now outperforms the other two schemes as seen in Fig. 11(b).

Lastly, we consider a system with servers comprising a few fast processors and many slower
processors varying from 0.01 to 1 XSpeed. In Fig. 11(c), we observe that TCV now performs bet-
ter than UEP and TCP for a number of k values. The reason for a slower UEP is because the pres-
ence of many slower processors are felt by the majority of the users. As for TCP, it performs badly
as it depends heavily on the availability of a large group of processors for query processing. In
contrast, TCV adapts better and outperforms the other two schemes for this system configuration.

4.6. Summary of experiment results

Based on the above analysis, the relative cost-performance of the three data dissemination
schemes are summarized in Table 3. The ‘‘intuition’’ that have been confirmed include:

• UEP imposes the highest verification overheads on the client—the verification object that is
sent to the client could be sizable, particularly for multipoint queries. Hence UEP works well
only if the client has adequate processing capabilities and network bandwidth.

Table 3

Algorithm comparisons

UEP TCP TCV

Security

No tampered values Yes Yes Yes

No spurious tuples Yes Yes Yes

No missing result No Yes Possible

No query result substitution No Yes No

Costs

Edge server processing Low High Low

Inter-edge server traffic NA Low High

Edge server-client traffic High Low Low

Client processing High Low Low

21

• TCP has lower query execution cost per server than UEP and TCV, because it uses B+-trees
that have larger fan-out factors and hence potentially shorter tree height than CB-trees. How-
ever, this saving is not expected to offset the cost increase from having k servers execute each
query simultaneously. Thus TCP requires abundant processing power at the edge servers.

• Like TCP, the TCV scheme diverts most of the verification overhead from the client, but at the
expense of increased traffic between edge servers.

In addition, the experiments throw up a few interesting observations:

• TCV experiences super-linear slow-down in response time as query selectivity increases. Thus
TCV is likely not the best choice for applications that frequently pulls back sizeable ranges
of records.

• Slow edge servers affect UEP and TCP much more than TCV.

Finally, we note that TCP requires the master DBMS to transmit only data changes, whereas
UEP and TCV additionally need the master DBMS to maintain and refresh the CB-trees on the
edge servers. Hence UEP and TCV impose heavier burdens on the master DBMS and its network
links to the edge servers.

Hence the three schemes are suitable for different resource configurations; none is consistently
better than the other two.

5. Conclusion

This paper addresses the challenges of ensuring data security in an edge computing platform.
We propose two new schemes for verifying the query results produced by the unsecured edge serv-
ers. The schemes are based on the observation that if necessary a group of edge servers can be
running different operating systems and protected by different security products, thus increasing
the difficulty for attackers to compromise all the edge servers concurrently without being detected.
Our study shows that, where processing power is abundant at the edge servers, the scheme that
assigns multiple edge servers to execute each query and to collectively certify the result is the most
versatile, in terms of security guarantees and lower demand on other resources. In contrast, the
second scheme engages only one of the edge servers for query execution, while the other edge serv-
ers perform verification and (collective) certification. This reduces the load on the edge servers, at
the expense of increased traffic between the edge servers, and imposing extra work on the master
DBMS to generate some auxiliary structures to facilitate verification. The two schemes present
different security and resource trade-offs from the existing work, and are useful for different appli-
cation scenarios and resource configurations.

Appendix A. Analysis of the schemes

The analysis of the schemes is as follows: We will focus only on selection-projection queries, in
particular, (a) point queries that return at most one record based on an equality selection on a key

22

attribute; (b) multipoint queries that may return several non-contiguous records based on an
equality selection on a non-key attribute; and (c) range queries that return a set of records whose
values for some attribute lie within a specified interval.

The cost metrics that we use to evaluate the data dissemination schemes include the query exe-
cution cost incurred by the edge processor(s), the edge server to edge server traffic, the edge server
to client traffic, and the client processing cost.

A.1. Costs of untrusted edge processor

The fan-out factor of the CB-tree is:

fCBtree ¼
jBj � jptrj � jDj
jKj þ jptrj þ jDj

� �
þ 1

This means that there is a space overhead of fCBtree · jDj bytes per node for storing digests.
Moreover, the height of the CB-tree is at least:

hCBtree ¼ logfCBtree
¼ #Rec

fCBtree � 1

� �
and the total number of nodes in the CB-tree is:

#Nodes ¼ ðfCBtreeÞhCBtreeþ1 � 1

fCBtree � 1

& ’

A.1.1. Point queries

• Query processor
The query execution cost includes hCBtree + 1 I/Os for traversing the CB-tree, plus one I/O to

retrieve the result tuple, giving a total of hCBtree + 2 I/Os. (We count only the I/O cost as it dom-
inates the CPU cost.)

• Query processor to client network
In each CB-tree node on the path from the root to the result tuple, there are fCBtree � 1

digests to be copied into the VO. Hence there are altogether (hCBtree + 1) · (fCBtree � 1) of these
digests. Assuming that the edge server chooses to return the digests of the projected attributes
because the digests are more compact than the actual attributes (which could be binary large
objects), that adds #Col · (1 � sfproject) digests. Including the signed root digest, the size of
the verification object is ((hCBtree + 1) · (fCBtree � 1) + 1 + #Col · (1 � sfproject)) · jDj.

The expected result size is RecSize · sfproject. The edge processor to client traffic is the sum of
the VO size and the result size.

• Client
The client processing involves hashing the result values, then computing the root digest from

the VO. The latter includes (a) concatenating #Col attribute digests, plus one hash to derive the
digest for the result tuple at a cost of #Col · Cconcat + Chash; and (b) for each CB-tree node on
the path from the root to the result tuple, concatenating the digests of fCBtree children plus one
hash to derive the node digest; this part of the cost is (hCBtree + 1) · (fCBtree · Cconcat + Chash).

23

A.1.2. Multipoint queries

• Query processor
The query result contains #Rec · sfselect tuples. If they are located through the CB-tree index,

the edge server would have to traverse the height of the CB-tree once for every tuple, with the
exception of the root which can be cached. Including the I/Os for retrieving the result tuples,
the query execution cost is #Rec · sfselect · (hCBtree + 1) + 1 I/Os. However, if there are too many
result tuples, then it would be cheaper to simply scan the table, at a cost of dDBSize

jBj e I/Os. Therefore

the query execution cost is minð#Rec� sf select � ðhCBtree þ 1Þ þ 1; dDBSize
jBj eÞ I/Os.

• Query processor to client network
As for the VO, it would contain fCBtree � 1 digests from every node that leads to a result

tuple. There are up to #Rec · sfselect · hCBtree + 1 such distinct nodes, subject to the maximum of

the entire CB-tree which has a total of dðfCBtreeÞhCBtreeþ1�1

fCBtree�1
e nodes. Including the signed root digest,

the size of this part of the VO is thus ½minð#Rec� sf select � hCBtree þ 1; dðfCBtreeÞhCBtreeþ1�1

fCBtree�1
eÞ�

ðfCBtree � 1Þ þ 1�� j D j. In addition, the VO also contains digests for the projected attributes,
which expands the VO size by (#Rec · sfselect · #Col · (1�sfproject)) · jDj.

Since each result tuple is RecSize · sfproject in size, the result size is #Rec · sfselect · Rec-

Size · sfproject. Adding that to the VO size gives the edge processor to client traffic.
• Client

The client processing involves (a) hashing the result values, then concatenating with the
digests for the projected attributes at a cost of #Rec · sfselect · (#Col · Cconcat + Chash); and

(b) computing the root digest from the VO at a cost of minð#Rec� sf select � hCBtree þ 1;

dðfCBtreeÞhCBtreeþ1�1

fCBtree�1
eÞ � ðfCBtree � Cconcat þ ChashÞ.

A.1.3. Range queries

• Query processor
The query processing involves traversing down the CB-tree to reach the first qualifying tuple,

then scanning the table till the last qualifying tuple. The query execution cost is
hCBtree þ 1þ dDBSize

jBj � sf selecte I/Os.
• Query processor to client network

The VO contains digests in the nodes along the boundaries of the smallest subtree that covers
the result tuples, and the nodes from the top of the subtree up to the root of the CB-tree [20].

The height of the subtree is hresult ¼ dlogfCBtree

#Rec�sf select

fCBtree�1
e. There are 2 · hresult + 1 nodes along the

boundaries of the subtree, each of which contributes fCBtree � 1 digests to the VO. From the top
of the subtree up to the root of the CB-tree, there are hCBtree � hresult nodes that adds another
fCBtree � 1 digests each. Including the signed root digest, this part of the VO therefore has a size
of [(2 · hresult + 1 + (hCBtree � hresult)) · (fCBtree � 1) + 1] · jDj. In addition, the VO also con-
tains digests for the projected attributes, which expands the VO size by (#Rec · sfselect ·
#Col · (1 � sfproject)) · jDj. The result size is #Rec · sfselect · RecSize · sfproject, as with multi-
point queries.

24

• Client
The client processing involves (a) computing the result tuples� digests at a cost of

#Rec · sfselect · (#Col · Cconcat + Chash); and (b) deriving the root digest, from all the nodes

in the result subtree plus the nodes up to the CB-tree root, for verification at a cost of

½ðfCBtreeÞhresultþ1�1

fCBtree�1
þ ðhCBtree � hresultÞ� � ðfCBtree � Cconcat þ ChashÞ.

A.2. Costs of trusted cluster processors

The fan-out factor of the conventional B-tree is:

fBtree ¼
jBj � jptrj
jKj þ jptrj

� �
þ 1

and the height is:

hBtree ¼ logfBtree

#Rec
fBtree � 1

� �

A.2.1. Point queries

• Query processor
Since each query is executed by k processors, the total query execution cost = k · (hBtree + 2)

I/Os.
• Query processor to scheduler network

Assuming that the k processors transmit their partial signatures, but only one sends the query
result to the scheduler, the traffic is RecSize · sfproject + k · jDj.

• Scheduler to client network
This traffic consists of the query result plus the final signature, and costs RecSize ·

sfproject + jDj.
• Client

The client processing here involves only hashing the result values for matching with the final
signature.

A.2.2. Multipoint queries

• Query processor
The total query execution cost is k �minð#Rec� sf select � ðhBtreeþ 1Þ þ 1; dDBSize

jBj eÞ I/Os, sim-

ilar to the corresponding cost for UEP except for the different index tree heights.

• Query processor to scheduler network
The cost of sending k partial signatures and one set of query result is

#Rec · sfselect · RecSize · sfproject + k · jDj.

25

• Scheduler to client network
The amount of traffic that is sent to the client is #Rec · sfselect · RecSize · sfproject + jDj.

• Client
The client processing here involves only hashing the result values for matching with the

signature.

A.2.3. Range queries

• Query processor
The total query execution cost is k � ðhCBtree þ 1þ dDBSize

jBj � sf selecteÞ I/Os, again similar to the
corresponding cost for UEP.

• Query processor to scheduler network
The cost of sending k partial signatures and one set of query result is #Rec · sfselect · Rec-

Size · sfproject + k · jDj as with multipoint queries.
• Scheduler to client network

The amount of traffic that is sent to the client is #Rec · sfselect · RecSize · sfproject + jDj.
• Client

The client processing here involves only hashing the result values for matching with the
signature.

In the cost analysis for TCP, we have ignored the scheduler processing cost in combining k par-
tial signatures as that is negligible compared to the other cost components.

A.3. Costs of trusted cluster verifiers

The costs that TCV imposes on the various resources are similar to those for UEP and TCP, as
TCV is a combination of those two schemes.

• Query processor
Since the computation in combining the partial signatures from the verifiers is negligible, the

cost at the query processor for the three types of queries are the same as UEP�s.
• Query processor to verifier network

The query processor sends the result and VO to each of the verifiers. This generates k times
the traffic of UEP. The partial signatures sent back by the verifiers produce an additional traffic
of k · jDj.

• Query processor to client network
The amount of traffic sent back to the client here is the same as the TCP scheme.

• Client
The client processing here is the same the TCP scheme.

References

[1] D. Margulius, Apps on the Edge, InfoWorld 24(21), Available from: <http://www.infoworld.com/article/02/05/23/

020527feedgetci_1.html>.

26

http://www.infoworld.com/article/02/05/23/020527feedgetci_1.html
http://www.infoworld.com/article/02/05/23/020527feedgetci_1.html

[2] G. Barish, K. Obrazka, World wide web caching: trends and techniques, IEEE Communications Magazine 38 (5)

(2000) 178–184.

[3] J. Wang, A survey of web caching schemes for the internet, ACM Computer Communication Review 25 (9) (1999)

36–46.

[4] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso, Understanding replication in databases and

distributed systems, in: Proceedings of 20th International Conference on Distributed Computing Systems

(ICDCS�2000), 2000, pp. 264–274.

[5] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, G. Alonso, Database replication techniques: a three parameter

classification, in: Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS�00), 2000, pp.

206–215.

[6] Encrypting File System (EFS) for Windows 2000, Available from: <http://www.microsoft.com/windows2000/

techinfo/howitworks/security/encrypt.asp>.

[7] H. Pang, K. Tan, X. Zhou, StegFS: a steganographic file system, in: Proceedings of the 19th International

Conference on Data Engineering, Bangalore, India, 2003, pp. 657–668.

[8] R. Anderson, R. Needham, A. Shamir, The steganographic file system, in: D. Aucsmith (Ed.), Information Hiding,

2nd International Workshop, Portland, Oregon, USA, 1998.

[9] Secure Hashing Algorithm, National Institute of Science and Technology, FIPS 180-2, 2001.

[10] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems,

Communications of the ACM 21 (2) (1978) 120–126.

[11] Proposed Federal Information Processing Standard for Digital Signature Standard (DSS), Federal Register

56(169) (1991) 42980–42982.

[12] V. Shoup, Practical threshold signatures, Advances in Cryptology—Eurocrypt 2000, LNCS 1807, Springer-Verlag,

2000, pp. 207–220.

[13] A. Boldyreva, A. Palacio, B. Warnschi, Secure Proxy Signature Schemes for Delegation of Signing Rights,

Available from: <http://venona.antioffline.com/2003/096.pdf>.

[14] R. Merkle, A certified digital signature, in: Proceedings of Advances in Cryptology-Crypto�89, Lecture Notes in

Computer Science, vol. 0435, 1999, pp. 218–238.

[15] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, G. Stubblebine, Flexible authentication of XML

documents, in: Proceedings of the 8th ACM Conference on Computer and Communications Security, 2001,

pp. 136–145.

[16] B. Carminati, E. Ferrari, E. Bertino, Secure third party distribution of XML data, in: Proceedings of the IEEE

International Conference on Data Engineering, 2005.

[17] M. Goodrich, R. Tamassia, A. Schwerin, Implementation of an authenticated dictionary with skip lists and

commutative hashing, in: DARPA Information Survivability Conference and Exposition (DISCEX II), vol. 2,

2001, pp. 1068–1084.

[18] M. Naor, K. Nissim, Certificate revocation and certificate update, in: Proceedings of the 7th USENIX Security

Symposium, 1998, pp. 217–228.

[19] C. Peng, R. Deng, Y. Wu, W. Shao, A flexible and scalable authentication scheme for JPEG2000 images, in:

Proceedings of the ACM International Conference on Multimedia, 2003.

[20] P. Devanbu, M. Gertz, C. Martel, S. Stubblebine, Authentic data publication over the Internet, in: 14th IFIP 11.3

Working Conference in Database Security, 2000, pp. 102–112.

[21] M. Roos, A. Buldas, J. Willemson, Undeniable replies for database queries, in: Proceedings of the Baltic

Conference, BalticDB&IS, 2002, pp. 215–226.

[22] D. Barbara, R. Goel, S. Jajodia, Using checksums to detect data corruption, in: Proceedings of the International

Conference on Extending Database Technology, 2000, pp. 136–149.

[23] E. Mykletun, M. Narasimha, G. Tsudik, Authentication and integrity in outsourced databases, in: Proceedings of

the Network and Distributed System Security Symposium, 2004.

[24] H. Pang, K. Tan, Authenticating query results in edge computing, in: IEEE International Conference on Data

Engineering, 2004, pp. 560–571.

[25] Y. Desmedt, Society and group oriented cryptography: a new concept, in: Advances in Cryptology—Crypto�87,

1987, pp. 120–127.

27

http://www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp
http://venona.antioffline.com/2003/096.pdf

[26] M. Mambo, K. Usuda, E. Okamoto, Proxy signatures for delegating signing operation, in: Proceedings of the 3rd

ACM Conference on Computer and Communications Security, 1996, pp. 48–57.

[27] R.S.M. Pease, L. Lamport, Reaching agreement in the presence of faults, Journal of the ACM 27 (2) (1980) 228–

234.

[28] Crypto++ 5.2.1 Benchmarks, Available from: <http://www.eskimo.com/weidai/benchmarks.html>.

Shen-Tat Goh received his B.Sc. and M.Sc. from National University of Singapore. He is cur-

rently a Senior Research Engineer at the Institute for Infocomm Research in Singapore. His

research interests includes database management systems and data security.

HweeHwa Pang received the B.Sc.—with first class honors—and M.S. degrees from the National

University of Singapore in 1989 and 1991, respectively, and the Ph.D. degree from the University

of Wisconsin at Madison in 1994, all in Computer Science. He is currently a Principal Scientist at

the Institute for Infocomm Research in Singapore. His research interests include database

management systems, data security and quality, operating systems, and multimedia servers. He

has many years of hands-on experience in system implementation and project management. He

has also participated in transferring some of his research results to industry.

Robert H. Deng received his B.Eng from National University of Defense Technology, China, his

M.Sc. and Ph.D. from Illinois Institute of Technology, Chicago. He is currently Professor and

Director of SIS Research Center, School of Information Systems, Singapore Management Uni-

versity. Prior to this, he was Principal Scientist and Manager of Infocomm Security Department,

Institute for Infocomm Research. He has 21 patents and more than 140 technical publications in

international conferences and journals in the areas of digital communications, network and dis-

tributed system security and information security. He has served as general chair, program chair,

and program committee member of numerous international conferences. He received the Uni-

versity Outstanding Researcher Award from the National University of Singapore in 1999.

28

http://www.eskimo.com/weidai/benchmarks.html

Feng Bao received his BS in mathematics, MS in computer science from Peking University and his

Ph.D. in computer science from Gunma University in 1984, 1986 and 1996 respectively. He was

an assistant/associate professor of the Institute of Software, Chinese Academy of Sciences from

1987 to 1993 and a visiting scholar of Hamberg University, Germany from 1990 to 1991. Since

1996 he has been with the Institute for Infocomm Research, Singapore. Currently he is a Lead

Scientist and the head of Infocomm Security Department and Cryptography Lab of the institute.

His research areas include algorithm, automata theory, complexity, cryptography, distributed

computing, fault tolerance and information security. He has over 120 publications and 16 patents.

29

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2006

	Three Architectures for Trusted Data Dissemination in Edge Computing
	Shen-Tat GOH
	Hwee Hwa PANG
	Robert H. DENG
	Feng BAO
	Citation

	Three architectures for trusted data dissemination in edge computing
	Introduction
	Background
	System model
	Cryptographic primitives
	Related work

	Trusted data dissemination networks
	Untrusted edge processor (UEP)
	Trusted cluster processors (TCP)
	Trusted cluster verifiers (TCV)

	Experimental study
	Baseline experiment
	Sensitivity to internet bandwidth
	Sensitivity to query selectivity
	Sensitivity to edge server speed
	Sensitivity to k of n servers
	Summary of experiment results

	Conclusion
	Analysis of the schemes
	Costs of untrusted edge processor
	Point queries
	Multipoint queries
	Range queries

	Costs of trusted cluster processors
	Point queries
	Multipoint queries
	Range queries

	Costs of trusted cluster verifiers

	References

