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Improving service through Just-in-Time concept in a dynamic operational
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80 Stamford Road Singapore 178902
{karway.tan.2007, na.fu.2007, hclau}@smu.edu.sg

Abstract

This paper is concerned with the problem of Just-
In-Time (JIT) job scheduling in a dynamic environment
under uncertainty to attain timely service. We provide
an approach, based on robust scheduling concepts, to
analytically evaluate the expected cost of earliness and
tardiness for each job and also the project. In addition, we
search for a schedule execution policy with the minimum
robust cost such that for a given risk level ε, the actual
realized schedule has (1 - ε) probability of completing with
less than or equal to this robust cost. Our method is quite
generic, and can be applied to JIT scheduling of jobs in a
service company where earliness and tardiness are critical
concerns.

1. Introduction

In service industry such as airlines, health-care and
financial institutions, timely delivery of product (goods and
services) is of utmost importance in gaining customers’
confidence and goodwill. While JIT has been an estab-
lished concept in lean manufacturing, it is also widely
applicable in the service industry (where jobs should be
completed to fulfill customers’ orders in a timely fashion
against a backdrop of dynamism and uncertainty in the
environment). The notion of timeliness means that the jobs
are completed neither too early (thereby minimizing hold-
ing cost and maximizing agility) nor too late (minimizing
delays and customer waiting time).

In this paper, we study the problem of timely service
delivery in an operational environment that is inherently
uncertain. The broad research question is - can we obtain
a policy on apriori (proactive) resource assignment to jobs
that is robust in response to events such as a demand surge?

We seek a rigorous modeling of uncertainty parameters and
a computationally efficient approach to find solutions that
are robust against such uncertainties. More precisely, we
will look at a job scheduling context where we need to find
robust solutions that are JIT. In Scheduling terminology,
the JIT concept is often studied as the well-known earli-
ness/tardiness (E/T) scheduling problems. A rich collection
of scheduling problems in the service industry is given in
[14].

While there is a rich literature in dealing with E/T
problems (mostly in manufacturing contexts), they mainly
deal with deterministic problems on single-machine or par-
allel machines. Baker and Scudder [1] provided a compre-
hensive survey on the different variations of deterministic
E/T problems. In a deterministic setting, it is meaningful
to seek a schedule (an assignment of start time of each
task to a machine) that optimizes an objective function
(such as makespan). However, in a dynamic operational
environment particularly in a service company where we
need to cope with the presence of uncertainties realistically,
a schedule is potentially brittle against uncertainty (such
as durational uncertainty).

To hedge against uncertainty, a widely adopted tech-
nique known as the Critical Chain was proposed by
Goldratt [6] for project management. The idea was derived
from Theory of Constraints. A critical chain is the longest
sequence of both precedence and resource-dependent tasks
in a project, and the idea is to insert project buffer
time to the end of a critical chain to protect the project
completion date, as well as feeding buffer time that hedges
against resource contention of a task on a non-critical
chain with a task on a critical chain should the former
gets delayed. While buffering is an intuitive notion that is
fairly simple to implement, the question is how much to
buffer. In a typical critical chain approach, the size of the
buffer increases linearly with the length of the chain with



which it is associated, and in [7], it was reported that the
resulting makespan based on critical chain can be twice
as long compared to the scheme proposed by the authors’
approach.

In Operations Research, stochastic programming and
simulation techniques are commonly used to handle uncer-
tainty - both of which require high computational budget
typically (for large-scale problems) and rely heavily on sta-
tistical distributions. These are overcome with techniques
from Artificial Intelligence and Economics. A survey by
Herroelen and Leus [8] review these fundamental ap-
proaches for scheduling under uncertainty. More recently,
the notion of robust optimization has been proposed that
makes use of mild statistical information to find tractable
solutions for optimization problems under uncertainty [3].

A recent approach that combines robust optimization
with heuristic search to manage uncertainty proactively is
based on the idea of robust local search [12]. In applying
to project scheduling with resource constraints, [4], [5]
proposed computationally efficient schemes for finding
an executable strategy (or policy) that hedges against
durational and resource uncertainties. More precisely, by
making use of mild statistical information (means and
variance) they proposed a computationally efficient scheme
to generate a partial-order schedule (POS) (i.e. an execu-
tion policy) and a ”robust” makespan guaranteeing that
the schedule subsequently executed against all possible
realizations of uncertainty will have a makespan of that
value with a probability of at least (1−ε), where ε ∈ [0, 1].

In this paper, we adopt the idea proposed in the above-
mentioned works to study the problem of E/T scheduling
under durational uncertainty. We term our problem as
Dynamic E/T Job Scheduling Problem. We believe this
problem, though somewhat stylized in nature, is capable of
modeling many of problems arising from job assignment in
the service industry. We see many real-life business process
scenarios that are plagued with both E/T and duration
uncertainty considerations. One such application is in the
production and delivery of perishable goods, such as flight
catering business. A job in flight catering business includes
multiple operations such as cooking for hot dish, cold dish,
preparation of beverages and special meals, assembly of
items and packing. An early completion of job results in
holding costs and possible inaccuracy but a late completion
of job will have severe impact on flight schedule, loss
of customer satisfaction and potential disruption to other
flights (if food is borrowed from another flight). The study
of uncertainty is important as passenger load (paxload) is
dynamic due to ticket sales and check-ins. The airlines
update the caterer on the paxload as late as within 40
minutes before the flights departure. As paxload changes,
the durations required to perform some operations such as
assembly and packing could vary.

In our work, we aim to find a schedule policy with
the least robust cost of E/T under duration uncertainty.
Our contribution in this paper is three-fold. Firstly, under
a stochastic setting, we provide an analytical method to
evaluate the expected cost of E/T for each job as well as
for all jobs. Secondly, we show that with the use of a
executable strategy, we can gain greater visibility into a
job completion time. Finally, we propose an efficient local
search method to find a locally optimal executable policy
under a given risk level ε.

The organization of the rest of the paper is as follows:
Section 2 describes a business process of a service provider
that motivates our work. Section 3 provides brief back-
ground information for the model and techniques that we
would be applying in the proposed method. Section 4 pro-
vides a formal definition of the problem. Section 5 provides
the detailed description about our approach to solve the
problem. Section 6 shows the experimental results for our
method. Finally, Section 7 presents a conclusion to this
paper.

2. Motivating Case Study

The Dynamic E/T Job Scheduling Problem is motivated
by business processes observed in real world. Typically,
E/T concept is predominantly used in supply chain man-
agement to produce goods just-in-time to reduce inventory
(holding) cost. However, here we present a business pro-
cess as a case study that E/T scheduling can be applied and
form an important aspect of providing quality services. For
ease of illustration, simplified version of the actual process
is provided here. We shall then use the case study as the
basis for our proposed solution.

2.1. The Flight Catering Process

A airport terminal service provider receives orders from
their customers (the various airlines) to supply in-flight
food and beverages to the flights departing from the airport.
The orders are made in advance to the service provider.
Each order is a job that the provider must be able to fulfill
before the estimated departure time (ETD) of the flights,
i.e., the due date of each order. Each job consists of a
series of operations (in sequence or in parallel) in order
to complete the job. A simplified business process of the
catering job is provided in Figure 1. In a job, the operations
include preparation of ingredients, hot/cold dishes, special
meals (e.g. vegetarian, diabetic meals), beverages, tray
assembly and finally loading into truck or moved to staging
area. Each operation within the job requires use of one
or more types of limited resources and may also require
more than one unit of each type of resource. For example,
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Figure 1. Flight catering business process as an example of a job

preparation of hot dishes may require multiple cooks and
stoves.

Based on all the orders received, the provider plans and
schedules the jobs in advance. However, such a process
is subjected to highly dynamic business environment as
the orders can be amended during the job execution due
to changes in business demand. The preparation of food
begins three days in advance based on initial planned
order. However, the airline may amend the order as it
approaches the ETD due to changes in passenger load
(paxload). Paxload is highly dynamic in the last few days
and even hours due to last minute bookings, cancellations
and check-in information. The paxload information may
arrive at the provider as late as 40 minutes before the
ETD! Such amendment of orders affects the duration of the
operations in the job and this is the source of uncertainty
that we will deal with in this paper.

To further complicate matters, these jobs should com-
plete as close to the due-dates as possible. Early comple-
tion of jobs imposes risk to freshness of the products and
also occupies staging area and limited resources such as
tray tower. Late completion of job is highly detrimental
as it may cause flight delays and hence risking the loss
of customer’s goodwill. The challenge for the provider,
not only is to be able to complete the jobs just-in-time
but also have an executable strategy for handling jobs in
this dynamic environment. The above discussion paves a
need for our study of E/T job scheduling under duration
uncertainty.

3. Preliminaries

We present in this section, background concepts that
form the basis of our approach.

In a nutshell, we make use of the ideas of a Partial
Order Schedule [13] and robust local search (proposed in
[4], [5], [12]). Given a user-defined risk ε, the idea there is
to seek a partial order schedule such that the makespan of
the actual schedule that will be executed eventually against
all uncertainty realizations is at most the robust makespan

(denoted as G∗) with a guaranteed probability of at least
(1 − ε).

Given a set of activities (i.e., a set of comprising all
the operations of all jobs) a1...an, we can obtain an
initial schedule S using a well-studied algorithm such as
the serial schedule generation scheme [10] in solving the
deterministic problem. In our setting, each activity has
processing time pi = p0

i + z̃i where p0
i is the deterministic

mean processing time and z̃i represents the stochastic part
with possibility of activity completing earlier or later than
p0

i . With an initial schedule S, resource assignment is
performed on S to produce a partial order schedule (POS)
x. Figure 2 shows an example of a POS. A POS can be
represented by a graph where an activity is represented by
a node and the edges represent the precedence constraints
between the activities. In another words, x is a chain
of activities that is both precedence (sequence within the
jobs) and resource (due to resource constraints) feasible.
Note that the POS does not have any start time associated
with each activity (unlike a schedule), instead, it provides
the executable strategy by explicitly expressing the logical
sequence of activity execution on each machine (while
keeping the start time flexible). Hence, in response to an
event such as demand surge where the duration of an
activity is realized (dynamically), and the POS will be used
to guide the decision maker to choose which activity is to
be executed next on which machine. In this sense, the POS
is an executable strategy (or policy).

4

1

3

2
Start End

Figure 2. Example of a POS with 4 activities

Given the mean and variance of the duration random
variable z̃ and the POS, we can analytically compute the
expected makespan and variance of a given POS. Within
a POS, the activities are chained either in series or in



parallel. Consider a special case where each activity ai

is associated with duration uncertainty random variable z̃i

that takes normal distribution N(0, σi), then [5] provides
a close-form formula to derive the mean and variance of
the makespan for the POS x.

For activities that are in serial (e.g. a3 and a4 in Figure
2), the expected duration is given by

E[
n∑

i=1

(p0
i + z̃i)] =

n∑
i=1

p0
i (1)

and variance is given by

V ar[
n∑

i=1

(p0
i + z̃i)] =

n∑
i=1

σi (2)

For m activities that are in parallel (e.g. a1 and a2 in
Figure 2), the expected duration is given by

E[ max
i=1...m

d0
i + max

i=1...m
z̃i] = max

i=1...m
d0

i + E[ max
i=1...m

z̃i] (3)

The variance can be given by

V ar[ max
i=1...m

d0
i + max

i=1...m
z̃i] = V ar[ max

i=1...m
z̃i] (4)

Although mathematically it is difficult to derive an
exact expression for E[ max

i=1...m
z̃i] and V ar[ max

i=1...m
z̃i], [5]

shows the details and proofs of how upper bounds can be
obtained. Hence for a given POS x with random variable z̃,
the makespan G(x, z̃) can be calculated based on the serial
and/or parallel equations 1 to 4. Based on the one-sided
Chebyshev’s inequality, the schedule has at least (1 − ε)
probability that it can be completed by the robust makespan
value G∗ where

G∗ = E[G(x, z̃)] +
√

(1 − ε)/ε
√

V ar[G(x, z̃)] (5)

Note that in the aforementioned works, the goal is to
find a POS with the minimum robust makespan given ε.
In this paper, we are concerned with finding a POS with
the minimum robust cost of E/T.

4. Problem Definition

We formalize the Dynamic E/T Job Scheduling problem
as follows: A project consists of n independent jobs
j1,...,jn, where each job j represents an instance (or case)
of the business process with a due date Dj (jobs have
distinct due dates), a set of operations Ojh, where hj

denotes the hth operation of job j; and a precedence
constraint PR matrix of size Ojh × Ojh to provide
flexibility to allow parallel operations in the job. Each
operation Ojh has processing time pjh ε R

+ and has
resource requirements RQjhk for resource type Rk. The
processing time is subject to uncertainty by a random
variable z̃, i.e. ˜pjh = p0

jh + z̃. p0
jh denotes the deterministic

duration.

We are given a set of k type of resources, which any
of its members of type k are capable of executing the
same task. Each type of resource is denoted by Rk. Each
resource Rk has capacity RCk. The resources are subjected
to constraint

∑
jhεat

RQjhk ≤ RCk ∀t, k, where resource

usage for each resource type k does not exceed the capacity
at any point of time during the execution of the set of
activities in which at is the set of active activities at time
t.

4.1. Cost of E/T of a job

We define a variable T̃j ε R
+ to represent the cost (or

penalty) of earliness or tardiness that a job can incur if it is
completed before or after its due date Dj . Let Wj and Yj

be the earliness and tardiness cost functions respectively
and we assume that both functions can be estimated or
obtained from historical data. Also, let C̃j be the random
variable representing the completion time of job j, then:

1) If job j completes before its due date, then cost is
Wj(Dj − C̃j) or

2) If job j completes on or after its due date, then cost
is Yj(C̃j − Dj).

Hence, we define for our paper that cost of job is

T̃j = P (C̃j ≤ Dj) ∗ Wj(Dj − C̃j)
+ (1 − P (C̃j ≤ Dj)) ∗ Yj(C̃j − Dj) (6)

In general, in the case when we have more than two
cost functions and if ti represents each discrete time-points
where cost function changes, then we have

T̃ g
j =

∑
i

P (ti−1 ≤ C̃j ≤ ti) ∗ Cost(ti−1 ≤ C̃j ≤ ti)(7)

Since each project contains j jobs, the E/T cost of a
project T̃ , is also the sum of the E/T costs of all jobs.

T̃ =
∑
j∈J

T̃j (8)

4.2. Objective Function

Following the methodology proposed in [12], by using
one-sided Chebyshev’s inequality, given ε, the robust E/T
cost T ∗ is defined as:

T ∗ = E[T̃ ] +
√

(1 − ε)/ε

√
V ar[T̃ ] (9)

Our goal is thus to find an optimal execution policy for
the project with a given risk level ε ∈ [0, 1], i.e. the policy
that yields the minimum robust E/T cost T ∗

min, such that
with probability at least (1− ε), the actual realised cost is
less than or equals to T ∗

min.



4.3. Uniqueness of Our Problem

We highlight the uniqueness of our problem with re-
spect to various standard problems in the literature.

With respect to Resource-Constrained Project Schedul-
ing Problem (RCPSP), our problem includes additional
structure of a job which links a series of activities (or
operations) together and has a due date. Our problem
also differs from a standard Job-Shop Scheduling (JSP)
problem as the jobs has due dates, and each operation
within the jobs may require one or more units of k types
of resources. The standard JSP, on the other hand, involves
only single unit of a single resource in each operation. In
addition, our work differs from standard E/T scheduling
(comprehensive survey found in [1]) as we takes into
considerations, duration uncertainty in dynamic environ-
ment as compared to deterministic problems. Although
scheduling under uncertainty has been studied in RCPSP
and JSP (in [4], [5], [12] and [2] respectively), these
works are concerned with completing project in shortest
possible time and do not have earliness consideration that
is important to service timeliness.

5. Proposed Approach to E/T Case Study

In this section, we show our proposed approach in
solving the Dynamic E/T Job Scheduling problem for the
case-study described in section 2. First, some assump-
tions/characteristics are given as follows.

• All activities are non-preemptive. Resources assigned
to a specific operation work for the entire operation
duration.

• Operations in all jobs are of equal priority. Search
algorithm may place the operations in any sequence
as long as precedence constraints between operations
are preserved.

5.1. Overview

Figure 3 shows an overview of our approach to solve
the Dynamic E/T Job Scheduling problem.

Table 1 presents our proposed local search algorithm
that seeks to find a locally optimal POS. We first randomly
form an initial activity list(AL) and obtain an initial
schedule S (Line 01-02). Schedule S can be obtained
either by a standard scheduling heuristic such as serial
schedule generation scheme (no idle time inserted) or any
E/T scheduling methods with inserted idle time [9]. With
schedule S, forward-backward-chaining (FBC) is applied
to obtain a POS for the schedule (Line 03). Lines 05-
10 show how we obtain the expected E/T cost E(T̃ ) for
the entire project. For each job j, we find the sub-POS

Jobs

Initial Schedule, S

Partial Order Schedule (POS)

Find sub-POS, POSj

Iterative

POS (policy) with minimum robust cost 
(T*

min)

Precedence constraints
Resources

Resource Capacity
R esourceReQmt

Processing time

Calculate expected cost 
of deviation, Tj

For each job j

Chaining to produce Partial Order 
Schedule (POS), x

Inputs

Local
Search

Algorithm

Compute the robust cost for the project 
for the POS

Output

Figure 3. Overview of the approach to E/T job
scheduling problem

involving the activities in the jobs (details in section 5.2).
The use of sub-POS is required to compute the expected
makespan and the expected cost of E/T of the job. The
cost of E/T for job j is computed using earliness and
tardiness functions(Line 08) and the expected E/T cost of
the project is the sum of E(T̃j) for all jobs (Line 09). We
then calculate the robust cost for the project T ∗

now based
on equation 9 (Line 11).

Line 12-22 is the local search algorithm in which we
perform the search over MaxIteration. Line 13 to 16 show
that we replace POSmin and T ∗

min whenever we find one
that gives a smaller robust cost of E/T. Lines 17−18 shows
the local search moves where two operations are randomly
selected for swap to produce a new activity list AL′.
We then repeat the search process using the new activity
list AL′ (Lines 19 − 21). At the end of MaxIteration,
we select the POS (execution policy) that provides the
minimum robust E/T cost for the project.

5.2. Finding sub-POS

Our approach relies on use of sub-POS to find the
expected makespan and the expected cost of E/T of each
job. The sub-POS for job j (i.e., POSj) consists of all
the operations in the job as well as the other preceding
operations from other jobs in the main POS that job



Local Search Algorithm
01. Randomly form an initial activity list AL
02. Find a schedule, S randomly according to AL
03. POS ← Forward-Backward-Chaining(S)
04. E(T̃ )← 0
05. For each job j
06. POSj ← FindSubPOS(POS,j)
07. ExpMakespan← ComputeExpectedMakespan(POSj ,z̃)
08. E(T̃j)← ComputeExpectedCostOfET(POSj ,Cost functions)
09. E(T̃ )← E(T̃ ) + E(T̃j)
10. endfor
11. Compute robust cost T ∗

now using Equation 9
12. For i← 1 to MaxIteration, do
13. if T ∗

now ≤ T ∗
min then

14. T ∗
min ← T ∗

now
15. POSmin ← POS
16. endif
17. Randomly pick two operations a and b from AL
18. Swap a and b in AL as AL’
19. Find a schedule S’ according to AL’
20. POS ← FBC(S’)
21. Find T ∗

now as per line 04− 11
22. endFor
23. Output a POSmin with T ∗

min

Table 1. Local Search to find POS

j depends on due to sharing of the common pool of
resources. Illustrating with an example, figure 4 shows
an example of three jobs and its operations. Suppose the
operations are translated to activities numbered 1 to 8 and
has a possible POS represented in Figure 5. The sub-POS
for jobs j1, j2 and j3 consist of activities (1,4,7,2,8,3),
(1,4,7,2,8,5,3,6), (1,4,7,2,8) respectively. This is obtained
by using the last operation of each job and working
backwards recursively to include any preceding activity
(parent) in the POS to be included in the sub-POS. An
algorithm for determining the sub-POS is shown in table
2.

1

2

3

Figure 4. Example of three jobs

The use of sub-POS provides greater visibility to
scheduling as one gain visibility to the dependencies
on other operations (of another job) and one may also
compute the expected makespan of each job according to
equation 5. This is particularly important in applications
whereby one would like to anticipate and be able to update
airlines (i.e., customers) the status of the order and also be
able to plan for the next chain of activities, e.g. dispatching
service.

POS1

POS2POS3

Figure 5. Example of sub-POS for three jobs
in Figure 4

Algorithm to find sub-POS for job j
01. Given a POS and job j
02. Find the activity a representing the last operation of job j
03. Add a to POSj

04. Begin Function addParents(a)
05. //parents refers to the predecessor(s) of a in a POS
06. Vector v ← get parents of a
07. If v not empty
08. For all element e in v
09. add e to POSj

10. chain e to a
11. addParents(e) //recursive
12. endFor
13. else //no more predecessor
14. exit function addParents
15. endIf
16. endFunction
17. Return POSj

Table 2. Algorithm to find the sub-POS for job
j

5.3. Compute Expected Cost of E/T for Each Job
for Different Cases

The cost of E/T of a job depends on whether job
completes before or after the job’s due date, Dj and in
the dynamic environment, the job’s completion time C̃j

is variable. We first consider a simple model where the
cost functions are linear functions of the duration between
the job’s due date and completion time, such as given in
Figure 6.

Job
Completion 

time, Cj

Time Deviation Cost

Due date, 
Dj

Earliness cost 
function, Wj

Tardiness cost 
function, Yj

Cj > DjCj < Dj

Figure 6. Linear cost functions



In such a situation, we have two mutually exclusive
cases which either C̃j lies before or after due date. For a
sub-POS with expected makespan of E(C̃j), by Equation
6 (with α and β as parameters to the cost functions), the
expected E/T cost of each job, E(T̃j) is then given by

E(T̃j) = P (C̃j ≤ Dj) ∗ α(Dj − E(C̃j)) (10)

+ (1 − P (C̃j ≤ Dj)) ∗ β(E(C̃j) − Dj)

Similarly, the same method can be extended to other
continuous cost functions such as quadratic earliness and
tardiness cost functions. Also by Equation 6,

E(T̃j) = P (C̃j ≤ Dj) ∗ α(Dj − E(C̃j))2 (11)

+ (1 − P (C̃j ≤ Dj)) ∗ β(E(C̃j) − Dj)2

And for the case when cost functions are step functions,
such as the example given in Figure 7, then by Equation
7, we have:

E(T̃j) = P (C̃j < t1) ∗ Cost(C̃j < t1) (12)

+
5∑

i=2

P (ti−1 ≤ C̃j ≤ ti) ∗ Cost(ti−1 ≤ C̃j ≤ ti)

+ (1 − P (C̃j < t5)) ∗ Cost(C̃j > t5)

Job
Completion 

time, Cj

Time Deviation Cost

Due date, 
Dj = t3

Earliness cost 
function, Wj

Tardiness cost 
function, Yj

t2<= t1 t4 >= t5

Figure 7. Step cost functions

5.4. Computing Robust Cost for the Project

Having computed the E/T cost for each job, the cost for
the entire project T̃ is then given by the sum of these ran-
dom variables. Assuming the expected value and variance
of T̃ can be computed (we will show in the experiments
that these quantities are computed via simulation since they
are difficult to compute analytically), the goodness of an
execution policy (represented by the POS) for a given risk
level ε is given by T ∗ based on Equation 9. Accordingly,
if we utilize this quantity as the fitness function within
a search algorithm, we can obtain an execution policy
(POS) with the minimum robust cost. In our work, since
the search algorithm is a local search, we obtain a locally
optimal POS with an upper bound of the minimum robust
cost.

6. Experimental Results

In this section we will present experimental results
obtained from applying our proposed local search algo-
rithm to solve the Dynamic E/T Scheduling problem. We
execute our algorithm against problem instances derived
from the benchmark sets for RCPSP/max J10 as specified
in the PSPLib[11]. We used the activity durations (with
slight modifications), resource requirements and resource
capacities from the benchmark sets. For each instance, we
added the layer of jobs, added due dates for each jobs and
changed the time-lag parameters to suit the requirements
of our tests. For each test instance, we have 4 jobs and each
job has either 2 or 3 operations. Each operations requires
1 or more units of k types of resources. 5 different types
of resources are used.

For each operations Ojh, we set the expected processing
time pjh of the stochastic duration as the corresponding
deterministic duration given by the benchmarks and as-
sume that duration uncertainty z̃jh is normally distributed
with mean 0. We run the algorithm across 4 increasing
levels of risk, ε = {0.01, 0.5, 0.1, 0.2} and 4 different local
search iterations, MaxIteration = {50, 100, 250, 500}.
To reduce the possible effect of random factors during the
search process on final results, we average over 5 random
executions for each problem instance.

In our tests, we used linear costs functions similar
to one shown in Figure 6 where factors α and β (see
Equation 10) are set to 0.5 and 0.8 respectively. We used
simulation technique to obtain the probabilities required
for computation of expected cost for each job. We achieved
this by providing 100 actual realizations of the instance for
each POS generated by the algorithm. The expected cost
of the project E(T̃ ) is then obtained from summation of
expected cost of the jobs and the variance of the E/T cost
of the project V ar(T̃ ) is derived through the simulation.
The robust E/T cost T ∗ for each POS is then calculated
based on Equation 9.

Firstly, we present the results of sensitivity test on the
effect of the risk level ε on the robust cost. Figure 8 shows
5 selected instances from our test results with 250 local
search iterations. We observe that the robust cost decreases
as the level of risk increases. This is important to the
planner as a decision maker on which strategy to adopt
to improve the service quality in his organization, i.e., an
policy that yields lower robust cost by taking a higher risk
or vice versa. The experiments also show that this results
is consistent with different instances of the problems.

Next, we evaluate the effectiveness of our algorithm by
executing the experiment using different cycles of local
search. Figure 9 shows 5 selected instances from our test
results with ε = 0.2. The results show that with 250
iterations of local search, the algorithm is able to provide



a good convergence to minimum robust cost.
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Figure 8. Selected instances of robust cost
versus risk level
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ability of algorithm to converge to a minimum
robust cost

Finally, we observe that the POS that yields the min-
imum robust cost is not necessarily the same POS that
yields the minimum expected cost of the project. We
observe that the POS giving the minimum robust cost
may have a higher expected cost compared to another
policy with the minimum expected cost. This highlights
the value of robust considerations. Suppose the risk level
is 0.2. Our approach yields a policy that gives the cost of
at most T ∗

min with probability of at least 0.8. However, if
we were to search for a policy with minimum expected
cost of the project, if the variance of the project cost
is high, we may end up with higher total cost over all
realizations of the project. As such, the policy provided
by our approach provides a better hedge against adversity
and hence valuable to the decision makers.

7. Conclusion

We have shown in this paper, an approach to evalu-
ate the robust cost of earliness and tardiness for a JIT
project with duration uncertainty. We discussed that E/T
job scheduling problem under uncertainty is an important
consideration as it has many possible applications in real-
life business processes in improving service delivery. We
proposed a local search algorithm in search for a POS
with minimum robust E/T cost for all jobs in the project.
By using the concept of partial order schedule (POS),
we also provide an executable strategy as a guidance to
react to uncertainty. In addition, we show that we could
add visibility to service provider by having the ability to
compute the job completion time for each job.

This work provides opportunities for future work. It
would be interesting to explore the possibilities of grouping
of jobs that are similar in nature. In the example of
flight catering business, to allow the operations to fulfill
the orders that requires similar products to be processed
together. This has interesting real-life application that may
result in cost savings from economies of scale and reduce
machine set-up cost if any. We could also extend our work
to include more studies on how to improve the search
algorithm by applying meta-heuristics such as tabu-search.
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