
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

10-2011

Efficient Evaluation of Continuous Text Seach
Queries
Kyriakos MOURATIDIS
Singapore Management University, kyriakos@smu.edu.sg

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

DOI: https://doi.org/10.1109/TKDE.2011.125

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
MOURATIDIS, Kyriakos and PANG, Hwee Hwa. Efficient Evaluation of Continuous Text Seach Queries. (2011). IEEE Transactions
on Knowledge and Data Engineering. 23, (10), 1469-1482. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/812

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TKDE.2011.125
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

1

Efficient Evaluation of Continuous
Text Search Queries

Kyriakos Mouratidis, HweeHwa Pang

F

Abstract—Consider a text filtering server that monitors a stream of
incoming documents for a set of users, who register their interests in
the form of continuous text search queries. The task of the server is
to constantly maintain for each query a ranked result list, comprising
the recent documents (drawn from a sliding window) with the highest
similarity to the query. Such a system underlies many text monitoring
applications that need to cope with heavy document traffic, such as
news and email monitoring.

In this paper, we propose the first solution for processing continuous
text queries efficiently. Our objective is to support a large number of
user queries while sustaining high document arrival rates. Our solution
indexes the streamed documents in main memory with a structure
based on the principles of the inverted file, and processes document ar-
rival and expiration events with an incremental threshold-based method.
We distinguish between two versions of the monitoring algorithm, an
eager and a lazy one, which differ in how aggressively they manage
the thresholds on the inverted index. Using benchmark queries over a
stream of real documents, we experimentally verify the efficiency of our
methodology; both its versions are at least an order of magnitude faster
than a competitor constructed from existing techniques, with lazy being
the best approach overall.

1 INTRODUCTION

The increased use of digital information channels, such as
email, electronic news feeds and automation of business
reporting functions, coupled with the importance of making
timely decisions, raise the need for a continuous text search
model. In this model, new documents arrive at a monitoring
server in the form of a stream. The server hosts many text
search queries that are installed once and remain active until
terminated by the users. Each query Q continuously retrieves,
from a sliding window of the most recent documents [1], the
k that are most similar to a fixed set of search terms.

For instance, a security analyst who monitors email traffic
for potential terror threats would register several standing
queries to identify recent emails that most closely fit certain
threat profiles (e.g., emails that mention names of explosives or
possible biological weapons). As another example, an invest-
ment manager who is interested in a portfolio of industries and
companies would monitor newsflashes from his information
provider (e.g., Reuters, Bloomberg, etc) to identify those that
are relevant to his portfolio. Words related to the industries

• Kyriakos Mouratidis and HweeHwa Pang are with the School of Infor-
mation Systems, Singapore Management University, 80 Stamford Road,
Singapore 178902.
E-mail: {kyriakos, hhpang}@smu.edu.sg

of interest can be formulated as standing text queries over
the newsflashes. With the same news report stream, another
user could be an entrepreneur who is tracking developments
about competing products. All the above cases can be modeled
as continuous text search queries. The continuous text search
model involves two key notions:

- Sliding window: A common concept in the data stream
literature that reflects the interest of the users in the newest
available documents, the sliding window may be defined in
two alternative ways. A count-based window contains the N
most recent documents for some constant number N , whereas
a time-based window contains only documents that arrived
within the last N time units. Our rationale for adopting the
sliding window model is that it fits naturally the purpose
of monitoring applications. Documents reported by the text
filtering server may trigger a set of predefined operations or
be presented to a human user (e.g., a security analyst) for his
further consideration/action. Therefore, although a document
may be very relevant to a query, it is ignored (by the filtering
server at least) when it falls outside the window, because it is
considered as having already been brought to the attention of
the end-user or the trigger mechanisms. The size of the sliding
window reflects the time given to the user/trigger process to
consider the document.

- Ranked query result: As the sliding window may contain
numerous documents that are relevant to a query Q, the user’s
interest focuses on the k most relevant ones, ordered by their
similarity scores. The similarity between a document d and Q
is a function of their term compositions. Common similarity
functions include cosine distance and the Okapi measure [2].
One could argue that the server should ignore ranking, and
report all documents that score above a certain threshold
(instead of the top-k ones). In instances where the search terms
of a query appear in many documents (e.g., many “innocent”
emails may include terrorism-related keywords/discussions
after an attack takes place), the end-user or trigger mechanism
that receives the results of the server will be overwhelmed
by massive numbers of documents. On the other hand, on
occasions when too few documents score above the threshold,
the user or trigger process will be left idle, despite having
the capacity to examine more documents (with lower scores).
In contrast, top-k ranking regulates in a natural way the
size of the output and may be configured (using parameter
k) according to the capacity of the end-user or the trigger
processes.

ppyeo
Typewritten Text
Published in IEEE Transactions on Knowledge and Data Engineering, Volume 23, Issue 10, 2011, Article number 5887333, Pages 1469-1482.http://dx.doi.org/10.1109/TKDE.2011.125

ppyeo
Typewritten Text

2

An example of a query with a time-based window is
“Monitor the 10 documents received in the last 15 minutes
that best match the string {weapons of mass destruction}”.
The count-based counterpart of this example is “Continuously
report the 10 documents among the 1000 most recent ones
that best match the string {weapons of mass destruction}”. For
heavy-traffic streams, the system must be able to update the
ranked results of all user queries efficiently enough to keep
pace with document arrivals. That is the primary technical
challenge addressed in this work.

Previous studies on document filtering (e.g., [3]) have fo-
cused on techniques for adaptively setting a similarity thresh-
old to determine whether each document is relevant to a query.
However, the problem of efficiently maintaining the list of the
k most relevant documents has not been considered. Existing
schemes for continuous top-k processing (e.g., [4]), on the
other hand, rely on spatial index structures. In text retrieval,
each term in the dictionary is considered a dimension. Since
a realistic dictionary typically contains more than 100,000
terms, the dimensionality far exceeds the capabilities of any
spatial index structure, thus ruling out the application of those
schemes.

In this paper, we present the first solution for continuous
text search over high-volume document streams. At its core
lies a memory-based index similar to the conventional inverted
file, complemented with fast update techniques and book-
keeping structures. We compute the first-time result of a
query with a threshold-based algorithm on the inverted lists.
The thresholds derived are used for subsequent result mainte-
nance, and specifically (i) to avoid unnecessarily processing
document arrivals/expirations that cannot affect the query,
and (ii) to incrementally and efficiently update the result
whenever some stream event does affect the query. Depending
on how promptly/aggressively the thresholds are updated when
the query result changes, we distinguish between the Eager
and Lazy versions of our Incremental Threshold algorithm
(EIT and LIT, respectively). Experiments with real document
streams and benchmark queries confirm the efficiency of our
scheme on the whole, and show that it vastly outperforms a
baseline competitor that we constructed from previous meth-
ods for related problems.

The rest of the paper is structured as follows. Section 2
provides a background on text retrieval and reviews related
work. Section 3 formulates the addressed problem and de-
scribes a competitor based on existing techniques. Section 4
presents our proposed solution, including the index structures
and the query processing algorithms employed. Section 5
experimentally evaluates our approach and its variants. Finally,
Section 6 concludes the paper.

2 BACKGROUND

2.1 Text Retrieval by Similarity
A text search query Q specifies a set of terms (i.e., words
of interest) and a parameter k (k ∈ N). Q requests for the k
documents in a dataset D that are most similar to the query
terms. Text search engines typically rate the similarity of each
document d ∈ D to query Q based on these heuristics [2]:

(i) terms that appear many times in a document are given
more weight; (ii) documents that contain many terms are given
less weight; and (iii) terms that appear in many documents
are given less weight. The heuristics are encapsulated in
a similarity function which uses some composition of the
following statistical values:
• fQ,t: number of times that term t appears in query Q;
• fd,t: number of times that term t appears in document d;
• ft: the number of documents that contain term t.
A similarity measure that is effective in practice is the

cosine similarity, which defines the score of a document d
with respect to a query Q, S(d|Q), to be:

S(d|Q) =
∑
t∈Q

wQ,t · wd,t (1)

where

wQ,t =
fQ,t√∑
t′∈Q f

2
Q,t′

wd,t =
fd,t√∑
t′∈T f

2
d,t′

and T is the dictionary of all possible terms.
Given a query, a straightforward evaluation algorithm is to

compute S(d|Q) for each document d in turn, and return
those documents with the highest similarity scores at the
end. The execution time of this algorithm is proportional
to the number of documents, which is not scalable to large
collections. Instead, search engines make use of an index that
maps terms to the documents that contain them. The most
efficient and widely used index for this purpose is the inverted
file. Below we describe its most recommended variant, the
frequency-ordered inverted index [2]. For brevity, we refer to
it simply as inverted index.

The inverted index consists of two components; a dictionary
of terms and a set of inverted lists. The dictionary stores for
each distinct term t ∈ T a pointer to its inverted list Lt.
The inverted list of t holds an impact entry 〈d,wd,t〉 for each
document d that contains t, where
• d is (the identifier of) a document that contains t,
• wd,t is the frequency of term t in document d, as defined

in Formula (1).
The entries in each list are sorted in decreasing wd,t order.
Figure 1 shows an example of a frequency-ordered inverted
index, adapted from [2].

With the inverted index, a query Q is processed as follows.
The inverted lists for the terms t ∈ Q are scanned and
the partial wd,t scores of each encountered document d are
accumulated to produce S(d|Q). The k documents with the
highest scores at the end are returned as the result. The
frequency-ordered structure of the index allows for efficient
query processing. Specifically, with the use of thresholding,
only the top parts of the inverted lists need to be considered
[5], [6], [7]. Such thresholding approaches are similar in prin-
ciple to the general threshold algorithm described in Section
2.2.

3

Term t Inverted list Lt

and 7→ 〈6, 0.15〉
big 7→ 〈2, 0.14〉 〈3, 0.08〉
house 7→ 〈3, 0.08〉 〈2, 0.07〉
in 7→ 〈6, 0.15〉 〈2, 0.14〉 〈5, 0.12〉 〈1, 0.05〉 〈7, 0.04〉 〈8, 0.03〉 . . .
keep 7→ 〈5, 0.09〉 〈1, 0.08〉 〈3, 0.07〉
keeps 7→ 〈5, 0.08〉 〈1, 0.05〉 〈6, 0.02〉
night 7→ 〈5, 0.17〉 〈4, 0.12〉 〈1, 0.05〉
tower 7→ 〈7, 0.10〉 〈1, 0.08〉 〈5, 0.07〉 〈8, 0.05〉 . . .
use 7→ 〈2, 0.14〉 〈4, 0.12〉 〈1, 0.08〉 〈3, 0.03〉
dark 7→ 〈4, 0.12〉 〈6, 0.07〉
visit 7→ 〈6, 0.07〉
white 7→ 〈6, 0.08〉 〈2, 0.06〉 〈4, 0.04〉 〈3, 0.03〉 . . .

Fig. 1. Example of Inverted File

Unlike the most common processing paradigm of con-
sidering each inverted list in sequence (term-at-a-time), in
document-ordered ranking inverted lists are processed simul-
taneously so that the score of a document S(d|Q) is fully
computed once d is encountered (in a document-at-a-time
fashion) [8], [9], [10]. Consider that the inverted lists are sorted
on document identifier. If impact entries are fetched in parallel
from the lists involved in Q, then the partial scores of d for
each t ∈ Q are fetched concurrently from the corresponding
lists, and S(d|Q) is directly derived. This approach may
process the entire lists, but it need not maintain partial score
accumulators for each encountered document (i.e., only the
list of the k highest ranking documents found so far is kept).

2.2 Related Work

A topic that is related to our problem is information filtering.
The TREC conference has an active track on this field [11]. In
information filtering, the objective is to deliver newly arrived
documents that are above some relevance threshold to each
user query [3]. The focus is on tuning the relevance threshold
to adapt to the corpus and query characteristics, e.g., [12].
Each standing query is assumed to be periodically re-evaluated
from scratch. This approach is prohibitively expensive for
high-volume streams, which is why we focus on incremental
mechanisms to update the top-k results efficiently. Another
distinction is that information filtering applies a boolean
relevance judgment for each arriving document, whereas we
consider the more challenging problem of monitoring the top-k
relevant documents for each user query. This top-k ranking is
especially important in our model where high-volume streams
may produce many documents that are similar to the user
query at any given time, and the user needs to only focus
on the most relevant ones.

The generic top-k query is also related to our problem.
Given a dataset D and a preference function f , a top-k query
retrieves the k tuples in D that possess the highest scores ac-
cording to f (where k is a user-specified parameter). Research
in this field has focused on preprocessing to accelerate top-k
evaluation [13], [14], mapping of top-k queries into traditional
selections [15], [16], and computing the top-k records among

the results of a join operation over multiple relations [17],
[18], [19], [20].

In top-k computation over distributed data repositories, there
are multiple (say m) repositories, each of which keeps a list
of the data tuples that is sorted on a different attribute. The
threshold algorithm [21] combines the partial scores from
these repositories (sorted lists) and locates the top-k data tuples
according to a user-specified, monotone preference function f
over the m attributes. The method works as follows.

Assume that f increases monotonically on the m attributes,
and the repository lists are sorted in decreasing order. The
lists are probed in a round-robin fashion; the next entry is
popped from their head and the score of the corresponding
tuple is computed from all of its attributes. A threshold ci
is maintained for each of the m lists, which is dynamically
set to the value of its next entry. The value of f over all list
thresholds ci defines a global threshold τ which constitutes
an upper bound on any non-encountered tuple further down
the lists. When τ drops below the score of the k-th best
tuple found so far, the search terminates and returns the k
best tuples as the result. A top-k processing example with
(an adapted version of) this technique is given in Section 4.2.
The threshold algorithm has been used in various domains
with many application-specific optimizations (e.g., [22], [23],
[24], [25]). We note that the above method corresponds to
the random access flavor of the threshold algorithm. Although
there exists a no random access variant too, we focus on the
former, because it is more relevant to our document streaming
context as we show next.

Going beyond snapshot (i.e., one-time) top-k queries which
report the result over the database instance at query-time
and terminate, Yi et al. [26] propose algorithms for efficient
maintenance of materialized top-k views in the presence of
updates. A top-k′ view is maintained (instead of a top-k
one), where k′ changes at runtime between k and some
kmax > k. Specifically, when the view R is initially computed,
it is populated with the top-kmax tuples, where kmax > k.
Subsequently, updates are dealt with as follows. If an inserted
tuple has a score larger than the last one in the view, then it
is included in R (evicting, if necessary, R’s last entry so that
the number of maintained top tuples does not exceed kmax).

4

If a deleted tuple is currently in R, then it is removed. If
that causes the number of entries in R to drop below k, a
new search is initiated to refill R with the top-kmax tuples in
the database. Assuming that the attribute values are uniformly
distributed in their respective domains and independent from
each other, the authors present an analysis that suggests setting
kmax = k +

√
N , where N is the size of the database.

In [4], Mouratidis et al. address the problem of continuous
top-k monitoring. In their model, a set of top-k queries re-
quest continuous evaluation over a stream of multidimensional
points. The points are stored in main-memory and indexed in
a regular grid; i.e., the space is partitioned into cells of equal
side-lengths, and each cell maintains the points that fall within
its extent. The authors propose a method for the first-time
top-k search (when a query is registered), which considers
the minimum number of cells that may contain result records,
based on a geometrically inferred visiting order among them.
Subsequent top-k maintenance is restricted to point updates
within only the processed cells. Two maintenance policies
are described: (i) recomputing the top-k result whenever
some of the current top-k points expire; (ii) partially pre-
computing future results, by reducing the problem to a skyline
maintenance over a subset of the data points.

Although a continuous text search query can be seen as
a special case of continuous top-k monitoring, the above
method is not applicable to our problem. In text retrieval,
each term in the dictionary is considered a dimension. Since a
realistic dictionary typically contains more than 100,000 terms,
the dimensionality far exceeds the capabilities of the regular
grid (as spatial indexing suffers from the dimensionality curse
[27]). This is obvious from the experiments in [4], where the
processing cost increases exponentially with the dimensional-
ity and becomes prohibitive beyond 6 dimensions.

Another piece of relevant work in the data stream literature
is by Babcock and Olston [28], who introduce the concept
of distributed top-k monitoring. Their goal is to continuously
report the k objects with the largest cumulative score over a
set of stream sources. In order to reduce the communication
cost, they maintain arithmetic constraints at the stream sources
to ensure that the most recently reported answer remains
valid. When a constraint is violated, the corresponding source
reports it to the central server, which updates the top-k set and
assigns new constraints to the sources. Our target problem is
different from [28] since we deal with text queries over a single
document stream. Furthermore, while Babcock and Olston aim
at minimizing the network overhead, our goal is to minimize
the CPU cost at the server.

Query processing aside, research in text retrieval has consid-
ered (inverted) index maintenance in the presence of updates,
assuming disk-based storage and focusing mostly on document
insertions [29], [30]. Instead of directly updating the index for
new documents, batch insertions are used to reduce the number
of disk accesses. Specifically, in the intermittent merging
approach [31], [32], the inverted index is broken into two
parts: (i) an in-memory index for recently inserted documents,
and (ii) an on-disk index, which is periodically merged with
the in-memory one. Although our solution involves a dynamic
index, in our setting the index and documents are stored in

main memory, where the above batching/merging approach is
not beneficial [2]. Instead, we follow a direct update model
(see Section 4.1).

3 PRELIMINARIES
In this section, we present the problem formulation. We
also describe a preliminary solution which combines existing
techniques, and serves as a baseline to evaluate our methods.
Table 1 summarizes the notation used in the paper.

Symbol Description
T dictionary of all possible terms of interest
λ document arrival rate
N sliding window size
D set of valid documents (in the current window)
Q a continuous text query
q number of queries
n number of query terms
R query result list
k number of result documents

S(d|Q) similarity score of document d w.r.t. Q
Sk score of the k-th document in R
τ global/influence threshold
θQ,t local threshold of query Q for term t

TABLE 1
Notation

3.1 Problem Formulation
In our model, a stream of documents flows into a central
server. The users register text queries at the server, which is
then responsible for continuously monitoring/reporting their
results. As in most stream processing systems, we store all the
data in main memory in order to cope with frequent updates,
and design our methods with the primary goal of minimizing
the CPU cost.

Each element of the input stream comprises a text docu-
ment d, a unique document identifier (for simplicity, we also
denote the identifier as d), the document arrival time, and a
composition list. The composition list contains one 〈t, wd,t〉
pair for each term t ∈ T in the document1, and wd,t is as
defined in Section 2. We consider the append-only data stream
model [1], i.e., each document arriving at the server is new (as
opposed to being an update over an existing document). We
assume a count-based sliding window of size N so only the
N most recent documents participate in query evaluation; we
call these documents valid and collectively denote the current
window contents by D. Adaptation of our methods to time-
based windows is straightforward as we will show later.

In our monitoring model (assuming a count-based window),
a stream event refers to the arrival of a document and the
resulting expiration of another. Each stream event is fully pro-
cessed (i.e., the results of all queries are updated accordingly)
at the time it occurs, before handling the next event. While
the alternative of periodically processing events in batches

1. As in conventional document retrieval systems, the dictionary T of all
possible terms of interest is static, i.e., no terms are deleted or inserted.

5

at fixed timestamps may allow for computational savings, in
our work stream events are processed one by one as soon as
they occur, because we target time-critical applications where
query results must be up-to-date. Note that in the case of
a time-based window, document arrivals and expirations are
decoupled; therefore, each arrival or expiration is handled as
a separate event.

Each user query Q specifies the number of desired result
documents k, and a set of search terms. k is query-specific,
so different queries can request for a different number of
result documents. The query string is translated to Q =
{〈t1, wQ,t1〉, 〈t2, wQ,t2〉, . . . , 〈tn, wQ,tn

〉}, where the wQ,t fre-
quencies are defined in Formula (1). Any query terms that
are not in the dictionary are ignored. At any given time, the
query result R for Q is an ordered list of k entries, R =
{〈d1, S(d1|Q)〉, 〈d2, S(d2|Q)〉, . . . , 〈dk, S(dk|Q)〉}, where:
• Each document d ∈ R is inside the current window D,

and has similarity score S(d|Q);
• The result entries are sorted in non-increasing score order;
• All documents d /∈ R that are inside D have similarity

scores no larger than S(dk|Q); we denote S(dk|Q) as
Sk.

In this work we adopt the cosine similarity function as
defined in Formula (1), which involves only the term frequen-
cies (TF). Other measures for cosine similarity (as well as
the Okapi formulation [2]) additionally exploit the notion of
inverse document frequency (IDF), by introducing a multiplier
log N

ft
(where N is the total number of documents) to the

formulae for wQ,t and wd,t. In the context of streaming
documents, however, it is not clear whether the IDF should
be measured on the entire corpus, or be revised periodically
according to the recent documents. Since the choice entails an
evaluation of their impact on the quality of the query results
and is beyond the scope of this paper, we exclude the IDF
here. When a consensus emerges on the IDF definition, it can
be incorporated easily in our solution as weights associated
with the query terms.

3.2 Naı̈ve Solution
The most straightforward approach to evaluate the continuous
queries defined above is to scan the entire window contents D
after every update or in fixed time intervals, compute all the
document scores, and report the top-k documents. This method
incurs high processing costs due to the need for frequent
recomputations from scratch. An intuitive way to improve
performance is incremental evaluation, where the current query
result is derived by only computing updates over the previous
one.

A simple incremental technique is the following. D is stored
in a first-in-first-out list, so that updates due to window sliding
can be performed efficiently. When a query is evaluated for
the first time, its result is computed from scratch. Assume that
a document dins arrives subsequently, forcing an existing one
ddel to expire. First, we process dins; if S(dins|Q) ≥ Sk,
we insert dins into R. Next, we deal with the expiring ddel;
if ddel ∈ R, we delete it from R. After these updates, if
R contains more than k documents, we evict the last one

(in case of a tie at the last position, we evict the oldest
document). Otherwise, if R contains fewer than k documents,
we recompute R by scanning through D.

The above technique is incremental, but still performs many
recomputations from scratch. To reduce their frequency (and,
thus, boost performance), we combine it with the result main-
tenance technique of [26] described in Section 2.2. We refer
to the combined method as Naı̈ve algorithm. When a query
Q is first submitted to the server, its top-kmax documents are
computed and placed into R; kmax is set according to the
analysis in [26] (i.e., kmax = k +

√
N). Following that, R

is maintained by the procedure in Algorithm 1. Note that in
line 4 the result R of a query contains k′ documents, where
k ≤ k′ ≤ kmax. The pseudo-code assumes a count-based
sliding window. If a time-based one is used, then arrivals and
expirations do not occur concurrently. In that case, an arrival
(expiration) is handled by the same algorithm, except for lines
1, 8-11 (lines 2, 4-7, 12, 13, respectively) which are omitted.

Algorithm 1 Naı̈ve Maintenance Algorithm
algorithm Naı̈ve Maintenance(Arriving dins, Expiring ddel)

1: Delete document ddel from D (the system document list)
2: Insert document dins into D (the system document list)
3: for all queries Q in the system do
4: Let Sk′ be the smallest score in R
5: Compute S(dins|Q)
6: if S(dins|Q) ≥ Sk′ then
7: Add dins to R
8: if ddel ∈ R then
9: Remove ddel from R

10: if R contains fewer than k documents then
11: Scan D and place in R the top-kmax documents w.r.t. Q
12: if R contains more than kmax documents then
13: Keep in R only the top-kmax among them

The Naı̈ve approach is inefficient in handling updates. For
each arriving document dins, it needs to compute S(dins|Q)
for every query Q in the system (line 5). Also, for each
expiring document ddel, Naı̈ve needs to look into the result
R of every query to determine whether ddel ∈ R (line
8). An additional problem of the algorithm is in its top-k
computation (for first-time query evaluation and line 11 in
maintenance procedure), where scanning through the entire
D and computing the score of each valid document is time-
consuming. Due to these inefficiencies, Naı̈ve is not expected
to be able to cope with high document arrival rates and a large
number of user queries.

4 INCREMENTAL THRESHOLD ALGORITHM

In this section, we introduce our Incremental Threshold al-
gorithm. The quintessence of the algorithm is to employ
threshold-based techniques to derive the initial result for
a query, then continue to update the thresholds to reflect
document arrivals and expirations. The thresholds are used
to incrementally maintain the query result, and also to avoid
processing documents that have too low a similarity score
to affect the result. We first describe the supporting data
structures and indexes in Section 4.1, then elaborate on the
top-k computation module for first-time query evaluation in

6

Section 4.2. Following that, Sections 4.3 and 4.4 present the
Eager and Lazy result maintenance strategies, respectively.
Finally, Section 4.5 discusses the adaptation of our techniques
to query-specific sliding windows.

4.1 Data Structures
Figure 2 depicts the data structures in our system. The valid
documents D are stored in a single list, shown at the bottom of
the figure. Each element of the list holds the stream informa-
tion of a document (identifier, text content, composition list,
arrival time). D contains the most recent documents for both
count-based and time-based windows. Since documents expire
in a first-in-first-out manner, D is maintained efficiently by
inserting arriving documents at the end of the list and deleting
expiring ones from its head.

On top of the list of valid documents we build an inverted
index. The structure at the top of the figure is the dictionary
of search terms. It is an array that contains an entry for
each term t ∈ T . The dictionary entry for t stores a pointer
to the corresponding inverted list Lt. Lt holds an impact
entry for each document d that contains t, together with a
pointer to d’s full information in the document list. When a
document d arrives, an impact entry 〈d,wd,t〉 (derived from
d’s composition list) is inserted into the inverted list of each
term t that appears in d. Likewise, the impact entries of an
expiring document are removed from the respective inverted
lists. To keep the inverted lists sorted on wd,t while supporting
fast (logarithmic) insertions and deletions, we implement them
as red-black trees [33].

For each inverted list Lt, we maintain a book-keeping
structure termed threshold tree. It contains an entry 〈θQi,t, Qi〉
for each query Qi that includes t. Its use and that of the θQi,t

values, called local thresholds, will be explained shortly. At
this point, however, we mention that the threshold tree should
facilitate the efficient retrieval of all query identifiers for which
θQi,t is less than a given number w. To achieve this, we
implement the threshold tree as a red-black tree on the θQi,t

values.
Finally, we keep a query table (omitted from the figure)

which maintains the query information. Specifically, for each
Qi, the system stores the query string, the current result R, and
the influence threshold τ (discussed later). Actually, list R in
our method stores the top-k result plus some extra documents
that are necessary for fast result maintenance; two separate
lists could be used instead, but we choose to have a single R
list for ease of presentation and implementation.

4.2 Initial Top-k Search
When a query is first submitted to the system, its top-k result
is computed using the initial search module. The process is
an adaptation of the threshold algorithm described in Section
2.2. Here, the inverted lists Lt of the query terms play the
role of the sorted attribute lists. Unlike the original threshold
algorithm, however, we do not probe the lists in a round-
robin fashion. Since the similarity function associates different
weights wQ,t with the query terms, we favor those lists with
higher such weights. Specifically, inspired by [34], we probe

the list Lt with the highest ct = wQ,t · wdnxt,t value, where
dnxt is the next document in Lt. The global threshold τ , a
notion used identically to the original algorithm, is the sum of
ct values for all the terms in Q. We exemplify this procedure
in Figure 3, using the documents and index in Figure 2.

Consider query Q1 with search string {white white tower}
and k = 2. Let term t20 be “white” and t11 be “tower”. Ac-
cording to Formula (1), wQ1,t11 = 1/

√
5 and wQ1,t20 = 2/

√
5;

for ease of presentation, we eliminate the denominator
√

5
from both weights in our example. First, the server identifies
the inverted lists L11 and L20 (using the dictionary hash-table),
and computes the values c11 = wQ1,t11 ·wd7,t11 = 1 ·0.10 and
c20 = wQ1,t20 · wd6,t20 = 2 · 0.08. In Iteration 1, since c20 is
larger2, the first entry of L20 is popped; the similarity score
of the corresponding document, d6, is computed by accessing
its composition list in D (assume that S(d6|Q1) = 0.19), and
inserted into the tentative result list R. c20 is then updated to
0.12, reflecting the next entry in L20 (i.e., 〈0.06, d2〉). Accord-
ingly, the global threshold is set to τ = c11 + c20 = 0.22.

Iteration 2 pops the entry of d2 from L20 (because again
c20 > c11), computes its score, and inserts it into R. Iteration 3
proceeds similarly, probing however L11. There are two inter-
esting points in this iteration. First, R contains 3 entries. Since
k is only 2, one could argue that the last entry in R cannot
be part of the result and, thus, it can be evicted. However, our
algorithm does not discard any encountered documents from
R, but exploit them for query result maintenance in subsequent
re-evaluations (as explained in the next section). Second, the
entry 〈d6, 0.19〉 in R is verified. Since the score of d6 exceeds
the global threshold τ , there cannot be any other document
with a higher score. For this reason, we show this entry in bold.
Continuing the example, τ drops sufficiently low to verify the
second entry in R in Iteration 4. At this point, the search
procedure halts and returns {〈d6, 0.19〉, 〈d2, 0.17〉} as the top-
2 result. Note that the “extra” entry 〈d7, 0.15〉 need not be
verified and cannot be returned as a third top result, although
it remains in R.

Upon termination, we set the influence threshold of Q1

in the query table, and insert its local thresholds into the
corresponding threshold trees. The influence threshold is the
last value of τ (i.e., 0.16). There is one local threshold θQ1,t

for each t ∈ Q1, which is set to the wdnxt,t value of the
corresponding Lt. The threshold θQ1,t is inserted into the
threshold tree of Lt in the form of an entry 〈θQ1,t, Q1〉.
In our example, θQ1,t11 = 0.08 and θQ1,t20 = 0.04 are
inserted in the threshold trees of L11 and L20, respectively. The
influence and local thresholds are necessary for subsequent
result maintenance as discussed next.

We stress here that R contains both verified and unverified
documents. The former category includes documents that are
guaranteed to have the top scores in D, while there is no
such guarantee for the latter. The distinction between the two
subsets is implicit – those and only those R documents that
have a score higher than or equal to the influence threshold
τ are verified. This property is retained in subsequent result

2. In Figure 3, the larger value between c11 and c20 in each iteration is
typeset in bold.

7

List of valid documents

d7Input stream Expiring documents

Window size

t11

Term Dictionary

t20

t11= “tower” t20= “white”

L
1
1 : In

verted
 list fo

r t1
1

0.10, d7

0.08, d1

0.07, d5

0.05, d8

...

0.08, d6

0.06, d2

0.04, d4

...

0.03, d3

L
2
0
:
In
ve
rt
ed
 L
is
t
fo
r
t 2
0

d7, <text>, <comp. list>, <arr. time>

P
o
in
ter to

 d
7

Threshold tree

for L11

Q1
Threshold tree

for L20

Q1

Fig. 2. Data structures

Iteration c11/c20 τ Pop Entry R
1 0.10/0.16 0.26 〈0.08, d6〉 from L20 (with S(d6|Q1) = 0.19) 〈d6, 0.19〉
2 0.10/0.12 0.22 〈0.06, d2〉 from L20 (with S(d2|Q1) = 0.17) 〈d6, 0.19〉, 〈d2, 0.17〉
3 0.10/0.08 0.18 〈0.10, d7〉 from L11 (with S(d7|Q1) = 0.15) 〈d6,0.19〉, 〈d2, 0.17〉, 〈d7, 0.15〉
4 0.08/0.08 0.16 - 〈d6,0.19〉, 〈d2,0.17〉, 〈d7, 0.15〉 ← End

Fig. 3. Initial top-2 (k = 2) computation for query {white white tower}

maintenance steps.

4.3 Eager Result Maintenance
After the initial result computation, a straightforward monitor-
ing approach is to recompute from scratch the top-k result of
each Q (using the above procedure) after every update. This,
however, leads to unnecessary costs because:
• Most of the document arrivals/expirations do not affect

the query result. A query Q monitors only a very small
number of search terms (say, up to a dozen from a
dictionary with 100,000 terms). Consequently, most doc-
uments (either arriving or expiring) share no common
terms with Q, and hence have a zero similarity score.
Even when a document d contains some common terms
t, the document’s wd,t frequencies may be too small to
affect the current top-k result.

• Re-scanning the inverted lists from scratch, especially
those corresponding to popular terms that appear in many
documents, is an expensive procedure. Having spent the
cost to compute the initial top-k result, we should reuse
the work done to accelerate future re-evaluations.

Motivated by the above considerations, we propose an incre-
mental maintenance strategy that restricts processing to only
those updates that may affect the current top-k result. We base

our method on the fact that in order for an arriving/expiring
document d to alter the top-k result, its score must be at least
Sk, the score of the k-th document in R. Revisiting the initial
top-k search module, we observe that instead of Sk per se, we
could use the influence threshold τ and its break-down into the
local thresholds. Specifically, an arriving/expiring document d
may affect the result of Q if and only if it is inserted ahead
of Q’s local threshold in at least one of the inverted lists Lt

where t ∈ Q. Otherwise, d cannot cause any change to R and
can be ignored safely. The observation allows us to reduce
the maintenance cost for Q, by restricting processing to only
a small region of the term frequency space. In the rest of
this section we detail the processing of document arrivals and
expirations separately.

Consider the arrival of a document d. We first scan its
composition list and insert impact entries into the correspond-
ing inverted lists. For each of these lists Lt we perform the
following steps. We probe its threshold tree to identify all those
queries Qi where θQi,t ≤ wd,t; these queries are potentially
affected by d. For each of them, we compute S(d|Qi). If
S(d|Qi) ≤ Sk, the top-k result of Qi is not altered, but we
insert d into R; this is in the same spirit as the inclusion
of extra (unverified) documents into R in the initial top-k
search, and its purpose will be discussed shortly. Otherwise

8

t11 Term Dictionary

t20t11= “tower” t20= “white”

L11 .
.
.

L20

...

Local threshold
of Q1in L20

Lo
ca

l th
res

ho
ld

of
Q 1in L 11 0.10, d7

0.08, d1
0.07, d5
0.16, d9 0.08, d6

0.06, d2
0.04, d4
0.03, d3

.
.
.

R = {<d6,0.19>, <d2,0.17>, <d7, 0.15>}
(a) d9 arrives

t11 Term Dictionary

t20t11= “tower” t20= “white”

L11 .
.
.

L20

...

Local threshold
of Q1in L20Lo

ca
l th

res
ho

ld
of

Q 1in L 11 0.10, d7
0.08, d1
0.07, d5
0.16, d9 0.08, d6

0.06, d2
0.04, d4
0.03, d3

.
.
.

R = {<d9, 0.20>, <d6,0.19>, <d2,0.17>}
(b) After rolling up local thresholds

Fig. 4. Arrival handling in EIT

(S(d|Qi) > Sk), we insert d into the top-k result and “roll-up”
accordingly the local thresholds of Qi in all involved inverted
lists, reversing the steps of the threshold algorithm in Section
4.2. Note that now the ct values are defined by the preceding
entry in Lt, and we roll-up the list with the smallest ct value
each time. The roll-up process stops at the last iteration where
τ is still smaller than or equal to the new Sk. The rationale
behind the roll-up is that, since Sk has increased, we should
“shrink” the monitored region of the term frequency space in
order to reduce the number of future updates that need to be
handled. This is also the reason for choosing to roll-up the list
with the smallest ct value. d is processed only once for each
Qi even if d ranks higher than several of Qi’s local thresholds,
to avoid redundant computations.

To illustrate, consider again the example in Figure 2, and
assume that document d9 arrives at the server. Its impact entry
is highlighted in bold in the updated L11 in Figure 4(a). The
new document is inserted above θQ1,t11 , the local threshold
of Q1 in L11, therefore it is placed into R and its score
S(d9|Q1) = 0.20 is computed. Since S(d9|Q1) is larger than
the current Sk = 0.17, it enters the top-2 result which now
becomes {〈d9, 0.20〉, 〈d6, 0.19〉} with Sk = 0.19. Next, we
need to roll-up the lists. The ct values are defined by d7

and d2, respectively, yielding c11 = 0.10 and c20 = 0.12.
Since c11 < c20, we consider L11 for roll-up. Lifting its local
threshold to d7 would result in τ = 0.10+0.08 = 0.18, which
is still below Sk and is thus feasible; we update θQ1,t11 = 0.10
inside the threshold tree of L11, set the influence threshold
of Q1 to 0.18, and delete d7 from R because it is now
below all the local thresholds of Q1. Figure 4(b) shows the
updated system state. No further roll-up is possible at this time,
otherwise τ would exceed Sk and leave us without enough
verified documents. Altering the example, if the score of d9

was below Sk (although its impact entry is above θQ1,t11 in
L11), we would still include it in R as an unverified entry.

Consider now the expiration of a document d. To remove
it from the system, we delete its impact entry from the Lt

of every term t in d. For each of these lists Lt, we probe its
threshold tree to locate all the potentially affected queries Qi,
i.e., queries where θQi,t ≤ wd,t. For each such query Qi, we

know that d is inside R, be it verified or not. Also, we know
its score S(d|Qi); it is stored in R, so we do not need to
calculate it anew. If S(d|Qi) < Sk (i.e., d is not among the
top-k documents), we simply remove it from R. Otherwise
S(d|Qi) ≥ Sk (i.e., d is inside the current top-k result), and
we delete d from R; we also need to “refill” the result since
R now contains fewer than k verified documents.

To perform this “refill”, we do not re-run from scratch the
top-k search of Section 4.2. Instead, we resume the search
from where it had stopped previously, using the current list
R (that contains both verified and unverified documents) and
looking inside the involved inverted lists Lt from their local
thresholds downwards. This downward search follows the
same process as the initial top-k computation. The incremental
refill is possible only because we keep and maintain upon
updates all the unverified documents inside R. By definition,
to be able to only examine the lists downwards, we should have
maintained in R all valid documents d for which at least one
wd,t frequency is higher than the corresponding local threshold
θQi,t, and treat them in the same way as the initial search treats
any encountered document prior to termination (i.e., keep them
inside R).

Continuing the example in Figure 4(b), suppose that d6

expires as shown in Figure 5(a). While deleting its impact
entry from L20, we detect that it is above the local threshold of
Q1. We then look into R, determine that it is part of the current
top-2 result, and delete it from R. To refill the result, we
resume the top-2 search from the local thresholds downwards.
The current ct values are c11 = 0.10 and c20 = 0.08. Since
c11 > c20, we retrieve d7 from L11 and insert it into R with
a score of 0.15. The search terminates here with the top-2
result {〈d9, 0.20〉, 〈d2, 0.17〉} because the updated threshold
τ = wd1,t11 + 2 · wd4,t20 = 0.16 is lower than the new
Sk = 0.17. The final system state and R contents are shown
in Figure 5(b).

Algorithm 2 summarizes the above top-k maintenance
procedure. Combined with the initial top-k search module,
we term the resulting method Eager Incremental Threshold
algorithm (EIT), in accordance with its aggressive adjustment
of the local thresholds to their tightest position, i.e., to their

9

t11 Term Dictionary

t20t11= “tower” t20= “white”

L11 .
.
.

L20

...

Local threshold
of Q1in L20Lo

ca
l th

res
ho

ld
of

Q 1in L 11 0.10, d7
0.08, d1
0.07, d5
0.16, d9 0.08, d6

0.06, d2
0.04, d4
0.03, d3

.
.
.

R = {<d9, 0.20>, <d6,0.19>, <d2,0.17>}
(a) d6 expires

t11 Term Dictionary

t20t11= “tower” t20= “white”

L11
.
.
.

L20

...

Local threshold
of Q1in L20

Lo
ca

l th
res

ho
ld

of
Q 1in L 11 0.10, d7

0.08, d1
0.07, d5
0.16, d9 0.06, d2

0.04, d4
0.03, d3

.
.
.

R = {<d9, 0.20>, <d2,0.17>, <d7,0.15>}
(b) After refilling R

Fig. 5. Expiration handling in EIT

highest possible value. Note that in case of a time-based
window where arrivals and expirations do not necessarily
happen concurrently, the former are handled by lines 1-13 and
the latter by lines 14-24.

Algorithm 2 EIT Maintenance Algorithm
algorithm EIT Maintenance(Arriving dins, Expiring ddel)

1: Insert document dins into D (the system document list)
2: for all terms t in the composition list of dins do
3: Insert the impact entry of dins into Lt

4: Probe the threshold tree of Lt

5: for all queries Q where wdins,t ≥ θQ,t do
6: if Q has not been considered for dins in another Lt then
7: Compute S(dins|Q)
8: Insert dins into R
9: if S(dins|Q) ≥ old Sk then

10: Update Sk (since dins enters the top-k result)
11: Keep rolling-up local thresholds while τ ≤ Sk

12: Set new τ as influence threshold for Q
13: Update local thresholds of Q (in threshold trees)
14: Delete document ddel from D (the system document list)
15: for all terms t in the composition list of ddel do
16: Delete the impact entry of ddel from Lt

17: Probe the threshold tree of Lt

18: for all queries Q where wddel,t ≥ θQ,t do
19: if Q has not been considered for ddel in another Lt then
20: Delete ddel from R
21: if S(ddel|Q) ≥ old Sk then
22: Resume top-k search from local thresholds
23: Set new τ as influence threshold for Q
24: Update local thresholds of Q (in threshold trees)

4.4 Lazy Result Maintenance
In this section, we present an alternative top-k maintenance
strategy, which in conjunction with the initial search module,
forms our Lazy Incremental Threshold algorithm (LIT). The
maintenance technique of LIT is based on the observation that
tight (i.e., as high as possible) local and influence thresholds
do not necessarily guarantee the best performance.

Consider the arrival and expiration examples in Figures 4
and 5 again. The arrival of d9 rolls up the local threshold in
L11 and removes d7 from R (spending some cost on these

updates), only for the next stream event (expiration of d6) to
push the threshold down and rediscover/reinsert document d7

into R (spending some additional cost on resuming the top-
k search and readjusting the threshold). We could avoid the
wasted effort by allowing some leeway in the thresholds, i.e.,
we do not roll-up θQ1,L11 but keep d7 in R after the arrival
of d9. On the other hand, overly loose thresholds allow many
document arrivals and expirations to trigger update handling
unnecessarily (because they satisfy lines 5 and 18 in Algorithm
2 for many queries). The main issue that we address in this
section is how loose should the thresholds be and when to
tighten them. Our method is adaptive to the stream trends
and, although it involves an analysis, it dynamically makes
decisions based on easy-to-maintain actual measurements that
are taken on the fly.

Before presenting our analysis and decision making strategy,
we first explain how LIT maintenance differs from EIT. The
method essentially follows Algorithm 2, but we impose a Roll-
Up Condition (RUC) on threshold roll-up after a document’s
addition to the top-k result, i.e., we insert the test “if RUC
= TRUE” before lines 11-13. Intuitively, the threshold leeway
can be seen as a dynamic staircase function of time that grows
until RUC is satisfied, at which point the function reverts to 0
and the thresholds are set to their tightest values. The leeway
is then allowed to increase again until RUC resets it to 0, and
so on.

Figure 6 visualizes the term frequency space and the thresh-
olds of EIT and LIT at an arbitrary system snapshot, assuming
the two-term query Q1 in our running example. Let τE and τL
be the influence thresholds of EIT and LIT. By design τE ≥ τL
at all times, which means that R for LIT is a superset of that
for EIT. Let RE be the R list of EIT, and RL be that of LIT.

The hollow and solid marks on each axis correspond to
the local thresholds of EIT and LIT, respectively. Line lE
corresponds to EIT and is defined (by τE and the similarity
function) as τE = wd,t11 · 1/

√
5 + wd,t20 · 2/

√
5. Above lE ,

i.e., in the dark gray triangle, lie all the verified documents
in RE for EIT (i.e., exactly k = 2 documents). The two
light gray trapezoids contain all the remaining (i.e., unverified)
documents in RE . Line lL is similarly defined by τL and

10

local thresholds on L11

lo
ca

l t
hr

es
ho

ld
s o

n
L 2

0

d,t20w
1

10,0 d,t11w

lL

lE

Fig. 6. LIT versus EIT monitoring in the frequency space

corresponds to LIT. LIT maintains in RL all valid documents
that lie outside the striped rectangle, i.e., RL corresponds
to the area above lL and the trapezoids defined by its local
thresholds. Documents that lie above lL are verified (there are
more than or equal to k = 2 such documents).

Returning to the description of LIT, assume that RUC for
some query Q is checked at some point. This check involves
the estimates listed in Table 2. Pk(EX) is the probability that
a document expiration in D leads to a deletion from the top-k
result; such deletions correspond to the dark gray triangle in
Figure 6. PL(AR) and PL(EX) are the probabilities that a
stream event leads to an insertion into/deletion from RL. The
above three probabilities are estimated on the fly, by counting
the number of intervening stream events between the two most
recent ones of the corresponding type; e.g., if between the last
two insertions into RL there were 4 other stream events, then
PL(AR) = 1

4+1 = 20%.
Value Cu is the cost of an insertion/deletion in RL and

may be analytically estimated; e.g., with a red-black tree
implementation, Cu is logarithmic to the size of RL. Cr is
the cost of the last top-k refill (line 22 in the LIT-adapted
Algorithm 2) and is estimated by the recorded numbers of
score computations and insertions/deletions in RL during the
last resumption of the top-k search. The cost of a single score
computation may be analytically estimated in a way similar
to the cost of an insertion/deletion in RL.
PE(AR), PE(EX), and C ′u are the EIT counterparts of

PL(AR), PL(EX), and Cu, i.e., they correspond to in-
sertions/deletions into RE . Note that LIT does not explic-
itly maintain RE . Thus, estimating PE(AR), PE(EX), C ′u
requires (i) recording the local threshold values when the
k-th result document was verified and (ii) checking when
arrivals/expirations fall above at least one of these thresholds.

To decide RUC, we estimate the cost to process the next
stream event in case we do roll-up (CTRUE) and that in case
we do not (CFALSE). We consider these costs representative
of the update handling costs in the near future. If we roll-
up the thresholds of Q now, the cost at the subsequent event
CTRUE is identical to EIT:

Symbol Description
Pk(EX) prob. that an event is an expiration in top-k result
PL(AR) prob. that an event is an arrival into RL

PL(EX) prob. that an event is an expiration in RL

Cu insertion/deletion cost in RL

Cr last top-k refill cost
PE(AR) prob. that an event is an arrival into RE

PE(EX) prob. that an event is an expiration in RE

C′
u insertion/deletion cost in RE

TABLE 2
Maintained estimates in LIT

CTRUE = (PE(AR) + PE(EX)) · C ′u + Pk(EX) · Cr (2)

The factor (PE(AR) +PE(EX)) ·C ′u is the cost spent for
a document insertion or deletion in RE . The second factor
Pk(EX) ·Cr is the cost when an expiration occurs inside the
dark gray triangle, i.e., in the top-k result. The probability of
this case is Pk(EX) and its cost is Cr because the expiration
triggers a result refill (since the dark gray triangle previously
contained exactly k documents).
CFALSE , on the other hand, is the anticipated cost for the

next stream event if we choose not to roll-up the thresholds
now. The insertion/deletion costs in RL are captured as above,
the difference being that probabilities PE(AR) and PE(EX)
are replaced by PL(AR) and PL(EX), and cost C ′u by Cu.
Assuming the general case where τE > τL, the space above
lL contains more than k documents, so even if a verified entry
is deleted, we are still left with at least k others in RL and a
top-k refill is not needed. CFALSE is given by:

CFALSE = (PL(AR) + PL(EX)) · Cu (3)

Whenever RUC is checked (before line 11 in the LIT-
adapted Algorithm 2), we compare CTRUE with CFALSE

to determine which course of action has a lower anticipated
cost. As we demonstrate empirically in Section 5, this lazy
mechanism pays off, enabling LIT to significantly outperform
EIT (while both of our methods are much faster than Naı̈ve).

4.5 Query-Specific Sliding Windows

So far we have assumed a system-wide sliding window,
within which all documents are valid for every query. In
certain applications, the users may have different recency
timespans of interest and require query-specific window sizes
(that are upper-bounded by the system-wide window size).
The adaptation of our methods is easy, with the changes
concerning primarily the deletion handling procedure. Now,
each query maintains its own end-of-validity pointer at some
fixed offset inside the system’s document list, past which
documents are treated as expired. We maintain the document
identifiers included in R in a hash-table. Whenever a document
d expires for a query Q, we probe its hash-table to determine
quickly whether the expiration affects its result R. This check
replaces the condition in line 18 of Algorithm 2. Another

11

modification affecting the initial search and the top-k refill
procedure is that all impact entries additionally include the
document’s arrival time, so that those entries belonging to
documents that are outside the window of a query can be
ignored during its top-k search/refill.

5 EXPERIMENTS

5.1 Experiment Set-Up
Document stream: To form the document stream in our
experiments we use the WSJ corpus, which comprises 172,961
articles published in the Wall Street Journal from December
1986 to March 1992. After removing stopwords (common
words like “the” and “a” that are not useful for differentiating
between documents) and words that appear in only one doc-
ument, we are left with 181,978 terms for the dictionary. The
removal of these words is a standard step in document indexing
[35], and not specific to our methods. The WSJ documents
are streamed into the monitoring system, following a Poisson
process with a mean arrival rate of λ.

Query workload: Our default workload comprises queries
with terms selected randomly from the dictionary. The query
parameters that we examine are the number of concurrent
queries q, the number of search terms n, the number of result
documents k, and the sliding window size N . We use a count-
based window; the results for a time-based one are similar.

Our second workload comprises the TREC-2 and TREC-3
ad-hoc queries (topics 101 to 200) [36], which contain between
2 and 20 terms each. We use the TREC queries in our last
experiment only (Table 4), because they are too few (only
100) and do not allow us control over n.

Parameter setting: The algorithms evaluated are Naı̈ve, EIT,
and LIT. In each experiment we vary a parameter while setting
the remaining ones to their default values. The defaults are:
number of queries q = 1000, number of query terms n = 10,
number of results k = 10, sliding window size N = 1000,
arrival rate λ = 200 documents/second. Table 3 presents
the examined ranges for each parameter. All experiments are
performed on an Intel Xeon 3GHz CPU with 1GB RAM,
operating on Redhat Linux.

Parameter Value Range Default
Number of queries q 32 - 100,000 1,000

Number of query terms n 4 - 40 10
Number of result documents k 10 - 200 10

Sliding window size N 10 - 100,000 1,000
Arrival rate λ (documents/sec) 100 - 6,000 200

TABLE 3
Parameters and their examined values

5.2 Experiment Results
In our first experiment we vary the number of queries q from
32 to 100,000. Figure 7(a) shows the average turnaround
time, i.e., the elapsed time between the arrival of a new
document (which additionally causes the expiration of an

existing one) and the point where all the query results are
updated accordingly. Figures 7(b) and 7(c) drill down to the
time taken to process the arrivals, and the time spent to process
the expirations. Figure 7(d) shows the number of queries
updated per document arrival/expiration; Naı̈ve is omitted from
this chart because it updates all the queries for every stream
event. Figure 7(e) plots the average CPU utilization.

The costs of all methods increase linearly with the number
of queries. Naı̈ve is the slowest method, being more than an
order of magnitude costlier than EIT/LIT for q ≥ 1000. Its
inefficiency, obvious in both arrival and expiration handling
(Figures 7(b) and 7(c)), pushes the CPU utilization above
70% at just 4,800 queries. For q > 10000, the system
becomes unstable and thus the last measurements for Naı̈ve are
missing from the figures3. LIT is the most efficient method,
with an average 36% turnaround time improvement over EIT.
Interestingly, LIT is slower than EIT in arrival handling, and
updates more queries (because of its looser thresholds), but this
is offset by the dominating expiration handling cost and the
more frequent top-k refills of EIT. Looking at the results from
a different angle, Naı̈ve can process only 3,170 queries before
the turnaround time exceeds one second, whereas EIT and LIT
can accommodate more than 13,500 and 82,000 queries, re-
spectively, while still delivering sub-second turnaround times.

Next, we investigate the effect of the query length n. In
Figure 8 we vary the number of search terms n from 4 to 40,
while setting the remaining parameters to their default values.
In this and in the following figures, we omit the charts for
arrival and expiration handling times as Figures 7(b) and 7(c)
are representative of these costs.

With more search terms (i.e., larger n), an arriving/expiring
document has a higher chance of sharing common terms
with the queries. This leads to an increase in the number of
queries that need updating (see Figure 8(b)), and thus to a
longer turnaround time. Overall, Figure 8(a) shows that EIT
is about 10 times faster than Naı̈ve for queries comprising
4 search terms, and 6 times faster for 40-term queries. The
corresponding speed-up of LIT over Naı̈ve is 15 and 9 times.
In terms of CPU utilization (plotted in Figure 8(c)), Naı̈ve
does not reach the system’s limit here, despite incurring
significantly more computations than our algorithms.

In Figure 9, we vary N from 10 to 100,000 documents to
study the effect of the sliding window size. A larger window
holds more valid documents in the system. For Naı̈ve which
scans the entire D, this imposes a higher cost whenever the
top-kmax result needs to be recomputed. For EIT and LIT,
the inverted lists grow longer, leading to higher index up-
date cost and slower arrival/expiration handling. Interestingly,
the average number of queries that EIT updates upon each
document arrival/expiration declines steadily in Figure 9(b).
The reason is that a larger sliding window leaves high-scoring
documents in the query results for longer periods, so the k-

3. Note that for all three methods there is a q value (or scale in general)
above which the CPU utilization becomes too high, leading to significant
event queuing. In this situation, our model’s requirement for up-to-date results
is not feasible [37]. To deal with such a case, a practical implementation
would deviate from our formal problem definition, and switch to periodic
re-evaluation of all queries from scratch until the system load drops to
manageable levels.

12

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Queries

T
ur

na
ro

un
d

T
im

e
(m

se
c)

Naive
Eager
Lazy

(a) Turnaround time

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Number of Queries

In
se

rt
io

n
T

im
e

(m
se

c)

Naive
Eager
Lazy

(b) Arrival-handling time

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Number of Queries

D
el

et
io

n
T

im
e

(m
se

c)

Naive
Eager
Lazy

(c) Expiration-handling time

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

Number of Queries

of

 Q
ue

rie
s

U
pd

at
ed

Eager
Lazy

(d) Number of updated queries

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

Number of Queries
C

P
U

 U
til

iz
at

io
n

(%
)

Naive
Eager
Lazy

(e) CPU utilization

Fig. 7. Sensitivity to number of queries q

0 10 20 30 40

10
−1

10
0

10
1

Query Length

T
ur

na
ro

un
d

T
im

e
(m

se
c)

Naive
Eager
Lazy

(a) Turnaround time

0 10 20 30 40
0

10

20

30

40

50

Query Length

of

 Q
ue

rie
s

U
pd

at
ed

Eager
Lazy

(b) Number of updated queries

0 10 20 30 40
10

−1

10
0

10
1

10
2

Query Length

C
P

U
 U

til
iz

at
io

n
(%

)

Naive
Eager
Lazy

(c) CPU utilization

Fig. 8. Sensitivity to query length n

th best score Sk is higher on the average. This raises the
query thresholds, with the consequence that new documents
(expiring documents) are less likely to be inserted (deleted)
ahead of the local thresholds in the inverted lists. This however
is not the case for LIT, where the looser thresholds prevent it
from benefiting from the higher Sk values. Overall, EIT is 13
times faster than Naı̈ve for a window size of 10, and 18 times
faster when the sliding window comprises 10,000 documents.
The corresponding speed-up of LIT over Naı̈ve is 14 and 28
times. Note that the CPU utilization of Naı̈ve again approaches
100% for N > 10000 in Figure 9(c).

Next, in Figure 10 we observe the performance of the
methods for various arrival rates λ. Starting from λ = 100,
we increase it until we hit the limit of the methods, i.e.,
until the CPU saturates. Clearly, as the arrival rate increases,
so does the processing cost of all the methods, since more

stream events need to be handled and more changes occur
in the query results. The relative performance of the methods
remains the same though. Naı̈ve’s turnaround time exceeds
one second at just 850 documents/second, and it fails to scale
beyond λ = 1570. In contrast, EIT and LIT manage to process
up to 4,200 and 5,600 documents/second with sub-second
turnaround times. For EIT and LIT, the CPU saturates at
λ = 4560 and λ = 5750, respectively.

Figure 11 investigates the effect of the number of result
documents k. While setting the remaining parameters to their
defaults, we vary k between 10 and 200. The turnaround
time of Naı̈ve increases only slightly with k. In contrast,
EIT initially worsens as k increases; Sk drops and so do the
influence/local thresholds, leading to the processing of more
updates as shown in Figure 11(b). Interestingly, beyond k = 80
documents, EIT’s turnaround time starts to drop. On closer

13

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

Window Size

T
ur

na
ro

un
d

T
im

e
(m

se
c)

Naive
Eager
Lazy

(a) Turnaround time

10
1

10
2

10
3

10
4

10
5

0

4

8

12

Window Size

of

 Q
ue

rie
s

U
pd

at
ed

Eager
Lazy

(b) Number of updated queries

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

Window Size

C
P

U
 U

til
iz

at
io

n
(%

)

Naive
Eager
Lazy

(c) CPU utilization

Fig. 9. Sensitivity to sliding window size N

0 1500 3000 4500 6000
10

−1

10
0

10
1

10
2

10
3

Arrival Rate (Documents/sec)

T
ur

na
ro

un
d

T
im

e
(m

se
c)

Naive
Eager
Lazy

(a) Turnaround time

0 1500 3000 4500 6000
10

0

10
1

Arrival Rate (Documents/sec)

of

 Q
ue

rie
s

U
pd

at
ed

Eager
Lazy

(b) Number of updated queries

0 1500 3000 4500 6000
10

−1

10
0

10
1

10
2

Arrival Rate (Documents/sec)

C
P

U
 U

til
iz

at
io

n
(%

)

Naive
Eager
Lazy

(c) CPU utilization

Fig. 10. Sensitivity to document arrival rate λ

0 50 100 150 200
10

−1

10
0

Result Size

T
ur

na
ro

un
d

T
im

e
(m

se
c)

Naive
Eager
Lazy

(a) Turnaround time

0 50 100 150 200
0

4

8

12

Result Size

of

 Q
ue

rie
s

U
pd

at
ed

Eager
Lazy

(b) Number of updated queries

0 50 100 150 200
10

−1

10
0

10
1

Result Size

C
P

U
 U

til
iz

at
io

n
(%

)

Naive
Eager
Lazy

(c) CPU utilization

Fig. 11. Sensitivity to result size k

inspection, we find that a larger result size k increases the
probability that there are fewer than k matching documents in
the sliding window, i.e., there are not enough valid documents
with non-zero similarity score. When an expiring document
is removed from a query result that already contains fewer
than k entries, refilling the top-k result is unnecessary (and
thus avoided4) because D by definition does not contain any
other document with non-zero score. This fact significantly
lowers the expiration handling time, which is a major cost

4. This is an optimization implemented in both EIT and LIT. Even if we
had not implemented the optimization and instead resumed the top-k search,
it would terminate directly anyway, since the local thresholds would already
be at the end of the inverted lists involved.

factor. LIT exhibits a similar trend to EIT, but the fluctuations
of its turnaround time are much smaller. The reason is that
LIT performs much fewer top-k refill operations (whose cost
is most affected by k) than EIT. Overall, EIT is between 5 to
8 times faster than Naı̈ve, whereas LIT achieves a 14 times
speed-up over Naı̈ve across all result sizes.

Finally, Table 4 presents results for the TREC queries (with
q = 100). We use the default k = 10 and N = 1000, but set
the arrival rate to λ = 5000 documents/second. The reason
for choosing a higher arrival rate than the default (λ = 200)
in Table 3 is that for λ = 200 the running times were too
short and indistinguishable. Similar to previous experiments,
our methods outperform Naı̈ve, but now the performance gap

14

is even wider; EIT is 30 times faster than Naı̈ve, and LIT 45
times. The reason is that in the TREC workload there is some
correlation between the query terms that benefits the threshold-
based top-k search (compared to the synthetic queries in
which term distributions are independent). The results in
Table 4 testify to the practicality of our methodology and its
general superiority over Naı̈ve, since the TREC workload is
representative of natural language queries.

Performance Measure Naı̈ve Eager Lazy
Turnaround time (msec) 31.02 1.01 0.68

Arrival handling time (msec) 0.057 0.015 0.036
Expiration handling time (msec) 0.089 0.108 0.048

Number of updated queries 100 7.58 17.92
CPU utilization 93.04% 72.58% 46.88%

TABLE 4
Results for TREC queries

6 CONCLUSION
In this paper, we study the processing of continuous text
queries over document streams. These queries define a set of
search terms, and request continual monitoring of a ranked list
of recent documents that are most similar to those terms. The
problem arises in a variety of text monitoring applications,
e.g., email and news tracking. To the best of our knowledge,
this is the first attempt to address this important problem.

We propose two incremental threshold techniques, targeted
at reducing the processing cost for updating the query re-
sults. The first (EIT) eagerly adjusts the monitoring scope
according to the current query result. The second (LIT) allows
a dynamically adjustable leeway in the monitoring scope to
facilitate faster processing of document expirations. Extensive
experiments demonstrate that both approaches outperform sig-
nificantly a competitor constructed from previous techniques.
Between our algorithms, LIT is the method of choice in all
examined settings.

Currently, our study focuses on plain text documents. A
challenging direction for future work is to extend our method-
ology to documents tagged with metadata and documents
with a hyperlink structure, as well as to specialized scoring
mechanisms that may apply in these settings [38], [39].

REFERENCES
[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models

and Issues in Data Stream Systems,” in PODS, 2002, pp. 1–16.
[2] J. Zobel and A. Moffat, “Inverted Files for Text Search Engines,” ACM

Computing Surveys, vol. 38, no. 2, July 2006.
[3] Y. Zhang and J. Callan, “Maximum Likelihood Estimation for Filtering

Thresholds,” in SIGIR, 2001, pp. 294–302.
[4] K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitoring of

top-k queries over sliding windows,” in SIGMOD Conference, 2006, pp.
635–646.

[5] M. Persin, J. Zobel, and R. Sacks-Davis, “Filtered document retrieval
with frequency-sorted indexes,” J. Am. Soc. Inf. Sci., vol. 47, no. 10, pp.
749–764, 1996.

[6] V. N. Anh, O. de Kretser, and A. Moffat, “Vector-space ranking with
effective early termination,” in SIGIR, 2001, pp. 35–42.

[7] V. N. Anh and A. Moffat, “Impact transformation: effective and efficient
web retrieval,” in SIGIR, 2002, pp. 3–10.

[8] H. R. Turtle and J. Flood, “Query evaluation: Strategies and optimiza-
tions,” Inf. Process. Manage., vol. 31, no. 6, pp. 831–850, 1995.

[9] M. Kaszkiel, J. Zobel, and R. Sacks-Davis, “Efficient passage ranking
for document databases,” ACM Trans. Inf. Syst., vol. 17, no. 4, pp. 406–
439, 1999.

[10] T. Strohman, H. Turtle, and W. B. Croft, “Optimization strategies for
complex queries,” in SIGIR, 2005, pp. 219–225.

[11] S. E. Robertson and D. A. Hull, “The TREC-9 Filtering Track Final
Report,” in Text REtrieval Conference, 2000, pp. 25–40.

[12] Y. Zhang and J. Callan, “YFilter at TREC9,” in Text REtrieval Confer-
ence, 2000, pp. 135–140.

[13] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R.
Smith, “The Onion technique: Indexing for linear optimization queries.”
in SIGMOD Conference, 2000, pp. 391–402.

[14] V. Hristidis and Y. Papakonstantinou, “Algorithms and applications for
answering ranked queries using ranked views.” VLDB Journal, vol. 13,
no. 1, pp. 49–70, 2004.

[15] N. Bruno, S. Chaudhuri, and L. Gravano, “Top-k selection queries over
relational databases: Mapping strategies and performance evaluation.”
ACM Transactions on Database Systems, vol. 27, no. 2, pp. 153–187,
2002.

[16] C.-M. Chen and Y. Ling, “A sampling-based estimator for top-k query.”
in ICDE, 2002, pp. 617–627.

[17] D. Donjerkovic and R. Ramakrishnan, “Probabilistic optimization of top
N queries.” in VLDB, 1999, pp. 411–422.

[18] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid, “Joining ranked inputs
in practice.” in VLDB, 2002, pp. 950–961.

[19] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K. Elmagarmid,
“Rank-aware query optimization.” in SIGMOD Conference, 2004, pp.
203–214.

[20] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava,
“Ranked join indices.” in ICDE, 2003, pp. 277–288.

[21] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation Algorithms
for Middleware,” Journal of Computer and Systems Sciences, vol. 66,
no. 4, pp. 614–656, 2003.

[22] S. Chaudhuri, L. Gravano, and A. Marian, “Optimizing top-k selection
queries over multimedia repositories.” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 8, pp. 992–1009, 2004.

[23] M. Theobald, G. Weikum, and R. Schenkel, “Top-k query evaluation
with probabilistic guarantees.” in VLDB, 2004, pp. 648–659.

[24] A. Marian, N. Bruno, and L. Gravano, “Evaluating top-k queries over
web-accessible databases.” ACM Transactions on Database Systems,
vol. 29, no. 2, pp. 319–362, 2004.

[25] K. C.-C. Chang and S. won Hwang, “Minimal probing: supporting
expensive predicates for top-k queries.” in SIGMOD Conference, 2002,
pp. 346–357.

[26] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen, “Efficient Maintenance of
Materialized Top-k Views,” in ICDE, 2003, pp. 189–200.

[27] F. Korn, B.-U. Pagel, and C. Faloutsos, “On the ’Dimensionality Curse’
and the ’Self-Similarity Blessing’,” IEEE Transactions on Knowledge
and Data Engineering, vol. 13, no. 1, pp. 96–111, January 2001.

[28] B. Babcock and C. Olston, “Distributed top-k monitoring,” in SIGMOD
Conference, 2003, pp. 28–39.

[29] C. L. Clarke, G. V. Cormack, and F. J. Burkowski, “Fast inverted indexes
with on-line update,” Tech. rep. CS-94-40, Department of Computer
Science, University of Waterloo, Canada, 1994.

[30] N. Lester, J. Zobel, and H. Williams, “Efficient online index maintenance
for contiguous inverted lists,” Inf. Process. Manage., vol. 42, no. 4, pp.
916–933, 2006.

[31] N. Lester, A. Moffat, and J. Zobel, “Fast on-line index construction by
geometric partitioning,” in CIKM, 2005, pp. 776–783.

[32] S. Büttcher and C. L. A. Clarke, “Indexing time vs. query time: trade-offs
in dynamic information retrieval systems,” in CIKM, 2005, pp. 317–318.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Second Edition. The MIT Press, 2001.

[34] M. Persin, “Efficient implementation of text retrieval techniques,” Tech.
rep. (thesis), Royal Melbourne Institute of Technology, Australia, 1996.

[35] R. Baeza-Yates and B. R. Neto, Modern Information Retrieval. Addison
Wesley, 1999.

[36] TREC, “Text REtrieval Conference,” http://trec.nist.gov/.
[37] R. K. Abbott and H. Garcia-Molina, “Scheduling real-time transactions:

a performance evaluation,” in VLDB, 1988, pp. 1–12.
[38] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web

search engine,” Computer Networks, vol. 30, no. 1-7, pp. 107–117, 1998.
[39] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”

Journal of the ACM, vol. 46, no. 5, pp. 604–632, 1999.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2011

	Efficient Evaluation of Continuous Text Seach Queries
	Kyriakos MOURATIDIS
	Hwee Hwa PANG
	Citation

	tmp.1461901768.pdf.lCrY2

