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ABSTRACT
There has been a recent increase of interest in analyzing
trust and friendship networks to gain insights about rela-
tionship dynamics among users. Many sites such as Epini-
ons, Facebook, and other social networking sites allow users
to declare trusts or friendships between different members
of the community. In this work, we are interested in ex-
tracting direct antagonistic communities (DACs) within a
rich trust network involving trusts and distrusts. Each DAC
is formed by two sub-communities with trust relationships
among members of each sub-community but distrust rela-
tionships across the sub-communities. We develop an ef-
ficient algorithm that could analyze large trust networks
leveraging the unique property of direct antagonistic com-
munity. We have experimented with synthetic and real data-
sets (myGamma and Epinions) to demonstrate the scalabil-
ity of our proposed solution.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; J.4 [Computer Applications]: Social and
Behavioral Sciences—Sociology

General Terms
Algorithms, Experimentation

Keywords
Direct antagonistic community, Mining maximal bi-cliques,
Signed social network

1. INTRODUCTION
Each of us forms trust and distrust relationships with oth-

ers. With these relationships, communities are formed. At
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times, due to the nature of human interactions, some com-
munities exhibit antagonistic behaviors among their mem-
bers. Examples of such communities are many including so-
cial groups that hold differing opinions on topics such as in-
dustrialism vs. conservation, and formal organizations that
are direct competitors in a market.

Several researchers have studied the nature of antagonis-
tic communities [6, 5, 7]. It is well known that individual
level antagonism exists in any social network. However, the
existence of well “organized” form of antagonism between
sub-groups should be detected in an early stage because they
are potentially detrimental to the productivity and harmony
of the community. Moreover, identification of antagonistic
communities in the social networks could potentially open a
path to further study about the structure of the community,
the evolution of the community, etc.

Antagonistic communities on the other hand are not al-
ways bad. In some cases, they are actually welcomed. In
massively multiple player online games, gamers are expected
to form groups to fight with gamers that do not belong to the
same groups. Here, a game’s success depends very much on
antagonistic behaviors among different gamer groups. The
more antagonistic, the more challenging is the game.

In this study, our goal is to discover antagonistic communi-
ties automatically from their explicit trust and distrust rela-
tionships. We design a new graph mining algorithm to mine
antagonistic communities by leveraging past work on com-
putation of strongest connected components and bi-cliques.
We take as an input a large graph of trusts and distrusts.
From this graph, we would like to extract all pairs of user
groups where within each pair, each group forms a connected
trust network within themselves but distrusts members of
the other group.

The contributions of this work are as follows:
1 We propose a new problem of mining antagonistic

communities based on their explicit trust and distrust
links.

2 We build a novel algorithm by using existing building
blocks that have been shown to scale to large dataset
hence enabling our approach to scale too.

3 We experiment our approach to extract antagonistic
communities from real social networks, including a
trust-distrust network and a friend-foe network.

The structure of this paper is as follows. Section 2 de-
scribes related work. Section 3 describes some preliminary
definitions. Section 4 describes our approach. Experiments
are presented in Section 5. We conclude and discuss future
work in Section 6.



2. RELATED WORK
Vuong et al. [13] investigated content deletion between any

twoWikipedia users as a form of disputes between them, and
developed models to determine the degrees of controversy of
users and articles using the dispute information. Different
from Vuong et al.’s work, we mine direct antagonistic com-
munities from networks with trust-distrust/friend-foe links.

Social network researchers have conducted a number of
studies in signed networks (i.e., networks with both posi-
tive and negative relationships) in order to give more un-
derstanding about interaction between people in a commu-
nity. The social balance theory developed for signed net-
works identifies triads with all positive relationships and
triads with only one positive and two negative relationships
as the balanced structure constructs [9]. Triads of other
forms are known to be unbalanced. Dorean [8] studied how
to partition signed social network. Yang et al. [14] mined
communities in signed network using a heuristic clustering
approach. In this work, we capture a set of people that are
linked together by trust relationships and they also consis-
tently oppose a common set of “enemies” in online social
networks.

There are also several researchers who have studied inter-
group antagonism concept [6, 7]. This body of work how-
ever has not been widely validated on large online social
networks.

The enumeration of bi-cliques from graph data has been
studied before. Including in this body of work are the work
by Makino and Uno in [11] and Li et al. in [10]. The work
by Li et al. in [10], to the best of our knowledge, is the latest
in the series. They proposed a mapping between maximal
bi-clique mining to frequent itemset mining problem [4]. We
make use of their translation and extend their technique to
mine for Direct Antagonistic Communities (DACs). A DAC
is not a bi-clique, but some constraints within a DAC, in par-
ticular distrust relationships could be mapped to the prob-
lem of finding bi-cliques within a dataset. We use specific
nature of DACs to prune additional nodes. The resultant
technique scales well to mine from large real networks at
low minimum size threshold within 15 minutes.

The closest to our work is the very recent work by Zhang
et al. in [15]. Zhang et al. proposed an approach to mine
for antagonistic communities based on rating data. Differ-
ent from Zhang et al.’s work, in this work we mine for an-
tagonistic communities based on explicit trust relationships.
We believe explicit trust relationships are more reliable than
common or differing ratings. A user could trust another user
although they might have different “taste” on some common
items of interest. Also, due to the different nature of the
problem, there is a need to develop a new algorithm to mine
for direct antagonistic communities from explicit trust net-
works.

3. PRELIMINARIES & PROBLEM DEFN.
In this section, we first describe preliminary concepts and

definitions on graphs and frequent pattern mining. We then
formalize some new definitions and our problem statement.

3.1 Preliminaries
Some standard definitions of graph, strongly connected

subgraphs, strongly connected components, and bi-cliques
are given in Definitions 1, 2, 3, 4 respectively.
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Figure 1: A Direct Antagonistic Community.

Definition 1 (Graph). A graph is composed of a set
of nodes and edges and is denoted as G=(N,E). An edge is
a mapping from one node to another node.

Definition 2 (Strongly Connected Subgraphs). A
strongly connected subgraph (SCS) is a sub-graph G’ in a
larger graph G where: For each node n’ in G’, there exists
a series of edges in G’ connecting n’ to every other node in
G’.

Definition 3 (Strongly Connected Component).
A strongly connected component (SCC) is a strongly con-
nected sub-graph that is maximal in size.

Definition 4 (Bi-Cliques). A bi-clique is a graph who-
se nodes could be decomposed of two sets of nodes where:

1. There are no edges among the nodes in each set

2. Each node is connected to every node in the other set.

We denote a bi-clique as (L,R), where L and R are the two
sets of nodes having the characteristics described above.

Next, we describe some preliminary definitions of trans-
action database, mapping function, itemsets, frequent item-
sets and closed patterns in Definitions 5, 6, 7, 8 respectively.
These terms are commonly used in frequent itemset mining
first proposed in [4].

Definition 5 (Transaction DB & Mapping Func.).
A transaction is a set of items from a domain D. A trans-
action database DB consists of a bag of transactions. Let
map(S) be a mapping between a set of items S to the identi-
fiers of the transactions in the DB containing S.

Definition 6 (Itemset Patterns). An itemset pattern
is a set of items. Consider a transaction database DB, the
support of a itemset pattern P, is the number of transactions
in DB that are super-sets of P. The support of P is denoted
as sup(P).

Definition 7 (Frequent Itemsets). An itemset P is
a frequent itemset with respect to a transaction database
DB and a minimum support threshold min sup if sup(P) >
min sup.

Definition 8 (Closed Patterns). An itemset P is a
closed pattern, if P is frequent and there is no P’ where P’
⊇ P and sup(P’) = sup(P).

3.2 Definitions & Problem Statement
We take as input a network of users expressing trusts/

friendships and distrusts/foe relationships among themselves.
We refer to this network as a trust-distrust (T-D) network
defined in Definition 9.



Definition 9 (Trust-Distrust Network). A trust-
distrust (T-D) network is a graph whose nodes represent
individuals and edges represent trust relationships among
them. The edges are directed and are labeled with either:
trust (T) or distrust (D). The nodes are labeled with the
identifiers of respective individuals. A trust-distrust net-
work could then be denoted as G=(N ,E,NL,EL) where N ,
E, NL, and EL correspond to the nodes, edges, a mapping
from nodes to labels, and a mapping from edges to labels
respectively.

Our goal is to mine a set of communities of antagonistic
groups expressing explicit trust among themselves and dis-
trust with members of the opposing group/sub-community.
We refer to these communities as direct antagonistic com-
munities defined in Definition 10.

Definition 10 (Direct Antagonistic Community).
A Direct Antagonistic Community (DAC) is composed of
two sub-communities L and R. L and R are both SCSs with
respect to the directed trust edges. Furthermore L and R
form a bi-clique considering bidirectional distrust edges.

An example of such Direct Antagonistic Community (DAC)
is shown in Figure 1.

We are interested in DAC obeying a minimum size re-
quirement, i.e., |L| ≥ min size and |R| ≥ min size. We refer
to such DACs as significant DACs. In Figure 1, the DAC
example is significant if the minimum size threshold is set at
2; it would not be significant if the minimum size threshold
is set at 3.

We next introduce the concept of redundant DACs, but
first we need to describe sub-bi-clique operation. This is
defined in Definition 11.

Definition 11 (Sub-Bi-Clique). Consider a bi-clique
C = (L,R). We define a sub-bi-clique of C, as a bi-clique C’
= (L’,R’) where either L’ ⊆ L and R’ ⊂ R, or L’ ⊂ L and
R’ ⊆ R. A sub-bi-clique of a bi-clique is a bi-clique.

All sub-bi-cliques of a significant DAC are potentially sig-
nificant DACs. Thus to prevent an explosion on the num-
ber of DACs, we mine only a compact representation of
DACs. Given a set of mined DACs, we define redundant
ones based on Definition 12. Only non-redundant DACs
would be mined.

Definition 12 (Redundant DAC). Consider a set of
DACs ASET. One DAC a in ASET is deemed as redundant
iff there exists another DAC a’, where considering the bidi-
rectional distrust edges, a is a sub-bi-clique of a’.

With the above concepts and definitions, our problem def-
inition is as follows:

Problem Definition. Given a trust-distrust network and
a minimum size threshold min size, find all significant non-
redundant DACs.

4. MINING ANTAGONISTIC COMMUNITIES
In this section, we describe some properties of direct an-

tagonistic communities and present our algorithm to mine
them.

4.1 Properties
We use three properties in our mining algorithm outlined

below. First, Property 1 describes a rule governing a node’s
membership to a significant DAC.

Property 1 (Membership). Consider a node n in
graph G, if n is not a part of any SCSs of size min size, n
could not be a part of any significant DACs.

Proof. From Definition 10, each sub-community in the
DAC must be a SCS of size at least min size. Hence, such
a node n could not be a part of any DACs.

Next, Property 2 describes the relationship between a
strongly connected subgraph and a strongly connected com-
ponent in a trust-distrust network.

Property 2 (SCS and SCC). Every Strongly Con-
nected Subgraph (SCS) must be a part of a Strongly Con-
nected Component (SCC).

Proof. From Definitions 2 & 3, a SCS could either be a
SCC, or there is a super-graph of SCS which is a SCC.

We now define a new operation to convert a graph to a
transaction database.

Definition 13 (Graph to Transaction DB). The
GTD operation converts a graph G to a transaction database
DB by creating a new set of transactions t = {g’|(g,g’) ∈
G.Edges} for each node g in G and affixing the identifiers of
g and g’ to t. The resultant set of transactions is the result
of the operation GTD(G).

Figure 2 illustrates the GTD operation to derive a trans-
action database. With this operation, the duality between
bi-cliques and closed patterns is established by Property 3.

Adjacency Matrix
V1 V2 V3 V4 V5

V1 0 1 1 1 0
V2 1 0 1 1 1
V3 1 1 0 1 0
V4 1 1 1 0 1
V5 0 1 0 1 0

id itemsets
V1 V2, V3, V4
V2 V1, V3, V4, V5
V3 V1, V2, V4
V4 V1, V2, V3
V5 V2, V4

V1 V2

V3 V4

V5

Figure 2: Graph to Transaction DB Operation

Property 3 (Bi-cliques and Patterns: Duality).
Consider a graph G and a transaction database GTD(G).
The set of all bi-cliques correspond to the set {(c,map(c))|c∈
CLS} where CLS is the set of all closed patterns in GTD(G).

Proof. The above property has been proven in [10].

4.2 Proposed Algorithm
A Direct Antagonistic Community (DAC) has two basic

requirements based on the trust and distrust relationships.
On one hand, each community must form trust network in
the form of strongly connected component. On the other
hand, members of one community must form distrust rela-
tionships with all members of the other community. To mine
for DACs, we perform the following steps:



1. Project input trust-distrust network g, to a graph gt
keeping only trust edges in graph g.

2. Extract SCCs from gt of size more than the minimum
support size min size. These are candidate communi-
ties of DACs. Nodes that are not part of SCCs of size
at least min size could not be part of any DACs (see
Properties 1 & 2). We keep the set of nodes N+ =
{n|n is a node in the identified SCCs}.

3. Project the input trust-distrust network g, to a graph
gd keeping only nodes in N+ and bidirectional distrust
edges.

4. Identify the set of maximal bi-cliques BCQ from gd
using Property 3.

5. For each bi-clique in BCQ with set of nodes nb, project
the input trust-distrust network g, to a graph gnb keep-
ing only nodes in nb and their trust edges. Find SCCs
from the projected network gnb . Each SCC satisfying
min size is a part of a DAC.

6. Eliminate redundant DACs. There could still be re-
dundant DACs at the end of step 5. This is the case
even after we mine for maximal bi-cliques of distrust
at step 4, the DACs are sub-bi-cliques of the maximal
one. We iterate through the set of DACs generated
at step 5 and remove redundant ones based on Defini-
tion 12.

As a running example, we consider the graph shown in
Figure 3 (Left). The graph contains trust edges (denoted as
solid arrows) and bi-directional distrust edges (denoted as
dashed bi-directional arrows).

Pruning by Trust: Steps 1 & 2. First, we prune can-
didate nodes based on trust relationships. Distrust edges
are removed from the projected graph. Based on this trust
graph, our goal is to throw away nodes which are not part of
any large enough trust networks. Due to the nature of the
trust network, the number of links of the nodes in the net-
work follows power law, i.e., most nodes are not connected
to any other nodes. Hence, a large number of nodes could
be removed from the consideration.

To realize this goal, we employ Tarjan’s algorithm [12],
that could compute maximal SCCs by a single depth-first
search pass on the trust network. Hence, it is very scalable
as the runtime cost is linear to the size of the graph. We
extract nodes that are part of a maximal SCC with size ≥
min size.

Example.Consider min size threshold being set to 2. From
the example T-D network described in Figure 3 (Left), there
are two SCCs. The first SCC consists of the set {V1,V2}.
The second consists of the set {V4,V5,V6,V7}. The two
SCCs are drawn in Figure 3 (Right). Hence we only retain
nodes in the set {V1,V2,V4,V5,V6,V7} to be considered in
the next step.

Pruning by Distrust: Steps 3 & 4. At these steps,
we focus on the strong (i.e., bi-directional) distrust relation-
ships. We project the input trust network, by removing
trust edges and non bi-directional distrust edges. Two sub-
communities in a direct antagonistic community must form
a bi-clique with respect to the bi-directional distrust edges.

V1

V2

V4

V5

V6

V3

V7

(a)

V1

V2

V4

V5

V6

V3

V7

(b)

Figure 3: Running Ex.: T-D Network (Left) & Two
SCCs (Right)

TID Itemset
V1 {V4,V5,V6}
V2 {V4,V5,V6}
V4 {V1,V2}
V5 {V1,V2}
V6 {V1,V2}
V7 {}

Table 1: Running Ex.: Transaction DB

To realize the goal, we adapt a recent algorithm in [10]
that extracts maximal bi-cliques from a graph following Prop-
erty 3. The algorithm would return all maximal bi-cliques
from the input bi-directional distrust network.

Example. Consider the distrust network projection on nodes
{V4,V5,V6,V7} we come the network shown in Figure 4
(Left). This network is then converted to a transaction
database shown in Table 1. Mining for closed patterns from
this transaction database would result in the set of patterns:
{{V1,V2}, {V4,V5,V6}}. This would correspond to one
maximal bi-clique with L = {V1,V2} and R = {V4,V5,V6}.
Formation of DACs : Step 5. Each maximal bi-clique
mined at step 4 is not necessarily a DAC as each of the
two sets in the bi-clique is not necessarily a connected trust
community. A bi-clique could map to 0 or more DACs.

Following Definition 11, every sub-biclique of a bi-clique
is a bi-clique and hence satisfies the distrust requirement.
Hence, we could extract sub-bi-cliques SBQ from each bi-
clique in which each of the two sets of nodes forms a SCS of
size larger than min size.

To realize this, we process each bi-clique BCQ identified in
step 4. For each of the two sets of nodes in BCQ, i.e., BCQ.L
and BCQ.R, we find SCSs on the projected trust network
containing nodes in BCQ.L/BCQ.R. These operations would
result in two sets of SCSs. Pairing one SCS from one set with
another from another set, would form a DAC which could
then be included in the final result.

Example. Considering the maximal bi-clique with L = {V1,
V2} and R = {V4,V5,V6}, the projection over the trust-
distrust network is shown in Figure 4 (Right). From this
projection, we could identify a DAC consisting of nodes
{V1,V2} which is opposing nodes {V4,V5}. This DAC is
shown by the red circles in the figure.

Removal of Redundant DACs : Step 6. Usually, there
are no or few redundant DACs left at the end of step 5. The
running example is one of such cases. However, there exist
corner cases where redundant DACs are present. This is the
case as mined DACs are sub-bi-cliques of the maximal bi-
cliques mined at steps 3 & 4. We remove redundant DACs
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Figure 4: Running Ex.: Distrust Projected Net-
work (Left) & Resultant Projected Network and The
Mined DAC (Circled in Red) (Right)

by analyzing the list of DACs mined at step 5 and detect
for redundancies based on Definition 12. We do this by
comparing each DAC with every other larger DAC mined at
step 5; each of these comparisons simply involves checking
for subset relations among sub-communities of two DACs
which is sufficient to decide whether one is a sub-bi-clique
of the other.

We invite interested readers to [1] to investigate a corner
case for T-D network where redundant DACs still exist after
step 5 of the algorithm.

Pseudocode. Our algorithm’s pseudocode is shown in Fig-
ure 5. At line 1, we perform graph projection and extract
only the trust network from the input T-D network. At lines
2-3, we perform SCC computation and extract nodes that
participate in an SCC of size at least min size. At lines 4, we
extract bi-directional distrust network from the input T-D
network. This network is then converted to a special trans-
action database, and bi-cliques are identified via a closed
itemset mining algorithm (lines 5-6). At lines 7-16, we check
each bi-clique if it corresponds to zero, one, or more direct
antagonistic communities of size at least min size. At lines
10-11, we construct SCCs from the left and right set of nodes
of each bi-cliques considering only trust links. We remove
SCCs with size less than min size at line 12. These SCCs
are then composed to form direct antagonistic communities
(lines 13-15). A non-redundancy check is performed at line
16.

4.3 Baseline Algorithm
The search space of all possible DACs is the set of all

possible combinations of members in the T-D Network. As a
baseline algorithm we perform a standard depth-first search
traversal of this search space. We start with sets of users
with one member and then grow each of these sets by adding
additional members one by one. At each step of the process,
we check if the set is a DAC. Due to space limitation, we
present our baseline algorithm in [1].

5. EXPERIMENTS & ANALYSIS
To evaluate the scalability and efficacy of our approach,

we experiment with both synthetic and real datasets. We
build our own synthetic trust network generator that gener-
ates networks of different sizes for scalability test. We also
consider two real datasets, a trust/distrust network from
Epinions [3] and a friend/foe network from myGamma mo-
bile social network site [2]. All these networks include both
positive and negative edges.

The Epinions and myGamma datasets have 56,371 and
629,086 user nodes respectively, and about 250K and 8.1M

Procedure Mine Direct Antagonistic Communities
Inputs: G: Trust-Distrust Network;

min size: Minimum size threshold;
Outputs: Direct antagonistic communities with each opposing

sub-community’s size ≥ min size;
Method:
1: Let Gt = Project trust network from G;
2: Let SCCList = Get maximal SCCs from the graph Gt

by running [12];
3: Let N+ = {n | n∈s1 ∧ s1∈SCCList ∧ |s1| ≥ min size};
4: Let Gd = Project bi-directional distrust network in G

for nodes in N+;
5: Let TDis = GTD(GDis);
6: Let CP = Mine for closed itemsets from TDis with

minimum support = min size;
7: For each p in CP
8: If |p| ≥ min size
9: Let BC = Form bi-clique (p,map(p));
10: Let LT = Construct trust SCCs from nodes in BC.L;
11: Let RT = Construct trust SCCs from nodes in BC.R;
12: Remove SCCs from LT and RT with size < min size;
13: For each pair l ∈ LT and r ∈ RT
14: Create a new DAC adc from l and r;
15: Add adc to Result;
16: Remove redundant DACs from Result;
17: Output Result;

Figure 5: Mine Direct Antagonistic Communities

Network # Nodes # +ve Links # −ve Links
Epinions 47,910 208,531 1,071

(∼ 99.49%) (∼ 0.51%)
myGamma 611,211 7,563,927 570,066

(∼ 92.99%) (∼ 7.01%)

Table 2: Real Datasets: Statistics

links. As not all users have links, we remove those without
trust/friendship or distrust/foe links and obtain the num-
bers of nodes as shown in Table 2. Both real datasets have
more than 90% positive links. myGamma is has roughly
12.7 times more nodes and 38.8 times more links compared
with Epinions.

We run our algorithm on an Intel(R) Core(TM) 2 2.13GHz
PC with 2 GB of RAM running 32-bit Windows XP, Service
Pack 3. The algorithm is written in Visual C#.Net.

We describe our scalability experiments in the following
subsections. We have also performed an efficacy study; how-
ever, due to space limitation, we move its description to a
technical report [1].

5.1 Scalability Experiment using Synthetic
Datasets

We develop a synthetic trust network generator that uses
three input parameters, i.e., |N | (i.e., the number of nodes
in the graph), |E| (i.e., the number of edges in the graph),
and τ (proportion of distrust links). By varying the three
parameters, networks of different sizes (i.e., |N | and |E|) and
composition of trust and distrust links (τ ) can be generated.
We present detail steps of our synthetic network generation
process in [1].

Five synthetic trust networks have been created with:
(a) |N |=100, |E|=6,000, τ=0.4; (b) |N |=150, |E|=13,500,
τ=0.4; (c) |N |=500,000, |E|=15,000,000, τ=0.1; (d) |N |=800,
000, |E|=38, 400,000, τ=0.1; (e) |N |=1,000,000, |E|=6,000,
000, τ=0.1. We mine DACs from these synthetic T-D net-
works with min size set to 2 using our proposed algorithm



Dataset Proposed Algorithm Baseline Algorithm
(a) 0.297 s 372.930 s
(b) 0.937 s 2,985.169 s
(c) 127.333 s >24 hours
(d) 360.771 s >24 hours
(e) 812.989 s >24 hours

Table 3: Running Time for Synthetic Network

Epinions myGamma
min size Time (s) |DACs| Time (s) |DACs|
1 3.875 562 844.727 50455
2 1.703 21 82.958 50
3 1.641 7 78.397 4
4 1.641 1 76.95 0
5 1.609 0 81.164 0

Table 4: Time & |DACs|: Epinions and myGamma

and our baseline algorithm (with maximumDAC size thresh-
old set at 51). We show the running time for each synthetic
trust network using our proposed algorithm and our baseline
algorithm in Table 3..

From Table 3, we show that our approach is able to ef-
ficiently process a large network of 1 million nodes using a
low min size threshold within 14 minutes. We also observe
that the running time increases with the network size. This
is particularly due to the computational overhead of mining
bicliques in the algorithm. We also notice that our proposed
approach is more than 1,000 times faster than the baseline
approach. The baseline approach is not able to complete
within one day for the larger T-D networks (i.e., network
(c)-(e)). This result shows the power of our proposed prun-
ing strategies.

5.2 Scalability Experiments using Real Datasets
The running times for mining DACs on Epinions and

myGamma datasets at various minimum size thresholds us-
ing our proposed approach are shown in Table 4. Our base-
line approach is not able to complete for these datasets. We
show the number of direct antagonistic communities mined
along with the time needed to mine them.

As shown in Table 4, our algorithm completes extracting
all DACs from the Epinions dataset within 3.875 seconds.
We do not find any large DACs with sub-community size
≥ 5, as there are zero antagonistic communities when the
size threshold is set to be 5. On the myGamma dataset, the
running time ranges from 81.164 seconds (for min size=5)
to 844.727 seconds (for min size= 1). The running time
required is larger than that for Epinions data due to larger
data size. We also notice that there are more DACs mined
from myGamma. However, interestingly, proportion-wise,
Epinions dataset has DACs of slightly larger sizes. myGamma
does not have any DACs of size 4 and above.

6. CONCLUSION AND FUTURE WORK
In this study, we analyze large graphs of trust and distrust

to extract direct antagonistic communities (DACs). Within
a DAC there are two opposing sub-communities. We pro-
pose a new framework to extract DACs efficiently from large

1The largest size of maximal DACs reported by our ap-
proach in dataset (a) is 5 which we use to set this threshold.

networks. Our approach consists of several steps including:
pruning of nodes not involved in any trust network, detec-
tion of bi-directional distrust bi-cliques among two sets of
users, formation of DACs from distrust bi-cliques, and de-
tection of redundant DACs. Experiments have been con-
ducted on both synthetic and real datasets. On the synthetic
dataset our approach is able to scale to 1,000,000 nodes
and 6,000,000 edges. Our approach could also run on two
medium-large real datasets from Epinions and myGamma
within a reasonable time. Our approach uses less than 5
seconds to extract DACs from Epinions dataset that has
more than 250,000 links among more than 560,000 mem-
bers. Moreover, our approach needs less than 15 minutes to
deal with myGamma dataset that has more than 8 millions
links among more than 600,000 members.

As future work, we plan to investigate the evolution of
DACs as a social network changes over time. Also, we plan
to investigate factors leading to the creation of antagonistic
communities.
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