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Spreadsheet Data Resampling for Monte-Carlo Simulation

Abstract
The pervasiveness of spreadsheet software resulted in its increased application as a simulation tool for business
analysis. Random values generation supporting such evaluations using spreadsheets are simple and yet
powerful. However, the typical approach to Monte-Carlo simulations, which is what simulations with
stochasticity are called, requires significant amount of time to be spent on data collection and distribution
function fitting. In fact, the latter can be overwhelming for undergraduate students to do properly in a short
time. Resampling eliminates both the need to fit distributions to the sample data, and to perform the ensuing
tests of goodness of fit, where sufficiently large data sets are necessary to achieve satisfactory levels of
statistical confidence. In contrast, resampling methods can be used even with small data sets. This not only
saves class time required to teach statistical data fitting; by generating random values, students also need not
learn to use the more complex distribution function inversion method and can better focus on learning
business modeling and analysis.
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Abstract 
The pervasiveness of spreadsheets software resulted in its increased application as a simulation tool for 

business analysis. Random values generation supporting such evaluations using spreadsheets are simple 

and yet powerful. However, the typical approach to Monte-Carlo simulations, which is what simulations 

with stochasticity are called, requires significant amount of time to be spent on data collection, data collation, 

and distribution function fitting. In fact, the latter can be overwhelming for undergraduate students to learn 

and do properly in a short time. Resampling eliminates both the need to fit distributions to the sample data, 

and to perform the ensuing tests of goodness-of-fit, where sufficiently large data sets are necessary to 

achieve satisfactory levels of statistical confidence. In contrast, resampling methods can be used even with 

small data sets. This not only saves class time required to teach statistical data fitting; by generating random 

values, students also need not learn to use the more complex inverse distribution function method and can 

better focus on learning business modeling and analysis. 

 
Keywords: Resampling, Monte-Carlo Simulation, Spreadsheet 

 

1. Introduction 

Increasingly spreadsheets have been used as a teaching tool to perform Monte-Carlo 

simulation due to its ease of use, intuitive environment and user friendliness as 

compared to learning a simulation application package. Craft [1] used Microsoft ExcelTM 

to teach Monte-Carlo experiments to undergraduates in an econometrics course. He 

commented that most students have experience with spreadsheets and could easily pick 

up new modeling techniques. Judge [2] presented an exercise to help students 

understand the meaning of the sampling distribution of a least squares regression 

estimator, and the way in which the properties of the sampling distribution reflect the 

characteristics of the regression model itself. He also highlighted that students should be 

aware of the limitations of using a spreadsheet package for large scale Monte-Carlo 

simulations and recognized the benefits of using dedicated statistics and econometrics 

software tools for more advanced modeling. 
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The exercises described in this article were one of the many exercises taught over a 

period of thirteen weeks (three hours each week) to mostly second year undergraduate 

students in a business modeling course. 

2. Exercises 

The exercises described in this article illustrate several alternatives to resample raw data. 

Unlike bootstrapping which actually resamples data as a method of drawing statistical 

inference about a data set, we resample to generate representative data as inputs for 

Monte-Carlo simulations. From past teaching experience, we observed that students find 

it easier and quicker to apply data collected directly into simulation exercises without 

spending too much effort pre-processing the raw data. The pre-processing work 

includes tabulating the data into frequency tables, plotting histogram or cumulative 

graphs, selecting and fitting suitable theoretical distribution functions, and performing 

goodness-of-fit tests. Class time can be spent more effectively on experimenting and 

analyzing different business scenarios rather than overcoming complicated statistical 

goodness-of-fit concepts and using inverse distribution functions to simulate the data. 

The three types of methods deliberate demonstrated in the exercises, all contained 

within an Excel workbook, are: 1) resampling from frequency bins, 2) resampling from 

discrete raw data, and 3) resampling from continuous raw data with interpolation.  

 

2.1 Resampling from frequency bins 

In this exercise, we demonstrate how resampling can be applied using a frequency table 

with simple Excel functions. With some minor adjustments, this is easily executed using 

the LOOKUP function. In Excel, the binRange column array in a frequency table 

contains the upper limits of data value intervals while the LOOKUP function needs the 

lower limits of these intervals as input. For the LOOKUP function to perform properly, 

the cumulative relative frequency (CumRF) column array referred to has to be off-

shifted up by one row as shown in Figure 1. 

 

Step 1: Compute the Cumulative Relative Frequency (CumRF) 

CumRF is given by Ii=SUM(E$8:Ei)/I$5 for the ith row 

where E$8:Ei is the sum of frequencies up to the ith bin, and  

 I$5=SUM(E8:E12) is total of all the frequency counts. 

 

Step 2: Add a random variable 

Create a random function at I16=RAND(). 

Apply the same function to range I17:I25. 

 

Step 3: Compute the number of children encountered in the 10 households 

The number of children (resampledValue) can by computed in a formula using a 

LOOKUP function as follows: 

J16=LOOKUP(I16,I$8:I$12,H$9:H$13) 
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where  I16 has the random value generated by the RAND function, 

 I$8:I$12 is the CumRF range as the lookupArray, and  

 H$9:H$13 is the number of children as the corresponding valueArray. 

 

The LOOKUP function seeks out the largest value in the lookupArray that is less than or 

equal to the random value generated by the RAND function and returns the 

resampledValue in the corresponding relative position in the value array. The function 

RAND generates a random real number greater or equal to zero and less than one. 

 

This method is not as easy to teach as envisaged, because of the need to do the off-

shifting of cumulative relative frequency column array and other complications to be 

explained, although many textbooks on business analysis using spreadsheets apply it. 

The approach is however often applied incorrectly when the data values are discrete 

values with ranges larger than a handful. The frequency table for variables with larger 

ranges, which in itself requires some effort to put up, uses intervals instead of single 

values in the bins in order to summarize and reduce the data into interval categories. 

This is so that intervals will have some frequency counts, instead of being just a series of 

zeros and ones. Students must be careful to use the interval mid-values, not the bin 

values, as the valueArray as they tend to do. With the interval binning, there is also 

some degree of information loss. (Leong [3] provided further details on this.) The 

method of resampling from frequency bins is shown to the class for completeness rather 

than as a useful and practical general approach. . This method of resampling is 

equivalent to sampling of the discrete variable from the sample’s inverse empirical 

distribution. 

 

2.2 Resampling from discrete raw data 

In student projects, the quantity of data points collected is often small due to the limited 

time available to complete the assignment. The inverse distribution function method 

may not be appropriate for small data sets since curve fitting to establish the right 

distribution as discussed earlier would not be possible. To resample discrete data with 

small ranges in Excel, a simple way is to make use of the SMALL function incorporated 

with the RANDBETWEEN function as shown in Figure 2. Hurley [3] employed a similar 

approach with the SMALL function but used (INT(COUNT(data_range)*RAND())+1) in 

place of RANDBETWEEN function for the same discrete random number generation 

purpose.  

 

This exercise involves computing the number of bowls of noodles consumed by a person 

based on a collected sample data set. It is important to note that in Microsoft WindowsTM 

versions of Excel the RANDBETWEEN is only available after the AnalysisToolpak is 

activated. To do this, select “Tools” and then “Add-ins” from the main menu and check 

the “Analysis Toolpak” option. Excel running on Apple Mac personal computers may 

not require any special activation. 
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Step 1: Compute the probable number of bowls of noodles consumed in a large party based on a 

sample collected from a small gathering 

Number of bowls of noodles is given by 

J8=SMALL($B$8:$F$12,RANDBETWEEN(1,$J$6)) 

where  $B$8:$F$12 is the valueRange of the sample data set,  

 $J$6 contains the count of the values in the sample data set, 

 RANDBETWEEN(1,$J$6) generates a random integer between 1 and sample data 

set number count, and 

SMALL(valueRange, k) returns the kth smallest value in the valueRange. 

 

Step 2: Replicate the formula in cell J8 to all cells in range J8: S27 

 

The SMALL function implicitly sorts values in the valueRange $B$8:$F$12 in ascending 

order while the RANDBETWEEN function returns a random integer within the range 

specified by its two arguments. The SMALL function uses this integer value to select the 

resampling position in the array of (ascending order) sorted sample data values. This 

method of resampling is also equivalent to sampling of the discrete variable from the 

sample’s inverse empirical distribution. 

 

2.3 Resampling from continuous raw data with interpolation 

For the two resampling methods discussed in the above sections, the possible outcome 

of the resampled data set should be values represented in the raw data set. As a 

consequence, to get reasonable resampled values, a rather large data sample with many 

of the data values represented would be required if the data population has a wide 

range. In a nutshell, the two approaches described previously are suitable for discrete 

data sets that do not require any data value that lies in between any pair of adjacent 

sample data points. To overcome this deficiency, an alternate formulation proposed by 

Leong [3] is applied here as shown in Figure 3, modified from the approach applicable 

for resampling discrete data. Leong [3] provided broader in-depth discussion of 

resampling approaches, covering even resampling with interpolation for the dependent 

multiple variable case. 

 

Our exercise in this section involves computing the weight of pasta consumed by a 

person based on a collected data set. 

 

Step 1: Compute the probable weight of pasta consumed in a large party based on a sample 

collected from a small gathering 

Weight of pasta is given by 

I8=PERCENTILE($B$8:$F$12,RAND()) 

where $B$8:$F$12 is the valueRange of the existing data set. 

 

Step 2: Replicate the formula in cell I8 to all cells in range I8: R27 
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In the same manner, this formula samples the inverse empirical distribution from the 

data set. Unlike the SMALL function where the distribution form has staircase steps, the 

PERCENTILE function generates a distribution which is piecewise linear. That is, it 

effectively joins the consecutive points in the data set in a linear fashion resulting in a 

continuous albeit crinkly ‘curve’. As such, this formulation is able to associate random 

variable values from the distribution to any random values generated by the RAND 

function, including those absent from the sample data set, by implicitly performing 

linear interpolations between adjacent sample data points.  

 

Despite the simplicity of the formulation, a considerable amount of computation to do 

the sorting and interpolation work is effectively performed by the PERCENTILE 

function. A consistency check of the data interpolation is shown in Figure 4 which 

shows a scatter plot of the empirical data overlapped with data points generated from 

resampling. 

 

By adding a ROUND function, the formulation can be easily adapted to resample a large 

discrete data set as follows: 

 

I8=ROUND(PERCENTILE($B$8:$F$12,RAND()),0) 

 

The ROUND function translates the interpolated values (generated by the PERCENTILE 

function by taking two consecutive points) to the nearest data point that is a member of 

the data set. This approach is correct and valid for resampling discrete data with 

distribution over a close interval, except possibly over-representing the data points at 

the two extreme ends if these ends are finite. 

3. Comments 

Students’ responses to the exercises are dramatically different to those we got when we 

in our earlier offerings of the course applied the inverse distribution function method. 

To begin with, students are really appreciative of not having to deal with complex 

theoretical distributions. On the contrary, they were amazed at how effortlessly they 

could generate new data values that mimic the behavioral pattern of the raw data set 

and in doing so inject more realism to their simulation models. After overcoming initial 

difficulties, we witnessed students showing greater enthusiasm in applying Monte-

Carlo simulations to help them solve business problems.  

 

Students are beginning to experiment with different what-if scenarios and are learning 

to truly appreciate the potential of using spreadsheets to perform Monte-Carlo 

simulations, something that they previously did not think possible. However, students 

still lack experience using stochastic simulations to know when it is not necessary to use 

Monte-Carlo simulations. This may be due to the examples used to demonstrate 

resampling. In finding the bowls of noodles or amount of pasta needed, the desired 
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results may be computed for the required “no-shortage” probability by just applying the 

PERCENTILE function on the data samples. However, this may confuse the student on 

the use of this function as a resampler or statistical confidence limit finder. Of course, the 

use of such simple examples is a compromise as using more complex examples would 

take the focus away from the key lesson of resampling. 

4. Conclusion 

We have been teaching a course on spreadsheets business modeling to undergraduates, 

most of whom are second-year students from the business, accounting, economics, 

information systems, and social sciences majors. A few thousand students have taken 

the course to date. In this course, amongst many other topics, Monte-Carlo simulation is 

taught at an introductory level over two weeks (i.e., six hours of class time).  

 

From our collective past experiences, we discovered that undergraduates generally 

consider it challenging to do distribution function fitting of the raw data and subsequent 

application of the inverse distribution formulation, which results in more class time than 

necessary spent to get students up to speed on this topic. To overcome this problem, we 

introduced the resampling approaches described in this paper and have been impressed 

with how quickly students picked up resampling techniques to generate input data for 

their Monte-Carlo simulations. The three resampling methods presented here utilize 

only standard Excel functions, without additional add-ins, which can reduce the stress 

on students having to familiarize themselves with new software add-ins. Due to the ease 

of generating new data sets from sampled data, students can quickly move on to 

building more sophisticated spreadsheets simulation models and applying them to solve 

a variety of business problems. Using resampling techniques, even students who are 

weak in statistics can construct Monte-Carlo simulation models for this class. 
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Figure 1: Simulating data from frequency bins 
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Figure 2: Simulating data by resampling (discrete) raw data 

 

 

 
Figure 3: Simulating data by resampling (continuous) raw data 

 

=COUNT(B8:F12) 

=COUNT(J8:S27) =SUM($J$8:$S$27) 
=AVERAGE($J$8:$S$27) 

=COUNT(B8:F12) 

=COUNT(I8:R27) =SUM($I$8:$R$27) =AVERAGE($I$8:$R$27) 
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Figure 4: Resampling (continuous) raw data check 

 

=SMALL($C$6:$C$30,B6) 

=PERCENTILE($C$6:$C$30,F6) 

=(B6-1)/24 

=PERCENTRANK($C$6:$C$30,E6) 

=PERCENTILE($C$6:$C$30,J6) 

=RAND() 

Empirical 

Resampling  
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