
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

10-2009

Secure Mobile Agents with Designated Hosts
Qi ZHANG
University of Wollongong

Yi MU
University of Wollongong

Minji ZHANG
University of Wollongong

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

DOI: https://doi.org/10.1109/NSS.2009.59

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ZHANG, Qi; MU, Yi; ZHANG, Minji; and DENG, Robert H.. Secure Mobile Agents with Designated Hosts. (2009). NSS '09: Third
International Conference on Network and System Security: Gold Coast, Queensland, Australia, 19-21 October 2009. 286-293. Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/633

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/NSS.2009.59
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Secure Mobile Agents with Designated Hosts

Qi Zhang∗, Yi Mu∗, Minjie Zhang∗ and Robert H. Deng†
∗School of Computer Science and Software Engineering

University of Wollongong
Wollongong, NSW 2522, Australia
{qz126, ymu, minjie}@uow.edu.au
†School of Information Systems

Singapore Management University
Singapore 188065

robertdeng@smu.edu.sg

Abstract—Mobile agents often travel in a hostile environment
where their security and privacy could be compromised by
any party including remote hosts in which agents visit and
get services. It was proposed in the literature that the host
visited by an agent should jointly sign a service agreement with
the agent’s home, where a proxy-signing model was deployed
and every host in the agent system can sign. We observe
that this actually poses a serious problem in that a host that
should be excluded from an underlying agent network could
also send a signed service agreement. In order to solve this
problem, we propose a secure mobile agent scheme achieving
host authentication with designated hosts, where only selected
hosts can be included in the agent network. We also present
a security model and provide a rigorous security proof to our
scheme.

Keywords-Authentication; Mobile agent security;

I. INTRODUCTION

A mobile agent can travel cross an agent network per-

forming tasks on behalf of its owner. The mobile agent

technology has drawn much attention in recent years because

of its potential to bringing new ways in electronic commerce.

As an example, a mobile agent could be released by its

owner to get the best deal from one of online sellers for

finding the best offers. It can travel around the network to

search and negotiate with the suitable sellers. After the deal

is done, it returns the result to its owner.

Although it is generally believed that mobile agent is a

powerful tool for online transactions, security and privacy

is indeed a concern. A major problem is their inability to

authenticate transactions in hostile environments [1]. When

a mobile agent arrives at a remote host, it will be fully

controlled by the host. Therefore, it is believed that it

is impossible for a mobile agent to carry out any secret

computation without exposing its secret to the malicious host

[2], [3].

There are several mobile agent authentication schemes

in the literature, where a verity of security issues were

identified. Sander and Tschudin [4] concluded the following

fundamental problems of executing mobile code: code and

execution integrity, code privacy, and computation with a

secret in public. They gave an answer to the above problems

by proposing a concept called Computing with Encrypted

Functions (CEF). Kotzanikolaou et al [1] implemented

the CEF scheme and proposed an undetachable signature

scheme based on RSA. Although their scheme could conceal

the agent owner’s private key during an execution in an

untrusted environment, it does not provide the fairness of

contract [5], since the remote host is not committed to

the transaction whereas the customer is. Therefore, the

commitment of the host is required in the transaction to

prevent impersonation attack to the host.

One of the most important security services to mobile

agent systems is non-repudiation, which provides fairness of

transactions to hosts and agent owners. Proxy signature is

thought to be an appropriate solution to the repudiation issue

in mobile agent applications. We notice that several solutions

derived from proxy signatures were published [6], [5], [7],

[8], [9], [10]. Unfortunately, many of them are insecure [8],

[11], [5], [12]. By default, a proxy-based approach such as

Lee et al [5] grants the universal signing privilege to all hosts

in the agent network; that is, any host can generate a valid

signature by executing a mobile agent. In other words, a

non-repudiation service agreement between the agent owner

and any host can be reached out of the control of the agent

owner. This assumption would be fine, if the agent owner

wants to receive services from all hosts in the agent network

including the undesirable ones.

We observe that an agent owner might not regard that

all the hosts in the agent network are desirable for a

designated service. For instance, the agent owner wants

to get services such as mortgage information from some

specified banks only. Therefore, hosts that do not belong

to these banks should be excluded from the network. This

raises a challenging question: how to construct a mobile

agent network that includes only the designated hosts?

In this paper, we provide a sound answer to the question

by introducing a novel scheme, which allows designated

hosts to perform an agent task. The list of designated hosts

can be chosen by the agent owner. Our scheme can be

2009 Third International Conference on Network and System Security

978-0-7695-3838-9/09 $26.00 © 2009 IEEE

DOI 10.1109/NSS.2009.59

286

2009 Third International Conference on Network and System Security

978-0-7695-3838-9/09 $26.00 © 2009 IEEE

DOI 10.1109/NSS.2009.59

286

2009 Third International Conference on Network and System Security

978-0-7695-3838-9/09 $26.00 © 2009 IEEE

DOI 10.1109/NSS.2009.59

286

http://dx.doi.org/10.1109/NSS.2009.59

regarded as a policy-based scheme, in that the agent can

carry a tamper-resistant policy data set when implementing a

task, where the hosts defined in the policy are included in the

specific network and can provide services. One of features

in our scheme is that the policy can be dynamically updated

for various tasks without any additional computation cost.

This feature inherits the elegant property from the dynamic

accumulator [13], [14], [15], in that it does not increase

the size of policy data set when the policy is changed. Our

scheme also inherits the merit from proxy-based approaches

that the repudiation issue is eliminated. We also define

a rigorous security model for mobile agent transaction,

which captures the most powerful attacks including adaptive-

chosen-message and adaptive-chosen-host. These types of

attacks are not captured in the existing schemes in the

literature. The security of our scheme is based on the

hardness of Computational Diffie-Hellman problem in the

random oracle model.

The rest of this paper is organized as follows. In Section

2, we review the typical mobile agent architecture and the

security issues of mobile agents. In Section 3, we introduce

our mobile agent architecture and the transaction procedure.

We then provide our security model in Section 4. In Section

5, we present our scheme, followed by the security proof of

our scheme in Section 6. We conclude this paper in Section

7.

II. MOBILE AGENTS AND SECURITY ISSUES

The typical architecture of a mobile agent application in

online transactions, e-trading and agent-based information

retrieval systems includes three main parties: customer,

mobile agent, and remote host. Customer is the owner of

mobile agent. With a task in mind, the customer generates a

suitable mobile agent and delegates the task to it. The mobile

agent travels in the defined agent network searching for the

remote host(s) that can provide a suitable service. After a

suitable host is found, the agent is executed in the host and

interacts with the host. If the execution is successful, the

mobile agent then returns to the customer side with the

results of the execution. An agent might travel to several

hosts before finding a desirable result.

The mobile agent paradigm extends the capabilities of

traditional ways of remote communication and distributed

computing, but unfortunately raises new security issues. The

protection of an agent system is generally referred to as

two aspects: protection of an agent host and protection of a

mobile agent.

It is generally believed that protecting an agent host from

attacks by a malicious customer or a mobile agent can be

easily achieved [4], [1]. A more challenging problem is how

to protect a mobile agent from being abused by a malicious

host. Since the mobile agent is executed in the host, the

host has access to the mobile agent code. Any unprotected

information embedded in a mobile agent can be potentially

leaked to the host. In this regard, the integrity of mobile

agents is a major concern. Integrity protection of mobile

agents against malicious host can be divided into two main

categories [1]: detection and prevention.

A detection approach traces the identity of the illegitimate

transaction and misbehavior. The tracing mechanism will

reveal the malicious host after the illegal behavior happened.

However, there are many cases indicating that this kind of

solution is not sufficient. A prevention approach provides an

active manner. The mobile agent is able to detect whether

the host is malicious before being executed. It can only be

executed after the host passes authentication. Otherwise, the

execution request will be denied. The mobile agent also has

the ability to conceal against the host.

Apart from the issues outlined above, fairness in an agent

transaction is also a major concern. Transaction fairness

can be referred to as the non-repudiation service to agent

transactions. In other words, the host should not be able

to deny an offer that has been promised and the customer

should not be able to deny a service he wishes to obtain. As

outlined in the introduction section, the non-repudiation ser-

vice can be provided with a suitable proxy-based approach.

Unfortunately, this kind of approach is undesirable for the

case where some specific hosts must be excluded from an

agent network. The motivation of this paper is to provide a

sound solution to this issue.

III. TASK EXECUTION PROCEDURE OF PROPOSED

MOBILE AGENT

In general, the major procedures of our mobile agent

system for executing a task in online applications consist of

the following phases: Customer Setup, Agent Setup, Agent

Dispatch, Host Execution, and Verification.

• Customer Setup: The customer decides the services

he intends to receive and selects a set of hosts for

inclusion.

• Agent Setup: The customer generates a delegation

token based on its requirement and embeds it in the

mobile agent. This token includes the list of designated

hosts that are permitted in the agent network.

• Agent Dispatch: The mobile agent travels around the

network and searches for host from the list.

• Host Execution: When a mobile agent arrives at a

host, the host checks the validity of the delegation

token. If it is invalid, the host will stop execution;

otherwise, it will execute the mobile agent following

the designated procedure.

• Verification: Anyone can verify whether the signed

service is valid, following the verification algorithm.

Figure 1 demonstrates an example of a mobile agent

executing a task on behalf of its owner in a general online

application. The customer, as the initiator, selects a set of

hosts (1, 2, and 5) for inclusion. The customer then generates

a delegation token based on the task and the designated host

287287287

Figure 1. Agent-based Online Application Architecture

list, and embeds the token in a mobile agent. Mobile agent

then travels around the network searching for the designated

hosts from the list. When an agent arrives at a host, say Host

1, Host 1 verifies the delegation token prior to an execution.

Because Host 1 is in the list, it can be validated and offer

a signed service agreement satisfying the task defined by

the customer. Hosts 3, 4, 6, and 7 are excluded from the

agent network, because they are not defined in the delegation

token.

IV. SECURITY MODELS AND PRELIMINARIES

We consider two types of adversary: (1) malicious hosts

and (2) malicious customer. Type (1) are classified into two

subtypes: (a) malicious hosts that are in the designated host

list and (b) malicious hosts that are not in the designated

host list. To prove security in our system, we will show

that, for (a), malicious hosts are not able to generate a

valid signed service under the delegation token which is

unknown to them; and for (b), malicious hosts possess the

delegation token, but they are not able to generate a valid

signed service.

A. Existential Unforgeability Against Malicious Hosts
In this case, we assume that the adversary can query the

private key of any host it chooses, but cannot query the

private key of the customer. We allow all the malicious hosts

to collude, i.e., the adversary can obtain all private keys of

the hosts in the agent network.

1) Malicious hosts that are in the designated host list:
Here, we will show that, the probability of an adversary

A1 to output a valid signature under the delegation token

that is unknown to him is negligible. It is defined using the

following game between a challenger C and an adversary

A1:

• Setup: C runs the ParaGen algorithm to obtain sys-

tem’s parameters Param.

• Key extract queries: Given an identity ID of a host

chosen by A1, C returns the private key sID correspond-

ing to ID.

• Delegation queries: A1 can choose the warrant

w adaptively and the designated host list X =
(H(ID1), H(ID2), ...,H(IDk)) adaptively, and submit

these to C. Here, k ≤ θ and θ is the upper bound

defined in Param. In response, C runs the algorithm

D ← DeleGen(w, X) and returns D to A1. D is the

delegation token of combination of X and w chosen

by A1.

• Signature queries: Proceeding adaptively, A1 can re-

quest the signature of (m, w,X, IDi), where m is the

message (which is the offer in our case) that the host

needs to sign, w is the customer’s warrant, X represents

the designated host list, IDi is the identity of the host

who signs the message, and IDi is in the designated

host list. In response, C runs the algorithm to get

the delegation D ← DeleGen(w, X), then runs the

algorithm σ ← Sign(sIDi
,m,D), and returns σ to A1.

• Output: Finally, A1 outputs (m∗, w∗, X∗, ID∗, σ∗) and

wins the game if:

1) ID∗ is an identity of a host which is in the

designated host list X∗.

2) (w∗, X∗) has not been requested as one of the

Delegation queries.

3) (m∗, w∗, X∗, ID∗) has not been requested as one

of the Signature queries.

4) V erify(Param,PKC , PKID∗ , m∗, w∗, X∗,
ID∗, σ∗) = valid.

We define SuccA1 to be the probability that the adversary

A1 wins the above game.

Definition 1: We say an adversary A1 can (t, qH∗ ,
qKE , qD, qS , ε)-break this scheme if A1 runs in time at most

t, A1 makes at most qH∗ hash queries, at most qKE key

extract queries, at most qD delegation queries, and at most

qS signature queries, SuccA1 is at least ε.

2) Malicious hosts that are not in the designated host list:
In this situation, the goal of an adversary A2 is to output a

valid signature with the host that is not in the designated host

list. We will show that, even A2 possesses the delegation

token, the probability of A2 to output a valid signature under

the delegation token is still negligible. It is defined using the

following game between a challenger C and an adversary A2.

After all the queries:

• Output: A2 outputs (m∗, w∗, X∗, ID∗, σ∗) and wins

the game if:

1) ID∗ is an identity of a host which is not in the

designated host list X∗.

2) V erify(Param,PKC , PKID∗ , m∗, w∗, X∗,
ID∗, σ∗) = valid.

We define SuccA2 to be the probability that the adversary

A2 wins the above game.

Definition 2: We say an adversary A2 can (t, qH∗ ,
qKE , qD, qS , ε)-break this scheme if A2 runs in time at most

t, A2 makes at most qH∗ hash queries, at most qKE key

288288288

extract queries, at most qD delegation queries, and at most

qS signature queries, SuccA2 is at least ε.

B. Existential Unforgeability Against Malicious Customer

We assume that a malicious customer possesses the private

keys skC and t. We want to show that a malicious customer

cannot generate a valid signature for a host. Given a valid

signature, the host cannot deny the fact that he has signed

the message (transaction or service). It is defined using the

following game between a challenger C and an adversary

A3. After all the queries:

• Output: A3 outputs (m∗, w∗, X∗, ID∗, σ∗) and wins

the game if:

1) ID∗ is an identity of a host which is in the

designated host list X∗.

2) (m∗, w∗, X∗, ID∗) has not been requested as one

of the Signature queries.

3) V erify(Param,PKC , PKID∗ , m∗, w∗, X∗,
ID∗, σ∗) = valid.

We define SuccA3 to be the probability that the adversary

A3 wins the above game.

Definition 3: We say an adversary A3 can (t, qH∗ , qS , ε)-
break this scheme if A3 runs in time at most t, A3 makes

at most qH∗ hash queries, and at most qS signature queries,

SuccA3 is at least ε.

C. Bilinear Mapping and Complexity Definitions

Bilinear Mapping: G1 is a cyclic additive group of prime

order p with generator P . GT is a cyclic multiplicative group

with the same order p. ê : G1 × G1 → GT is a bilinear

pairing with the following properties:

1) Bilinearity: for all a, b ∈ ZZp, ê(aP, bP) = ê(P, P)ab.

2) Non-Degeneracy: ê(P, P) �= 1GT
.

3) Computability: ê is efficiently computable.

In the following, we provide the complexity definitions

and assumptions used in our security proof.

Definition 4: (Computational Diffe-Hellman (CDH) on

G1) Given P, aP, bP ∈ G1, for some unknown a, b ∈R ZZp,

compute abP ∈ G1.

Definition 5: (Computational Diffe-Hellman (CDH) As-

sumption on G1) Given P, aP, bP ∈ G1, for some unknown

a, b ∈R ZZp, the following function SuccCDH
A,G1

is negligible

for any polynomially bounded algorithm A.

SuccCDH
A,G1

= Pr[A(P, aP, bP) = abP : a, b ∈R ZZp].

Definition 6: (q-Strong Diffie-Hellman (q-SDH) on G1)

Given a tuple (P, sP, ..., sqP), for a unknown s ∈R ZZ∗
p,

compute a pair (c, 1
s+cP) where c ∈ ZZp.

Definition 7: (q-Strong Diffie-Hellman (q-SDH) As-

sumption on G1) Given a tuple (P, sP, ..., sqP), for a

unknown s ∈R ZZ∗
p, the following function Succq-SDH

A,G1
is

negligible for any polynomially bounded algorithm A.

Succq-SDH
A,G1

=

Pr[A(P, sP, ..., sqP) = ((c,
1

s + c
P) ∧ c ∈ ZZp)].

V. OUR SCHEME

We now construct our scheme using bilinear maps in the

random oracle model.

1) Setup:
Select (G1, GT) as bilinear groups where |G1| =
|GT | = p for some prime p. Let P be a generator of

G1. Define the bilinear map ê : G1×G1 → GT . Select

four distinct secure hash functions: H , H0, H1 and H2

where H : {0, 1}∗ → ZZ∗
p, H0, H1, H2 : {0, 1}∗ ×

G1 → G1. The system parameter is Param =
(G1, GT , p, P, ê, H, H0, H1, H2).

2) Customer setup:

• Select a random number skC ∈ ZZ∗
p as his private

key and compute the corresponding public key

pkC = skCP ∈ G1.

• Random select t ∈ ZZ∗
p and compute a tuple

T = (P, tP, t2P, t3P,, tθP), where θ is the

upper bound. e.g. the customer can only build a

designated hosts list that includes k hosts where

k ≤ θ.

• Compute E = tskCP .

• Publish PKC = (E, T, pkC) as the customer’s

public key and keep skC , t as his private keys.

3) Agent Setup:

• Build the designated host list:

– The customer chooses k hosts,

ID1, ID2, ..., IDk, and computes X =
(H(ID1), H(ID2), ...,H(IDk)) ⊂ ZZp \ {−t}
where IDi is the identity of a host and k ≤ θ.

– Compute V =
∏k

i=1(H(IDi) + t)P ∈ G1.

• The customer computes the delegation token D =
skC(H0(w, V) + V) where w ∈ {0, 1}∗ is his

warrant, V is a value representing the designated

host list.

• The customer embeds (w, X,D) in the mobile

agent.

4) Host Execution:

• Select a random number sIDi
∈ ZZ∗

p as his private

key where IDi is his identity. The public key of

this host is PIDi
= sIDi

P ∈ G1.

• Verify the delegation token by checking

ê(D,P) ?= ê(H0(w, V), pkC)ê(V, pkC),

where V =
∏k

i=1(H(IDi)+t)P can be computed

using T and X without t.
• If invalid, the host stops the execution. Otherwise,

• The host computes H(IDi),

289289289

– if H(IDi) /∈ X , the host stops the execution.

Otherwise,

– The host randomly chooses r ∈ ZZ∗
p and gener-

ate the signature σ = (Σ, WIDi , R) where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Σ = D + sIDi
H1(m||w||IDi, V)+

rH2(m||w||IDi, V),
WIDi =

∏h�=H(IDi)
h∈X (h + t)P,

R = rP.

Here, WIDi =
∏h�=H(IDi)

h∈X (h+ t)P can be com-

puted using T and X without t. m ∈ {0, 1}∗
is the message (the offer of the host for the

transaction) needs to be signed.

5) Verification: Given Param, public keys PKC , PIDi
,

a host’s identity IDi, a warrant w, a designated host list

X , a message m, and a signature σ = (Σ, WIDi , R),
verify that

ê(Σ, P) ?= ê(H0(w, V), pkC) ·
ê(WIDi

, H(IDi)pkC + E) ·
ê(H1(m||w||IDi, V), PIDi) ·
ê(H2(m||w||IDi, V), R).

Here, V =
∏

h∈X(h + t)P can be computed using X
and PKC without t. If the equation holds, σ will be

accepted as a valid signed service; otherwise, rejected.

VI. SECURITY ANALYSIS

A. Existential Unforgeable Against Adversary A1

Theorem 1: If there exists an adversary A1 who can

(t, qH∗ , qKE , qD, qS , ε)-break the proposed scheme then

there exists another algorithm B who can use A1 to solve

an instance of the CDH problem in G1 with probability

SuccCDH
B,G1

≥ (1 − 2
qD + qS + 2

)qD+qS (
2

qD + qS + 2
)2ε

in time t+c(G1,GT)(qH∗ +qD+qS +qKE +1). Here c(G1,GT)

is a constant that depends on (G1, GT).
Proof. Algorithm B is given a random instance (P, aP, bP)
of the CDH problem in G1. Its goal is to compute abP by

interacting with adversary A1. B will simulate the challenger

and interact with A1 as described below. The hash functions

H,H0, H1, H2 are regarded as the random oracles during the

proof.

Setup:
• Run the ParaGen algorithm to obtain the system’s

parameters Param.

• Set skC = a, therefore pkC = aP .

• Maintain five lists: H-list,H0-list,H1-list,H2-list
and Key-list that store the results of queries to random

oracles respectively. Initially, they are empty.

• Randomly select t ∈ ZZ∗
p and compute a tuple T =

(P, tP, t2P, t3P,, tθP) where θ ∈ ZZ∗
p is the upper

bound of designated host list. Compute E = tskCP =
taP .

• Return Param and (E, T, pkC) to A1.

H queries: Adversary A1 can make queries to the H oracle

of the input IDi at any time, B checks the H-list first:

• If there exists an item (IDi, hi) in the list, B will return

hi to A1.

• Otherwise, B randomly chooses hi ∈ ZZ∗
p such that

there is no (., hi) entry in the list.

Then, B returns hi to A1 and adds (IDi, hi) to the H-list.

H0 queries: Proceeding adaptively, adversary A1 can make

queries to the H0 oracle of the input (wi, Vj) where wi ∈
{0, 1}∗ and Vj ∈ G1. For a query (wi, Vj), B checks the

H0-list as follows:

• If there exists an item ((wi, Vj), h0ij , cij , coin0ij) in

the list, B will return h0ij to A1.

• Otherwise, B tosses a coin coin0ij ∈ {0, 1} such that

Pr[coin0ij = 1] = δ (the value of δ will be determined

later).

– If coin0ij = 1, B chooses cij ∈R ZZ∗
p and computes

h0ij = bP + cijP .

– Otherwise, coin0ij = 0, B chooses cij ∈R ZZ∗
p and

computes h0ij = cijP .

If h0ij has already been in the tuple (., h0ij , ., .) of the

H0-list, then B chooses another cij and recomputes h0ij . B
then returns h0ij to A1 and adds ((wi, Vj), h0ij , cij , coin0ij)
to the H0-list.

H1 queries: Proceeding adaptively, adversary A1 can make

queries to the H1 oracle of the input (mi, wj , IDk, Vl). B
maintains an H1-list which consists of tuples (Ωijkl, h1ijkl).
For a query Ωijkl = (mi||wj ||IDk, Vl), B checks the H1-list
as follows:

• If there exists an item (Ωijkl, h1ijkl) in the list, B will

return h1ijkl to A1.

• Otherwise, B randomly chooses h1ijkl ∈ G1 such that

there is no (., h1ijkl) entry in the list.

Then, B returns h1ijkl to A1 and adds (Ωijkl, h1ijkl) to the

H1-list.

H2 queries: Proceeding adaptively, adversary A1 can make

queries to the H2 oracle of the input (mi, wj , IDk, Vl). B
maintains an H2-list which consists of tuples (Ωijkl, h2ijkl,
eijkl, coin2ijkl). For a query Ωijkl = (mi||wj ||IDk, Vl), B
checks H2-list as follows:

• If there exists an item (Ωijkl, h2ijkl, eijkl, coin2ijkl) in

the list, B will return h2ijkl to A1.

• Otherwise, B tosses a coin coin2ijkl ∈ {0, 1} such that

Pr[coin2ijkl = 1] = δ.

– If coin2ijkl = 1, B chooses eijkl ∈R ZZ∗
p and

computes h2ijkl = eijklP .

290290290

– Otherwise, coin2ijkl = 0, B chooses eijkl ∈R ZZ∗
p

and computes h2ijkl = eijklP − bP .

If h2ijkl has already been in the tuple (., h2ijkl, ., .) of

the H2-list, then B chooses another eijkl and recom-

putes h2ijkl. After that, B returns h2ijkl to A1 and adds

(Ωijkl, h2ijkl, eijkl, coin2ijkl) to the H2-list.

Key extract queries: In this process, A1 can ask the private

key of any host. For a query whose identity is IDi, B checks

the Key-list:

• If there is an item (IDi, sIDi
) in the Key-list, B will

return sIDi
to A1.

• Otherwise, B chooses sIDi ∈R ZZ∗
p.

If sIDi
has already been in the tuple (., sIDi

) of the Key-list,
then B chooses another sIDi

. After that, B returns sIDi
to A1

and adds (IDi, sIDi) to the Key-list.

Delegation queries: Proceeding adaptively, A1 can ask at

most qD delegation queries of tuple (wi, Xj) chosen by

itself. For such a query (wi, Xj), B first computes accu-

mulator value Vj =
∏

h∈Xj
(h + t)P . we assume that there

is a tuple ((wi, Vj), h0ij , cij , coin0ij) in H0-list containing

(wi, Vj). B can make an H0 query (wi, Vj) if that tuple does

not exist.

• If coin0ij = 0, then H0(wi, Vj) = h0ij = cijP . B can

compute D = a(H0(wi, Vj) + Vj) = acijP + aVj =
cijpkC + a

∏
h∈Xj

(h + t)P = cijpkC +
∏

h∈Xj
(h +

t)pkC .

• If coin0ij = 1, B terminates the simulation and reports

failure.

Signature queries: In this process, A1 can ask at

most qS signature queries of his choice. For a query

(mi, wj , IDk, Xl) where IDk is in the designated host list Xl.

B first computes accumulator value Vl =
∏

h∈Xl
(h + t)P .

We assume there exists tuples ((wj , Vl), h0jl, cjl, coin0jl),
(Ωijkl, h1ijkl), (Ωijkl, h2ijkl, eijkl, coin2ijkl), (IDk, sIDk

)
and (IDk, hk) in the H0-list, H1-list, H2-list, Key-list and

H-list respectively. Otherwise, B can make those queries by

itself. Here, Ωijkl = (mi||wj ||IDk, Vl).

• If coin0jl = 0, then H0(wj , Vl) = h0jl = cjlP . B can

compute D = a(H0(wj , Vl) + Vl) = acjlP + aVl =
cjlpkC + a

∏
h∈Xl

(h + t)P = cjlpkC +
∏

h∈Xl
(h +

t)pkC . After that, B can generate a valid signature as

described in Host execution in our scheme.

• If coin0jl = 1 and coin2ijkl = 0, then H0(wj , Vl) =
bP + cjlP and H2(mi||wj ||IDk, Vl) = eijklP − bP . B
can generate a valid signature by setting R = rP =

uP + aP where u ∈R ZZ∗
p, therefore

Σijkl = a(H0(wj , Vl) + Vl) +
sIDk

H1(mi||wj ||IDk, Vl) +
rH2(mi||wj ||IDk, Vl)

= a(bP + cjlP) + aVl + sIDk
h1ijkl +

r(eijklP − bP)
= abP + cjlpkC + aVl + sIDk

h1ijkl +
(u + a)(eijkl − b)P

= abP + cjlpkC + aVl + sIDk
h1ijkl +

ueijklP − ubP + aeijklP − abP

= cjlpkC +
∏

h∈Xl

(h + t)pkC + sIDk
h1ijkl +

ueijklP − ubP + eijklpkC ,

WIDk
=

∏h�=hk

h∈Xl
(h + t)P and R = rP . B then returns

(Σijkl, WIDk
, R) which is a valid signature to A1.

• if coin0jl = 1 and coin2ijkl = 1, B terminates the

simulation and reports failure.

If B does not abort during all the queries, A1 will output

a valid message-signature tuple (m∗, w∗, X∗, ID∗, σ∗) with

successful probability at least ε. Here, σ∗ = (Σ∗, W ∗, R∗)
is a valid signature, ID∗ is the identity of the host,

w∗ is the warrant, X∗ is the designated host list and

m∗ is the message, such that ID∗ is in the designated

host list X∗, (w∗, X∗) has not been requested as

one of the delegation queries, (m∗, w∗, X∗, ID∗) has

not been requested as one of the signature queries.

We assume there exists tuples (ID∗, sID∗), (ID∗, h∗),
((w∗, V ∗), h0∗, c∗, coin0∗), ((m∗||w∗||ID∗, V ∗), h1∗) and

((m∗||w∗||ID∗, V ∗), h2∗, e∗, coin2∗) in the Key-list,
H-list, H0-list, H1-list and H2-list respectively.

Otherwise, B can make those queries by itself.

• If coin0∗ = 0 or coin2∗ = 0, B terminates the

simulation and reports failure.

• Otherwise, coin0∗ = 1 and coin2∗ = 1. For

this case, H0(w∗, V ∗) = h0∗ = bP + c∗P ,

H2(m∗||w∗||ID∗, V ∗) = h2∗ = e∗P , σ∗ =
(Σ∗, W ∗, R∗) is a valid signature. Therefore,

Σ∗ = a(bP + c∗P + V ∗) + sID∗h1∗ + r∗e∗P
= abP + c∗pkC + aV ∗ + sID∗h1∗ + e∗R∗

and abP = Σ∗ − c∗pkC − ∏
h∈X∗(h + t)pkC −

sID∗h1∗ − e∗R∗. Therefore, B successfully solves the

given instance of the CDH problem in G1.

Now we will show the successful probability for B. B can

output abP successfully if and only if:

• B does not abort during the Delegation queries. This

probability is (1 − δ)qD ;

• B does not abort during the Signature queries. This

probability is (1 − δ2)qS ;

291291291

• A1 outputs a valid signature. This probability is greater

than ε;

• coin0∗ = 1 and coin2∗ = 1, this probability is δ2.

The probability of B can successfully output abP is

SuccCDH
B,G1

≥ (1 − δ)qD (1 − δ2)qS δ2ε

≥ (1 − δ)qD+qS δ2ε,

where δ = 2
qD+qS+2 . It is maximized as

SuccCDH
B,G1

≥ (1 − 2
qD + qS + 2

)qD+qS (
2

qD + qS + 2
)2ε.

Algorithm B’s running time is the same as A’s running

time plus the time it takes to respond to qH∗ random

oracle queries, qD delegation queries, qS signature queries,

qKE key extraction queries and compute abP from σ∗. We

assume each query requires at most time c(G1,GT) which

is a constant depends on the bilinear group pair (G1, GT).
Hence, the total running time is at most t + c(G1,GT)(qH∗ +
qD + qS + qKE + 1). This completes the proof.

B. Existential Unforgeable Against Adversary A2

Theorem 2: If there exists an adversary A2 who can

(t, qH∗ , qKE , qD, qS , ε)-break the proposed scheme, then

there exists another algorithm B that can use A2 to solve an

instance of the q-SDH problem in G1 with the probability

Succq-SDH
B,G1

= SuccA2 ≥ ε

in time t+c(G1,GT)(qH∗ +qD+qS +qKE +1). Here c(G1,GT)

is a constant that depends on (G1, GT).
Proof. Algorithm B is given a random instance

(P, xP, x2P, ..., xqP) of the q-SDH problem in G1. Its

goal is to compute (c, 1
c+xP) by interacting with adversary

A2. B will simulate the challenger and interact with A2

as described below. The hash functions H,H0, H1, H2 are

regarded as the random oracles during the proof.

Setup:
• Run the ParaGen algorithm to obtain the system’s

parameters Param.

• Randomly choose skC ∈ ZZ∗
p as the customer’s private

key, therefore pkC = skCP .

• Maintain five lists: H-list,H0-list,H1-list,H2-list
and Key-list, as in the proof of theorem 1.

• Set T = (P, xP, x2P, ..., xqP) where q = θ which

is the upper bound of the designated host list, and

compute E = skCxP .

• Return Param and (E, T, pkC) to A2.

H queries: As in the proof of theorem 1, A2 requests IDi,

B returns hi and adds (IDi, hi) to the H-list if there is no

such entry in the list.

H0 queries: As in the proof of theorem 1, A2 re-

quests (wi, Vj), B returns h0ij ∈R G1 to A2 and adds

((wi, Vj), h0ij) to the H0-list if there is no such entry.

H1 queries: As in the proof of theorem 1, A2 requests

Ωijkl = (mi||wj ||IDk, Vl). B returns h1ijkl ∈R G1 to A2

and adds (Ωijkl, h1ijkl) to the H1-list if there is no such

entry.

H2 queries: As in the proof of theorem 1, A2 requests

Ωijkl = (mi||wj ||IDk, Vl). B returns h2ijkl ∈R G1 to A2

and adds (Ωijkl, h2ijkl) to the H2-list if there is no such

entry.

Key extract queries: As in the proof of theorem 1, A2

requests IDi. B returns sIDi to A2 and adds (IDi, sIDi) to

the Key-list if there is no such entry.

Delegation queries: As in the proof of theorem 1, A2

requests (wi, Xj) where |Xj | ≤ q. B first computes Vj with

the help of T and Xj , then B computes

D = skC(H0(wi, Vj) + Vj) = skCh0ij + skCVj

and returns it to A2.

Signature queries: As in the proof of theorem 1, A2

requests (mi, wj , IDk, Xl) where |Xl| ≤ q. B first computes

Vl with the help of T and Xl, then B computes

Σijkl = skCh0jl + skCVl + sIDk
h1ijkl + rh2ijkl,

WIDk
=

∏h�=H(IDk)
h∈Xl

(h + x)P and R = rP where r ∈R ZZ∗
p.

Then B returns σ = (Σijkl, WIDk
, R) to A2.

After all the queries, A2 outputs a message-signature

tuple (m∗, w∗, X∗, ID∗, σ∗) with successful probability at

least ε where ID∗ is the identity of a host which is not in

the designated host list X∗ and σ∗ = (Σ∗, W ∗, R∗) is a

valid signature. We assume there exists tuples (ID∗, sID∗),
(ID∗, h∗), ((w∗, V ∗), h0∗), ((m∗||w∗||ID∗, V ∗), h1∗) and

((m∗||w∗||ID∗, V ∗), h2∗) in the Key-list, H-list, H0-list,
H1-list and H2-list respectively. Here, V ∗ =

∏
h∈X∗(h +

x)P . Therefore, it satisfies

ê(Σ∗, P) = ê(H0(w∗, V ∗), pkC) ·
ê(W ∗, H(ID∗)pkC + E) ·
ê(H1(m∗||w∗||ID∗, V ∗), PID∗) ·
ê(H2(m∗||w∗||ID∗, V ∗), R∗).

From this equation, we have

(h∗ + x)W ∗ = V ∗ =
∏

h∈X∗
(h + x)P

and h∗ /∈ X∗. (h∗, 1
h∗+xP) can be computed with the help

of T and X∗ from the above equation, therefore the given

instance of the q-SDH problem is solved. The probability of

B to solve the given instance of the q-SDH problem is the

same as for A2 who breaks the proposed scheme. The total

running time of B is at most t + c(G1,GT)(qH∗ + qD + qS +
qKE + 1), which is similar to the proof of theorem 1. This

completes the proof.

292292292

C. Existential Unforgeable Against Adversary A3

Theorem 3: If there exist an adversary A3 who can

(t, qH∗ , qS , ε)-break the proposed scheme, then there exists

another algorithm B that can use A3 to solve an instance of

the CDH problem in G1 with probability

SuccCDH
B,G1

≥ (1 − 2
qS + 2

)qS (
2

qS + 2
)2ε

in time t+c(G1,GT)(qH∗+qS+1). Here c(G1,GT) is a constant

that depends on (G1, GT).
Proof. The proof is similar to the proof of Theorem 1. It

therefore is omitted.

VII. CONCLUSION

We proposed a secure mobile agent that allows a mobile

agent owner to select remote hosts for the designated agent

network and eliminates the non-repudiation and misuse

problems in the proxy-based mobile agent model. We also

provided a rigorous security proof, where comparing with

other schemes our scheme is proved secure against the

strongest adversaries. We defined the security model which

captures the most powerful attacks against adaptive-chosen-

message and adaptive-chosen-host in the random oracle

model.

REFERENCES

[1] P. Kotzanikolaou, M. Burmester, and V. Chrissikopoulos, “Se-
cure transactions with mobile agents in hostile environments,”
in Information Security and Privacy–ACISP 2000, LNCS
1841, E. Dawson, A. Clark, and C. Boyd, Eds. Springer-
Verlag, 2000, pp. 289–297.

[2] D. M. Chess, “Security issues in mobile code systems,” in
Mobile Agents and Security, ser. LNCS 1419, G. Vigna, Ed.
Springer-Verlag, 1998, pp. 1–14.

[3] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth,
“Cryptographic security for mobile code,” in Security and
Privacy, 2001. Proceedings. 2001 IEEE Symposium on Secu-
rity and Privacy, 2001, pp. 2–11.

[4] T. Sander and C. F. Tschudin, “Protecting mobile agents
against malicious hosts,” in Mobile Agents and Security, ser.
LNCS 1419, G. Vigna, Ed. Springer-Verlag, 1998, pp. 44–
60.

[5] B. Lee, H. Kim, and K. Kim, “Secure mobile agent using
strong non-designated proxy signature,” in Information Secu-
rity and Privacy–ACISP 2001, LNCS 2119, V. Varadharajan
and Y. Mu, Eds. Springer-Verlag, 2001, pp. 474–486.

[6] S.-H. Seo and S.-H. Lee, “A secure mobile agent system
using multi-signature scheme in electronic commerce,” in Web
and Communication Technologies and Internet-Related Social
Issues, – HSI 2003, ser. LNCS 2713, C. W. C. et al., Ed.
Springer-Verlag, 2003, pp. 527–536.

[7] H. Kim, J. Baek, B. Lee, and K. Kim, “Secret computation
with secrets for mobile agent using on-time proxy signature,”
in Proc. of the 2001 Symposium on Cryptography and Infor-
mation Security (SCIS 2001), Oiso, Japan, January 2001.

[8] H.-U. Park and I.-Y. Lee, “A digital nominative proxy signa-
ture scheme for mobile communication,” in Proc. of ICICS
2001, ser. LNCS 2229, S. Qing, T. Okamoto, and J. Zhou,
Eds. Springer Verlag, 2001, pp. 451–455.

[9] Y. Lee, H. Kim, Y. Park, and H. Yoon, “A new proxy signature
scheme providing self-delegation,” in Information Security
and Cryptology - ICISC 2006, ser. LNCS 4296, M. S. Rhee
and B. Lee, Eds. Springer Verlag, 2006, pp. 328–342.

[10] B. Lee, H. Kim, and K. Kim, “Strong proxy signature
and its applications,” in Proc. of the 2001 Symposium on
Cryptography and Information Security (SCIS 2001), Oiso,
Japan, January 2001, pp. 603–608.

[11] J.-Y. Lee, J. H. Cheon, and S. Kim, “An analysis of proxy
signatures: Is a secure channel necessary?” in Topics in
Cryptology - CT-RSA 2003, ser. LNCS 2612, M. Joye, Ed.
Springer-Verlag, 2003, pp. 68–79.

[12] G. Wang, F. Bao, J. Zhou, and R. H. Deng, “Security analysis
of some proxy signatures,” in Proc. of ICISC 2003, ser. LNCS
2971, J. Lim and D. Lee, Eds. Springer-Verlag, 2003, pp.
305–319.

[13] L. Nguyen, “Accumulators from bilinear pairings and ap-
plications,” in Proc. of CT-RSA 2005, ser. LNCS 3376,
A. Menezes, Ed. Springer Verlag, 2005, pp. 275–292.

[14] M. T. Goodrich, R. Tamassia, and J. Hasic, “An efficient
dynamic and distributed cryptographic accumulator.” in ISC
2002, ser. LNCS 2433. Springer Verlag, 2002, pp. 372–388.

[15] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators
and application to efficient revocation of anonymous creden-
tials,” in Advances in Cryptology, Proc. CRYPTO 2002, LNCS
2442. Springer Verlag, 2002, pp. 61–76.

293293293

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2009

	Secure Mobile Agents with Designated Hosts
	Qi ZHANG
	Yi MU
	Minji ZHANG
	Robert H. DENG
	Citation

