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Re-engineering Structures from Web Documents

Chuang-Hue Moh, Ee-Peng Lim, Wee-Keong 

Center for Advanced Information Systems
School of Applied Science

 Technological University
 Avenue, Singapore 639798, SINGAPORE

ABSTRACT

To realise a wide range of applications (including digital li-

braries) on the Web, a more structured way of accessing the

Web is required and such requirement can be facilitated by

the use of XML standard. In this paper, we propose a general

framework for reverse engineering (or re-engineering) the

underlying structures i.e., the DTD from a collection of simi-

larly structured XML documents when they share some com-

mon but unknown  The essential data structures and

algorithms for the DTD generation have been developed and

experiments on real Web collections have been conducted to

demonstrate their feasibility.  addition, we also proposed

a method of imposing a constraint on the repetitiveness on

the elements in a DTD rule to further simplify the generated

DTD without compromising their correctness.

KEYWORDS: Web information discovery,  XML

 INTRODUCTION

Motivation

The World-Wide Web (WWW) is one of the world’s richest

repositories of information, with a growth rate of  million

Web pages per day and showing no signs of slowing down.

Apart from the rapid growth rate and increasing popularity,

the more significant impact to the WWW is the change in the

way people are making use of the Web. Web documents are

no longer simple hand-coded hypertext documents. Instead,

they are becoming more interactive and a majority of them

are generated automatically by underlying databases. As a

result of the added complexity of Web applications today, we

require a more structured way to access the Web.

The emergence of the Extensible Markup Language (XML)

provides a partial solution to this problem. XML, in sum-

mary, is a structured format for data interchange over the

Web. The main difference between HTML and XML is the

use of tags  while HTML tags are primarily used to describe

they way in which a data item is displayed on Web browsers,
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XML tags describe the data itself. The effect of this sub-

tle difference is that XML documents are self-describing and

this facilitates the post-processing of Web documents, promis-

ing a complete change in the “behavior” of the Web in the

near future. Although the structures for a set of structurally

similar XML documents can be found in the Document Type

Definition (DTD), there are a few problems associated with

the use of  as the “schema” for XML documents:

. For a given set of XML documents, the presence of the

DTD is not mandatory i.e., we cannot be sure that the DTD

will be available with certainty. Note that XML documents

that follow the syntax of the XML specification are consid-

ered as  XML documents.  XML docu-

ments are well-formed XML documents accompanied by a

corresponding DTD.

 A majority of the Web documents on the WWW today are

still in HTML format and do not have any DTD to describe

their structure. Refer to  regarding the issues involved in

“recycling” HTML documents into XML documents.

 The process of defining a DTD for a given set of XML

documents is often a complicated and tedious task. In order

to define the DTD for the documents, the user must have a

clear idea how these documents are structured. To add to the

complexity,  do not follow the same syntax as the XML

documents themselves. Hence we predict that quite a good

number of Web pages on the WWW will not have any 

Objectives and Scope

The key objective of this project is to re-engineer the underly-

ing structures of a given set of Web documents. We propose a

general framework for Structure Re-engineering from Web

documents and produce a DTD for each subset of similarly

structured Web documents as a final result.

In the project, we do not attempt to solve all the problems

pertaining to structure re-engineering. Instead, we propose a

general framework for structure re-engineering of Web doc-

uments. We introduce a structural representation for a set of

Web documents, in particular XML documents or semanti-

cally tagged HTML documents’ that share a common struc-

ture but do not come with a DTD. We then develop the 

‘Such HTML documents are tagged with XML style user-defined tags

to identify the semantic elements within the documents and their nesting

relationships while retaining the HTML tags. Since XML style tagging is

adopted, we may henceforth consider these HTML documents containing

user-def ined tags  as  XML documents .
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gorithms for discovering the DTD from the structural repre-
sentation. We have also conducted experiments on real-life
examples of Web documents to demonstrate the discovery
algorithms.

In this research, we focus on the textual and tag information
within the Web documents. Other objects embedded in the
documents such as multimedia data, hyperlinks, entity refer-
ences and element attributes have not been considered so far
but extensions of our algorithms to cater for such objects can
be made in the future research.

Paper Organization
The rest of this paper is organized as follows. Section 2 sur-
veys some of the work done that is related to our project.
Section 3 covers the General Framework for the Structure
Re-engineering process. The process of re-engineering an
overall structure from these instance structures for the XML
documents is discussed in Section 4. Section 5 introduces
a set of heuristic rules to construct the DTD from the over-
all structure discovered. Section 6 provides us with some
experimental results on two collections of XML documents.
Section 7 presents the refinement methods used to overcome
the inadequacies of the heuristic rules. Finally, Section 8
concludes the paper.

2. RELATED WORK
The automatic creation of DTD in the OCLC’s GB-Engine [9]
uses an approach that is fairly similar to ours. In the GB-
Engine, an internal tree representation is built and converted
into a grammar. The grammatical rules are then combined,
generalized and reduced to produce a corresponding DTD.
We see that the generation of an internal tree representation
is similar to the Document Tree data structure that we pro-
pose. In their work, reduction rules like “identical bases”,
“off by one” and “redundant” were used to reduce the com-
plexity of the DTDs generated. Nevertheless, the complex-
ity of generated DTDs cannot be easily controlled by the
users. In our proposal, we employ theLongest Common Sub-
sequence (LCS) concept and also a user defined parameter
maximum repetition factor to provide a more general and
flexible method to reduce the complexity of the DTD gener-
ated.

In the Lore project [6], the OEM [7] was proposed to model
the structures of semistructured data. The OEM model ad-
dresses the need of a more flexible data model for semistruc-
tured data like Web documents, as compared to conventional
data models like object-oriented models. The main “draw-
back” of the OEM model is the missing ordering informa-
tion about the elements in the schematic description of OEM
model, also known as the DataGuides[5]. XML, on the other
hand, does require the elements to conform to the ordering
defined in the DTD.

Based on OEM, theRoadmap Approach [10, 11] to discover
typical structures of documents was proposed. This approach
however does not generate DTD for web documents. The
typical structures generated also do not carry ordering infor-
mation about elements in the documents. TheNorthwestern

Document Structure Extractor (NoDoSE) [1] presents an in-
teractive approach to discovering Web document structures.
In NoDoSE, the user is require to identify a few interesting
regions in a single document and the program will attempt to
identify other interesting regions in the document by decom-
posing the document in a top-down manner. The structure
discovered from this document will then be used on docu-
ments of the same type of extract the relevant data. Although
interesting, the need for extensive user intervention can prove
to be tedious and non-trivial, especially when dealing with
large and highly heterogeneous sources, like the WWW.

3. STRUCTURE RE-ENGINEERING FRAMEWORK
The proposed framework for the re-engineering of structures
from Web documents consists of three phases as described
below:

Phase I. Structure Extraction and Clustering:
The re-engineeringprocess begins with extraction of instance
structures from the Web documents and grouping them into
clusters. The following steps must be carried out.

� Semantic tagging of HTML documents: XML documents
are self-describing and hence the structure of individual doc-
uments can be derived from the XML tags. This however,
is not the case for HTML documents - HTML tags only de-
scribe the way in which the data is to appear in Web browsers.
To re-engineer the structure for a collection of XML or HTML
documents, our proposed framework requires the structure
of a few if not all member documents to be explicitly repre-
sented by inserting semantic tags into the HTML documents.
For the HTML documents, we need to draw clues from the
formatting information that is found in the HTML tags. For
example, a bold short phrase may represent a section header.
The process of marking the semantic structure explicit of a
HTML document is termedsemantic tagging and is very sim-
ilar to the process described in [3].
� Instance structure modeling: The structure of an XML
document or semantically tagged HTML document is inher-
ently ann-ary tree, where the sub-elements are represented
as child nodes of the tree node representing their parent el-
ement. We need to map the structures of each instance of
the Web documents involved in the discovery process into
an n-ary tree representation called theDocument Tree. In
the Document Tree representation, the hierarchical structure
of the Web documents will be mapped into the hierarchical
structure of the n-ary trees. For instance, if the elementarea
is a sub-element ofgeography, then the nodearea will be
a child node ofgeography in the Document Tree.
Each node in the Document Tree is uniquely identified by
a Node-ID (NID). Note that theNID is also unique across
all the Document Trees of the cluster of structurally similar
documents. The other attributes in each node include:
– TagName: String that corresponds to the name of the ele-
ment represented by the node.
– AttList: List of attribute name that represents the at-
tributes of the corresponding XML element.
– PCData: Boolean variable to determine whether the cor-
responding element in the DTD containsParsed Character
Data (PCDATA)

68



<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE document SYSTEM "country.dtd">
<document>

<head>
<title>Singapore</title>

</head>
<country>Singapore</country>
<img href="figures/sn-t.gif" alt="[Country ...]"/>
<img href="figures/sn-150.gif" alt="[Country ...]"/>
<geography>

<location> Southeastern ...</location>
<coordinates>1 22 N, 103 48 E</coordinates>
<map_ref>Southeast Asia</map_ref>
<area>

<total>647.5 sq km</total>
<land>637.5 sq km</land>
<water>10 sq km</water>

</area>
...
<maritime_claim>

<exec_fishing_zone>within and beyond territorial...
</exec_fishing_zone>

<territorial_sea>3 nm</territorial_sea>
</maritime_claim>
...

</geography>
</document>

Figure 1: XML Document - Singapore

Example 1: Figures 1 and 2 show portions of the Web pages
extracted from the “CIA World Factbook” on the facts and
figures about Singapore and USA respectively. These docu-
ments were semantically tagged by hand to convert them to
XML format. The Document Trees that represent the struc-
tures and semantics of these documents are shown in Fig-
ures 3(a) and (b). Note that each node in the Document Trees
is uniquely identified by aNID attribute shown in the nodes
of the Document Trees e.g., the node representing<area>
</area> in the Document Tree of “sn.xml” has aNID of 9.
The node attributes are not shown here for simplicity.

� Structural clustering : Web documents from a Web site
may not always be structurally similar. For example, we
would expect the content page of a collection of pages on
diseases to be structured in a different manner compared to
the pages describing medicines. Attempts to discover struc-
tures from a set of Web documents without considering the
structural similarity or disparity between the documents will
produce inaccurate results. As a result, we need to cluster
documents by their structural similarity before we can begin
to re-engineer the overall structure for each cluster of docu-
ments. Clustering can be applied on Document Trees based
on theTree Pattern Matching approach [2] or it can be cou-
pled with the semantic tagging of HTML documents (since
the semantic tagging process would already provide clues on
the structure of each document instance).

Phase II. Structure Discovery:
TheStructure Discovery phase takes a cluster of structurally
similar Document Trees as its input and attempts to re-engineer
an overall structure for each cluster. The definition of an
overall structure is one that captures all the structural infor-
mation from every Document Tree in the cluster. In this pa-
per, we describe the use of aSpanning Graph representation
to capture the overall structure.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE document SYSTEM "country.dtd">
<document>

<head>
<title>United States</title>

</head>
<country>United States</country>
<img href="figures/us-t.gif" alt="[Country ...]"/>
<img href="figures/us-150.gif" alt="[Country ...]"/>
<geography>

<location> North America, bordering ...
Canada and Mexico</location>

<coordinates>38 00 N, 97 00 W</coordinates>
<map_ref>North America</map_ref>
<area>

<total>9,629,091 sq km</total>
<land>9,158,960 sq km</land>
<water>470,131 sq km</water>
<note>includes only the 50 states ...

</area>
...
<maritime_claim>

<contiguous_zone>12 nm</contiguous_zone>
<continential_shelf>not ...</continential_shelf>
<exec_economic_zone>200 nm</exec_economic_zone>
<territorial_sea>12 nm</territorial_sea>

</maritime_claim>
...

</geography>
</document>

Figure 2: XML Document - USA

Phase III. DTD Construction:
In the final phase ofDTD Construction, we will apply a set
of heuristic rules to the Spanning Graph to generate a DTD.
Ideally, all the documents in the cluster can be parsed with
the generated DTD using any validating XML parser like the
“XML for Java”.

In the subsequent sections, we will only focus on phases 2
and 3, i.e. Structure Discovery and DTD Construction. To fa-
cilitate the tasks involved, we first introduce Document Trees
as a means to represent the structure of individual XML doc-
uments.

4. DISCOVERING THE STRUCTURES OF SIMILAR WEB
DOCUMENTS
The Spanning Graph
The Spanning Graph data structure can be viewed as an or-
dered,directed acyclic graph (DAG) that encapsulates in it,
all the structural information of every Document Tree that it
spans i.e., all the the structurally similar Document Trees in
the cluster. The Spanning Graph is very similar to the Docu-
ment Tree representation defined for instances of XML docu-
ments and is logically similar to the DTD of these XML doc-
uments. A DTD can be extracted from the Spanning Graph
with some heuristic rules that we will discuss in the next sec-
tion. The definition of the Spanning Graph is as follows.

� Each node in the graph represents an element and is uniquely
identified by a uniqueGID. In addition, each node contains
the following attributes:
– TagName: The tag carried by the element represented by
the node. Note every node in the Spanning Graph carries a
uniqueTagName.
– AttList: A list of attributes for the corresponding ele-
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Figure 3: Document Tree Derived from XML Documents “sn.xml” and “us.xml” and the Spanning Graph

ment represented by the node. This is a union of all the
AttList in the nodes of the Document Trees with match-
ing TagNames as theTagName of the Spanning Graph node.
– NodeIDList: A list of all the NID of the nodes in all the
Document Trees with the sameTagName as the Spanning
Graph node.
� The edges in the Spanning Graph models the hierarchical
relationships between elements.
� The left-right ordering of sibling nodes denotes the left-
right ordering of sub-elements of a single parent element.
For example, if the nodecoordinates is the left sibling
of the nodearea in the Spanning Graph, then the same or-
der can be found between the tag pairs<coordinates>
</coordinates>and<area> </area> in every document
tree where they exist.
� Every edge in the Spanning Graph is uniquely identified
by anEdge-ID (EID). Furthermore, each edge is assigned an
EdgeList that identifies the parent nodes in the Document
Trees in which the parent-child relationship represented by

this Spanning Graph edge exists.

Example 2: The Spanning Graph for the document trees of
“sn.xml” and “us.xml” is shown in Figure 3(d). The hier-
archical relationships between the elements in the document
instances are captured in the Spanning Graph as they are in
the Document Trees. We also observe that each node in the
Spanning Graph has an uniqueTagName field, which corre-
sponds to the name of the element represented by the node.
In addition, the ordering of the nodes in every Document
Tree is preserved in the Spanning Graph. For example, we
see that in the Document Tree “sn.xml”, the nodelocation
is a left-sibling node ofcoordinates under the parent node
geography. This relationship is preserved in the Spanning
Graph.
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Example 3: As shown in Figure 3(d), each edge contains an
EdgeIDList corresponding to theNID of the parent node in
which the relationship represented by the edge exists. For
instance, we see that the Spanning Graph edge<document,
geography> hasEdgeIDList= f1,21g. TheNodeIDList
contains theNID of the nodes in the Document Trees that
have the sameTagName as the Spanning Graph node. The
nodewater in the Spanning Graph has aNodeIDList of
[12,32]. The numbers in this list are identical to theNIDs
of the nodes in the Document Trees “sn.xml” and “us.xml”
with TagName of water.

Constructing The Spanning Graph To construct the Span-
ning Graph from a cluster of similarly structured Document
Trees, we employ an incremental strategy in which one Doc-
ument Tree is merged into the Spanning Graph at a time. The
intermediate structure created when some but not all of the
Document Trees had been merged into the Spanning Graph
is called theintermediate Spanning Graph. The algorithm
stops when all the Document Tress are merged into the Span-
ning Graph.

In the process of merging Document Trees into the Span-
ning Graph, we need to determine how nodes with the same
tag name from the same or different Document Trees can
be merged together while preserving the relative orderings
of their child nodes. After two nodes of the same tag name
are merged together, the problem of merging their sequences
of child nodes is analogous to the problem of merging of
two strings. There are often more than one possible merged
string one can derive. In order to produce an amalgamated
sequence of child nodes that has the minimum number of el-
ements (which in turns leads to shorter DTD rules), we have
adopted thelongest common subsequence approach to merge
the child nodes [4]. The algorithm for constructing the Span-
ning Graph using the longest common subsequence approach
is shown in Figures 4 and 5.

Observation: Given two stringsX andY, we see that if we
merge the two strings by combining elements in both X and
Y that are in the LCS, we can obtain the shortest stringZ,
where

� X � Z andY � Z.
� The order of all the elements inX andY are preserved.

For example, ifX = f A, B, C, D, E g andY = f A, F,
C, G, H g, thenZ = f A, B, F, C, D, E, G, H g.
We see that the above two properties hold.

The algorithm begins with theSpanGraphMerge() proce-
dure that integrates a Document Tree into a Spanning Graph
by calling theLCSMerge procedure with the roots of both
the Tree and Graph as input. The recursiveLCSMerge()
procedure first determines the longest common subsequence
between the first level child nodes of the roots of the Doc-

Procedure : SpanGraphMerge

Input : A document treeDocTree to be merged into a
spanning graphSpanGraph (immediate).

Output :SpanGraph after merging.

LCSMerge(DocTree.root,SpanGraph.root);
returnSpanGraph;

Figure 4: Procedure: Merging of a Document Tree
into the Spanning Graph Based on Longest Com-
mon Subsequence

ument Tree and Spanning Graph, and merges the the com-
mon nodes by updating theEdgeIDList andNodeIDList
of the respective edges and nodes in the Spanning Graph.
For these common nodes, theLCSMerge procedure is called
recursively to further merge their child nodes.

For each non-common first level child node in the Document
Tree, we call theInsertLeftSibling()orInsertRight-
Sibling() procedure to insert the child node into Spanning
Graph at the appropriate places. The two procedures are not
shown here due to space constraint. In the process of insert-
ing the Document Tree node into the Spanning Graph, one
must attempt to merge the Document Tree node with a Span-
ning Graph node that carries the sameTagName2. If such a
Spanning Graph node exists, theLCSMerge() procedure is
invoked again to merge the child nodes of the Document Tree
node and Spanning Graph node.

The algorithm guarantees a minimum number of edges being
created when merging the child nodes of matching Document
Tree and Spanning Graph nodes i.e., nodes with the same
TagName. This implies that a minimum number of edges
will be created when merging the Document Tree and the
Spanning Graph. However, this solution is sub-optimal when
applied to merge a set of Document Trees into the Spanning
Graph. Optimally, we should compare the sequences of child
nodes for all the identical nodes in each Document Tree and
find the LCS for these sequences. The merging should then
be done based on this LCS. However, the resultant complex-
ity of finding the LCS for several sequences of child nodes
(instead of just two sequences) would be infeasibly expen-
sive. Therefore, in this paper, we will adopt the sub-optimal
solution to control the complexity of the algorithm.

2This is possible as the Spanning Graph node with the sameTagName
may not be a child node ofGS , or it may be child node ofGS not appearing
in the longest common subsequence.
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Procedure : LCSMerge

Input : NodeTD of a Document TreeTDoc, and
NodeGS of a Spanning GraphGSpan where
GS .TagName = TD.TagName.

LCS1; � � � ; LCSk  FindLCS(GS .ChildList,
TD.ChildList )

for i = 1 to k do
LetNt be the first child node ofTD where

Nt.TagName = LCSi.TagName
LetNg be the first child node ofGS where

Ng.TagName = LCSi.TagName
foreachchild nodeN l

t of TD that are
left-sibling nodes ofNt do
InsertLeftSibling(GS ; N

l
t ; Ng )

< Gs; Ng >.EdgeIDList < Gs; Ng >.EdgeIDListS
TD.NID

Ng.NodeIDList Ng .NodeIDList
S
Nt.NID

LCSMerge(Nt; Ng )
foreachN r

t  remaining child nodes ofTD do
InsertRightSibling(GS ,Nr

t ,GSpan.RightMostChild)

Figure 5: Procedure: Merging the Child Nodes of
a node in the Document Tree with the Child Nodes
of a node in a Spanning Graph

Example 4: Figures 3(c) and (d) show the process of con-
structing the Spanning Graph from two Document Trees of
the documents “us.xml” and “sn.xml”. The first step in con-
structing the Spanning Graph is to merge the Document Tree
of “sn.xml” with the initial Spanning Graph which is a graph
with only a root node. We obtain the first intermediate Span-
ning Graph,G1

Span. Next, the Document Tree of another
document “us.xml” is merged intoG1

Span to form the sec-
ond intermediate Spanning GraphG2

Span. Since there are no
more Document Trees to merge,G2

Span becomes the final
Spanning Graph. Note that this approach can be extended to
merge an arbitrary number of Document Trees.

5. FINAL CONSTRUCTION OF DTD
In this section, we outline the process for the discovery of
a DTD from a Spanning Graph. The process of discovering
the DTD involves a set ofheuristic rules to be applied on the
Spanning Graph to suggest the DTD. Note that the heuristic
rules are applied to the edges of the Spanning Graph to deter-
mine additional information such as whether a sub-element is
an optional or mandatory element of the parent element. The
rules are not applied to the nodes although it may be intuitive
to do so. For example, in the Spanning Graph shown in Fig-
ure 6, the elementnote represented by a node of the same
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Figure 6: Example - Applying the Heuristic Rules
to the Spanning Graph

name is both a sub-element of the elementsgeography and
area in the documentsn.xml. However, we see thatnote
is an optional sub-element ofarea but a mandatory one of
geography. If we apply the heuristic rules to the nodes in
this case, confusion would arise as to whethernote is op-
tional or mandatory.

Heuristic Rules

The heuristic rules are:

Rule I (Define Optionality):
To define optionality simply means to determine for each ele-
mentNp, how frequent does the relationshipNc=Child(Np)
occurs for every child elementNc of Np. To examine the
frequency of occurrence of each element, we will make use
of theNodeIDList attribute of the nodeNp and compared
them to theEdgeIDList attribute of the edge< Np; Nc >

to determine the relative frequency of occurrence of the re-
lationshipNc=Child(Np) with respect to the frequency of
occurrence of the nodeNp.

For each child nodeNc of a parent nodeNp,

� If < Np; Nc >.EdgeIDList�Np.NodeIDList, then the
element represented byNc is a mandatory sub-element of
that represented byNp.
� Else, we conclude that the element represented byNc is an
optional sub-element of the element represented byNp.

A new attributeOptTag is assigned to each edge to capture
the optionality of the relationship.
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Example 5: In the Spanning Graph example in Figure 3,
edge<area, note> is marked asZeroOrOne(?) i.e., op-
tional since<area,note>.EdgeIDList (=f29g) � of the
NodeIDList of the node withTagName of area (=[9,29]).
This implies that the child nodenote of area does not al-
ways occur when the nodearea appears and hence is con-
sidered an optional child element. Consequently, the ele-
mentnote will be declared as an optional child element of
area in the DTD i.e.,<!ELEMENT area (total, land,
water, note?)>. The same applies to the edge<maritime
claim, exec fishing zone> and others.

Rule II (Merge Repeat):
For each pair distinct adjacent sibling edgesEi(=< Np; Nc >

) andEj(=< Np; Nc+1 >) in the Spanning Graph, ifNc =
Nc+1 (i.e.,Ei andEj are adjacent parallel edges), we will
collapse the two edges into a single edgeEk whereEk.Edge-
IDList � Ei.EdgeIDList

S
Ej .EdgeIDList.

� If Ek .EdgeIDList � Np.NodeIDList then we consider
Nc as anOneOrMore sub-element ofNp.
� ElseNc will be said to be anZeroOrMore sub-element of
Np.

Example 6: In the Spanning Graph in Figure 3, there are two
adjacent edges<document, img>. As defined in Heuris-
tic Rule 1, we can merge these two edges into a single edge
the the resultant edge’sEdgeIDListwill be the union of the
EdgeIDList of the two edges. Furthermore, since the re-
sult edge<document,img> hasEdgeIDList of f1,21g,
which is equivalent to theNodeIDList of the parent node
(root node) of this relationship,<document,img>.OptTag
= OneOrMore. andimgwill be considered as anOneOrMore
(+) sub-element ofdocument. The DTD generated will
hence look like<!ELEMENT document ( ..., img+, ...
)>

Rule III (Define Group):

In this rule, we attempt to identifyrepeating groups in the
sequence of child edges of a parent node. The condition that
must be met before a subsequence of child edges can be de-
fined as a group is that all the edges in the group must have
identicalEdgeIDList. Hence, we use theEdgeIDList to
group adjacent edges together i.e., group elements together
if they have identicalEdgeIDList.

After paritioning a sequence of “child” edges of a parent
node according to theEdgeIDList, we then proceed to find
adjacent groups that have identical elements i.e., the edges in
both groups points to the same sequence of child nodes (in
order). We first begin by examining the first two partitions
to be merged and attempt to find in each of the partition, a
sequence of edges pointing to identical elements. We will

use an example to illustrate the process of finding the com-
mon elements between two partitions and combining them
to form a repeating group. For example, if we are given two
partitions of elementsfa,b,c,d,eg andfb,c,d,e,fg, we
will attempt to find two identical sequence of elements that
begins with the first element of the second partition i.e.,b and
ends with the last element of the first partition i.e.,e. Here,
we see that the sequencefb,c,d,eg fits this description
and hence we merge the two partition intofa,b,c,d,e,fg
and the corresponding DTD fragment that will be generated
will be of the formfa,(b,c,d,e),fg.

Before we conclude the grouping of elements, we must also
determine the optionality of the entire group of elements as
well as each individual element that was merged. To deter-
mine theOptTag of the group of elements, we examine the
union of theEdgeIDList of both groups of elements:

� If the unionedEdgeIDList of the group of elements is
equivalent to theNodeIDList of the parent node, then the
group of elements is considered asOneOrMore.
� Else if the unionedEdgeIDList is a subset of theNodeID-
List of the parent node, then the group of elements is con-
sidered asZeroOrMore.

For each individual elements in the group, theOptTag is
Required. The exception is when one or both the elements
to be merged has anOptTag of ZeroOrMore orOneOrMore
(from theMergeRepeat rule). If only one of the element
is OneOrMore or ZeroOrMore (repeating), then the merged
element will beOneOrMore orZeroOrMore respectively. In
the case when both elements to be merged are repeating, then
we will use the following:

� If both the elements have the sameOptTag value, then the
merged element will inherit thatOptTag value.
� Else the merged element will have anOptTag value of
ZeroOrMore.

Note that each edges can only be a member a single group.
Each group is assigned aGroupID to enable us to determine
the groups of elements in the DTD that are to be generated.

Example 7: As the documents on the “CIA World Factbook”
do not provide any examples for applying Heuristic Rule
III, we shall provide an independent example in Figure 7.
In this sub-graph structure rooted at nodeA, we can iden-
tify two identical subsequences of edgesfB,C,Dg. As every
edge of each of the subsequence has the sameEdgeIDList,
they can be considered as a group. In the example, since
the two groups are identical and adjacent, we will merge
them together. The resultantEdgeIDList of the edges in
the new group will the be union of theEdgeIDList of the
edges in the two componenet groups i.e.,f1,2,3g. Since the
NodeIDList of nodeA is [1,2,3], the group will be con-
sidered as anOneOrMore group. The corresponding DTD
segment will be<!ELEMENT A ( ( B, C, D )+, B )>.
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Figure 7: Example - Grouping of Elements

6. EXPERIMENTAL RESULTS
For the purpose of empirical verification, we have imple-
mented and tested the our proposed on the collection of XML
documents for the play “Life of Henry the Fifth” by William
Shakespeare (converted into XML by Jon Bosak). The DTD
(known as “play.dtd”) used by the collection is shown in Fig-
ure 8. Our primary aim here is to verify that the DTD gen-
erated is correct. Furthermore, by comparing the generated
DTD and the original one, we would like to identify the pit-
falls of our algorithms and to suggest some improvement.

The DTD generated by our algorithms is shown in Figure 9.
Using a validating XML parser, we verified that the gener-
ated DTD can be used to parse the XML collection. Most
of the simple element declaration in the generated DTD are
quite similar to the original ones. Nevertheless, we observe
that the generated DTD element declaration contains too much
repetitive information. For example, the elementsPGROUP
andPERSONA appeared multiple times as child elements of
the elementPERSONAE in the generated DTD in Figure 9.
This makes the DTD too complicated and lengthy to be use-
ful and hinders its readability. In the original DTD in Fig-
ure 8 that the declaration forPERSONAE is simply<!ELEMENT
PERSONAE ( TITLE, ( PERSONA | PGROUP )+ ) >.
This suggests that our DTD generation method can be further
improved to derive more readable and simpler DTDs. In the
next Section, we present some further refinement to our DTD
generation method to achieve the goal.

7. FURTHER REFINEMENT
In order to overcome overly complex element declaration
generated by our DTD generation method, we have adopted
an interactive solution that allows a user to specify how much
the DTD should be simplified orrelaxed. The relaxation of
DTD is achieved by reducing the ordering constraint on the
sub-elements in the element declaration so as to group ap-
proximately similar groups of elements together, hence re-
ducing complexity.

One simple example is the sequence of sub-elementsfA,B,C,
D,A,D,A,Cg, which can be declared in the DTD as<!ELEMENT
Root (A, B?, C,?, D?)+> or<!ELEMENT Root (A|B|
C|D)+> instead of<!ELEMENT Root (A,B,C,D,A, D,B,C)>.

<!-- DTD for Shakespeare J. Bosak ... -->
<!-- Revised for case sensitivity 1997.09.10 -->
<!-- Revised for XML 1.0 conformity 1998.01.27 ... -->

<!ENTITY amp "&#38;">
<!ELEMENT PLAY (TITLE,FM,PERSONAE,SCNDESCR,PLAYSUBT,

INDUCT?,PROLOGUE?,ACT+,EPILOGUE?)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT FM (P+)>
<!ELEMENT P (#PCDATA)>
<!ELEMENT PERSONAE (TITLE, (PERSONA | PGROUP)+)>
<!ELEMENT PGROUP (PERSONA+, GRPDESCR)>
<!ELEMENT PERSONA (#PCDATA)>
<!ELEMENT GRPDESCR (#PCDATA)>
<!ELEMENT SCNDESCR (#PCDATA)>
<!ELEMENT PLAYSUBT (#PCDATA)>
<!ELEMENT INDUCT (TITLE, SUBTITLE*, (SCENE+|(SPEECH|

STAGEDIR|SUBHEAD)+))>
<!ELEMENT ACT (TITLE, SUBTITLE*, PROLOGUE?, SCENE+,

EPILOGUE?)>
<!ELEMENT SCENE (TITLE, SUBTITLE*, (SPEECH|STAGEDIR|

SUBHEAD)+)>
<!ELEMENT PROLOGUE (TITLE,SUBTITLE*,(STAGEDIR|SPEECH)+)>
<!ELEMENT EPILOGUE (TITLE,SUBTITLE*,(STAGEDIR|SPEECH)+)>
<!ELEMENT SPEECH (SPEAKER+, (LINE|STAGEDIR|SUBHEAD)+)>
<!ELEMENT SPEAKER (#PCDATA)>
<!ELEMENT LINE (#PCDATA | STAGEDIR)*>
<!ELEMENT STAGEDIR (#PCDATA)>
<!ELEMENT SUBTITLE (#PCDATA)>
<!ELEMENT SUBHEAD (#PCDATA)>

Figure 8: Original DTD for “Life of Henry the Fifth”

<!-- DTD-Miner Version 1.4 -->
<!-- CAIS, NTU, Singapore -->
<!-- Copyright 1999 Moh Chuang Hue -->
<!-- Parameters specified: -->
<!DOCTYPE PLAY [
<!ELEMENT PLAY ( TITLE, FM, PERSONAE, SCNDESCR,
PLAYSUBT, INDUCT?, PROLOGUE?, ACT+ ) >

<!ELEMENT TITLE ( #PCDATA ) >
<!ELEMENT FM ( P+ ) >
<!ELEMENT P ( #PCDATA ) >
<!ELEMENT PERSONAE ( TITLE, PERSONA?, PGROUP?,
PERSONA?, PGROUP?, PERSONA?, PGROUP?, PERSONA*,
PGROUP*, PERSONA*, PGROUP*, PERSONA+, PGROUP?,
PERSONA*, PGROUP?, PERSONA*, PGROUP?, PERSONA*,
PGROUP?, PERSONA?, PGROUP*, PERSONA*, PGROUP?,
PERSONA* ) >

<!ELEMENT PERSONA ( #PCDATA ) >
<!ELEMENT PGROUP ( PERSONA+, GRPDESCR ) >
<!ELEMENT GRPDESCR ( #PCDATA ) >
<!ELEMENT SCNDESCR ( #PCDATA ) >
<!ELEMENT PLAYSUBT ( #PCDATA ) >
<!ELEMENT INDUCT ( TITLE, STAGEDIR*, SPEECH?,
STAGEDIR?, SCENE* ) >

<!ELEMENT STAGEDIR ( #PCDATA ) >
<!ELEMENT SPEECH ( SPEAKER+, LINE*, STAGEDIR?, LINE?,
STAGEDIR?, LINE?, STAGEDIR?, ... (not shown), LINE* ) >

<!ELEMENT SPEAKER ( #PCDATA ) >
<!ELEMENT LINE ( #PCDATA | STAGEDIR )* >
<!ELEMENT SUBHEAD ( #PCDATA ) >
<!ELEMENT SCENE ( TITLE, STAGEDIR?, SUBHEAD?, SPEECH*,
..., SPEECH? ) >

<!ELEMENT PROLOGUE (TITLE,STAGEDIR*,SPEECH,STAGEDIR?)>
<!ELEMENT ACT ( TITLE, PROLOGUE?, SCENE+, EPILOGUE? ) >
<!ELEMENT EPILOGUE ( TITLE, STAGEDIR?, SUBTITLE?, SPEECH,
STAGEDIR? ) >
<!ELEMENT SUBTITLE ( #PCDATA ) >

]>

Figure 9: DTD Generated for “Life of Henry the
Fifth”
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In designing the interactive process, we ensured that the amount
of user intervention required is minimized so as to make the
generation of DTD a less tedious task for the user.

Consider the sequence of sub-elementsfA,B,C,D,A,D,A,Cg.
TheRepetition Factor for each sub-element is defined as the
number of times the same sub-element (of the sameTagName)
appears in the sequence. In this example, the repetition factor
of A is 3 and that ofB is 1. We defineMaximum Repetition
Factor (MAXREP) to be the maximum repetition factor one
can find in an element declaration. To reduce the complexity
of the generated DTDs, we allow users to impose constraints
over the maximum repetition factor. If the repetition fac-
tor of a sub-element in a DTD element declaration exceeds
MAXREP , the sequence of sub-elements in the declaration
should be merged to reduce the repetition factor. For exam-
ple, for aMAXREP of 1, the sequence in the example can be
merged to formfA,B?,C?,D?g. The merging strategy that
we used is an incremental strategy which merges two sub-
sequences starting from the first extraneous sub-element e.g.,
we merge the two sub-sequencesfA,B,C,Dg andfA,Dg to
get the sequencefA,B?,C?,Dg. Then we further merge this
sequence withfA, Cg to getfA,B?,C?,D?g.

We employ the concept of LCS here to merge subsequences
of elements togther to achieve our goal of relaxing the DTD
generated. Due to space constraint, we will only consider
in this paper only cases where there are no groups in the
DTD. Starting from the first edge in the sequence of “child
edges”, we will partition the entire sequence of edges into
smaller sequences. Each of these smaller sequences will
start with edges that point to the a sub-element with repe-
tition factor greater thanMAXREP . For example, if we have
the sequencefA,C,D,E,A,D,F,A,B,Eg andA has a rep-
etition factor larger thanMAXREP (say = 2), we will then
have the partitionsfA,C,D,Eg , fA,D,Fg andfA,B,Eg .
These partitions are to be merged to reduce the repetition fac-
tor of A.

To merge the partitions, we will find the LCS between the
two smaller sequences and proceed to merge the elements,
using those elements in the LCS as pivotal elements. In
the example given above, we see that the LCS between the
first two partitions of elements isfA,Dg and the merged se-
quence will befA,C,D,E,Fg . The merging of partitions
proceeds incrementally untilMAXREP is satisfied. Here,
if the MAXREP is 2, then we will stop since the number
of partitions is 2 and the final sequence of child elements
is fA,C,D,E,F,A,B,Cg . However, if theMAXREP is 1,
then we will mergefA,C,D,E,Fg with fA,B,Cg to get the
final sequence offA,B,C,D,E,Fg .

Finally, we also need to determine the optionality of the en-
tire group of merged elements and also that of each individ-
ual elements that we have merged. For the group of merged
elements, if the union of all theEdgeIDList of the elements
in the group is equal to theNodeIDList of the parent node,
then we consider the group of elements asOneOrMore. Oth-
erwise, if theEdgeIDList of the elements in the group is
a subset of theNodeIDList of the parent node, then the

group is considered asZeroOrMore. We use another vari-
ableRelaxOptTag to represent the optionality of each indi-
vidual element within the group of elements. ThisRelaxOptTag
superceeds theOptTag in determining the optionality of el-
ements in the final DTD generated and is only applicable to
elements that are involved in the relaxation process. The rule
to determine theRelaxOptTag is as follows:

� If the element in the group is not in the LCS, then its
RelaxOptTag will be Optional.
� If the element appears in the LCS, then we will need to
merge it with another identical element in the second parti-
tion. TheRelaxOptTag of the merged element will be de-
termined as follows:
– If one of the element to be merge hasRelaxOptTag =
Optional, then theRelaxOptTag of the merged element
will be Optional.
– Else if one or both the element has anOptTag value of
Optional or ZeroOrMore, then the merged element’s
RelaxOptTag value will beOptional.
– Else the merge element’sRelaxOptTag value will be
Required.

After applying the method with the first element as the start-
ing element, we then proceed to apply the method again with
the second element as the starting element for the partitions
and so on. The relaxation stops whenMAXREP is satisfied.

Example 8: Figure 10 shows the result of generating the
DTD with a MAXREP of 1. To illustrate the merging of
the elements in the DTD, we will look at the declaration of
INDUCT. In the DTD generated originally, the definition of
this element is<!ELEMENT INDUCT (TITLE,STARGEDIR*,
SPEECH?, STAGEDIR?, SCENE* )>. We first begin by par-
titioning the sequence of child elements with the first element
as the start element and we obtain only a single partition
sinceTITLE only appears once. No merging is required in
this case. Next, we proceed to partition the sequence with
STAGEDIR as the staring element and we obtain two parti-
tions, namelyfSTAGEDIR,SPEECHg andfSTAGEDIR,
SCENEg. Since the number of partitions exceeds theMAXREP,
we will need to merge the two partitions. Here, the LCS that
we derive from the two partitions isfSTAGEDIRg and the se-
quencefTITLE,(STAGEDIR,SPEECH,SCENE)g is obtained
by merging the partitions. The optionality of the entire group
of merged element (as determined by the program automati-
cally) isOneOrMore. The generated DTD fragment is
<!ELEMENT INDUCT(TITLE,(STAGEDIR?,SPEECH?,
SCENE?)+)>. We see that the elementsSPEECH andSCENE
areOptional since they are not found in the LCS. The el-
ementSTAGEDIR is alsoOptional although it is found in
the LCS since the orignal elements (before merging) are also
optional (ZeroOrMore andOptional respectively).

With a MAXREP of 1, a new DTD was derived as shown
in Figure 10. The complexity of the generated DTD was
successfully reduced and is closer to the original DTD.
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<!-- DTD-Miner Version 1.4 -->
<!-- CAIS, NTU, Singapore -->
<!-- Copyright 1999 Moh Chuang Hue -->
<!-- Parameters specified: [ MaxRep = 1 ] -->
<!DOCTYPE PLAY [

<!ELEMENT PLAY (TITLE,FM,PERSONAE,SCNDESCR,PLAYSUBT,
INDUCT?, PROLOGUE?, ACT+ ) >

<!ELEMENT TITLE ( #PCDATA ) >
<!ELEMENT FM ( P+ ) >
<!ELEMENT P ( #PCDATA ) >
<!ELEMENT PERSONAE ( TITLE, ( PERSONA?, PGROUP? )+ ) >
<!ELEMENT PERSONA ( #PCDATA ) >
<!ELEMENT PGROUP ( PERSONA+, GRPDESCR ) >
<!ELEMENT GRPDESCR ( #PCDATA ) >
<!ELEMENT SCNDESCR ( #PCDATA ) >
<!ELEMENT PLAYSUBT ( #PCDATA ) >
<!ELEMENT INDUCT (TITLE, (STAGEDIR?,SPEECH?,SCENE?)+)>
<!ELEMENT STAGEDIR ( #PCDATA ) >
<!ELEMENT SPEECH (SPEAKER+,(LINE?,STAGEDIR?,SUBHEAD?)+)>
<!ELEMENT SPEAKER ( #PCDATA ) >
<!ELEMENT LINE ( #PCDATA | STAGEDIR )* >
<!ELEMENT SUBHEAD ( #PCDATA ) >
<!ELEMENT SCENE (TITLE,(STAGEDIR?,SPEECH?,SUBHEAD?)+)>
<!ELEMENT PROLOGUE (TITLE, (STAGEDIR?,SPEECH? )+ ) >
<!ELEMENT ACT ( TITLE, PROLOGUE?, SCENE+, EPILOGUE? ) >
<!ELEMENT EPILOGUE (TITLE,(STAGEDIR?,SUBTITLE?,
SPEECH?)+ ) >

<!ELEMENT SUBTITLE ( #PCDATA ) >
]>

Figure 10: DTD Generated for “Life of Henry the
Fifth” with MAXREP of 1

8. CONCLUSIONS
In this paper, the concept of re-engineering structures from
Web documents has been introduced. Based on a structure
re-engineering framework, we have developed some algo-
rithm to construct a Spanning Graph that describes the struc-
tures of a set of similarly structured XML documents. We
further proposed to generate the DTD for these XML docu-
ment using a set of heuristic rules. For demonstration pur-
poses, we have implemented our proposed technique into a
prototype system known asDTDMiner. The Web interface
for the system can be found at “http://www.cais.ntu.edu.sg
:8000/�chmoh/dtd-miner/”. The system allows the user to
supply some XML files and generates a DTD for them. It
also supports relaxation of the generated DTDs.

As part of our future research, we plan to extend the re-
engineering techniques in the following directions:

� Discovering of attributes and attribute types: The way
that we have handled attributes so far is to simply assume that
all the attributes are mandatory and of typeCDATA. Attributes
however, can be of various data types and may not always be
required in the XML standard. As a result, we need to ex-
plore into more sophisticated ways of handling attributes to
produce more accurate DTDs. Note that attributes can prove
to be important to the structures of XML documents e.g., the
XLink standard utilizes attributes to define the hyperlinks be-
tween XML documents.
� Discovering inter-document structures: The framework
we have proposed is primarily used to discover the structures
within Web documents i.e., intra-document structures. We
see that such structures are not the only category of struc-
tures that can exist in Web documents. The hyperlinks that
exist in almost all Web documents present an inter-document

structure (e.g., Web-site structure). Used in conjunction with
the DTD discovered, the inter-document structures can pro-
vide a useful road-map to user query formulation.
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