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Re-engineering Structures from Web Documents

Chuang-Hue Moh, Ee-Peng Lim, Wee-Keong Ng

Center for Advanced Information Systems
School of Applied Science
Nanyang Technological University
Nanyang Avenue, Singapore 639798, SINGAPORE

ABSTRACT

To realise a wide range of applications (including digital 1i-
braries) on the Web, a more structured way of accessing the
Web is required and such requirement can be facilitated by
the use of XML standard. In this paper, we propose a general
framework for reverse engineering (or re-engineering) the
underlying structures i.e., the DTD from a collection of simi-
larly structured XML documents when they share some com-
mon but unknown DTDs, The essential data structures and
algorithms for the DTD generation have been developed and
experiments on real Web collections have been conducted to
demonstrate their feasibility. In addition, we also proposed
a method of imposing a constraint on the repetitiveness on
the elements in a DTD rule to further simplify the generated
DTD without compromising their correctness.

KEYWORDS: Web information discovery, XML

1. INTRODUCTION

Motivation

The World-Wide Web (WWW) is one of the world’s richest
repositories of information, with a growth rate of 1 million
Web pages per day and showing no signs of slowing down.
Apart from the rapid growth rate and increasing popularity,
the more significant impact to the WWW is the change in the
way people are making use of the Web. Web documents are

no longer simple hand-coded hypertext documents. Instead,
they are becoming more interactive and a majority of them

are generated automatically by underlying databases. As a
result of the added complexity of Web applications today, we
require a more structured way to access the Web.

The emergence of the Extensible Markup Language (XML)
provides a partial solution to this problem. XML, in sum-
mary, is a structured format for data interchange over the
Web. The main difference between HTML and XML is the
use of tags = while HTML tags are primarily used to describe
they way in which a data item is displayed on Web browsers,
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XML tags describe the data itself. The effect of this sub-
tle difference is that XML documents are self-describing and
this facilitates the post-processing of Web documents, promis-
ing a complete change in the “behavior” of the Web in the
near future. Although the structures for a set of structurally
similar XML documents can be found in the Document Type

Definition (DTD), there are a few problems associated with
the use of DTDs as the “schema” for XML documents:

. For a given set of XML documents, the presence of the
DTD is not mandatory i.e., we cannot be sure that the DTD

will be available with certainty. Note that XML documents
that follow the syntax of the XML specification are consid-
ered as well-formed XML documents. Valid XML docu-
ments are well-formed XML documents accompanied by a
corresponding DTD.

« A majority of the Web documents on the WWW today are

still in HTML format and do not have any DTD to describe
their structure. Refer to [§] regarding the issues involved in

“recycling” HTML documents into XML documents.

o The process of defining a DTD for a given set of XML

documents is often a complicated and tedious task. In order
to define the DTD for the documents, the user must have a
clear idea how these documents are structured. To add to the

complexity, DTDs do not follow the same syntax as the XML
documents themselves. Hence we predict that quite a good
number of Web pages on the WWW will not have any DTDs.

Objectives and Scope

The key objective of this project is to re-engineer the underly-
ing structures of a given set of Web documents. We propose a
general framework for Structure Re-engineering from Web
documents and produce a DTD for each subset of similarly
structured Web documents as a final result.

In the project, we do not attempt to solve all the problems
pertaining to structure re-engineering. Instead, we propose a
general framework for structure re-engineering of Web doc-
uments. We introduce a structural representation for a set of
Web documents, in particular XML documents or semanti-
cally tagged HTML documents’ that share a common struc-
ture but do not come with a DTD. We then develop the al-

‘Such HTML documents are tagged with XML style user-defined tags
to identify the semantic elements within the documents and their nesting
relationships while retaining the HTML tags. Since XML style tagging is
adopted, we may henceforth consider these HTML documents containing
user-defined tags as XML documents.



gorithms for discovering the DTD from the structural repre- Document Sructure Extractor (NoDoSE) [1] presents an in-
sentation. We have also conducted experiments on real-lifeteractive approach to discovering Web document structures.
examples of Web documents to demonstrate the discoveryln NoDOSE, the user is require to identify a few interesting
algorithms. regions in a single document and the program will attempt to

, ) . identify other interesting regions in the document by decom-
In this research, we focus on the textual and tag information hosing the document in a top-down manner. The structure
within the Web documents. Other objects embedded in the giscovered from this document will then be used on docu-
documents such as multimedia data, hyperlinks, entity refer- jyants of the same type of extract the relevant data. Although
ences and element attributes have not been considered so fgpteresting, the need for extensive user intervention can prove
but extensions of our algorithms to cater for such objects cany pe tedious and non-trivial, especially when dealing with
be made in the future research. large and highly heterogeneous sources, like the WWW.

Paper Organization . _ 3. STRUCTURE RE-ENGINEERING FRAMEWORK
The rest of this paper is organized as follows. Section 2 sur- The proposed framework for the re-engineering of structures

veys some of the work done that is related to our project. from Web documents consists of three phases as described
Section 3 covers the General Framework for the Structure pelow:

Re-engineering process. The process of re-engineering an

overall structure from these instance structures for the XML Phase I. Structure Extraction and Clustering

documents is discussed in Section 4. Section 5 introducesThe re-engineering process begins with extraction of instance
a set of heuristic rules to construct the DTD from the over- structures from the Web documents and grouping them into
all structure discovered. Section 6 provides us with some clusters. The following steps must be carried out.
experimental results on two collections of XML documents. o Semantic tagging of HTML documents XML documents
Section 7 presents the refinement methods used to overcomeye self-describing and hence the structure of individual doc-
the inadequacies of the heuristic rules. Finally, Section 8 ;ments can be derived from the XML tags. This however,
concludes the paper. is not the case for HTML documents - HTML tags only de-
scribe the way in which the data is to appear in Web browsers.
To re-engineer the structure for a collection of XML or HTML
documents, our proposed framework requires the structure
of a few if not all member documents to be explicitly repre-

2. RELATED WORK
The automatic creation of DTD in the OCLC’s GB-Engine [9]
uses an approach that is fairly similar to ours. In the GB-

Engine, an internal tree representation is built and convertedSented by inserting semantic tags into the HTML documents.

into a grammar. The grammatical rules are then cqmbined, For the HTML documents, we need to draw clues from the
generalized and reduced to produce a corresponding DTD'formatting information that is found in the HTML tags. For

We see that the generation of an internal tree representatiorbxample’ a bold short phrase may represent a section header.
is similar to the Document Tree data structure that we pro- The process of marking the semantic structure explicit of a

Pof?f)' In tl:]e'r;\/?rka reguctllyon rules I'léet Ide(;nlcaltr?ases ' HTML documentis termeeemantic tagging and is very sim-
off by one” and “redundant” were used to reduce the Com- ;.44 the process described in [3].

plexity of the DTDs generated. Nevertheless, the complex- ;) o0 ce structure modeling The structure of an XML

ity of glenerated DTDIS cannotl beleasgt (C::ontrollegji))y the document or semantically tagged HTML document is inher-

useJ;Cg ?Lucr:g)r(():l?)(r)]ii"\c/vaene(jmgs%ya us?ar de?irr?g(]jon arar-neter ently ann-ary tree, where the sub-element_s are represented

ﬁgximum repetition fapctor to provide a more genzral and as child nodes of the tree node representing their parent el-
; ; ement. We need to map the structures of each instance of

flexible method to reduce the complexity of the DTD gener- the Web documents involved in the discovery process into

ated. an n-ary tree representation called thecument Tree. In

In the Lore project [6], the OEM [7] was proposed to model the Document Tree repre_sentation, the _hierarchic_al structure
the structures of semistructured data. The OEM model ad- Of the Web documents will be mapped into the hierarchical
dresses the need of a more flexible data model for semistruc-Structure of the n-ary trees. For instance, if the eleraeat
tured data like Web documents, as compared to conventional'S & Sub-element afeogr aphy, then the noder ea will be

data models like object-oriented models. The main “draw- @ child node ofeogr aphy in the Document Tree.

back” of the OEM model is the missing ordering informa- Each node in the Document Tree is unlquel)_/ identified by
tion about the elements in the schematic description of OEM @ Node-ID (NI D). Note that theNID is also unique across
model, also known as the DataGuides[5]. XML, on the other all the Document Trees of the Clgster of struct_urally similar
hand, does require the elements to conform to the Orderingdocuments. The other attributes in each node include:

defined in the DTD. — TagNane: String that corresponds to the name of the ele-
ment represented by the node.
Based on OEM, th&oadmap Approach [10, 11] to discover =~ — AttLi st: List of attribute nhame that represents the at-

typical structures of documents was proposed. This approachtributes of the corresponding XML element.

however does not generate DTD for web documents. The— PCDat a: Boolean variable to determine whether the cor-
typical structures generated also do not carry ordering infor- responding element in the DTD contaiRarsed Character
mation about elements in the documents. Noethwestern Data (PCDATA)
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<?xm version="1.0" encodi ng="1S0O 8859-1" standal one="no"?>
<! DOCTYPE docunent SYSTEM "country. dtd">

<?xm version="1.0" encodi ng="1S0O 8859-1" standal one="no"?>
<docurent >

<! DOCTYPE docunent SYSTEM "country.dtd">

<head? ! ) <docunent >
<title>Singapore</title> <head>

</head> <title>United States</title>

<count ry>Si ngapor e</ count ry> </ head>

<inmg href ::f! gures/sn-t.gif" ﬁ" t="[ Country ... ]"/f <count ry>Uni ted States</country>

<img href="figures/sn-150.gif" alt="[Country ...]"/> <ing href="figures/us-t.gif" alt="[Country ...]"/>

<geogr aphy> ) <inmg href="figures/us-150.gif" alt="[Country ...]"/>
<l ocati on> Sout heastern ...</location> <geogr aphy>

<coordi nates>1 22 N, 103 48 E</coordi nates>
<map_r ef >Sout heast Asi a</ map_ref >
<area>
<total >647.5 sq knx/total >
<l and>637.5 sq knx/|and>
<wat er >10 sq knx/wat er >
</ area>

<maritinme_clain

<exec_fishing_zone>w thin and beyond territorial...

</ exec_fi shing_zone>
<territorial _sea>3 nnx/territorial_sea>

<l ocation> North Anerica, bordering ...
Canada and Mexi co</|ocation>
<coor di nates>38 00 N, 97 00 W/ coordi nat es>
<map_ref>North America</ map_ref>
<ar ea>
<t otal >9, 629, 091 sq knx/total >
<l and>9, 158, 960 sq knx/| and>
<wat er >470, 131 sq knx/ wat er >
<not e>i ncludes only the 50 states ...
</ area>

<maritime_clainm

</maritime_clain <contiguous_zone>12 nnx/conti guous_zone>

<continential _shel f>not ...</continential_shel f>

<exec_econom c_zone>200 nnx/exec_econoni c_zone>

<territorial_sea>12 nnx/territorial_sea>
</maritime_clainm

</ gébér aphy>
</ docunent >

Figure 1: XML Document - Singapore

</ gébér aphy>
</ docunent >

Figure 2: XML Document - USA

Example 1: Figures 1 and 2 show portions of the Web pages
extracted from the “CIA World Factbook” on the facts and
figures about Singapore and USA respectively. These docu-phase 11l. DTD Construction:

ments were semantically tagged by hand to convert them to|n the final phase obTD Construction, we will apply a set
XML format. The Document Trees that represent the struc- of heuristic rules to the Spanning Graph to generate a DTD.
tures and semantics of these documents are shown in Fig4deally, all the documents in the cluster can be parsed with

ures 3(a) and (b). Note that each node in the Document Treesthe generated DTD using any validating XML parser like the
is uniquely identified by &l D attribute shown in the nodes  «xML for Java”.

of the Document Trees e.g., the node representiaiga>
</ ar ea> in the Document Tree of “sn.xml” hasha D of 9.
The node attributes are not shown here for simplicity.

In the subsequent sections, we will only focus on phases 2
and 3, i.e. Structure Discovery and DTD Construction. To fa-
cilitate the tasks involved, we first introduce Document Trees
e Structural clustering: Web documents from a Web site as a means to represent the structure of individual XML doc-
may not always be structurally similar. For example, we uments.

would expect the content page of a collection of pages on

diseases to be structured in a different manner compared to#: DISCOVERING THE STRUCTURES OF SIMILAR WEB

the pages describing medicines. Attempts to discover struc-POCUMENTS

tures from a set of Web documents without considering the The Spanning Graph

structural similarity or disparity between the documents will The Spanning Graph data structure can be viewed as an or-
produce inaccurate results. As a result, we need to clusterdered,directed acyclic graph (DAG) that encapsulates in it,
documents by their structural similarity before we can begin all the structural information of every Document Tree that it
to re-engineer the overall structure for each cluster of docu- spans i.e., all the the structurally similar Document Trees in
ments. Clustering can be applied on Document Trees basedhe cluster. The Spanning Graph is very similar to the Docu-
on theTree Pattern Matching approach [2] or it can be cou- ment Tree representation defined for instances of XML docu-
pled with the semantic tagging of HTML documents (since ments and is logically similar to the DTD of these XML doc-
the semantic tagging process would already provide clues onuments. A DTD can be extracted from the Spanning Graph
the structure of each document instance). with some heuristic rules that we will discuss in the next sec-
tion. The definition of the Spanning Graph is as follows.

Phase IlI. Structure Discovery

The Sructure Discovery phase takes a cluster of structurally e Each node in the graph represents an element and is uniquely
similar Document Trees as its input and attempts to re-engineétentified by a uniques D. In addition, each node contains

an overall structure for each cluster. The definition of an the following attributes:

overall structure is one that captures all the structural infor- — TagNane: The tag carried by the element represented by
mation from every Document Tree in the cluster. In this pa- the node. Note every node in the Spanning Graph carries a
per, we describe the use offpanning Graph representation  uniqueTagNarre.

to capture the overall structure. — AttList: A list of attributes for the corresponding ele-
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exec_fishing_zone

DoclID = sn.xml location

img
AttList - {href,alt}

[13.34]

{13}

maritime_claim

{13}

-

territorial_sea
[12]

-

map_ref

[7]

coordinates

[6]

First parse

1
Spanning Graj h( ’ location

head

©

DocID = us,xml

continential_shelf

coordinates

img location
AttList - {href,alt}

map_ref
[7.27]

coordinates
[6,26]

location

Note:

{abc...}

EdgelDList

head

[ab.c,..] NodelDList

(d)

Figure 3: Document Tree Derived from XML Documents “sn.xml” and “us.xml|” and the Spanning Graph

ment represented by the node. This is a union of all the this Spanning Graph edge exists.

AttLi st in the nodes of the Document Trees with match-
ing TagNamres as theTagNane of the Spanning Graph node.
— Nodel DLi st : A list of all the NI D of the nodes in all the
Document Trees with the samiagNane as the Spanning
Graph node.

Example 2: The Spanning Graph for the document trees of

e The edges in the Spanning Graph models the hierarchical“sn.xml” and “us.xml” is shown in Figure 3(d). The hier-

relationships between elements.

e The left-right ordering of sibling nodes denotes the left-
right ordering of sub-elements of a single parent element.
For example, if the nodeoor di nat es is the left sibling

of the nodear ea in the Spanning Graph, then the same or-
der can be found between the tag pairor di nat es>

</ coor di nat es>and<ar ea> </ ar ea>in every document
tree where they exist.

e Every edge in the Spanning Graph is uniquely identified
by anEdge-1D (EI D). Furthermore, each edge is assigned an
EdgelLi st that identifies the parent nodes in the Document
Trees in which the parent-child relationship represented by

70

archical relationships between the elements in the document
instances are captured in the Spanning Graph as they are in
the Document Trees. We also observe that each node in the
Spanning Graph has an unigt&gNane field, which corre-
sponds to the name of the element represented by the node.
In addition, the ordering of the nodes in every Document
Tree is preserved in the Spanning Graph. For example, we
see that in the Document Tree “sn.xml”, the nodeat i on

is a left-sibling node of oor di nat es under the parent node
geogr aphy. This relationship is preserved in the Spanning
Graph.




Example 3: As shown in Figure 3(d), each edge contains an Procedure : SpanGraphMerge

Edgel DLi st corresponding to thil D of the parent node in

which the relationship represented by the edge exists. Forlnput: A documenttre®ocT'ree to be merged into a
instance, we see that the Spanning Graph edgeunent , spanning grap®panGraph (immediate).

geogr aphy>haskdgel DLi st ={1, 21}. TheNodel DLi st

contains theNl D of the nodes in the Document Trees that Output : SpanGraph after merging.

have the sam&agNane as the Spanning Graph node. The

nodewat er in the Spanning Graph hasNadel DLi st of LCSMergeDocTree.r oot , SpanGraph.r oot ),

[12, 32] . The numbers in this list are identical to tNeDs returnSpanGraph,
of the nodes in the Document Trees “sn.xml” and “us.xml”
with TagNarme of wat er . Figure 4: Procedure: Merging of a Document Tree

into the Spanning Graph Based on Longest Com-
mon Subsequence

Constructing The Spanning Graph To construct the Span-
ning Graph from a cluster of similarly structured Document
Trees, we employ an incremental strategy in which one Doc-
ument Tree is merged into the Spanning Graph at a time. The
intermediate structure created when some but not all of the yment Tree and Spanning Graph, and merges the the com-
Document Trees had been merged into the Spanning Graphmon nodes by updating tHigel DLi st andNodel DL st

is called theintermediate Spanning Graph. The algorithm  of the respective edges and nodes in the Spanning Graph.
stops when all the Document Tress are merged into the Span+or these common nodes, thesver ge procedure is called
ning Graph. recursively to further merge their child nodes.

In the process of merging Document Trees into the Span-

ning Graph, we need to determine how nodes with the sameFor each non-common first level child node in the Document
tag name from the same or different Document Trees can Tree, we callthénsert Left Si bl i ng() orl nsert Ri ght -

be merged together while preserving the relative orderings Si bl i ng() procedure to insert the child node into Spanning
of their child nodes. After two nodes of the same tag name Graph at the appropriate places. The two procedures are not
are merged together, the problem of merging their sequencesshown here due to space constraint. In the process of insert-
of child nodes is analogous to the problem of merging of ing the Document Tree node into the Spanning Graph, one
two strings. There are often more than one possible mergedmust attempt to merge the Document Tree node with a Span-
string one can derive. In order to produce an amalgamatedning Graph node that carries the safagNare?2. If such a
sequence of child nodes that has the minimum number of el- Spanning Graph node exists, theSMer ge() procedure is
ements (which in turns leads to shorter DTD rules), we have invoked again to merge the child nodes of the Document Tree
adopted théongest common subsequenceapproach to merge  node and Spanning Graph node.

the child nodes [4]. The algorithm for constructing the Span-

ning Graph using the longest common subsequence approaclc]-he algorithm guarantees a minimum number of edges being

is shown in Figures 4 and 5. created when merging the child nodes of matching Document
Tree and Spanning Graph nodes i.e., nodes with the same
) ) . . TagNane. This implies that a minimum number of edges
Observation: Given two strings< andY, we see that if we il pe created when merging the Document Tree and the
merge the two strings by combining elements in both X and gpanning Graph. However, this solution is sub-optimal when
Y that are in the LCS, we can obtain the shortest stdng  zpplied to merge a set of Document Trees into the Spanning

where Graph. Optimally, we should compare the sequences of child
e XCZandYyCZ nodes for all the identical nodes in each Document Tree and
e The order of all the elements iandyY are preserved. find the LCS for these sequences. The merging should then

be done based on this LCS. However, the resultant complex-
ity of finding the LCS for several sequences of child nodes
(instead of just two sequences) would be infeasibly expen-
sive. Therefore, in this paper, we will adopt the sub-optimal
solution to control the complexity of the algorithm.

For example,iKk={A B, C, D, E }andYy={A F
C G H },thenz={A B F, C D E G H }.
We see that the above two properties hold.

The algorithm begins with th8panG- aphMer ge() proce-

dure that integrates a Document Tree into a Spanning Graph

by calling theLCSMer ge procedure with the roots of both

the Tree and Graph as input. The recurdi@sier ge() 2This is possible as the Spanning Graph node with the SeagNane
procedure f”‘SF determ|ne$ the longest common subsequenceay not be a child node afs, or it may be child node ofis not appearing
between the first level child nodes of the roots of the Doc- in the longest common subsequence.
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Procedure : LCSMerge L e ,Q[;gjv :
. continential_shelf -
Input : NodeT'p of a Document Treé'p,., and . B e(Ops
NodeG s of a Spanning Grap& sp.,, where : (1334 . :Qha :
GS.Tag Nane = TDTag Name. X 13 exec_fishing_zone :
Toag =One
LCS,,---,LCSy < FINdLCS(Gg.Chi | dLi st , . territorial_sea. .
Tp.Chi | dLi st ) 29 @3 - (Ofhaan

note

for i =1tok do v )
Let V; be the first child node df'p where 25]) . , water
N;.TagName = LC'S;.TagNane
Let N, be the first child node aff s where
Ny.TagName = LC'S;. TagNane
foreach child nodeN} of T, that are 121/ o
left-sibling nodes ofV, do
InsertLeftSibling(Gs, N}, N, )

geography map_ref

[7,27]

[3,4,23,24] coordinates

6,26]

. document
Spanning Grap!

{5.25} g
location

< G4, Ny >.Edgel DLi st << G4, N, >.Edgel DLi st
UTp.NID
Ny.Nodel DLi st < N,.Nodel DLi st |J N:.NI D
LCSMerge(Ve, Ny )
foreach N/ « remaining child nodes dfp do
InsertRightSiblingG's, N{', Gspan-Ri ght Most Chi | d)

LEGEND:
B Optional [Heuristic Rule I]

= Merged Edge (OneOrMore,
head [Heuristic Rule 11]

Figure 6: Example - Applying the Heuristic Rules
to the Spanning Graph

Figure 5: Procedure: Merging the Child Nodes of
anode in the Document Tree with the Child Nodes

of a node in a Spanning Graph name is both a sub-element of the elemegatsgr aphy and

ar ea in the documengn. xm . However, we see thabt e

is an optional sub-element af ea but a mandatory one of
geogr aphy. If we apply the heuristic rules to the nodes in
this case, confusion would arise as to whethatre is op-
tional or mandatory.

Example 4: Figures 3(c) and (d) show the process of con-

structing the Spanning Graph from two Document Trees of Heyristic Rules
the documents “us.xml” and “sn.xml”. The first step in con-
structing the Spanning Graph is to merge the Document Tree
of “sn.xml” with the initial Spanning Graph which is a graph i ) L
with only a root node. We obtain the first intermediate Span- Rule | (Define Optionality): ,

ning Graph,G%,,,. Next, the Document Tree of another To define optionality simply means to determine for each ele-

document “us.xml” is merged int6'y, ., to form the sec- menti,, how frequent does the relationsip=cni | d( ;)
. : _ o CPan occurs for every child elemen¥, of N,. To examine the
ond intermediate Spanning Gragfj,

bpan- SINCE there are N0 qequency of occurrence of each element, we will make use
more Document Trees to mergez,,,,, becomes the final  of theNodel DLi st attribute of the nodéV,, and compared
Spanning Graph. Note that this approach can be extended tahem to theEdgel DLi st attribute of the edgec N, N, >
merge an arbitrary number of Document Trees. to determine the relative frequency of occurrence of the re-
lationshipN,=Chi | d( N,) with respect to the frequency of
occurrence of the nod¥,.

The heuristic rules are:

5. FINAL CONSTRUCTION OF DTD

In this section, we outline the process for the discovery of
a DTD from a Spanning Graph. The process of discovering
the DTD involves a set dfeuristic rulesto be appliedonthe 4 |f N,, N. > .Edgel DLi st = N,.Nodel DLi st , then the
Spanning Graph to suggest the DTD. Note that the heuristic gjement represented by, is a mandatory sub-element of
rules are applied to the edges of the Spanning Graph to deterthat represented hy,.

mine additional information such as whether a sub-elementis, E|se, we conclude that the element representell big an

an optional or mandatory element of the parent element. The gptional sub-element of the element representeypy

rules are not applied to the nodes although it may be intuitive

to do so. For example, in the Spanning Graph shown in Fig- A new attributeQpt Tag is assigned to each edge to capture
ure 6, the elementot e represented by a node of the same the optionality of the relationship.

For each child nodé/. of a parent nodév,,,
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Example 5: In the Spanning Graph example in Figure 3,
edge<ar ea, note>is marked aZer oOr One(?) i.e., op-
tional since<ar ea, not e>.Edgel DLi st (={29}) C of the
Nodel DLi st of the node withTagNane of ar ea (=[9,29]).
This implies that the child nodeot e of ar ea does not al-
ways occur when the node ea appears and hence is con-

use an example to illustrate the process of finding the com-
mon elements between two partitions and combining them
to form a repeating group. For example, if we are given two
partitions of elements$a, b, c, d, e} and{b, c, d, e, f }, we

will attempt to find two identical sequence of elements that
begins with the first element of the second partitionhend
ends with the last element of the first partition ie.,Here,

we see that the sequenge, c, d, e} fits this description

sidered an optional child element. Consequently, the ele- and hence we merge the two partition idtg b, c, d, e, f }

mentnot e will be declared as an optional child element of
area inthe DTD i.e.,<! ELEMENT area (total, |and,

wat er, note? >. The same applies to the edgeariti me
_claim exec_fishing_zone> and others.

Rule Il (Merge Repeat):

For each pair distinct adjacent sibling ed@ggé=< N,, N. >

) andE; (=< N,, N.+1 >) in the Spanning Graph, iV, =
Nct (ie., E; and E; are adjacent parallel edges), we will
collapse the two edges into a single edfjevhereE .Edge-

I DLi st = E;.Edgel DLi st |J E;.Edgel DLi st .

e If £} .Edgel DLi st = Np.Nodel DLi st then we consider
N, as anneOr Mor e sub-element ofV,,.

e ElseN, will be said to be axer oOr Mor e sub-element of
N,.

Example 6: In the Spanning Graph in Figure 3, there are two
adjacent edgesdocunent, ing>. As defined in Heuris-

and the corresponding DTD fragment that will be generated
will be of the form{a, (b, c, d, e), f }.

Before we conclude the grouping of elements, we must also
determine the optionality of the entire group of elements as
well as each individual element that was merged. To deter-
mine theOpt Tag of the group of elements, we examine the
union of theEdgel DLi st of both groups of elements:

¢ If the unionededgel DLi st of the group of elements is
equivalent to theNodel DLi st of the parent node, then the
group of elements is considered@sOr Mor e.

e Elseifthe unione@tdgel DLi st is a subset of thodel D-

Li st of the parent node, then the group of elements is con-
sidered ager oOr Mor e.

For each individual elements in the group, & Tag is
Requi r ed. The exception is when one or both the elements
to be merged has apt Tag of Zer oOr Mor e or OneOr Mor e
(from the Mer geRepeat rule). If only one of the element

is OneOr Mor e Or Zer oOr Mor e (repeating), then the merged

tic Rule 1, we can merge these two edges into a single edgeelement will beoneOr Mor e or Zer 0oOr Mor e respectively. In

the the resultant edgeizigel DLi st will be the union of the
Edgel DLi st of the two edges. Furthermore, since the re-
sult edge<docunent, i ng> hasEdgel DLi st of {1,21},
which is equivalent to théodel DLi st of the parent node
(root node) of this relationship;docunent , i ng>.0pt Tag

= OneOr Mor e. andi ng will be considered as ameOr Mor e

(+) sub-element ofiocument. The DTD generated will
hence look like<! ELEMENT docunent ( ..., img+,

) >

Rule Il (Define Group):

In this rule, we attempt to identifyepeating groups in the

the case when both elements to be merged are repeating, then
we will use the following:

¢ If both the elements have the sam® Tag value, then the
merged element will inherit thaipt Tag value.

e Else the merged element will have ant Tag value of
Zer oO Mor e.

Note that each edges can only be a member a single group.
Each group is assignedaoupl Dto enable us to determine
the groups of elements in the DTD that are to be generated.

Example 7: As the documents on the “CIA World Factbook”
do not provide any examples for applying Heuristic Rule

sequence of child edges of a parent node. The condition thatlll, we shall provide an independent example in Figure 7.
must be met before a subsequence of child edges can be dem this sub-graph structure rooted at noslewe can iden-
fined as a group is that all the edges in the group must havetify two identical subsequences of edd®s C, D}. As every

identicalEdgel DLi st. Hence, we use thedgel DLi st to

edge of each of the subsequence has the &g DLi st ,

group adjacent edges together i.e., group elements togethethey can be considered as a group. In the example, since

if they have identicakdgel DLi st .

After paritioning a sequence of “child” edges of a parent
node according to thedgel DLi st , we then proceed to find

the two groups are identical and adjacent, we will merge
them together. The resultatigel DLi st of the edges in
the new group will the be union of thedgel DLi st of the
edges in the two componenet groups i,,2, 3}. Since the

adjacent groups that have identical elements i.e., the edges ilodel DLi st of nodeAis [ 1, 2, 3] , the group will be con-
both groups points to the same sequence of child nodes (insidered as amneo Mor e group. The corresponding DTD

order). We first begin by examining the first two partitions

segment will be<! ELEMENT A ( ( B, C, D)+, B)>.

to be merged and attempt to find in each of the partition, a
sequence of edges pointing to identical elements. We will
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Partitions
(with respect to the EdgelDList)
Merged group of elements

1.3} (OneOrMore)
|

1.3}

V1,23

=0

Figure 7: Example - Grouping of Elements

6. EXPERIMENTAL RESULTS

For the purpose of empirical verification, we have imple-
mented and tested the our proposed on the collection of XML
documents for the play “Life of Henry the Fifth” by William
Shakespeare (converted into XML by Jon Bosak). The DTD
(known as “play.dtd”) used by the collection is shown in Fig-
ure 8. Our primary aim here is to verify that the DTD gen-
erated is correct. Furthermore, by comparing the generated
DTD and the original one, we would like to identify the pit-
falls of our algorithms and to suggest some improvement.

The DTD generated by our algorithms is shown in Figure 9.
Using a validating XML parser, we verified that the gener-

<!-- DTD for Shakespeare J. Bosak R
<l-- Revised for case sensitivity 1997.09.10 -->
<!-- Revised for XM_. 1.0 conformty 1998.01.27 ... -->

<IENTITY anp " &#38;">
<! ELEMENT PLAY (TI TLE, FM PERSONAE, SCNDESCR, PLAYSUBT,
I NDUCT?, PROLOGUE?, ACT+, EPI LOGUE?) >

<IELEMENT TITLE  (#PCDATA) >
<I ELEVENT FM (P+)>
<! ELEMENT P ( #PCDATA) >

<! ELEVENT PERSONAE (TITLE, (PERSONA | PGROUP) +) >
<! ELEMENT PGROUP  ( PERSONA+, GRPDESCR) >

<! ELEMENT PERSONA ( #PCDATA) >

<I ELEMENT GRPDESCR (#PCDATA) >

<! ELEMENT SCNDESCR ( #PCDATA) >

<I ELEMENT PLAYSUBT (#PCDATA) >

<I ELEMENT INDUCT  (TITLE, SUBTITLE*, (SCENE+| (SPEECH|
STAGEDI R| SUBHEAD) +) ) >

(TITLE, SUBTITLE*, PROLOGUE?, SCENE+,
EPI LOGUE?) >

(TITLE, SUBTITLE*, (SPEECH STAGEDI R|
SUBHEAD) +) >

<! ELEMENT PROLOGUE (TI TLE, SUBTI TLE*, ( STAGEDI R| SPEECH) +) >
<! ELEMENT EPI LOGUE (TI TLE, SUBTI TLE*, ( STAGEDI R| SPEECH) +) >
<I ELEMENT SPEECH  ( SPEAKER+, (LI NE|] STAGEDI R| SUBHEAD) +) >
<! ELEMENT SPEAKER (#PCDATA) >

<l ELEMENT LI NE (#PCDATA | STAGEDI R) *>

<! ELEMENT STAGEDI R (#PCDATA) >

<!I ELEMENT SUBTI TLE (#PCDATA) >

<! ELEMENT SUBHEAD (#PCDATA) >

<! ELEMENT ACT

<! ELEMENT SCENE

Figure 8: Original DTD for “Life of Henry the Fifth”

ated DTD can be used to parse the XML collection. Most <!-- DIDMner version 1.4 -->

CAlI'S, NTU, Singapore -->

of the simple element declaration in the generated DTD are <i-- Copyright 1999 Moh Chuang Hue -- >

quite similar to the original ones. Nevertheless, we observe

<!-- Paraneters specified: -->
<! DOCTYPE PLAY [

that the generated DTD element declaration contains too much <1 ELEVMENT PLAY ( TITLE, FM PERSONAE, SCNDESCR,

repetitive information. For example, the elemeRGROUP

and PERSONA appeared multiple times as child elements of
the elemenPERSONAE in the generated DTD in Figure 9.
This makes the DTD too complicated and lengthy to be use-
ful and hinders its readability. In the original DTD in Fig-
ure 8 that the declaration fEBERSONAE is simply<! ELEMENT

PERSONAE ( TITLE, ( PERSONA | PGROUP )+ ) >.

This suggests that our DTD generation method can be further
improved to derive more readable and simpler DTDs. In the
next Section, we present some further refinementto our DTD

generation method to achieve the goal.

7. FURTHER REFINEMENT

In order to overcome overly complex element declaration
generated by our DTD generation method, we have adopted
an interactive solution that allows a user to specify how much
the DTD should be simplified sielaxed. The relaxation of
DTD is achieved by reducing the ordering constraint on the

PLAYSUBT, |NDUCT?, PROLOGUE?, ACT+ ) >

<IELEMENT TITLE ( #PCDATA ) >

<IELEMENT FM ( P+ ) >

<IELEMENT P ( #PCDATA ) >

<! ELEMENT PERSONAE ( TITLE, PERSONA?, PGROUP?,
PERSONA?, PGROUP?, PERSONA?, PGROUP?, PERSONA*,
PGROUP*, PERSONA*, PGROUP*, PERSONA+, PGROUP?,
PERSONA*, PGROUP?, PERSONA*, PGROUP?, PERSONA*,
PGROUP?, PERSONA?, PGROUP*, PERSONA*, PGROUP?,
PERSONA* ) >

<I ELEMENT PERSONA ( #PCDATA ) >

<! ELEMENT PGROUP ( PERSONA+, GRPDESCR ) >

<! ELEMENT GRPDESCR ( #PCDATA ) >

<! ELEMENT SCNDESCR ( #PCDATA ) >

<I ELEMENT PLAYSUBT ( #PCDATA ) >

<I ELEMENT | NDUCT ( TITLE, STAGEDI R*, SPEECH?,
STAGEDI R?, SCENE* ) >

<I ELEMENT STAGEDI R ( #PCDATA ) >

<! ELEMENT SPEECH ( SPEAKER+, LINE*, STAGEDI R?, LINE?,
STAGEDI R?, LINE?, STAGEDIR?,

<! ELEMENT SPEAKER ( #PCDATA ) >

<I ELEMENT LINE ( #PCDATA | STAGEDIR )* >

<! ELEMENT SUBHEAD ( #PCDATA ) >

<I ELEMENT SCENE ( TITLE, STAGEDIR?, SUBHEAD?, SPEECH*,

., SPEECH? ) >
<! ELEMENT PROLOGUE ( TI TLE, STAGEDI R*, SPEECH, STAGEDI R?) >

<! ELEMENT ACT ( TITLE, PROLOGUE?, SCENE+, EPILOGUE? ) >

(not shown), LINE* )

>

sub-elements in the element declaration so as to group ap- <! ELEVMENT EPILOGUE ( TITLE, STAGEDI R?, SUBTITLE?, SPEECH,

proximately similar groups of elements together, hence re-

ducing complexity.

One simple example is the sequence of sub-eler{@ns C,

D, A, D, A C}, which can be declared in the DTD @iSELEVENT
Root (A, B?, C, ?, D?)+>or<! ELEMENT Root (A B|

C| D) +> instead ok! ELEMENT Root (A, B, C D A D, B, C) >.

STAGEDIR? ) >
<! ELEMENT SUBTI TLE ( #PCDATA ) >

1>

Figure 9: DTD Generated for “Life of Henry the
Fifth”




In designing the interactive process, we ensured that the amowgnbup is considered aer oO More. We use another vari-

of user intervention required is minimized so as to make the ableRel axOpt Tag to represent the optionality of each indi-

generation of DTD a less tedious task for the user. vidual element within the group of elements. TR& axOpt Tag
superceeds thépt Tag in determining the optionality of el-

Consider the sequence of sub-elemgAlsB, C, D, A D, A, C}.  ements in the final DTD generated and is only applicable to
TheRepetition Factor for each sub-elementis defined as the - gjements that are involved in the relaxation process. The rule

number of times the same sub-element (of the Seagslane) to determine th@®el axQpt Tag is as follows:
appears in the sequence. In this example, the repetition factor
of Ais 3 and that oB is 1. We defindMlaximum Repetition e If the element in the group is not in the LCS, then its
Factor (MAXREP) to be the maximum repetition factor one  Rel axQpt Tag will be Opt i onal .
can find in an element declaration. To reduce the complexity o If the element appears in the LCS, then we will need to
of the generated DTDs, we allow users to impose constraintsmerge it with another identical element in the second parti-
over the maximum repetition factor. If the repetition fac- tion. TheRel axQpt Tag of the merged element will be de-
tor of a sub-element in a DTD element declaration exceedstermined as follows:
MAXREP, the sequence of sub-elements in the declaration— If one of the element to be merge hasl axOpt Tag =
should be merged to reduce the repetition factor. For exam-pt i onal , then theRel axOpt Tag of the merged element
ple, foraMAXREP of 1, the sequence in the example can be will be Opt i onal .
merged to form{A, B?, C?, D?}. The merging strategy that — Else if one or both the element has @ Tag value of
we used is an incremental strategy which merges two sub-Opt i onal or Zer oOr Mor e, then the merged element’s
sequences starting from the first extraneous sub-element e.g.Rel axOpt Tag value will beOpt i onal .
we merge the two sub-sequendes B, C, D} and{A, D} to — Else the merge element®Il axOpt Tag value will be
get the sequencg, B?, C?, D}. Then we further merge this  Requi r ed.
sequence witHA, C} to get{A, B?, C?, D?}.

After applying the method with the first element as the start-
We employ the concept of LCS here to merge subsequencesng element, we then proceed to apply the method again with
of elements togther to achieve our goal of relaxing the DTD the second element as the starting element for the partitions
generated. Due to space constraint, we will only consider and so on. The relaxation stops WHEAXREP is satisfied.
in this paper only cases where there are no groups in the

DTD. Starting from the first edge in the sequence of “child

edges”, we will partition the entire sequence of edges into_ Example 8: Figure 10 shows the result of generating the
smaller sequences. Each of these smaller sequences WilhTp with a MAXREP of 1. To illustrate the merging of
start with edges that point to the a sub-element with repe- the elements in the DTD, we will look at the declaration of
tition factor greater thaMAXREP . For example, if we have | N\pucT. In the DTD generated originally, the definition of
the sequencgA, C D, E A D F, A B E} andAhasarep-  thiselementis! ELEVMENT | NDUCT (Tl TLE, STARGEDI R*,
etition factor larger thaMAXREP (say = 2), we will then  gpgpcp, sTAGEDIR?, SCENE* ) >. We first begin by par-

have the partitiongA, C D, E} , {A, D, F} and{A B E} . titioning the sequence of child elements with the first element
These partitions are to be merged to reduce the repetition fac-a5 the start element and we obtain only a single partition
tor of A. sinceTI TLE only appears once. No merging is required in

To merge the partitions, we will find the LCS between the this case. Next, we proceed to partition the sequence W!th
STAGEDI R as the staring element and we obtain two parti-

two smaller sequences and proceed to merge the elements

using those elements in the LCS as pivotal elements. In tions, namelySTAGED! R, SPEECH} and{STAGEDI R

the example given above, we see that the LCS between theSCENE}- Since the number of partitions exceedsNASREP,

first two partitions of elements i\, D} and the merged se- we WiII_need to merge the two pa_rtitions. Here, the LCS that
quence will be{A, C, D, E, F} . The merging of partitions we derive from the two partitions §STAGEDI R} and the se-
proceeds incrementally unfAXREP is satisfied. Here, quence{'_rl TLE, (STAGEDI R, SPEECH, SCENE) }is ob;amed

if the MAXREP is 2, then we will stop since the number by merging the partitions. The thlonallty of the entire group.
of partitions is 2 and the final sequence of child elements of mefged element (as determined by the program automati-
is {A C, D, E,F, A B, C} . However, if theMAXREP is 1, cally) isOneOr Mor e. The generated DTD fragment is

then we will merggA, C, D, E, F} with {A, B, C} to getthe <! ELEMENT | NDUCT(TI TLE, ( STAGEDI R?, SPEECH?,
final sequence ofA, B, C, D, E, F} . SCENE?) +) >. We see that the elemer@BEECH andSCENE

areOpti onal since they are not found in the LCS. The el-
Finally, we also need to determine the optionality of the en- ementSTAGEDI Ris alsoOpt i onal although it is found in

tire group of merged elements and also that of each individ- the LCS since the orignal elements (before merging) are also
ual elements that we have merged. For the group of mergedoptional Zer oOr Mor e andOpt i onal respectively).

elements, if the union of all thedgel DLi st of the elements
in the group is equal to theodel DLi st of the parent node,
then we consider the group of element©asOr Mor e. Oth- With a MAXREP of 1, a new DTD was derived as shown
erwise, if theEdgel DLi st of the elements in the group is in Figure 10. The complexity of the generated DTD was
a subset of thedodel DLi st of the parent node, then the successfully reduced and is closer to the original DTD.
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structure (e.g., Web-site structure). Used in conjunction with

<!-- DID-Mner Version 1.4 -->

<l-- CAIS, NTU, Singapore -->

<l-- Copyright 1999 Mbh Chuang Hue -->

<l-- Paraneters specified: [ MaxRep =1] -->

the DTD discovered, the inter-document structures can pro-
vide a useful road-map to user query formulation.

< EFEIEE/ENﬁLéZAL( (TI TLE, FM PERSONAE, SCNDESCR, PLAYSUBT REFERENCES
INDUCT?, PROLOGUE?, ACT+) > ’ ’ 1. B. AdelBerg. NoDoSE - A Tool for Semi-
< Etgﬁm E:MTLEPSr #PCOATA ) > Automatically Extracting Semi-Structured Data from
<| ELEVENT P ((#PCD}\TA ) > Text Documents. IMCM SIGMOD International Con-

<! ELEMENT PERSONAE ( TITLE, ( PERSONA?,
PERSONA ( #PCDATA ) >

PGROUP ( PERSONA+, GRPDESCR ) >

PGROUP? )+ ) >
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

SCNDESCR ( #PCDATA ) >
PLAYSUBT ( #PCDATA ) >

I NDUCT (TITLE, (STAGEDI R?, SPEECH?, SCENE?) +) >
STAGEDI R ( #PCDATA )
SPEECH ( SPEAKER®, ( L1 NE?, STAGEDI R?, SUBHEAD?) +) >
SPEAKER ( #PCDATA ) >

LINE ( #PCDATA | STAGEDIR )* >

<! ELEMENT SUBHEAD ( #PCDATA ) >
<! ELEMENT SCENE (Tl TLE, ( STAGEDI R?, SPEECH?, SUBHEAD?) +) > 4
<! ELEMENT PROLOGUE (TITLE, (STAGEDIR?, SPEECH? )+ ) >

<I ELEMENT ACT ( TITLE, PROLOGUE?, SCENE+, EPILOGUE? ) >
<! ELEMENT EPI LOGUE (TI TLE, ( STAGEDI R?, SUBTI TLE?,

SPEECH?) + ) > 5
<! ELEMENT SUBTI TLE ( #PCDATA ) >

Figure 10: DTD Generated for “Life of Henry the
Fifth” with MAXREP of 1

8. CONCLUSIONS

In this paper, the concept of re-engineering structures from
Web documents has been introduced. Based on a structure 7
re-engineering framework, we have developed some algo-
rithm to construct a Spanning Graph that describes the struc-
tures of a set of similarly structured XML documents. We
further proposed to generate the DTD for these XML docu-

ment using a set of heuristic rules. For demonstration pur- 8.

poses, we have implemented our proposed technique into a
prototype system known d&3TDMiner. The Web interface

for the system can be found at “http://www.cais.ntu.edu.sg
:8000~chmoh/dtd-miner/”. The system allows the user to
supply some XML files and generates a DTD for them. It
also supports relaxation of the generated DTDs.

As part of our future research, we plan to extend the re-
engineering techniques in the following directions:

e Discovering of attributes and attribute types The way

that we have handled attributes so far is to simply assume that
all the attributes are mandatory and of tygmATA. Attributes
however, can be of various data types and may not always be
required in the XML standard. As a result, we need to ex-
plore into more sophisticated ways of handling attributes to
produce more accurate DTDs. Note that attributes can prove
to be important to the structures of XML documents e.g., the
XLink standard utilizes attributes to define the hyperlinks be-
tween XML documents.

e Discovering inter-document structures The framework

we have proposed is primarily used to discover the structures
within Web documents i.e., intra-document structures. We
see that such structures are not the only category of struc-
tures that can exist in Web documents. The hyperlinks that
exist in almost all Web documents present an inter-document
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