Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1-1996

On the Complexity of Manpower Shift Scheduling

Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

DOI: https://doi.org/10.1016/0305-0548(94)00094-O

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Numerical Analysis and Scientific Computing Commons, and the Operations
Research, Systems Engineering and Industrial Engineering Commons

Citation

LAU, Hoong Chuin. On the Complexity of Manpower Shift Scheduling. (1996). Computers & Operations Research. 23, (1), 93-102.
Research Collection School Of Information Systems.
Available at: https://ink library.smu.edu.sg/sis_research/37

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of

Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/0305-0548(94)00094-O
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Computers Ops Res. Vol. 23. No. 1, pp. 93-102, 1996

Copyright {; 1995 Elsevier Science Ltd

Pergamon 0305-0548(94)00094-8 Printed in Great Britain. All rights reserved
03035-0548/96 $9.50+0.00

ON THE COMPLEXITY OF MANPOWER SHIFT SCHEDULING

Hoong Chuin Laut
Department of Computer Science, Tokyo Institute of Technology. 2-12-1 Ookayama. Meguro-ku,
Tokyo 152, Japan

* Received September 1993, in revised form November 1994)

Scope and Purpose The scheduling of manpower resources is a critical concern in large service industries
where employees arc rostered on shifts in order to provide services round the clock. Researchers in the
operations research and artificial intelligence communities have proposed various methods to solve
manpower scheduling problems. This paper looks at the manpower scheduling problem from its
computational complexity point of view. We show the computational intractibility of a restricted version
of the manpower scheduling problem, namely, that of scheduling manpower subject to shift change
constraints. Changing of shifts is a critical constraint especially for scheduling ground crews in airports and
sea ports. We propose an efficient algorithm to solve a special case of this problem. We also show how our
algorithm may be extended to handle more complex versions of the problem.

Abstract— We constder the shift assignment problem in manpower scheduling, and show that a restricted
version of it 1s NP-hard by a reduction from 3SAT. We then present polynomial algorithms to solve special
cases of the problem and show how they can be deployed to solve more complex versions of the shift
assignment problem. Our work formally defines the computational intractibility of manpower shift
scheduling and thus justifies existing works in developing manpower scheduling systems using combi-
natorial and heuristic techniques.

1. INTRODUCTION

Manpower scheduling (or rostering) is concerned with the scheduling of manpower resources to
meet temporal operational requirements in ways that satisfy the goals and policies imposed by the
management, labour union and the government. It is a critical management activity in service
organizations which operate round-the-clock where workers are scheduled to work on multiple
shifts. Examples include the scheduling of nurses in hospitals, ground crews in airports, and
operators in telephone companies. Glover and McMillan [1] gives a good survey of the common
manpower scheduling problems (MSP) faced by industry today.

MSPs are often modelled as optimization problems for constructing cost-optimal schedules that
do not violate given scheduling constraints. As MSPs are highly complex, OR researchers have been
investigating both sequential and combined approaches. For combined approaches, one could
conceive formulating MSP as a comprehensive integer linear program. Unfortunately, the size and
complexity of the resulting formulation often makes this approach rather impractical and difficult to
maintain. Recently, Tien and Kamiyama {2] proposed a framework for solving MSP in three main
stagesi, namely, allocation, offday scheduling and shift assignment:

1. Allocation computes the demands, i.e. the number of workers needed for each shift in each
day so that the temporal requirements can be met. Allocation also determines the level of
employment, i.e. computes the minimum number of workers needed to fulfill demands
over the entire planning period.

2. Offday scheduling 1s concerned with assigning offdavs on the schedule subject to offday

tHoong Chuin Lau obtained his B.Sc. and M.Sc. in Computer Science from the University of Minnesota, Minneapolis in
1987 and 1988 respectively. Currently, he is a doctorate candidate at the Tokyo Institute of Technology. His research
interests include resource scheduling, computational complexity and algorithm design.

tActually. their framework comprises 5 stages, but we have combined their stages 1 and 2, and stages 3 and 4, for simplicity of
discussion.

93

94 Hoong Chuin Lau

and workstretch constraints. Typical offday constraints inciude the 4 out of every B
weekends off and case-specific offday constraints to ensure a fair distribution of offdays
among workers. Typical workstretch constraints impose upper and lower bounds on the
lengths of workstretches shift assignment constraints to ensure workers have neither too
short nor too long periods of work.

30 Shitt assignment completes the schedule by assigning shifts to the schedule subject to
demands and the shift assignment constraints. Common shift assignment constraints
include the shift change constraints and consecutive same shift constraints. Shift change
constraints permit specific shift changes (e.g. morning shift to afternoon shift) and forbid
others (e.g. night shift to morning shift) so that workers are not unduly affected by
irregular rest periods. Consecutive same shift constraints impose upper bounds on the
number of consecutive days a worker is allowed to be on the same shift. Since some shifts
(e.g. night shifts) may be more undesirable than others, this restriction will prevent any
worker from having too many undesirable shifts.

The ottday scheduling problem has been tackled by various researchers. e.g. [2, 3. 4, 5, 6], some of
which addressed the combined offday scheduling and shift assignment problem. As for the shift
assignment problem (SAP), many interesting variations of it have been studied. For example,
Carraresi and Gallo [7] considered the problem of finding an even balance of shifts over the planning
period: Martello and Toth [§] gave a heuristic approach to solve the bus-driver scheduling problem
which assigns duties to drivers such that the total time spent driving and the spread time over the
planning period is bounded; Balakrishnan and Wong [9] applied network optimization techniques
to solve SAP subject to a host of constraints; and Koop [10] also utilized a network model to provide
Jower bounds on workforce size under various common shift change constraints.

In this paper. we consider another variation of the SAP, which we termed CSAP (Changing Shift
Assiginment Problem). CSAP is concerned with finding a satisfying assignment of shifts to workers
subject to demands und shift change constraints. The problem arises in the scheduling of ground
crews in airports to service inbound flights for their next journey. Here, shift types are often
associated with flights because different flights require ground crews of different skill profiles to
service. Hence. the number of shift types 1s large and the shift change constraints become fairly
complicated in order to generate cost-effective schedules to meet the fluctuating flight requirements,
even more so considering that full-time and part-time workers do not work the same set of shifts. In
such environments. shift types are usually grouped into clusters where shift changes within the
clusters are pernutted. while shift changes across clusters are either monotonic, partially-ordered
(i.e. they form a precedence graph) or even cyclic sometimes, as our experience indicate [11, 12].
Henee. we recognise CSAP 10 be a fundamental problem of SAP, particularly in service industries
such as airports and seaports.

This paper proceeds as follows. We will show that CSAP is NP-hard, even under restricted
assumptions. thereby allowing us to conclude that other more-general variants of shift scheduling
problems are also NP-hard. Many years ago, Even er af. [13] presented an NP-hardness proof of a
similar problem. the 7Time Tabling Problem. However, the proof was felt to be tedious; which
motivated us to present a more intuitive but non-trivial proof for CSAP. Our proof can be slightly
amended to prove the NP-hardness of the Time Tabling Problem. Next, we consider special cases of
CSAP which are polynomially solvable. A trivial case is found when all shift changes are permitted.
Here. an algorithm which matches demands to assignable slots would suffice. This case is, however,
meaningless as far as manpower scheduling is concerned. A more realistic case would be when shift
changes are monoronic. In manpower scheduling, it is a common practice that, as the days progress,
a worker should be turned up for work no earlier than the day before so that he maintains a healthy
biological clock. Thus. if we arrange shitts in order of their start times, the shift numbers assigned to
cach worker should be monotonically non-decreasing. The non-decreasing sequence may be broken
by an oftday because workers are expected to get enough rest during the offday to be turned up for
an earher shift the next day. We show that the running time for generating monotonic schedules is
polynomial for both non-cyclic and cyclic schedules. Finally, we discuss how our algorithm may be
extended to solve the more complex versions of SAPs. such as those involving consecutive same shift
constraints. spare supply of workers. and non-monotonic shift changes.

On the complexity of manpower shift scheduling 95

2. PRELIMINARIES

We explain the terms of reference. The plunning period is the number of days for which manpower
scheduling is performed. Shifts are numbered 1.2.. ... etc and 0 denotes an offday. A schedule is a
matrix where rows represent workers and columns represent days of the planning period. Each
matrix element is known as a slor, which will be assigned either a shift or an offday. A slot precedes
another slot if it is on its adjacent left position. The domain of a slot is the set of shifts which are
assignable to the slot. A schedule in which offdays have been assigned is known as a show-up
schedule. In a show-up schedule. the number of workers not having offdays on a given day is the
supply of workers on that day and those slots are termed working slots. A demand matrix gives the
number of workers required in each shift on each day of the planning period. A shift change matrix is
a boolean square matrix which defines the shift change permission from one shift to another. We
assume that an offday may precede or follow any shift. A shift change matrix is monotonic if it is
upper-triangular consisting of all ones. A feasible schedule is a schedule with all slots assigned which:
(1) satisfies the demand matrix: and (2) for anyv 2 adjacent slots in the schedule, the shift change is
satisfied. Figures 1(a) to (d) give an example of terms explained.

A schedule is said to be cyclic if the schedule is rotated row-wise from one planning period to the
next. Cyclicity allows the schedule to be used indefinitely and also guarantees fairness of shift
distribution among workers over time. Hence. a cyclic schedule can be seen as a contiguous
sequence of slots from the upper-left corner to the lower-right corner of the schedule. We will
represent a cyclic schedule by a list of workstretches. as shown in Fig. 1(e). A workstretch is a
contiguous sequence of slots delimited by offdays. and the number of slots is its length. One may
verify that transformation of schedule from the matrix to the workstretch representation and vice
versa may be done in polynonual time.

The following notations will be used throughout the paper. Let K = number of workers,

Shift\Day Worker\Day Shift\Shift
MTWHFEFSU MTWHTFSU 123456 78
1112002000 1 |- - - -00 1110101010
212322123 2 |- - - ---0 2l01010101
310110110 340 - - - - - - 3/]00101010
42011221 4 100 - - - - - 4100010101
S|1101111 5|-00 - - - - s|looo001010
611232001 6 |~~~ 00 ~ 6|l 00000101
710010000 i - - - 00 - 71000006010
g§{1211131090 8 |- - - - 00 slooo0oo0o000T1
9]------0
100~ - - 0 - - -
(a) (b (©)
Worker\Day Workstretch\Day
MTWHFSU

114668800 1|(F) 22246 688

2113358850 2| (M) 1335655

310222444 31 (T) 222 444

41002244c%s 4] (W) 224468

518001335 S| (H 13355657

615570022 6] (S) 2266 66

716 6 6 6 00 2 71(U) 2 226 68

8122661800 8| (M) 224488

912244880 9| (M) 8 88

10018 8 8 02 2 2

(d) (e)

Fig. 1. ta) Demand matrix: (b) show-up schedule: (¢) shift change matrix: (d) feasible schedule of (b) which
satisfics demand matrix (a) and shift change matrix (¢): and (¢) workstretch representation of (d). where the
letters in brackets represent the start days of the respective workstretches.

96 Hoong Chuin Lau

I = number of days of the planning period. and J = number of shifts. Let D =1 x J demand
matrix, where D, ; is the number of workers required to work shift j on day i. Let § = K x I show-
up schedule matrix. Let ¥ = K x [matrix containing the domains of respective slots. Let 6 = J x J
shift change matrix, where &, ;. = 1 if the change of shift from j; to j is permitted, and 0 otherwise.
Let 0 = K x [feasible schedule. Then, CSAP is an NP search problem whose input is the tuple
(K.1.J.D.S.1°.4) and output is o or fail.

3. PROBLEM COMPLEXITY

In this section. we consider the decision problem of CSAP, CSAP(D), which asks whether a
feasible schedule exists given the input (K. 7.J. D, S, V., ¢). Clearly, CSAP(D) is in the class NP. We
will show the completeness of CSAP(D) by a polynomial many-one reduction from 3SAT. Let
X ={x.xo.....x,} be a set of Boolean variables. A truth assignment for X is a function
1: X — {True. False}. If x is a variable in X. then the symbols x and ¥ are called a positive and
negative literal respectively. A clause C over X is a disjunction of literals over X, and we say that Cis
satisfied by a truth assignment if at least one of its literals is True under that assignment. A 3CNF
over X is represented by a set of clauses F = {(}, Cs.....C,} over X with three literals per clause.
We say that F is satisfiable if there exists a truth assignment for X that simultaneously satisfies all
clauses in F. 3SAT is defined as follows [14]:

INSTANCE: A set X of boolean variables {x,.xa,...,x,} and a 3CNF represented by
F={C.Ch..... C,,} over X.
QUESTION: Is there a truth assignment for X such that F is satisfiable?

Theorem 3.1. CSAP(D) is NP-complete, even for fixed J = 6, fixed shift change matrix and non-
cyclic schedule with no offdays.

Proof. Let F be an instance of 3SAT with » variables and m clauses. We construct an instance of
CSAP as follows (see Fig. 2).

Let K =nand [/ =2m — |. Define a K x I show-up schedule with no offdays.
. Let J = 6. We rename the 6 shifts as 0, 1..... 5, where 0 is a shift instead of an offday.
. Define the demand matrix D as follows

{I. if iis odd and j = 1
I

w b —

0. otherwise.

We explain the motivation of this construction. The main idea is to let each row of the schedule
represent one variable while each odd column represents one clause. The even columns will be used
to transmit information which will be explained later. Initialize the domains of odd columns as
follows

. {011, if x;, or X; occurs in C;
k21—
{2.3.4.5}. otherwise.

In other words. when a variable occurs in a clause, the corresponding slot has a {0, 1} domain
(henceforth called an occupied-slor); otherwise, it has a {2. 3.4, 5} domain (vacant-slot). The True/
False assignment of variables thus corresponds to the assignment of shifts 1/0 to respective occupied
slots. An occupied slot is said to have a positive sign if it corresponds to a positive literal, and
negative sign otherwise.

To handle the condition that each clause must contain at least one literal set to True, we set the
demands for shift 1 to be one on the odd rows, as shown in the demand matrix definition above.

[t remains to show how to ensure that a variable is uniquely set across all clauses. That is, if an
occupied-siot. say Sy ;. is set to O (resp. 1). then we must ensure that all other occupied slots Sy ;
(j # i) whose signs are equal to the sign of S , must be set to 0 (resp. 1); while those occupied siots
whose signs are different must be set to 1 (resp. 0). We introduce mediums, the even columns, to
transmit information across two odd columns. To ensure that information is transmitted properly,
define the shift change matrix as follows.

On the complexity of manpower shift scheduling 97

Worker \ Day] Worker \ Day || Shift \ Shift
1 2 3 2 3 0 1 2 3 15
| 0f0 0 1 0 1 0
11 {0.1} (4.5} 0.1} 1o 4 1o 0 01 0 |
2 1 {2,345} {2345} {01} 202 2 0 211 0 1 0 0 0
30 404} {2345} {2345 3013 3 3/0 1 01 0 0
41 {0.1} {2.3} {01} slo 2 o0 410 1t 00 10
| 5010 0 0 0 1

Fig. 2. The first schedule is the instance ot CSAP(D) corresponding to the 3CNF F = (x; VX3 V 33) A

(Y7 vV x2 v X3). The second schedule is a feasible schedule of the first and corresponds to the truth

assignment /() = False.1(xs) = False. t{x;) = False and t(x4) = True. The third matrix gives the struc-
ture of the fixed shift change matrix used in reduction.

Consider any variable v;. First, suppose x; occurs in clause i followed by clause i + 1. To force the
two consecutive occupied slots S, »,_, and S »,, | to be identically assigned, we set the domain of the
medium slot S5, (i.e. ¥ 5;) to {2.3} and the shift change matrix as follows

by =g =61 =083, =1

In other words, shift 2 is used to transmit a 0 while shift 3 is used to transmit a 1. Likewise, if x;
occurs in one clause and X7 in the next, we set the domain of the medium slot to {4, 5} and set the
shift change matrix elements

bog =015 =84y = bsp =1

In other words. shift 4 receives a 0 and sends a 1: while shift 5 receives a 1 and sends a 0. Finally, we
have the case where there are vacant-slots between two consecutive occupied slots. To make the
vacant slots transmit the necessary information, we set the shift change

b,=1, fori=2....,5

All even-column slots not initialized so far have domains {2.3,4,5} and all unset shift change
matrix elements are set to 0.

This compietes the definition of the reduction process. Clearly the above reduction process takes
polynomial time. We claim that F has a satisfying assignment if and only if the constructed CSAP
problem instance has a feasible schedule.

First, assume F has a truth assignment. For each variable v, if x is set to True, the occupied-slots
of row k will be set to 1 or 0 if their signs are positive and negative respectively. The reverse holds for
the case of False. Since each clause has one True literal, the number of shift 1’s in each odd column is
at least 1, which satisfies the demand constraints. The shift change constraints are not violated since
each variable has a single truth value.

The converse also holds. Given a feasible schedule, we simply read off the shift assigned to the
leftmost occupied slot of each row k to get the truth value of the corresponding variable x, in F (i.e.
True for 1 and False for 0). If the slot has a negative sign (i.e. it represents a negative literal), then the
truth value is negated. Now since each column contains at least one shift 1 to meet the demands,
each clause in F has at least one literal set to True. and thus F has a satisfying assignment. O

4. MONOTONIC CSAP

In this and the next sections, we solve CSAP with monotonic shift change constraints. Monotonic
CSAP is technically interesting because a combinatorial calculation shows that the total number of
monotonic sequences of size n and maximum value m is given by

n+m-1 ,
(" > which is O(n™).

m—1

Hence, a naive scheduling algorithm would have exponential time complexity in the worst case.

98 Hoong Chuin Lau

Khoong [15] recently proposed a simple heuristic cum iterative improvement scheme for generating
monotonic cyclic schedules. but could not guarantee that a feasible solution would be found if one
exists. Our algorithm guarantees that a solution be found if one exists, for both non-cyclic as well as
cyclic schedules.

We assume that all slots are of the domain {1.2.....J}. We also assume that for each day /, the
sum of demands for all shifts equals the supply of workers on day /.

4.1. Algorithm G

We propose a greedy algorithm G to solve monotonic CSAP with non-cyclic schedules.
Essentially. G is a greedy algorithm which assigns shifts in increasing shift numbers and for each
shift, it schedules by columns. The lefimost (resp. rightmost) slot of a row refers to its first (resp. last)
unassigned slot. and the tail of a row refers to the sequence of slots from its leftmost slot to its
rightmost slot. We use the following notations. Let o, denote the kth row of o; o, ; denote a slot in
row k column 7: o, ; | and o, , |, denote the slots to the left and right of o, ;.

procedure (;:

0. imtialize 0 = S
l.forj=1toJ do

2. fori=1to!do
3. until D, , =0 do

2

4 4 — {1 < K < K|k’s leftmost siot is at column i };
5 if 4 = ¢ then fail:

6 pick & from .4 such that row & has the longest tail;
7. o, —JjiD., — D, — 1

8 enduntil

9. endfor

10. endfor

4.2. Proof of correctness
Theorem 4.1. G returns a feasible schedule if and only if there exists a feasible schedule.

Proof. 1f G exits successfully. then all slots would be assigned shift values in monotonic fashion.
Thus, o is a feasible schedule. To prove the converse, it suffices to show that if a feasible solution
exists, then every assignment made by G maintains the feasibility of the partial schedule. Consider
any arbitrary iteration with current shift jand column i. Let o be a partial schedule constructed by G
just before this iteration. Let ¢ be & plus one new assignment o , «— j, where & is picked by G in
Step 6. Then, Lemma 4.1 (see below) tells us that o7 is also feasible. Thus, by induction on the loop
indices, it is clear that the converse holds. U

Lemma 4.1. o~ admits a feasible schedule if & admits a feasible schedule.

Proof. Without loss of generality. let #* represent one such feasible schedule derived hypothe-
tically from 0. If 0, = o, , = j. then & obviously admits a feasible schedule. Otherwise. we can
conclude that o, ; >/ because we schedule in non-decreasing shift numbers. Without loss of
generality. suppose that shift j is at row k' in ¢°, ie. o}, , =j. By monotonicity, o}, | < J,
which means that row & " also has leftmost slot at column i in ¢*. The fact that G did not pick &'
means that the tail of A is at least as long as &’ (by Step 6). The contents of rows & and k' of the
feasible schedule o” are as shown in Fig. 3(a). By swapping certain slots on rows k and k&' of " we
can obtain another feasible schedule whose slot assignments match exactly those of o', thereby
proving the lemma. That resulting feasible schedule is shown in Fig. 3(b). Swapping is carried out as

follows. Surely. o7, may be moved to row k. The reverse is possible if o}, ;,| > o} ; or o}, is a
rightmost slot. If not. we may conclude o;.,. | < 0% .., and thus may swap elements o}, ;,; and
0%,+1- Continuing inductively this way. row &’ will eventually hit its rightmost slot before k& does
because the latter is at least as long. O

4.3. Complexity analysis

Step 4 takes O(K) ime since it has to scan a column of O(K) workers, and checking for leftmost

On the complexity of manpower shift scheduling 99

-1 i i+1 i-1 ! i+1
k 1 3 4 4 4 S\|5 k R 2 2 3 4 515
-1 IEENES 1-1 i i+l
k .. 2 212135 LS U 34} 4|5
(a) (b)

Fig. 3. Rowsk and & of " with current shift j = 2. (a) shows the contents before the swap and (b) shows the
contents after the swap.

slots takes constant time. Step 6 is also O(K) time in the worst case because 4 contains at most K
elements, and checking the tail length takes constant time. Steps 5 and 7 take constant time. Hence,
the worst case time complexity is O(K>1J), since D, ; < K for all /. j. However, observe that the
total number of iterations is determined by the matrix sum of the demand matrix which is bounded
above by the total number of working slots in the schedule. The number of working slots is at most
K x I and hence the worst-case time complexity is O(K *7). which is independent of J.

SCEXTENSIONTO CYCLIC SCHEDULES

We now consider an extension of algorithm G to manage cyclic schedules. The implication of
cyelic schedules is that shift changes across rows have to be dealt with if the last slot of a row and the
first slot of'its next row are both working slots. Note that a workstretch may span across more than 1
week. as shown in first workstretch of Fig. 1(¢). This problem remains NP-hard under the same
restrictions because it is a general case of the non-cyclic CSAP by appending a dummy column
consisting of all offdays after the last column. However, the good news is when shift changes are
monotonic. the problem remains polynomially solvable with no worse time complexity.

We briefly discuss how our algorithm can be extended. Since days may wrap around, we now view
the schedule by its workstretch representation. Thus. instead of rows and columns, we now deal with
workstretches and days. As before, we schedule in increasing shift numbers. For each current shift j,
instead of assigning j column by column, we maintain another data structure B which contains the
set of days which have unassigned shift j's. 4 now contains the set of workstretches whose leftmost
slots are at any day contained in B. Each time, we again pick a workstretch from A with the longest
tail. The proof of correctness is direct extension of Theorem 4.1 and will not be elaborated here. As
far as the time complexity is concerned, it is clear that each iteration decrements the demand matrix
sum by | unit. Hence. the worst-case time complexity can be verified to be O(K*I).

6. EXTENSION TO GENERAL SAPS
Finally. we consider extensions to the more complex variants of SAPs.

0.1. Hundling consecutive same shift constraints

Our algorithm can be easily extended to incorporate the consecutive same shift constraints. In
Step 4 of algorithm G. to determine if a workstretch is qualified for assignment. we add the
additional check that it has not been assigned the current shift consecutively for a maximum
allowable number of times. More precisely. replace Step 4 with

44— {1 <k <K k'sleftmostslot is at position / and k has not been assigned a maximum
number of shift j's consecutively}.

The proof of correctness involves a simple extension of lemma 4.1. We will illustrate it by an
example. Suppose we have the constraint that there should be no three consecutive shift 3'sin a row.
Suppose current shift j =2 and after swapping o'k.i and o k'.i. workstretch k' violates that

100 Hoong Chuin Lau

i-1 i i+] i-1 i i+1

k 11214 |4a]|4]5]5s k Jr 2|3 |[3fj4)5]Ss
i- i+l i-1 i i+l
K 213131315 K 2 |1 31445
(a) (b)

Fig. 4. How swapping can remove violation of the consecutive same shift constraint.

Table 1. Performance of branch and bound (/ = 7 and J = 3)

Max nodes Avg nodes
A ¢ S expanded expanded
10 01 7 535 45
10 0.2 15 2040 82
10 0.3 37 151 39
10 0.8 60 28 17
20 0.1 15 16444 232
20 02 30 26262 222
20 0= B 105 76
20 0.% 120 4 33
40 0.1 0 572187 2113
40 02 60 213590 600
40 0.3 150 194 152
40 0.8 240 79 62

constraint, as shown in Fig. 4(a). Then, by further swapping, that constraint will be satisfied under
all possible circumstances, as shown in Fig. 4(b).

6.2. Handling spare demands

If there are spare supply of workers on some day(s), we will assign spare slots to some dummy
shifts. The determination of which dummy shift numbers to assign such that monotonicity is
preserved under all circumstances turns out to be a difficult problem under the greedy framework we
proposed. Several variants of this problem have been discussed in another paper [16]. There, if we
restrict the structure of workstretches. then the greedy method proposed can be extended so that,
instead of considering only leftmost slots for assignments, we have to consider slots which could be
assigned dummy shifts followed by a proper shift. It remains an open question whether monotonic
CSAP with spare supply is polynomially solvable in general. To date, we can solve it by
incorporating our greedy procedure into a branch-and-bound algorithm as a bounding proce-
dure, the details of which is presented in [17]. Experiments on random instances of CSAP using this
approach yield encouraging results, summarized as follows.

Recall that 7 1s the planning period. J is the number of shifts, K is the number of workstretches.
Let S denote the number of spare supply units. An instance of monotonic CSAP is generated as
follows. Randomly generate a K x I cyclic show-up schedule and for each day, distribute the S
spare units in proportion to the number of working slotst. The demands for all J shifts are then
randomly generated based on the cyclic schedule and distribution of sparse units. In the first set of
experiments, we fix / = 7.J = 3 and vary K and S. For each pair of K and S, we randomly generate
1000 input instances which include both feasible and infeasible instances. Table 1 shows the results
of the experiment. The experiment indicates that our branch and bound algorithm works hardest
when the ratio of spare units to working slots (denoted €) is between 0.1 and 0.2. In those cases, the
maximum number of nodes over all instances expanded grows exponentially with S, but the average
number of nodes is still bounded by a lower-degree polynomial of S. In all other cases, both the
maximum and average number of nodes expanded are polynomial relative to K, 7,J and S.

tIn the real world setting, this is often the case.

On the complexity of manpower shift scheduling 101

Table 2. Performance of branch and bound
(K=20.f=7and ¢ =0.1)

Max nodes Avg nodes

J expanded expanded
1 188 139
3 2129 222
5 61874 737
10 91156 1551
20 242535 2444
40 247343 3412
100 285831 3617

We next investigate the effect of varying J while fixing K = 20.¢ = 0.1 and 7 = 7. Again for each
J, we generate and test 1000 random instances. Table 2 shows the experimental results. Here, we
learn that the maximum number of nodes generated by branch and bound grows quadratically with
K,I,J and €, while the average number of nodes grows linearly.

6.3. Handling non-monotonic shift changes

In our experience, if the shift changes are almost monotonic, then algorithm G can be used as a
fast heuristic to generate a first-cut schedule. This schedule is then subject to local improvement
schemes such as 2-opt on the assignments for each day of the planning period to eliminate any shift
change constraint violations. The resulting schedule is usually quite good. Otherwise, shift changes
are likely to be far from being monotonic. Such problems have been shown to be NP-hard above
and can be efficiently tackled either by constraint satisfaction [18] or by a minimum-cost network
flow model with fixed charges [17].

7. CONCLUSION

We studied the manpower shift scheduling problem which is an interesting problem among the
operations research community. Particularly, we considered a problem which arises in the
scheduling of airport ground crews in servicing of flights. We proved that a restricted version of
it is NP-hard. This observation allows us to justify techniques which have been applied in manpower
scheduling systems such as implicit enumeration and heuristic search. We showed that the case of
monotonic shift changes is polynomially solvable for both non-cyclic and cyclic schedules with the
same computational time complexity. We showed how the algorithm developed could be extended
to solve more complex variants of the manpower shift scheduling problem.

Our contribution marks a step in formally analyzing the complexity of scheduling problems
which embody desirable constraints such as monotonicity of shift changes. There remains many
open questions when shift changes are non-monotonic. Other future research topics include proving
the computational complexities of and designing efficient algorithms for other variants of the
manpower scheduling problem as well as related resource scheduling problems.

Acknowledgements—I wish to thank Osamu Watanabe for interesting discussions and ideas contributed. Much appreciation
also to the anonymous referees for suggestions of improvement to the paper.

REFERENCES

1. F.Glover and C. McMillan, The general employec scheduling problem: Anintegration of MS and AL Comput. Ops Res.
13, 563-573 (1986).

2. J. Tien and A. Kamiyama, On manpower scheduling algorithms. S/AM Review 24, 275 287 (1982).

3. K. R.Bakerand M. J. Magazine. Workforce scheduling with cyclic demands and day-off constraints. Afemir Sei. 24, 161
167 (1977).

4. R.N.Burnsand M. W. Carter, Work force size and single shilt schedules with variable demands. Mamr Sci. 31, 599 607
(1985).

S. R.N. Burnsand G. J. Koop. A modular approach to optimal multiple-shift manpower scheduling. Opy Res. 35, 100 110
(1987).

6. J. G. Morris and M. J. Showalter. Simple approaches to shift. day off and tour scheduling problems. Mgmr Sci. 29,942-
950 (1983).

7. P. Carraresi and G. Gallo, A multi-level bottleneck assignment approach to the bus drivers” rostering problem. Eur. J.
Ops Res. 16, 163173 (1984).

102

Hoong Chuin Lau

. S. Martello and P. Toth, A heuristic approach to the bus driver scheduling problem. Ewr. S Opy Res. 24,106 117 (1986).
. N. Balakrishnan and R. T. Wong, A network model for rotating workforce scheduling problem. Nenvorks 20, 25-32

(1990).
G. Koop, Multiple shift workforce lower bounds. Mgnir Sci. 34, 1221 1230 (1988).

. C. M. Khoong and H. C. Lau, ROMAN: An integrated approach to manpower planning and scheduling. In Computer

Science and Operations Research: New Development in Their Interfuces (Edited by O. Balci. R. Sharda and S. Zenios).
pp. 383-396. Pergamon Press, Oxford (1992).

. C.M.Khoong, H. C. Lauand L. W. Chew, Automated manpower rostering: Techniques and experience. far. Trans. Opl.

Res. 1, 353-361 (1994).

. S.Even, A. Itai and A. Shamir, On the complexity of timetable and multicommodity flow problems. SIAM J. Comput. 5,

691-703 (1976).

. M. R. Garey and D. 8. Johnson, Computers and Intractability. 4 Guide 1o the Theory of NP-Completencss. Freeman, San

Francisco, CA (1979).

. C. M. Khoong, A simple but effective heuristic for warkshift assignment. Omega 21, 393 395 (1993).
. H. C. Lau, Manpower scheduling with shift change constraints. Lecture Notes in Compur. Sci. (Proc. ISAAC'94) 834,

616—624 (1994).

. H. C. Lau, Combinatorial approaches for hard problems in manpower scheduling. Submitted (1994).
. H. C. Lau, Preference-based scheduling via constraint satisfaction. In Optimization Techniques and Applications (Proc.

ICOTA’92) (edited by K. H. Phua er al.), pp. 546 - 554. World Scicentific (1992).

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-1996

	On the Complexity of Manpower Shift Scheduling
	Hoong Chuin LAU
	Citation

	tmp.1400810941.pdf.ZUmii

