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Journal of Graph Algorithms and Applicationshttp://www.cs.brown.edu/publications/jgaa/vol. 1, no. 3, pp. 1{13 (1997)Low-degree Graph Partitioning via Local Searchwith Applications to Constraint Satisfaction,Max Cut, and ColoringMagn�us M. Halld�orssonScience InstituteUniversity of IcelandIS-107 Reykjavik, Icelandhttp://www.hi.is/~mmhmmh@rhi.hi.isHoong Chuin LauInformation Technology Institute11 Science Park RoadSingapore 117685hclau@iti.gov.sgAbstractWe present practical algorithms for constructing partitions of graphsinto a �xed number of vertex-disjoint subgraphs that satisfy particulardegree constraints. We use this in particular to �nd k-cuts of graphs ofmaximum degree � that cut at least a k�1k (1 + 12�+k�1 ) fraction of theedges, improving previous bounds known. The partitions also apply toconstraint networks, for which we give a tight analysis of natural localsearch heuristics for the maximum constraint satisfaction problem.These partitions also imply e�cient approximations for several prob-lems on weighted bounded-degree graphs. In particular, we improve thebest performance ratio for the weighted independent set problem to 3�+2 ,and obtain an e�cient algorithm for coloring 3-colorable graphs with atmost 3�+24 colors.Communicated by M. F�urer: submitted February 1996; revised March 1997.



Halld�orsson, Lau, Low-degree Graph Partitioning , JGAA, 1(3) 1{13 (1997) 21 IntroductionGraph partitioning is a common theme in combinatorial optimization. We con-sider in this paper partitions of the vertices into a �xed number of inducedsubgraphs so that the indegrees of the vertices, or their degrees within their as-signed subgraph, be within pre-speci�ed upper bounds. The simplest objectiveis to limit the maximum indegree, while more generally we have bounds for eachvertex which depend on the degree of that vertex. Since it is NP-complete ingeneral to determine if a partition exists, we seek instead weak restrictions onthe indegree upper bounds that guarantee existence.An immediate area of application is the Max k-Cut problem, which is topartition the vertices of a graph into k parts so as to maximize the number ofthe edges going between subgraphs. This is the dual problem of minimizing theaverage indegree.Edge cutting can be generalized beyond pure graphs to constraint systems:each edge is a binary relation whose satisfaction depends on the assignment ofthe incident vertices. The maximumconstraint satisfaction problem,Max-Csp,is to �nd a k-partition of the vertices that maximizes the number of satis�ededges. Constraint satisfaction is a recurring theme in Arti�cial Intelligencewith a variety of applications, e.g. in machine vision, temporal reasoning andscheduling. It generalizes other important combinatorial problems includingSatis�ability. The Max-Csp problem naturally involves a parameter known asconsistency: an instance is r-consistent, if for any constraint and any value ofone incident vertex, there are r choices for the other vertex that satisfy theconstraint. Note that Max k-Cut is a special case of (k � 1)-consistent Max-Csp.Our treatment of Max k-Cut and Max-Csp is characterized by two at-tributes. First, we seek to analyze the performance of simple and natural localsearch algorithms, which was our initial motivation in the current study. Sec-ond, the analysis focuses on the absolute ratio of the algorithms, which is thefraction of the edges (or constraints) that are cut (or satis�ed). This is con-trasted with the relative ratio, better known as the performance ratio, which isthe ratio of the number of edges satis�ed by the algorithm to the size of theoptimal solution.When the maximum indegree is �xed while the number of subgraphs isallowed to vary, we obtain a form of a coloring problem. In the standard GraphColoring problem, indegree is �xed to be zero. The partitions we obtain alsoapply to these coloring problems.Our results After preliminary de�nitions in Section 2, we consider plain localsearch for Max-Csp in Section 3. We show that it produces a k-partition ofr-consistent instances such that the number of satis�ed constraints incident ona vertex v of degree d(v) is at least d r�d(v)k e. This gives an absolute ratio of rk ,which is tight. Slightly better bounds hold for special cases.We next give, in Section 4, a method, also based on local search, that pro-duces tighter partitions. It obtains a partition of a graph where, for a non-



Halld�orsson, Lau, Low-degree Graph Partitioning , JGAA, 1(3) 1{13 (1997) 3constraint graph, each vertex v assigned to the t-th subgraph is of indegree atmost bd(v)+tk �1c. We use this to obtain an absolute ratio of k�1k (1+ 12�+k�1) forMax k-Cut, improving the best previous known ratio of k�1k (1+ 1n ). This canbe implemented in O(�n) time. We, however, �nd that this approach cannotimprove the ratio for Max-Csp.Finally, we derive, in Section 5, improved performance ratios for Graph Col-oring and a family of induced subgraph problems in weighted bounded-degreegraphs. These use a simpli�cation of our partitioning that reduces to a re-sult of Lov�asz, where the bounds for all the vertices are identical. We obtaina performance ratio of 3�+2 for the weighted independent set problem, and1=d(�+1)=3e for all hereditary induced subgraph problems on weighted graphsin linear time. Also, we show how to color 4-clique-free graphs, which include3-colorable graphs, using at most 3�+24 colors in linear time.Previous results A number of approximation results are known forMax k-Cut.Let n and m denote the number of vertices and edges in the input graph, re-spectively. For k = 2, there are absolute ratios of 12 + 12n [10], 12 + 12(n�1)[12], and 12 + n�14m [20], while the relative ratio has recently been improved toabout 0.878 by Goemans and Williamson [9]. For k > 2, the best absolute ratiois k�1k (1 + 1n ) [22], while Frieze and Jerrum [7] generalized the results of [9],achieving a relative ratio of k�1k + �( ln kk2 ).For Max-Csp, the only published absolute ratio we are aware of is the12+ n�14m ratio of Poljak and Turz��k [20] for domain size k = 2 and consistency r =1. An absolute ratio of rk can be observed for a greedy algorithm, which wouldalso be the derandomized version of the randomized schema similar to thatused by Yannakakis [23] and Goemans and Williamson [8] used to approximatemaximum satis�ability.As for relative ratios, Khanna et al. [14] considered weighted Max-Cspwith domain size 2. They achieved a ratio of 14 via a sophisticated local searchalgorithm. More recently, this ratio was improved to 12 by Trevisan [21] usingrandomized rounding of linear programs. The current best ratio is 0:859, due toFeige and Goemans [6] via randomized rounding of semide�nite programs. Lauand Watanabe [16] have proved a ratio of 0:408 for Max-Csp with domain size3, and in general a ratio of 1k for domain k.2 PreliminariesLet G denote an unweighted, undirected, not necessarily simple, graph, withvertex set V and edge set E. Let n denote the number of vertices, m thenumber of edges, and d(v) the degree of vertex v. Let k be a positive integer.Graph partitioning The maximum k-cut problem (Max k-Cut) is de�nedas follows:



Halld�orsson, Lau, Low-degree Graph Partitioning , JGAA, 1(3) 1{13 (1997) 4INSTANCE: Graph G = (V;E), and positive integer k.SOLUTION: A partition of V into k subsets such that the numberof edges across subsets is maximized.Constraint Satisfaction The domain of a vertex v is the set of assignablevalues for v. For our purpose, these domains are all f1; : : : ; kg. An assignmentis a mapping of vertices to values in their respective domains. A constraintR(u; v) between vertices u and v, is a binary relation on f1; : : : ; kg � f1; : : : ; kgwhich de�nes the pairs of values that can be assigned to u and v simultaneously.A constraint R(u; v) is said to be satis�ed by an assignment f i� (f(u); f(v)) isin R(u; v).The maximum constraint satisfaction problem (Max-Csp) is de�ned as fol-lows: INSTANCE: Graph G = (V;E), with constraint relation R(u; v)associated with each edge (u; v) 2 E, and positive integer k.SOLUTION: An assignment f : V ! f1; : : : ; kg such that thenumber of satis�ed constraints is maximized.An assignment can be viewed as a partition of vertices into k classes, orsubsets. We shall use \edge" and \constraint" interchangably.Consistency A constraint R(u; v) is said to be r-consistent (1 � r � k) i�,for every value x, 1 � x � k, there exist at least r consistent values y suchthat (x; y) 2 R(u; v), and vice versa. A Max-Csp instance is r-consistent i�all its constraints are r-consistent. Let Max-Csp(k; r) represent the class ofMax-Csp instances which have domain size k and are r-consistent. Observethat Max k-Cut is equivalent to Max-Csp(k; k� 1) with all constraints beingthe \not-equal" constraint ((x; y) 2 R(u; v) i� x 6= y).Approximation Let A be an algorithm for a maximization problem. We saythat A approximates the problem within a relative ratio � (0 < � � 1) i� onall instances, A returns a solution whose value is at least � times the value ofthe optimal solution in time polynomial in the size of the input. We say thatA approximates the problem within an absolute ratio � i� it returns a solutionwhose value is at least � times the largest possible solution on each given input.Clearly, an absolute ratio implies a no smaller relative ratio but not vice versa.Satis�able instances A Max-Csp instance G = (V;E) is said to be sat-is�able if all its constraints can be simultaneously satis�ed. It is known thatratios that hold for the class of 1-consistent instances also hold for the class ofsatis�able instances.Observation 1 If 1-consistent Max-Csp can be approximated within absoluteratio �, then satis�able Max-Csp can be approximated within absolute ratio �.



Halld�orsson, Lau, Low-degree Graph Partitioning , JGAA, 1(3) 1{13 (1997) 5Proof. Let G be an instance of satis�able Max-Csp of m constraints. Thenwe can construct a 1-consistent CSP instance G0 = (V;E0) in time O(nk2) [5]such that: (1) each vertex in V has domain size at most k; (2) E0 � E (thoughthe underlying relations may not be the same); and (3) for any assignment f , aconstraint in E0 is satis�ed i� it is satis�ed in E, while all constraints in E�E0are always satis�ed.Suppose f is an assignment which satis�es at least �m0 constraints in G0.The same f then satis�es at least �m0 + (m �m0) � �m constraints in G.3 Simple Local SearchIn this section, we consider the performance of a simple local search procedurefor Max-Csp.The objective value of an assignment is the number of constraints that itsatis�es. Two assignments f and f 0 are said to be neighbors if their values di�eron exactly one vertex. An assignment is a local optimum i� its objective valueis at least that of all its neighbors. Let LS be the following simple local search,or hillclimbing, procedure:Start with any arbitrary initial assignment f .while (there is a neighbor f 0 of f with a higher objective value) dof  f 0output fThe following lemma is the key to our analysis:Lemma 2 Let f be any locally optimal solution computed by LS from an in-stance of Max-Csp(k; r). Then, for all vertices v, the number of constraintsincident on v that are satis�ed by f is at least d r�d(v)k e.Proof. Let v be a vertex, and evaluate the number of satis�ed constraints aswe examine all k possible values for v. Only the constraints incident on v area�ected, while consistency ensures that each of them is satis�ed at least r times,independent of the value of the other incident vertices. Thus, the locally optimalvalue for v must satisfy at least d rd(v)k e of the incident constraints.We obtain a bound on the performance of simple local search.Theorem 3 LS approximates Max-Csp(k; r) within an absolute ratio of rk .Proof. Termination of the search is guaranteed by the fact that the objectivefunction is monotone increasing with a maximumof m. Then, summing up overall the vertices, at least 12Pv rd(v)k = rmk constraints are satis�ed, by Lemma 2.This bound is tight in that there are instances, even satis�able ones, wherethe heuristic satis�es no more than rk constraints. We present these in Section4.1. This result can, however, be slightly strengthened when the degrees of thevertices satisfy a certain congruence relation.



Halld�orsson, Lau, Low-degree Graph Partitioning , JGAA, 1(3) 1{13 (1997) 6Corollary 4 Suppose there is an s, 1 � s � k�1, such that, for each constraint,the residue (k� r)d(v) mod k is at least s. Then, LS satis�es at least m rk +n s2kconstraints.Proof. The number of satis�ed constraints incident on a given vertex v is atleast: drd(v)k e = d(v) � dk � rk d(v)e + 1 = rd(v) + sk :Summing over all vertices, the total number of satis�ed constraints is at least:12Pv(d(v) rk + sk ) = m rk + n s2k .4 Modi�ed Local SearchWe present in this section a lemma on low-degree partitioning of graphs, andits application to improved approximations of Max k-Cut. The bounds on thedegrees in the resulting partition are speci�ed in terms of a matrix, which wede�ne as follows.De�nition 1 Let G = (V;E) be a graph on n vertices, k be an integer, and Abe a n� k integer matrix. A is a degree partitioning matrix (DPM) of G if,kXj=1A[v; j] � d(v) � k + 1; for each vertex v 2 V :A DPM suggests a partition f where, for each vertex v, the number indeg(v)of neighbors within its subgraph is bounded from above by the correspondingentry A[v; f(v)]. We shall argue the existence of such a partition, as a corollaryof the termination of a simple local improvement algorithm.Given a k-partition f , let degj(v) denote the number of vertices in subset jthat are adjacent to v. Namely, degj(v) = jfw : (v; w) 2 E and f(w) = jgj. Letindegf (v) be a shorthand for degf(v)(v). We omit f when implicit.We consider a local search algorithm that evaluates the following local con-dition: A[v; j]� degj(v) has a maximum at j = f(v): (1)The local search rule is simply to change the assignment of a vertex to onesatisfying (1). The termination condition is that the local condition be satis�edat each vertex.Observe that the local condition can always be ful�lled with a non-negativevalue A[v; j]� degj(v), given the de�ning property of the DPM.We �nd that the local search always terminates, and does so relativelyquickly, especially given a starting assignment of rudimentary quality.Lemma 5 Consider a graph G, an associated DPM A, and a starting assign-ment f . Then, at mostXv2G �(maxj A[v; j])�A[v; f(v)] + 12 indegf (v)� (2)



Halld�orsson, Lau, Low-degree Graph Partitioning , JGAA, 1(3) 1{13 (1997) 7iterations are performed until a locally optimal assignment is obtained undercondition (1).Before we give the proof, we note that this shows that in most cases thenumber of iterations is O(m). This holds for instance when given a greedyinitial assignment or the trivial assignment that maximizes the A-value for eachvertex independently. It also holds when the improvements are scheduled sothat all vertices are tested for improvement in the �rst n iterations, e.g. byusing a worklist approach. Finally, one would expect in all applications thatall entries A[v; j] would be bounded by the degree d(v) of the vertex. In all ofthese cases, the number of iterations is O(m). It, however, appears plausiblethat there exist an initial assignment and a sequence of improvements whosenumber is asymptotically greater than m.Proof. Consider the potential function 	(f) = Pv[2A[v; f(v)] � indeg(v)],which measures the progress towards a locally optimal solution. In an iterationof the algorithm, a single vertex v is moved from partition i to partition j. Thischanges the potential only for the part contributed by v on one hand, and bythe neighbors of v in subsets i and j on the other hand. The resulting changein potential is�	 = (2A[v; j]� degj(v)) � (2A[v; i]� degi(v)) + (degi(v) � degj(v))= 2 [(A[v; j]� degj(v)) � (A[v; i]� degi(v))]The local search rule ensures thatA[v; j]�degj(v) is strictly greater than A[v; i]�degi(v) when v is moved from partition i to j. Hence �	 � 2.The di�erence in the potential of the �nal, locally optimal solution f 0 andthe initial solution f isXv [2(A[v; f 0(v)] �A[v; f(v)]) + indegf (v) � indegf 0 (v)]:Hence, half this number of iterations su�ces.We now use this partitioning to approximateMax k-Cut. For this, we needa slightly stronger local improvement search.Theorem 6 Max k-Cut can be approximated within an absolute ratio of k�1k (1+12�+k�1).Proof. The k-partition is obtained in two steps. First, we �nd a partition thatis locally optimal w.r.t. (1). We then apply standard local search, optimizingthe number of cut edges, until local optima is achieved.For the former, we use an evenly split DPM, with A[v; t] = bd(v)+tk c � 1, foreach vertex v and each subgraph t. For such a balanced DPM, the applicationof standard local search preserves optimality w.r.t. (1). Namely, if degj(v) <degi(v), then A[v; j]� degj(v) � A[v; i]� degi(v), since A[v; i] and A[v; j] di�erby at most one. Hence, we obtain an assignment f that is locally optimal underboth criterias.



Halld�orsson, Lau, Low-degree Graph Partitioning , JGAA, 1(3) 1{13 (1997) 8We now focus on bounding the quality of the resulting assignment. Localoptimality w.r.t. (1) ensures thatindeg(v) � bd(v) + f(v)k c � 1: (3)Let Unsat denote the number of edges that are not satis�ed, i.e. have bothendpoints within the same subgraph. Let Vi denote the set of vertices in thei-th subgraph.Applying (3) and simplifying by ignoring the 
oor, we obtainUnsat = 12Xt Xv2Vt indeg(v) � mk � n2 + 12k kXt=1 t � jVtj: (4)Replace the last term of the sum using jVkj = n�Pk�1t=1 jVtj, to getUnsat � mk � 12k k�1Xt=1(k � t) � jVtj: (5)By standard local optimality, each vertex v in the graph is adjacent to atleast indeg(v) vertices in Vt, while each vertex in Vt can contribute to at most� of these adjacencies. Hence, the number of vertices in Vt is bounded byjVtj � Xv2G indeg(v)� = 2 Unsat� ; t = 1; : : : ; k � 1:Plug this into (5) to obtainUnsat � mk � (k � 1)Unsat2� : (6)Thus, Unsat � mk =(1 + k � 12� ) = mk (1� k � 12�+ k � 1):Hence, at least mk � 1k (1 + 12�+ k � 1)edges are satis�ed, yielding the theorem.Time complexity In the case of a balanced DPM as above, the di�erence inthe initial and �nal potential (as in Lemma 5) is at most n plus the di�erence inthe number of satis�ed edges. By using a Greedy initial assignment, the initialnumber of unsatis�ed edges is at most mk . Thus, n+ mk iterations su�ce.The local search algorithms can be implemented to require only amortizedO(�) time per iteration. We pre-compute the degrees of the vertices into each



Halld�orsson, Lau, Low-degree Graph Partitioning , JGAA, 1(3) 1{13 (1997) 9subgraph in the starting partition, and then only O(�) updates are needed ineach iteration. Hence, the total complexity is at most O(�mk ).If we are content with the performance bounds, and do not seek local optima,the local search can be terminated prematurely when su�ciently many edgesare satis�ed. Starting with a greedy assignment, we only need to satisfy m2� < nadditional edges. From the potential function, we see that this is accomplishedin at most 2n iterations, or in time O(�n).4.1 Extension to Constraint SatisfactionThe concept of a degree partitioning matrix and the corresponding partitioncan also be extended to constraint systems. A matrix A is said to be a DPM ofan r-consistent constraint graph G if,kXi=1 A[v; j] � (k � r)d(v) � k + 1; for each vertex v:De�ne degj(v) to be the number of constraints incident on v that are not satis�edif the assignment of v is changed to j (assuming a given assignment f). Asbefore, indeg(v) = degf(v)(v). The algorithm and its proofs of optimality andtime complexity remain the same.It is tempting to try to prove a similar result for Max-Csp(k; r). Unfortu-nately, this is not possible, since instances can be constructed where a locallyoptimal solution satis�es at most an rk fraction of the constraints. In fact, eventhe relative ratio of the algorithm is tight.Theorem 7 Local search under (1) does not approximate Max-Csp within bet-ter than rk , neither absolute nor relative. Namely, there is an in�nite sequenceof satis�able instances where some locally optimal solutions satisfy only an rkfraction of the constraints.Proof. Given k and r, we construct the following constraint graphG. G contains3k vertices vi;j, for i = 0; : : : ; k� 1 and j = 0; 1; 2, each of degree 2k. There areconstraints between vi;j and vi0;j0 whenever j 6= j0, given by:R(vi;j ; vi0;j+1 mod 3) = f (x; y) : [(i0�i)+(y�x)] mod k lies between 0 and r�1 g:Notice that the constraints are not symmetric.An optimal solution assigns each vertex vi;j to subset i, yielding a totallysatis�ed solution. Suppose we have an initial assignment where all vertices areassigned to subset k � 1. Then each vertex vi;j is consistent with 2r of theadjacent vertices; i.e. r vertices of the form vi0;j+1 mod 3 and r of the formvi0;j�1 mod 3. Hence, indeg(vi;j) � 2k� 2 = A[vi;j; k� 1]. Furthermore, one canverify that moving a single vertex to a di�erent subgraph leaves the number ofincident satis�ed constraints unchanged. Hence, we have a local optima withan absolute and relative ratio of rk . Note that this proof can be extended tographs of any number of layers greater than 2.



Halld�orsson, Lau, Low-degree Graph Partitioning , JGAA, 1(3) 1{13 (1997) 10It is also easy to construct multigraphs where at most an rk fraction of theconstraints can be simultaneously satis�ed. In the case of simple constraintgraphs, however, it appears that a slightly larger fraction is satis�able, while itdoes not exceed the rk (1 + �( 1� )) bound of Max k-Cut.5 Applications to induced subgraph problemsand graph coloringAn important special case of the graph partitioning in the previous section iswhen we only seek to bound the maximum indegree from above. In this case,Lemma 5 reduces to the following result of Lov�asz.Lemma 8 (Lov�asz [18]) Let G = (V;E) be a multigraph without self loops.Let t1; t2; : : : ; tk be non-negative integers such thatPi(ti+1)�1 = �(G). Then,V can be partitioned into k subsets inducing subgraphs G1; G2; : : :Gk such that�(Gi) � ti, for i = 1; 2; : : :k.By (2), we achieve this in O(mk ) iterations, or O(�mk ) time.This lemmahas several elegant applications to the approximation of inducedsubgraph and vertex partitioning problems. A property of graphs is said tobe hereditary if, whenever it holds for a graph it also holds for any inducedsubgraph.Theorem 9 Hereditary weighted induced subgraph problems can be approxi-mated within relative ratio of 1=d(� + 1)=3e in linear time.Proof. We partition the graph into at most s = d�+13 e graphs of degree atmost 2, in linear time, using Lemma 8. Such graphs consist of disjoint pathsand cycles, and allow for a linear time solution of hereditary induced subgraphproblems via dynamic programming. Any property � holds either for everypath, or for all paths of length up to q, where q is a �xed constant, and thesame dichotomy holds for cycles.Our approximate solution will be the largest of the (exact) solutions fromthese s subgraphs. The optimal solution of the whole graph can contain at mostas many vertices from each subgraph as the optimal solution on that subgraph.Hence, the optimal solution is at most s times as large as the approximatesolution.One such problem is Max Compatible Constraint Satisfaction [4,MS11], This is problem on a CSP instance, where the objective is to �nd anassignment to a subset of the vertices that satis�es all the induced constraints.Corollary 10 Max Compatible Constraint Satisfaction can be approx-imated within a relative ratio of 1=d�+13 e in linear time.The previous best approximation for the weighted independent set problemis 2� due to Hochbaum [11]. We can use her approximation for � = 3 to improveour ratio when � is a multiple of 3.



Halld�orsson, Lau, Low-degree Graph Partitioning , JGAA, 1(3) 1{13 (1997) 11Proposition 11 The weighted independent set problem can be approximatedwithin a relative ratio of 3�+2 . When � mod 3 = 2, the ratio is 3�+1 , whilewhen � mod 3 = 0, the ratio is 3�+3=2 .Proof. When � mod 3 is congruent to 1 or 2, the claim follows from Theorem 9.When � mod 3 = 0, partition the vertices into �3 classes, where all but possiblythe last have maximum degree 2. Find a 23 -approximate weighted independentset in the last class, compute optimal solutions of the other classes, and letoutput the largest of all of these. Let W denote the weight of our solution.The weight of the optimal solution is at most the sum of the weights of theoptimal solutions on the �3 subgraphs. The weight of the optimal solution ofthe last subgraph is at most 32W , but at mostW for the other subgraph. Hence,the weight of the optimal solution is at most [32 + (�3 � 1)]W = [�3 + 12 ]W .By applying a preprocessing method championed by Hochbaum [11], we canobtain improved approximations of weighted vertex cover, for � � 5. Therelative approximation of minimization problems is de�ned identically to thatof maximization problems, except that the ratio is necessarily greater than 1.Corollary 12 The weighted vertex cover problem can be approximated within2� 3�+2 in time O(�n3=2).5.1 ColoringLov�asz's lemma also has implications for the coloring of bounded-degree graphs,as observed previously by Catlin [3], Borodin and Kostochka [2] and Lawrence[17]. The constructive nature of the lemma has apparently not been madeexplicit before. Our implementation yields an e�cient coloring algorithm.Proposition 13 Graphs without 4-cliques can be colored with 3�+24 colors inlinear time.Proof. Partition the input graph into subgraphs of degree 3 or 4 via Lemma8, with (� + 2) mod 3 subgraphs of degree 4 and the remaining ones of degree3. Assuming the graph contains no clique on 4 vertices, each subgraph Gican be colored with �(Gi) colors by the algorithm that follows from Lov�asz'constructive proof of Brooks' theorem [19].This can be generalized to (t�1)�+(t�2)t colors for graphs without t-cliques.Karger, Motwani and Sudan [13] have recently obtained a �1�
(1) logn ap-proximation for 3-coloring. The advantage of our approach, however, is speed,simplicity, ease of implementation, and better bounds for all constant (or slightlysuperconstant) values of �.AcknowledgementWe would like to thank Osamu Watanabe for his helpful comments, and thereferees for suggestions for improved presentation. A portion of this paperappeared in preliminary form in [15].
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