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Towards Effective Content-Based Music Retrieval
With Multiple Acoustic Feature Combination

Jialie Shen, John Shepherd, and Anne H. H. Ngu

Abstract—In this paper, we present a new approach to con-
structing music descriptors to support efficient content-based
music retrieval and classification. The system applies multiple
musical properties combined with a hybrid architecture based on
principal component analysis (PCA) and a multilayer perceptron
neural network. This architecture enables straightforward incor-
poration of multiple musical feature vectors, based on properties
such as timbral texture, pitch, and rhythm structure, into a single
low-dimensioned vector that is more effective for classification
than the larger individual feature vectors. The use of supervised
training enables incorporation of human musical perception
that further enhances the classification process. We compare our
approach with state of the art techniques and demonstrate its
effectiveness on content-based music retrieval. In addition, exten-
sive experimental study illustrates its effectiveness and robustness
against various kinds of audio alteration.

Index Terms—Classification, multimedia database, music re-
trieval.

I. INTRODUCTION

ADVANCES in information technology, such as digital
libraries, the World Wide Web, and peer-to-peer informa-

tion systems, are producing an ever-growing volume of music
data. Unfortunately, the technology for generating effective
music descriptors has not kept pace with the growth of music
data. While the extraction of acoustic features from digital
music data has a relatively long history, it has so far proved
extremely difficult to determine how to effectively represent
high-level semantic concepts, such as genre, using physical
features from the acoustic signal. The are several reasons for
this. First, there exists a large gap between high-level semantic
concepts and low-level physical representation of music [2].
Second, there is a wide variety of features within a music
signal (e.g. timbral texture, harmony, rhythm); thus, using a
single acoustic feature may not accurately represent important
characteristics of the music data. Third, human beings have
an amazing and unique capability to perceive music which
should be taken into account for developing effective music
classification and retrieval.

In developing effective music descriptors, we are faced with
the problem of producing music feature vectors that accurately
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mimic human music perception for a range of retrieval and clas-
sification tasks. The two subproblems here are: 1) how to com-
bine various low-level features to effectively model human per-
ception for a given task and 2) how to avoid producing com-
posite feature vectors (from multiple acoustic features) that are
so large as to render existing data access and machine learning
methods unusable due to the “curse of dimensionality” [1], [20].

The first problem is associated with human music percep-
tion. Recent studies in music perception and cognition [4], [22]
support the belief that human beings perceive music by com-
bining different acoustic features in a “nonlinear” way. Thus,
techniques assuming that each type of acoustic features con-
tributes equally in music recognition are not supported by our
understanding of the human perpetual system.

The second problem is related to computational complexity.
The standard approach for dealing with this problem is to use
dimension reduction methods (such as DFT, PCA, SVD, and
neural networks) to prune the size of the feature vectors. How-
ever, these commonly used methods suffer from either an in-
ability to capture non-linear correlations among raw data, which
leads to significant loss of useful distance information in the re-
duced feature space, or very expensive training costs for tasks
where machine learning is needed.

Motivated by the above, in this paper, we present a fast and
robust descriptor generation method for music data, which is
called InMAF.1 Unlike conventional approaches, our method
easily integrates various acoustic features and human musical
perception to produce small feature vectors that enhance the re-
trieval and categorisation process. Experimental results demon-
strate that our proposed method outperforms state-of-the-art
approaches in some important areas. For example, it achieves
around 24% improvement for genre classification accuracy on
the dataset of [30], 26% improvement for artist classification
accuracy, and 23% improvement for instrument classification
accuracy against DWCHs [18], one of the best existing methods
for content-based music retrieval (CBMR). It also yields nearly
27% improvement in the average precision rate against DWCHs
for three different music retrieval query cases. In addition,
real-life applications often deal with music data that suffers
from noise or audio distortion. Our experimental results show
that InMAF is robust against common types of audio alteration
of music data.

The rest of the paper is structured as follows. Section II gives
background knowledge and describes related work. Section III
presents the architecture of the proposed system. Section IV
describes a performance study and gives a detailed analysis
of a comprehensive set of experiments over three large music

1InMAF stands for Integrating Multiple Acoustic Features.
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databases. Finally, in Section V, we draw some conclusions
and indicate future directions for this work.

II. BACKGROUND

A. Music Content Representation

Various kinds of feature can be used for classifying and in-
dexing large music collections. They include text labels for the
title and performer(s)/composers and symbolic representations
of melody (e.g. MIDIs and digital music scores) [10], [26]. In
this paper, we focus on acoustic features.

While various systems exist for content-based speech recog-
nition and music-speech discrimination, much less work has
focused on developing compact and comprehensive music
data descriptors for effective categorization and retrieval. Most
of the existing work is based on spectral features of the raw
music signal adapted from earlier work in speech recognition
including mel-frequency cepstral coefficients (MFCCs), spec-
tral centroid, linear prediction coefficients, spectral flux, etc.
[24]. Typical examples of this approach are the work by Nam
and Berger [21], who use three low-level acoustic features
(spectral centroid, short time energy, and zero crossing rate)
for automatic music genre classification, and work by Li and
Khokhar [16], who propose nearest-feature-line methods for
content-based audio retrieval and classification. In [19], Lu et
al. studied audio classification with nine different audio features
including MFCCs, zero crossing rates (ZCR), short time energy
(STE), subband power distribution, brightness, bandwidth,
spectrum flux (SF), band periodicity (BP) and noise frame ratio
(NFR) using a support vector machine (SVM) [32] as a classi-
fier. One of the most advanced frameworks for modelling music
signals is MARSYAS,2 developed by Tzanetakis et al. [30]. In
this framework, a set of features was specifically developed
to characterize different acoustic properties of music signals,
including timbral texture, pitch content and rhythm. Using
a linear concatenation of these features, they achieved 61%
classification accuracy for a ten genre sound-data set. More
recently, Li et al. [18] proposed using Daubechie’s wavelet
histogram technique (DWCHs) to capture local and global tem-
poral information inside music signal. Their approach first used
wavelets to decompose a music signal into different subbands.
Then, a histogram for each subband was constructed. Finally,
the first three moments of each histogram and energy for each
subband are calculated to form DWCHs.3 Due to its effective
estimation of probability distribution over time and frequency
via wavelets, DWCHs performs better than MARSYAS, and is
currently the state-of-the-art in content-based music retrieval.

The problem with the above techniques, which rely on ei-
ther single type of physical feature or a linear concatenation
of many features, is that they cannot provide a “perceptually
accurate” description of a music signal. The human percep-
tual system interprets and processes a music signal using var-
ious kinds of acoustic characteristics within a complex context.
A single type of physical feature may not provide information
which is rich enough to represent music data comprehensively.
Also, approaches using multiple acoustic characteristics assume

2In this paper, we use MARSYAS to represent the feature set generated by
MARSYAS framework.

3It means Daubechie’s wavelet coefficient histograms.

that a linear combination of low-level physical features can re-
flect how we perceive music as similar. This assumption is not
supported by experimental work on human music perception.

B. Dimension Reduction Methods

Methods such as DWCHs and MARSYAS produce high-di-
mensional music descriptors, which render inefficient all
state-of-the-art data access and machine-learning methods for
searching, training and classification. Therefore, it is neces-
sary to apply dimension reduction techniques to eliminate
any redundancy amongst low-level features after the signal
processing stage. The goal of a dimension reducer is to dis-
cover complex dependencies among the different features and
eliminate correlated information or noise while maintaining
sufficient information for discrimination between music of
different classes. In order to be effective, the feature space
resulting from the reduction must accurately reflect the dis-
criminative criteria of human music perception. Currently,
dimension reduction methods can be classified into two general
categories: linear dimension reduction (LDR) and nonlinear
dimension reduction (NLDR). Typical examples for LDR
include PCA, multidimensional scaling (MDS), SVD, and DFT
[5], [11], [14], [25]. These approaches assume that the variance
of data can be accounted for by a small number of eigenvalues.
Thus, LDR works well with data sets that exhibit some linear
correlation. In our case, since acoustic features are nonlinear
in nature, better performance can be expected by using NLDR.
The advantage of using a neural network for NLDR is that
it can learn directly from training examples (such as human
prelabeled data) to form a model of the feature data. The basis
for NLDR is the standard non-linear regression analysis used
in the neural network approach, which has been widely studied
[9], [13], [33]. Through training, the distance information of
the original data source can be represented as weights between
units in successive layers of the neural network. Thus, NLDR
should perform better than LDR in handling feature vectors
for music data. However, there is significant cost involved in
training a neural network.

III. SYSTEM OVERVIEW

In this section, we present a new approach to extracting
descriptive information from music data. Its advantage over
previous approaches, such as MARSYAS and DWCHs, lies in
the fact that it can capture high level semantic concepts (such as
genre) and represent those features as low-dimensional feature
vectors. It achieves this by combining acoustic features and
human perceptual data. Before describing the system architec-
ture, we give a brief overview of the acoustic features that our
system uses.

A. Feature Extraction

In this study, we use the MARSYAS framework [30] as the
basis for extracting different acoustic features. MARSYAS clas-
sifies acoustic features into timbral texture, rhythmic content,
and pitch.

• Timbre: Timbral texture is a global statistical music prop-
erty used to differentiate a mixture of sounds. It has been
widely applied for speech recognition. To extract timbral
texture, we first divide each music signal into many short
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Fig. 1. Architecture of a hybrid musical feature dimension reduction scheme. The output of the scheme is the low-dimensional vectors appearing in the hidden
layer of the neural network.

time-frames. Different components (mainly spectral char-
acteristics) for this feature vector are calculated using the
short-time Fourier transform (STFT). These components
include spectral centroid, spectral flux, time domain zero
crossings, low energy, spectral roll-off and MFCCs. This
yields a 33-dimensional vector containing: mean and vari-
anceof spectral centroid, spectral flux, time domain zero
crossings, and 13 MFCC coefficients (32) plus a low-en-
ergy component (1).

• Rhythm: Rhythmic content indicates reiteration of mu-
sical signal overtime. It can be represented as beat strength
and temporal pattern. We use the beat histogram (BH) pro-
posed by Tzanetakis et al. [30] to represent rhythmic infor-
mation. BH is calculated by collecting statistics on the am-
plitude envelope periodicities of multiple frequency bands.
The specific method for their calculation is based on a
discrete wavelet transform (DWT) and analysis of peri-
odicity for the amplitude envelope in different octave fre-
quency bands. An 18-dimensional vector is used to repre-
sent rhythmic information, containing: relative amplitude
of the first six histogram peaks (divided by the sum of am-
plitudes), ratio of the amplitude of five histogram peaks
(from second to sixth) divided by the amplitude of the first
one, period of the first six histogram peaks, and overall sum
of the histogram.

• Pitch: Pitch is used to characterize melody and harmony
information in music and can be extracted via multi-pitch
detection techniques. We use an algorithm proposed by
Tolonen et al. [31]. The signal is first divided into two fre-
quency bands (below and above 1000 Hz). Then, amplitude
envelopes are extracted for each frequency and summed to
construct a pitch histogram. The resulting 18-dimensional
pitch vector incorporates: the amplitude and periods of the
maximum six peaks in the histogram, pitch interval be-
tween the six most prominent peaks, and the overall sum
of the histogram.

B. The System Architecture

InMAF utilises a two-tier hybrid architecture: dimension re-
duction via Principal Component Analysis followed by a non-
linear neural network using the Quick-prop learning algorithm

[8]. Fig. 1 shows the overall architecture of the system. Feature
vectors for timbre (33 dimensions), rhythm (18 dimensions) and
pitch (18 dimensions) are first extracted from the music data.
In the first tier, each acoustic feature is separately analysed by
a single PCA module.4 The variance of PCA analysis is set to
be 99% and after PCA preprocessing, the dimensionalities of
timbre, pitch, and rhythm are 10, 8, and 7, respectively. The
outputs of each PCA module are then concatenated to form a
single 25–dimensional composite feature vector as input to the
three-layer perceptron feed-forward neural network.5

1) Principal Component Analysis: PCA is one of the most
widely used dimensionality reduction methods [6]. The advan-
tage of the PCA transformation is that any linear correlations in
the data are automatically detected. It has been successfully em-
ployed for dimension-reduction in applications such as building
efficient indexes for general image retireval [15], and for image
coding in specialised image databases, such as facial images
[27]. In our system, PCA is used as a “pre-processing” step,
where it provides small but information-rich feature vectors for
the three-layer neural network, and thus speeds up the NLDR
training time.

2) Neural Network: The advantage of using a neural net-
work for NLDR is that the network can be trained to produce
compact and effective music descriptors via pre-selected sam-
ples. In this work, a three-layer perceptron neural network with a
Quick-prop learning algorithm [8], is used to perform non-linear
dimensionality reduction on composite music vectors. The units
in the input layer accept the composite feature vector from the
PCA analysis. The number of units in the output layer corre-
spond to the total number of classes in target data collection.
However, it is the hidden layer that plays a critical role in our
method. When the network has been successfully trained, the
weights that connect the input and the hidden layers can be

4An alternative approach to implementing InMAF would be to first combine
the feature vectors into a high-dimensional composite feature vector and then
apply PCA to this composite feature vector to get a reduced vector to be used as
the input of the neural network. We have also tested this approach and obtained
similar experimental results to those presented below.

5In fact, we use total variance of PCA to control dimensionality. Based on
our experiments, a 25-dimensional feature vector was a good tradeoff between
neural network training cost and effectiveness of dimension reduction. Further
discussion and analysis of this issue is presented in Section IV-E-1.
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Algorithm 1. Training sample selection

treated as entries of a transformation that maps “raw” feature
vectors to more compact vectors. Thus, when a high-dimen-
sional feature vector is passed through the network, its activa-
tion values in the hidden units form a lower-dimensional vector.
Each lower dimensional vector preserves only the most discrim-
inating information from the original feature vector.

C. Human Musical Perception Integration

The training process in our system has two stages: 1) con-
struct a training set incorporating human musical classification
and 2) use the training examples to generate compact music de-
scriptors.

1) Training Sample Selection: The training stage begins with
the incorporation of human music perception by defining a clas-
sification scheme for music data, determined by the specific ap-
plication (e.g. classification by genre, artist, or instrument). This
classification scheme is used to choose training examples; ex-
amples are required from each class. In our experiments, we
consider three classification schemes (genre, artist, instrument)
as a basis for determining similarity of music data. Note that
each classification task requires its own feature descriptor, and
thus needs its own training set.

The training set is generated by the procedure shown in Al-
gorithm 1. Its main goal is to construct a set of trained examples
with size specified by the parameter , which rep-
resents classification criteria based on human music perception
for subsequent training. categorise music into classes. The clas-
sification scheme determines the number of classes .
For example, in the genre similarity experiment, we consider
ten genres . After manually choosing a set

of examples for each class, we combine them to form a single
. Each contains music samples selected

with the help of a domain expert to represent the corresponding
class. In our work, we used “ground truth” classifications from

Algorithm 2. Training algorithm for neural network component in InMAF

professional reviews and similarity judgements from western
mainstream online music services.6 To build the training sam-
ples for each class, for each music sample , we make
a nearest neighbour search based on three single features in-
cluding timbre, rhythm and pitch (lines 9 11). Then, a single
list is obtained via intersection of the three result lists. The
music in is similar in timbre, in rhythm and in pitch (line
12). Next, with the aid of the domain expert, we pick up all
music pieces belonging to the same class from and add
them into which contains trained examples for class (line
13). In the following step, if the number of training examples
for one class reaches a predefined threshold which is equal to

, those examples will be added into
(line 17).
In some cases, not all may generate suffi-

cient training examples. In this case, we ask the domain expert
to generate a new set of seeds for each class where

, and then repeat the above proce-
dure until each subclass is large enough.

2) System Training: As shown in Algorithm 2, in order to
train the system, we first set up a PCA dimension reducer for
each type of raw feature vector (lines 1–3). Note that we use
the entire data set, and not just the training set, in determining
the principal components (PCs). This has the advantage that the
covariance matrix for each type of feature vector contains the
global variance of music in the database. The number of PCs is
determined by the cutoff value . In this study, is set so that
the minimum variance retained after PCA dimension reduction
is at least 99%. Based on our experiments, the cutoff value
significantly influences the training cost. We discuss this later.

The neural network is initialized by setting the weight of
each link, connecting two units in the network, to a random
small value. We used Algorithm 1 to obtain a training sample

6In this paper, we use service from http://www.allmusic.com (AMG).



SHEN et al.: TOWARDS EFFECTIVE CONTENT BASED MUSIC RETRIEVAL 1183

(line 4). The training then proceeds by iterating over the music
data items in the training set, choosing one item from each sub-
class in turn (lines 7–8). For each item, we construct a com-
posite feature vector using a linear concatenation of the PCA-re-
duced timbre, pitch, and rhythm feature vectors (lines 5–6).
The composite feature vector and the class number is then pre-
sented to the neural network. Finally, we test the convergence
of the network (line 9). If the convergence condition is satisfied,
the training process halts (line 11). Otherwise, we continue to
present training examples, one at a time (line 13) until conver-
gence.

IV. A PERFORMANCE STUDY

In this section, we demonstrate the effectiveness of our ap-
proach by comparing it with the current best approaches in the
areas of classification and similarity retrieval, and also consider
robustness against different kinds of audio distortion. The study
examines a range of possible methods for generating music de-
scriptors, including our proposed method InMAF and state-of-
the-art existing approaches like DWCHs, MARSYAS (denoted by
MAR)7 and two other dimension reduction methods including
PCA and neural networks (denoted by NN) [29]. For each of
these (except DWCHs), we consider three different combina-
tions of low-level features ( denoted
by RTP; denoted by TR; de-
noted by TP). In our results, a system configuration denoted by
“xxxx-yy” contains feature extraction method “xxxx” with fea-
ture combination “yy”. For example, “InMAF-RTP” denotes a
configuration using our proposed method with rhythm, timbre,
and pitch features. The size of feature vectors generated by pure
neural network (NN) and InMAF is 10, which is equal to the
number of neurons in the hidden layer of the multilayer percep-
tron. Also, the number of neurons in the input layer is 25, equal
to the size of the PCA-preprocessed feature vector with 99%
total variance. All of the experiments were conducted on a Pen-
tium III machine with 450-MHz CPU, 256-MB RAM running
under Linux.

A. Datasets

Three separate music databases were used in this per-
formance study. The first, Dataset I, is used for testing the
performance of different kinds music descriptors in genre
classification. It contains 1000 music data items covering ten
genres with 100 songs per genre. This dataset was used in [18],
[30]. To ensure variety of recording quality, the excerpts of
this dataset were taken from radio, compact disks, and MP3
compressed audio files. Each item in the collection belongs to
exactly one of ten music genre categories: Classical, Country,
Dance, Hip-hop, Jazz, Reggae, Metal, Blues, and Pop. The
second dataset, Dataset II, is used for testing the performance
of music descriptors generated by different methods on artist
classification. It contains 1000 songs covering 20 different
artists. This dataset was constructed from the CD collection
of the first author and his friends. It includes ten male singers
(such as Van Morrison, Michael Jackson, Elton John, etc.) and
ten female singers (such as Kylie Minogue, Madonna, Jennifer

7Note that in MARSYAS, linear concatenation is used to construct a com-
posite feature vector as input to different machine-learning based classifiers.

Lopez, etc.), with 50 songs for each singer. Dataset III contains
1000 sounds covering 10 different solo instruments such as
piano, guitar, violin, etc, and there are 100 music items for each
instrument category. This dataset is used for instrument-based
classification and similarity search. The length of each music
item in all three datasets is 30 s and each item is stored as a
22050-Hz, 16-bit, mono audio file.

B. Automatic Music Classification

In this section, we compare the performance of music descrip-
tors produced using our approach against descriptors produced
via the DWCHs method, currently the best known approach. We
perform the comparison for three separate music classification
tasks: genre-based classification, artist-based classification and
instrument-based classification. The classifers used in this study
include support vector machines (SVMs), K-nearest neighbour
(KNN), Gaussian mixture models (GMM), decision tree and
linear discriminant analysis (LDA).

1) Effectiveness of Classification: Table I8 shows the results
of our experiments to test the accuracy of genre classification
and artist classification for different classifiers using a variety
of music descriptors as input. The classification problems
were carried out on different data sets (the ones described in
Section IV-A). For each of the classifiers, we used tenfold cross
validation to calculate classification accuracy [20]. This means
the whole dataset is divided into ten disjoint subsets of (approx-
imately) equal size. For testing, we trained classifiers on nine
of these ten disjoint subsets and then tested on the remaining
one, each time leaving out a different subset. The above process
was repeated for each approach to generate music descriptors,
including our InMAF approach (with different combinations
of acoustic features), pure neural network, PCA, DWCHs, and
MARSYAS with linear concatenation.

The bottom three rows of the Table I indicate how the dif-
ferent classifiers performed if only individual raw acoustic fea-
tures were used in the descriptor. The poor accuracy observed
in this experiment (between 30% and 50% for all classifiers)
verifies the claim that effective music classification cannot be
achieved by considering only a single low-level acoustic feature.
The same conclusion was reached by [30]. Some improvement
in accuracy can be obtained by considering a combination of
low-level features. We considered all different linear concatena-
tions of combinations of the timbre, pitch and beat vectors. The
best linear combination (MAR-RTP) uses all three low-level
features and achieves accuracy rates of 70.1% for genre clas-
sification, 69.2% for artist classification and 67.3% for instru-
ment classification with the best classifier (SVMs). Similar ob-
servations can be obtained in case of using pure PCA as the
dimension reduction method. The performance with DWCHs
is better than any linear concatenation of acoustic features and
better than pure PCA. This is because DWCHs provide a good
estimation of probability distribution over time and frequency
which leads to a better feature representation.

In comparison with PCA, DWCHs and MARSYAS, con-
structing music descriptors with InMAF results in a significant
improvement in classification accuracy for all of the different

8SVM1 and SVM2 denote Support Vector Machine with one-versus-the-rest
and pairwise approach. Dec. tree denotes decision tree.
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TABLE I
CLASSIFICATION ACCURACY OF DIFFERENT LEARNING METHODS WITH VARIOUS MUSIC DESCRIPTOR CONSTRUCTION METHODS. G DENOTES ACCURACY

OF GENRE CLASSIFICATION ON DATASET I, A DENOTES ACCURACY OF ARTIST CLASSIFICATION ON DATASET II AND I DENOTES ACCURACY OF INSTRUMENT

CLASSIFICATION ON DATASET III. FOR THE BOTTOM THREE ROWS, RESULTS ARE OBTAINED USING RAW FEATURE VECTORS

TABLE II
TRAINING TIME OF DIFFERENT CLASSIFIERS WITH VARIOUS MUSIC DESCRIPTOR CONSTRUCTION METHODS FOR MUSIC CLASSIFICATION

TABLE III
TRAINING COST OF DIMENSION REDUCTION METHODS

classifiers. For example, in case of genre classification, the
range of the improvement with InMAF against DWCHs is from
18% to 24%, depending on the learning method used. For
classification by artist, the improvement range is from 15% to
26% and 13% to 23%. Among all classification methods, SVMs
give the best results, whatever kind of music descriptor is used.
The accuracy achieved with the one-versus-the-rest SVMs to
classify music by genre, artist and instrument is 89.7%, 90.7%,
and 88.2%, respectively. On the other hand, based on Table I,
the pure neural network approach yields lower classification
error rates than other approaches. However, for InMAF, use of
PCA-reduced low-level feature vectors as input to the neural
network does not significantly reduce categorisation accuracy,
but does provide a great reduction in the classification time. In
the next section, we study the efficiency of music classification
with various music descriptor generation methods.

2) Efficiency of Classification: Using a large input feature
vector can make the learning process for any classifier very inef-
ficient in terms of training time. Using a small but well-discrim-
inating feature vector generated by INMAF not only provides
superior classification accuracy but also saves a large amount of
training time. To further illustrate the performance advantage of
using InMAF, we computed the actual training time for different

learning methods with music descriptors generated by various
methods. The results in Table II indicate that the speedup due
to our proposed method is significant. For example, training the
SVMs with MARSYAS9 and DWCHs required 4.76 s and 4.22 s
for genre classification, respectively. In contrast, our proposed
approach needed only 2.91 s, nearly 38% and 31% saving.

On the other hand, although it can be seen that superior
classification accuracy can be achieved using pure neural
network from Table I, the approach suffers from very long
learning time. This is because time required for a typical
learning algorithm, such as back-propagation (BP), grows at
super-linear rate with number of inputs. Thus, compression of
data through certain kinds of transformation potentially yields
a significant advantage in terms of time complexity. Based on
this principle, InMAF uses PCA as the first layer of the hybrid
architecture to preprocess raw music feature vectors. Results
from Tables I and III show that this approach does not lose
significant classification accuracy, but substantially improves
the network training cost; training a neural network to achieve
91.9% with SVMs for genre classification on dataset I required
about 26 min to finish. In contrast, our InMAF approach require

9MARSYAS uses linear concatenation of three acoustic features to construct
input feature vectors.
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about 21 min to complete learning process and results in 89.7%
classification accuracy. There is a significant saving on training
time and similar observation can be obtained for classification
with the other two similarity notions. Thus, we can conclude
that the InMAF is a highly effective and efficient technique of
generating music descriptors for automatic music classification.

C. Music Retrieval

In this section, we present the results of an experiment to
verify the effectiveness of our approach for content-based music
retrieval. Music retrieval can be informally defined as: the user
submits a query music clip and the system retrieves a list of
music pieces from the database that are most similar; the list of
“matching” pieces is displayed in order starting from the most
similar. There are clearly many different notions of “similarity”
for music; each notion of similarity corresponds to one kind of
query. In this study, we consider the following types of simi-
larity.

• Type I: find music that has similar genre from the database
constructed using dataset I.

• Type II: find music performed by the same artist from the
database constructed using dataset II.

• Type III: find music with the same instrument from the
database constructed using dataset III.

Under the InMAF approach, we need to build one music de-
scriptor generator for each of the above similarity notions. Once
we are able to generate descriptors for a particular similarity no-
tion, we use them to build a hybrid-tree [12] indexing structure
as the basis for similarity retrieval, using the well-known Eu-
clidean distance as the similarity metric. Finally, we set up three
different indexes to facilitate three types of similarity search as
described above respectively.

In our experiment, we randomly selected 10% of the target
dataset as query examples, where these query examples uni-
formly cover all subclasses. This test was repeated 1000 times.
Also, we evaluated the top 100 sounds ranked in terms of simi-
larity measurement. Since not all relevant sounds are examined
in this experiment, the concepts of normalised precision
and normalised recall [28] were used to evaluate the per-
formance of similarity retrieval for different query types. They
can be defined by

where is the number sounds in the dataset, is the number
of relevant sounds, and the rank order of the th relevant music
is denoted by .

1) Effectiveness of Similarity Search: One of our conjec-
tures is that it is possible to obtain effective retrieval from a
low-dimensional feature space if the feature vectors are care-
fully constructed. In this framework, we build relatively small
music descriptors from high-dimensional “raw” feature vectors.
Furthermore, by incorporating human musical perception, more
discriminating information can be incorporated into a smaller

size of feature vector which leads to superior performance for
similarity search.

The experiments verify our claim. Fig. 2 summaries query
effectiveness of the MARSYAS, DWCHs and InMAF techniques
for three different query types. It is shown that MARSYAS with
linear concatenation for feature vector construction is the worst
in terms of recall and precision rates. Furthermore, although the
DWCHs technique achieves better performance than MARSYAS,
improvement is limited. This is because DWCHs only captures
low level physical characteristics of the music signal. In fact,
the experimental results clearly demonstrate that InMAF sig-
nificantly outperforms the two other approaches. For example,
Fig. 2(a) shows that compared to DWCHs, the InMAF method
improves the retrieval precision from 57.5% to 71.6% for Type I
queries, 53.8% to 74.2% for Type II queries and 58.7% to 77.2%
for Type III queries. In addition, on average, around 39% im-
provement can be observed against the MARSYAS approach for
all kinds of query types. From Fig. 2, we also note that inte-
grating additional acoustic features into InMAF can bring sig-
nificant improvement in accuracy for all kinds of query types.
For example, by considering pitch, retrieval accuracy improve-
ment for query Type I, Type II, and Type III is 16.7%, 14.3%,
and 14.7%, respectively. In contrast, with additional feature in-
corporation, there is no big improvement in term of query effec-
tiveness when using MARSYAS.

D. Robustness

Humans have an impressive capability to identify and clas-
sify sound or music, from a very small sample and even in
the presence of moderate amounts of distortion. This property
is potentially useful in real-world music database applications,
where the query sound may have its origins in a process such as
low-quality live recording. In order to evaluate the robustness of
InMAF’s query performance against various audio alterations,
we ran the same set of tests as described in Section IV-C for
three datasets. However, each music item was distorted before
using it in the query and the results were compared against the
results obtained from using a non-distorted query. This was re-
peated for varying levels of distortion. There was no distortion
in training data of InMAF. Experimental results clearly demon-
strate that compared with other approaches, InMAF emerges as
the most robust technique on all distortion cases. Fig. 3 sum-
marizes the results for the different descriptor generators under
various distortions for query type I. Note that the similar obser-
vation can be made for other kinds of query. It can bee seen that
InMAF is fairly robust to different kinds of noise and acoustic
distortion with various query types. For example, with query
type I, InMAF is robust to echo with 9-s delay time, 45-dB SNR
white background noise, 9-s cropping, 50% volume amplifica-
tion, 75% volume deamplification, and 60-dB SNR pink back-
ground noise.10 In contrast, DWCHs can only tolerate echo with
10-s delay time, 60-dB SNR white background noise, 11-s crop-
ping, 37% volume amplification, 90% volume deamplification,
and pink background noise with SNR 65 dB.

Instead, since InMAF is being trained to reduce the dimen-
sionality of raw acoustic feature vectors, this suggests that we

10We use equation SNR = 10log (S=N) to calculate signal-to-noise
ratio, where S is signal power, N is noise power and its unit is decibles (dB).
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Fig. 2. Query effectiveness of InMAF, DWCHs, and MARSYAS. (a) Precision—query type I. (b) Recall—query type I. (c) Precision—query type II. (d) Re-
call—query type II. (e) Precision—query type III. (f) Recall—query type III.

can enhance robustness of the framework by training it using not
only the original music, but also a copy of the music item which
has been altered with noise or distortion. We modified music
data items with different kinds of distortion as learning exam-
ples for training purpose and carried out a series of experiments
to test the performance of our system in the presence of mod-
erate amounts of noise and other kinds of distortion. During this
test, we randomly chose 20% of music items from each category
in the training data, applied a number of effects to each item, and
included all of the distorted versions of the item, as well as the
original item, in the training data. The neural network was then
trained using all of this data; the aim was to train it to recognize
not only exact version of the original music data, but to allow
it to be robust to distortions. Fig. 3 shows the effects of extra
learning examples on performance improvement for query type
I. The results demonstrate that integrating additional distorted

examples into training data further improved the robustness of
InMAF for all the distortion types. In particular, there is a signif-
icant gain in the case of pink noise and cropping. For example,
with query type I, InMAF with extra learning examples is robust
to 6 s cropping and 40 dB pink noise. This is a significant im-
provement over InMAF trained by clean data, which can only
tolerate 9 s cropping and 60 dB pink noise.

E. Discussion

In this section, we discuss issues related to the performance
of this hybrid method in light of the use of PCA as an additional
pre-processing step.

1) Effect of PCA on Training Process: In our system, the in-
puts to the neural network are not the original feature vectors,
but vectors which have been reduced via PCA. PCA is used for
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Fig. 3. Robustness of different music descriptor generation methods for query type I. InMAF-CL and InMAF-EX denote InMAF with clean training data or with
training examples containing both clean and distorted data individually. (a) Pink noise addition. (b) Cropping. (c) Volume amplification. (d) Volume deamplifica-
tion. (e) White noise addition. (f) Echo.

TABLE IV
TRAINING TIME OF InMAF FOR DIFFERENCE VARIANCE OF PCA

PREPROCESSING (THE UNIT OF TRAINING TIME IS min:sec)

preprocessing to speed up the training time of the neural net-
work component, and also used to remove redundant aspects
of the “raw” feature vectors. There is clearly a trade-off in-
volved here: taking many PCs which account for all of the vari-
ance ought to result in more effective retrieval/classification per-
formance, but will also result in higher training costs; using
less PCs will make training more efficient, but will not account
for variance as well and will also result in less effective re-
trieval/classification performance. In this subsection, we give
the results of using different numbers of PCs for three collec-
tions of music data. The network training condition is the same
as that mentioned in Section IV for 10 hidden units.

From Table IV, it can be seen that the number of PCs for
the best network training in our application depends on their
total variance. There are no significant differences in the time
required for network training using input vectors with size from
25 to 45 since they account for more than 99% of the variance.
Moreover, input vectors with variance exceeding 99.7% do not

TABLE V
TRAINING TIME OF InMAF VERSUS NUMBERS OF HIDDEN UNITS

require extra training time. However, if we use PCA-prepro-
cessed feature vectors which acocunt for less than 95% of the
variance, then the differences are significant. For example, with
dataset I, it takes 1 h and 10 min for input vectors with size of
11 that account for 88% of the variance to complete learning,
which is far greater than the time needed for vectors which ac-
count for 99% variance or more.

2) Parameters of the Neural Network: A wide variety of pa-
rameter values were tested in order to find an optimal choice
for the network learning algorithm in the above experiments.
However, in practice, it is often undesirable or even impossible
to perform a large number of random parameter tests. More-
over, different applications may require different sets of param-
eters of the network. In our case, the optimal parameters for the
Quick-prop algorithm are step size of 1.75 and learning rate of
0.9.

The number of the hidden units used can also affect the net-
work convergence and learning time. Table V summaries the
learning time of neural network with various numbers of hidden
units for different datasets. The size of input layer is 25. We can
observe that the more hidden units the neural network has, the
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less training cost is required to complete the learning process.
This is because more hidden units can keep more information.
However, since the network serves as a dimension reducer, the
number of hidden units is restricted to a practical limit.

V. CONCLUSION

In this paper, we present a novel music descriptor construc-
tion technique for effective content-based music retrieval. Un-
like previous approaches, which were based solely on automat-
ically derived acoustic features, our approach incorporates (via
training) similarity information based on human music percep-
tion, to produce descriptors that are both efficient (low-dimen-
sional) and effective (well-discriminating). We are not aware of
any other work that integrates notions of human music percep-
tion in developing music classification criteria as our work does.
We have also developed a learning algorithm for training the
system to generate descriptors representing different similarity
notions. The approach is fully implemented and a series of ex-
periments has been carried out to compare this method against
state-of-art approaches in the areas of classification (using a va-
riety of machine learning approaches), similarity retrieval and
robustness against audio distortion. Moreover, our approach can
integrate new low-level acoustic features without difficulty.
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