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Anonymous Query Processing in Road Networks
Kyriakos Mouratidis, Man Lung Yiu

F

Abstract—The increasing availability of location-aware mobile devices
has given rise to a flurry of location-based services (LBS). Due to the
nature of spatial queries, an LBS needs the user position in order to pro-
cess her requests. On the other hand, revealing exact user locations to a
(potentially untrusted) LBS may pinpoint their identities and breach their
privacy. To address this issue, spatial anonymity techniques obfuscate
user locations, forwarding to the LBS a sufficiently large region instead.
Existing methods explicitly target processing in the Euclidean space,
and do not apply when proximity to the users is defined according to
network distance (e.g., driving time through the roads of a city). In this
paper, we propose a framework for anonymous query processing in road
networks. We design location obfuscation techniques that (i) provide
anonymous LBS access to the users, and (ii) allow efficient query
processing at the LBS side. Our techniques exploit existing network
database infrastructure, requiring no specialized storage schemes or
functionalities. We experimentally compare alternative designs in real
road networks and demonstrate the effectiveness of our techniques.

1 INTRODUCTION

The low cost and small size of positioning equipment (e.g.,
GPS receivers) have allowed their embedding into PDAs and
mobile phones. The wide availability of these location-aware
portable devices has given rise to a flourishing industry of
location-based services (LBS). An LBS makes spatial data
available to the users through one or more location servers
(LS) that index and answer user queries on them. Examples
of spatial queries could be “Where is the closest hospital to
my current location?” or “Which pharmacies are open within
a 1 km radius?”. In order for the LS to be able to answer such
questions, it needs to know the position of the querying user.

There exist many algorithms for efficient spatial query
processing, but the main challenge in the LBS industry is of a
different nature. In particular, users are reluctant to use LBSs,
since revealing their position may link to their identity. Even
though a user may create a fake ID to access the service,
her location alone may disclose her actual identity. Linking
a position to an individual is possible by various means,
such as publicly available information (e.g., city maps and
telephone directories), physical observation, cell-phone signal
triangulation, etc. User privacy may be threatened because
of the sensitive nature of accessed data; e.g., inquiring for
pharmacies that offer medicines for diseases associated with a
social stigma, or asking for nearby addiction recovery groups
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(Alcoholics/Narcotics Anonymous, etc). Another source of
threats comes from less sensitive data (e.g., gas station lo-
cations, shops, restaurants, etc) that may reveal the user’s
interests and shopping needs, resulting in a flood of unsolicited
advertisements through e-coupons and personal messages.

To solve this problem the following general approach is
taken [28], [23]. When a user u wishes to pose a query, she
sends her location to a trusted server, the anonymizer (AZ),
through a secure connection (e.g., SSL). The latter obfuscates
her location, replacing it with an anonymizing spatial region
(ASR) that encloses u. The ASR is then forwarded to the LS.
Ignoring where exactly u is, the LS retrieves (and reports to
the AZ) a candidate set (CS) that is guaranteed to contain
the query results for any possible user location inside the
ASR. The AZ receives the CS and reports to u the subset of
candidates that corresponds to her original query. In order for
the AZ to produce valid ASRs, the users send location updates
whenever they move (through their secure connection). The
described model is shown in Figure 1.

Location Server
User

Query, Location, K
Results

ASR Query
Candidate Set

Anonymizer

Fig. 1. System model

The ASR construction at the AZ (i.e., the anonymization
process) abides by the user’s privacy requirements. Particu-
larly, specified an anonymity degree K by u, the ASR satisfies
two properties: (i) it contains u and at least another K − 1
users, and (ii) even if the LS knew the exact locations of
all users in the system, it would not be able to infer with a
probability higher than 1/K who among those included in the
ASR is the querying one (i.e., u).

While the above ASR properties guarantee spatial K-
anonymity to u, the model in Figure 1 also imposes require-
ments on CS computation. In particular, given an ASR, the
LS must produce an inclusive and minimal CS. Inclusiveness
demands that CS is a superset of u’s query results; this prop-
erty ensures that u receives accurate and complete answers.
Minimality, on the other hand, requires that the CS contains
the minimum number of data objects, without violating in-
clusiveness. Minimality ensures that CS transmission (from
the LS to the AZ), and its filtering at the AZ do not incur
unnecessary communication and processing overheads (and,

ppyeo
Typewritten Text
Published in IEEE Transactions on Knowledge and Data EngineeringVolume 22, Issue 1, January 2010, Article number 4782961, Pages 2-15http://dx.doi.org/10.1109/TKDE.2009.48



2

thus, no further delay in reporting the results to u).
Existing methods construct truly anonymous ASRs and

include ASR-based query processing mechanisms for the LS.
However, they are targeted explicitly at the Euclidean space.
The very concept of the ASR reflects this assumption, and
the existing CS computation algorithms are tailored to the
Euclidean distance. In practice, however, most LBS users are
restricted to move in a road network in order to reach the
queried spatial objects (hospitals, gas stations, shops, etc).
Thus, they are typically interested in (and express their queries
in terms of) the network distance, e.g., the traveling time
through the roads of a city to the locations of interest. In
this paper, we propose the first K-anonymity-based framework
for location privacy in road networks, termed network-based
anonymization and processing (NAP). Our contributions can
be summarized as follows:
• We propose an edge ordering anonymization approach for

users in road networks, which guarantees K-anonymity
under the strict reciprocity requirement (described later).

• We identify the crucial concept of border nodes, an
important indicator of the CS size and of the query
processing cost at the LS.

• We consider various edge orderings, and qualitatively
assess their query performance based on border nodes.

• We design efficient query processing mechanisms that
exploit existing network database infrastructure, and guar-
antee CS inclusiveness and minimality. Furthermore, they
apply to various network storage schemes.

• We devise batch execution techniques for anonymous
queries that significantly reduce the overhead of the LS
by computation sharing.

The rest of the paper is organized as follows: Section
2 overviews related work. Section 3 defines our system
model and objectives. Section 4 elaborates on network-based
anonymization (at the AZ), while Section 5 focuses on the
processing of anonymous queries (at the LS). Section 6 em-
pirically evaluates our methods on real road networks. Finally,
Section 7 concludes the paper.

2 RELATED WORK

Section 2.1 reviews related work on road network databases
and Section 2.2 surveys the literature on spatial anonymity.

2.1 Query Processing in Road Networks

Basic Notation. In general, a road network can be modeled
as a weighted graph G = (N,E). N contains the network
nodes, while E is the set of edges. Nodes n in N model road
intersections, locations of road turns, or positions where traffic
conditions change (e.g., a street gets narrower). On the other
hand, every edge e connects two nodes and is associated with
a non-negative weight w(e). Weight w(e) may represent, for
instance, the traveling time from one node to the other. Figure
2 shows an example of a road network. Edge n1n2 has weight
3, and its endpoints are nodes n1 and n2. Let p be a point on
an edge e with weight w(e). The partial weight from p to
an end-node of e is proportional to their (Euclidean) distance,

while the sum of the two partial weights is equal to w(e).
For instance, object o1 (shown as a solid point) lies on edge
n3n4 and has partial weights 1 and 3 from nodes n3 and n4,
respectively. Similarly, user u (the hollow point) falls on edge
n2n3 and both of its partial weights are 2.
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Fig. 2. Road network example

The network distance dN (u, o) between a user u and an
object o is defined as the sum of edge weights along the
shortest path (in the network) from u to o. In our example,
the network distance dN (u, o1) between user u and object o1
equals to 2+1=3. Its derivation is strongly related to shortest
path computation. In case of a small network, main memory
shortest path algorithms (e.g., Dijkstra’s algorithm [11]) can
be applied to compute dN (u, o). Otherwise, disk-based data
structures [31], [22] are utilized.

Query Processing by Network Expansion. Users are often
interested in location-based queries such as r-range and kNN
queries, in the context of a road network. Given a distance
threshold r and a user location u, the r-range query returns
all objects within (network) distance r from u. On the other
hand, the kNN query retrieves the k objects that are closest
to u. In the rest of the paper, the term distance refers to the
network distance, and the r-range and kNN queries refer to
their network versions (unless otherwise specified).

Papadias et al. [30] developed efficient indexing and pro-
cessing methods for the above queries. They proposed the
following disk-based structures for indexing the road network
and the data objects: (i) the adjacency index packs adjacency
lists of network nodes into disk blocks, (ii) the edge R-tree
spatially indexes the network edges, and (iii) the object R-tree
(ORT) organizes the locations of the data objects.

Network expansion [30] is a well-known technique for
evaluating r-range and kNN queries. Starting from the user
location u, it discovers objects on encountered edges while
traversing the network like Dijkstra’s algorithm, until the query
results (i.e., data objects of interest) are found. Suppose that,
in Figure 2, user u issues a range query with r = 9. First,
we access the adjacency index to identify edges within the
query range, following the steps in Table 1. A min-heap H is
employed for organizing entries of the form (ni, dN (u, ni))
(for encountered nodes ni) in ascending order of distance
dN (u, ni). In our example, the edge n2n3 containing u is
initially identified, and its end-nodes n2 and n3 (both with
distance 2) are inserted into H . In each iteration, the node ni

with the minimum distance is de-heaped from H , its incident
edges ninj are recorded, and its adjacent unvisited nodes nj

(having dN (u, nj) within the range) are inserted into H . For
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example, at the first three steps of Table 1, edges n2n3, n2n1,
and n3n4 fall completely within the query range. However,
at step 4 the de-heaped node n1 has distance 5 from u and
only the partial edge n1n5(4) lies within the range r = 9. The
process continues until H becomes empty. Having discovered
the relevant edges, we probe the ORT to retrieve the result
objects, o1 and o2.

Step De-heaped entry H contents Found edges
1 — (n2, 2) (n3, 2) n2n3

2 (n2, 2) (n3, 2) (n1, 5) n2n1

3 (n3, 2) (n1, 5) (n4, 6) n3n4

4 (n1, 5) (n4, 6) n1n5(4)
5 (n4, 6) — n4n5(3)

TABLE 1
Steps for range search, r=9

A kNN query can be evaluated by the above network
expansion technique, subject to the following differences. In
this case, there is no fixed distance threshold r. Thus, whenever
we encounter an edge e, we need to search in the ORT to
find the objects on e. During the process, a set W is used to
keep track of the k objects found so far that are closest to
u. Let γ be the largest distance in W . The search procedure
terminates when the next de-heaped node has a distance (from
u) larger than γ, since all remaining (non-encountered) objects
are guaranteed to be further from u (than γ). To exemplify,
we apply this method to answer the NN query (i.e., k=1) of u
in Figure 2. The first two steps are the same as those shown
in Table 1. After entry (n3, 2) is de-heaped, we discover edge
n3n4 and access ORT to find the objects on it (i.e., o1). Now,
we insert o1 into W and update γ to dN (u, o1) = 2 + 1 = 3.
Observe that the adjacent node n4 (of n3) is not inserted
into H because its distance is greater than γ. Next, entry
(n1, 5) is de-heaped; its distance is greater than γ so it is
ignored. Eventually, the heap H becomes empty and object
o1 is returned as the NN of u.

Alternative Query Evaluation Techniques. Euclidean re-
striction [30] is another approach for processing r-range and
kNN queries. This technique, however, relies on the assump-
tion that the weight of each edge is equal to its Euclidean
distance. Based on this property, a set of candidate objects can
be retrieved fast from the ORT. Then, the adjacency index is
used to compute the network distances of the candidates from
the query location u, in order to determine the actual result.
Nevertheless, the assumption used in Euclidean restriction
does not always hold in practice. For instance, depending on
the application, the weight of an edge may be its toll fee or
traveling time. In this paper, we adopt the network expansion
technique due to its proliferation and its superior performance
for r-range and kNN queries, as shown empirically in [30].
Finally, it is worth noticing that there exist pre-computation
techniques that improve query performance [26], [19] at the
cost of a preprocessing overhead and a higher update cost. Our
approach may be utilized with these methods as well, since it
relies only on primitive network-based search operations (see
Section 5.3).

2.2 Anonymous Location-based Queries

Recently, considerable research interest has focused on pre-
venting identity inference in location-based services. Stud-
ies in this area [17], [14], [28], [23] typically assume the
model described in Section 1, proposing spatial cloaking
(i.e., location obfuscation) techniques. In the following, we
describe existing techniques for ASR computation (at the
AZ) and query processing (at the LS). At the end, we cover
alternative location privacy approaches and discuss why they
are inappropriate to our problem setting.

Spatial Cloaking at the AZ. In general, the AZ applies the
concept of K-anonymity [33] to hide the querying user loca-
tion u. The idea is to compute an anonymizing spatial region
(ASR), containing u and at least K − 1 other user locations.
This offers privacy protection in the sense that the actual user
position u cannot be distinguished from others in the ASR,
even when a malicious LS is equipped/advanced enough to
possess all user locations. This spatial K-anonymity model
is most widely used in location privacy research/applications,
even though alternative models are emerging.

Casper [28] is the first work on efficient and scalable AZ
implementation for ASR computation. A quad-tree is utilized
for indexing user locations and deriving ASRs. Suppose that
the AZ needs to compute a 2-anonymous region (i.e., K=2)
for querying user u1 in Figure 3(a). The AZ first locates the
leaf quad that contains u1 and traverses the tree upwards until
it identifies a region covering at least K users (including u1).
In this case, the AZ derives rectangle R1,2,3 (containing three
users) as the 2-anonymous region of u1.

u
1 u
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u
4

R
1,2,3
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(a) Casper
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(b) Reciprocal cloaking

Fig. 3. Spatial K-anonymous cloaking, K=2

A closer look reveals that the ASR alone is not sufficient
to guarantee privacy. The adversary may be able to infer u’s
location by correlating ASRs of different users. In Figure
3(a), u2 and u3 have the same 2-anonymous region R2,3,
whereas u1 and u4 have 2-anonymous regions R1,2,3 and
R2,3,4, respectively. Observe that R1,2,3 is the only ASR that
contains u1. If the adversary knows all user locations, it is
possible to deduce that u1 posed a query with ASR R1,2,3.
User u4 encounters the same problem if R2,3,4 is used.

To address this issue, HilbASR [23] requires every K-
anonymous region to satisfy the reciprocity property, meaning
that each ASR must be shared by at least K users. In the
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example of Figure 3(b), users u1 and u2 share the same 2-
anonymous region R1,2. This way, the adversary cannot infer
who between them posed a query with ASR R1,2. To enforce
this constraint into the cloaking process, [23] proposed to
organize user locations based on their Hilbert ordering [8],
as shown in Figure 3(b). The ASRs can be computed fast in a
dynamic manner (i.e., for on-demand K values). Specifically,
consecutive users (in the Hilbert order) form disjoint buckets
of K, and the ASR is computed as a bounding rectangle of the
bucket that corresponds to the querying user u. For example,
if K = 2, the ASR of u1, u2 is the depicted rectangle R1,2,
and that of u3, u4 is R3,4.

We note that there exist distributed spatial cloaking methods
that do not use an anonymizer [16], [10], but require that
the users trust each other and collaboratively create ASRs. In
general, it is easier/cheaper for an adversary to compromise
(or even register as) a user of the system, than to take
over a central (strongly secured) AZ. Furthermore, inter-client
communication makes distributed cloaking particularly slow.

Query Processing at the LS. We continue by presenting
ASR-based query evaluation at the LS. Upon receiving an
ASR, the LS needs to compute a set of candidate result objects
(the CS). To guarantee inclusiveness, the CS must contain the
answer set of any possible query (i.e., user) location within the
ASR, since the precise location of u is unknown to the LS.
For the evaluation of an anonymous r-range query, the LS
computes the Minkowski region of her ASR Ru, extending
it by r (e.g., the gray region in Figure 4(a)). Then, the LS
retrieves the objects in that region, i.e., o1 and o2.

o
1

u

R
u

o
2

o
4

o
3

r

 

(a) r-range query

o
1

u

R
u

o
2

o
4

o
3

 

(b) NN query

Fig. 4. Query processing at the LS (in Euclidean space)

The processing of an anonymous kNN query is more
complex and relies on specific geometric properties in the
Euclidean space [28], [23]. To compute the candidate set for
the NN query (i.e., k=1) in Figure 4(b), the LS needs to
retrieve (i) all objects located inside the ASR (i.e., o2), and
(ii) the kNN objects of any location along the ASR sides (i.e.,
o1, o2, o3). Then, the LS eliminates duplicates (if any) and
returns the candidate objects o1, o2, o3 to the AZ.

We note that Casper [28] and HilbASR [23] are the only
existing spatial anonymity methods that consider query pro-
cessing at the LS. Their approaches are similar and follow
the lines presented above; they explicitly target the Euclidean
space and are inapplicable to road networks. For instance, the
processing of an ASR-based kNN query (in both these works)

requires the construction of perpendicular bisectors in order
to derive the kNN objects along the ASR sides. However,
perpendicular bisectors, as well as other Euclidean constructs
involved, cannot be translated to the road network context.

Alternative Location Privacy Approaches. There exist
location privacy approaches other than spatial anonymity. For
instance, [20], [15] apply private information retrieval to
process nearest neighbor queries. Based on cryptographic tech-
niques, they guarantee that an adversary cannot infer the user’s
location u within polynomial time of a security parameter
(e.g., key length). [20] is theoretical in nature, whereas [15]
proposes a practical algorithm with O(

√
n) communication

cost. However, query processing is particularly slow, and the
method is inapplicable to range and kNN queries (with k > 1).

[24] proposes a location privacy method for NN processing.
It uses a keyed function for mapping a 2D location onto a 1D
value; the key is shared among the users and is unknown to
the LS. The LS maintains the transformed (1D) data objects.
A querying user u converts her location into its 1D value u′

and forwards it to the LS. The latter returns the object that
lies closest to u′ (in 1D space). A drawback of this approach
is that the reported NN is not always the actual one.

In [12], [25] the user u forwards to the LS a set of dummy
locations in addition to hers, forming an obfuscation set of
potential query points. If an adversary knows the real user
locations, he may eliminate the dummies and identify u. In
[35], the user sends only a fake location to the LS and
incrementally retrieves its nearest neighbors. She stops when
she is guaranteed to have obtained the NN of her actual
location. The privacy region derived by [35] ignores other
users’ locations, and thus it cannot guarantee K-anonymity.

3 PROBLEM SETTING

We propose an anonymous query processing framework,
targeted at road network databases. We adopt the trusted
anonymizer model (i.e., the use of the AZ as a mediator
between users and the LS), as illustrated in Figure 1. This
choice is due to (i) the proliferation of this model in existing
anonymous services (e.g., Mailshell [2] and Spamgourmet [3]
provide anonymous use of Internet/email-based services with-
out revealing the user’s real email, the Anonymizer [1] provides
anonymous web-surfing, etc), (ii) its suitability for time-
critical applications [28], (iii) the existence of information se-
curity techniques and system architectures that support trusted
third party services (e.g., [21]), and (iv) the availability of
methods to ensure that a third party (i.e., the AZ) will honor
the user privacy requirements [5], [4].

Our anonymization approach satisfies the reciprocity prop-
erty (defined in Section 2.2). Specifically, it cloaks user
locations using sets of line segments (i.e., road network edges,
as we describe later), and ensures that each such set is shared
among at least K users. Note that reciprocity guarantees K-
anonymity even in the case where an adversary knows all user
locations as well as the exact cloaking algorithm [17], [23],
[16], [6].

An additional privacy requirement is that no user’s position
is revealed (regardless of whether she is the querying one or
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not). There are many potential attackers, whose knowledge and
equipment may vary. It is possible that some of them ignore
the user locations and, thus, it is essential not to transmit exact
positions to the LS [17], [14], [28], [23]. Therefore, it is not
an acceptable solution to simply append K − 1 other user
positions to that of u and collectively transmit them to the
LS, even if this approach satisfies reciprocity.

We assume that the users u ∈ U and the data objects
o ∈ O lie/move in a road network, as described in Section
2.1. We consider the generic network distance definition where
the edge weights are non-negative and they do not have to
be proportional to the Euclidean length of the corresponding
road segment. For instance, they could be traveling times from
endpoint to endpoint (i.e., depending on each road’s congestion
level, speed limit, number of lanes, etc). To simplify our
discussion, we consider undirected (i.e., two-way) edges, but
our techniques apply with trivial modifications to directed ones
(e.g., one-way roads). We focus on static networks, with fixed
edge weights. However, edge updates (e.g., weight/traveling
time increase due to an accident) can be dealt with easily,
provided that the AZ and the LS are informed of the network
changes.

In this paper, we focus on two important location-based
queries on road networks; the r-range and the kNN query
described previously. For the latter type, we denote by
kNN dist(u) the network distance of the k-th NN. We
consider snapshot queries (i.e., queries that are evaluated once
and terminate), as opposed to queries that require constant
update of their results (e.g., [9]).

The users log on to the system by first establishing a secure
connection with the AZ. Through this connection, they update
their locations to the AZ (whenever they move), they pose
queries, and receive results. In addition to user locations, the
AZ also stores the road network, as it needs to compute
network distances to filter the candidate sets received by the
LS. In particular, the edges are organized in a hash-table on
edge ID, storing for each of them (i) its end-node IDs, (ii)
its weight, and (iii) the IDs of edges incident to either end-
node. The hash-table also stores the order and setting of the
edge (introduced in Section 4). To map user/object coordinates
to their containing edge, the edges are indexed by a PMR
quadtree [18]. Each leaf quad stores the IDs of the edges that
it (entirely or partially) covers. Given a user/object location,
the tree is traversed down to the leaf quad that covers it, and
the containing edge is identified among the edges stored in
this leaf. Similar to previous spatial anonymity approaches,
the AZ keeps all necessary information in main memory to
cope with large numbers of users and high update rates.

Typically, the LS data are less dynamic and more volumi-
nous than the users and are, thus, kept in secondary storage
[28], [23]. We assume that the LS stores the data objects and
the road network following the method of [30]. We choose this
technique due to its proliferation in the road network literature.
Note, however, that the theorems and general methodologies
described below can be applied to different storage schemes
as well as to memory-resident data. Specifically, the only
requirement is that the employed network storage scheme
provides the weights and connectivity of the edges and allows

retrieval of the objects that fall on a given edge. Section
5.3 presents an example of NAP application to an alternative
storage scheme.

In all our illustrations, we represent user locations as hollow
points, data objects as solid points, and border nodes (to be
defined later) as solid diamonds. To conclude this section, we
list in Table 2 interpretations of primary symbols and acronyms
used throughout the paper.

Term Description
AZ Anonymizer
LS Location Server

AEL Anonymizing Edge List
CS Candidate Set

ORT Object R-tree (at the LS)
K Anonymity degree

dN (u, o) Network distance from user u to object o
kNN dist(u) Distance from u to her k-th nearest object

U/|U | The set/number of users registered with the AZ
ordu Order of user u
B Total number of user buckets (for a given K)
bi The i-th bucket of users (for a given K)

TABLE 2
Interpretation of acronyms and symbols

4 NETWORK-BASED ANONYMIZATION

In this section, we present the cloaking algorithm of our NAP
framework. Our primary objective is to guarantee reciprocity-
based anonymity. In NAP, the AZ anonymizes u with a set of
line segments/edges instead of a spatial region (ASR).

The crux of our cloaking method is to utilize a global edge
ordering; i.e., an ordered sequence that contains all network
edges exactly once. The edge ordering is setting-sensitive, i.e.,
it specifies which end-node of the edge precedes the other. We
refer to the position and setting of an edge in the ordering
as the edge order and the edge setting, respectively. To avoid
confusion, the setting of an edge depends solely on the ordered
sequence, and has nothing to do with the direction (in the case
of directed networks) of the road segment it models. Figure
5(a) shows a road network, and an ordering of its edges. The
number next to each edge indicates its order and the arrow its
setting.

The edge ordering defines an implicit linear order among
the users themselves. In particular, a user u precedes another
u′ if the edge of u has smaller order than that of u′. If they
fall on the same edge ninj (with setting from ni to nj), u
precedes u′ if it is closer to ni. Ties among coinciding users
are resolved arbitrarily. This precedence relationship defines
the order ordu of each user u. The position of a user in the
defined sequence is referred to as the user order. The example
in Figure 5(a) contains 10 users whose subscript indicates their
order (i.e., user u3 has order 3, etc).

Reciprocity in NAP is achieved by conceptually partitioning
the user ordering into buckets of K users each, and forwarding
to the LS the edges corresponding to the bucket of the querying
user u. This set of edges is called the Anonymizing Edge
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List (AEL) of u. Specifically, let U be the set of users
registered with the AZ and assume that a querying user
requires anonymity of degree K. Set U is partitioned into
B = b|U |/Kc buckets, each containing K users, except the
last one which may contain up to 2 ·K − 1; the i-th bucket bi
(for i < B) consists of users with order from (i− 1) ·K + 1
to i ·K, and the B-th is assigned the remaining ones.

Consider the network in Figure 5(a), where |U | = 10, and
assume that u6 poses a query with anonymity requirement
K = 3. This results into 3 buckets, b1 = {u1, u2, u3}, b2 =
{u4, u5, u6}, and b3 = {u7, u8, u9, u10}. User u6 belongs to
b2 and is anonymized together with the other users in it. The
boundary users (i.e., first and last) of b2 are u4 and u6, whose
edges have orders 5 and 7. The AEL is formed by collecting
all edges with orders between 5 and 7; i.e., it comprises edges
n6n8, n8n9, and n9n2, shown bold.

We follow the above global edge/user ordering approach,
because a local one could lead to privacy breach in a way
similar to Figure 3(a) for Casper. Specifically, upon intercep-
tion of an AEL generated by our method, one cannot infer who
among the users in the corresponding bucket was the querying
one. In other words, the AEL for any user in the same bucket
is identical, and therefore an adversary cannot pinpoint the
query originator with a probability higher than 1/K (recall that
each bucket contains K or more users). Hence, our cloaking
method satisfies reciprocity. Reciprocity, in turn, is a sufficient
condition for anonymity [23] and, thus, NAP guarantees K-
anonymity to the querying users.

In the rest of this section, we describe edge ordering strate-
gies (Section 4.1). Then, we present particular techniques for
the anonymization procedure (Section 4.2). Finally, we analyze
the properties of the proposed edge orderings (Section 4.3).

4.1 Border Nodes and Edge Ordering
To ensure reciprocity we can use any global edge ordering;
e.g., we could use a random permutation of network edges.

However, for our method to be practical, we need to addi-
tionally take into account its performance. Consider again the
model of Figure 1. Observe that the overall result latency
experienced by the users depends on (i) the processing time
spent for anonymization (at the AZ), CS computation (at the
LS), CS filtering (at the AZ), and (ii) the communication cost
spent for AEL forwarding (from the AZ to the LS), and CS
transmission (from the LS to the AZ). We select an edge
ordering taking the above into account, and based on the
concept of border nodes.

Definition 1: Border nodes: We call border nodes of a
given AEL those of its edges’ end-nodes that are incident
to some edge outside the AEL. That is, BN(AEL) = {ni|
(∃ninj ∈ E s.t. ninj ∈ AEL)

∧
(∃nink ∈ E s.t. nink /∈

AEL)}, where E is the set of edges in the network.
To exemplify, consider Figure 5(a) where the AEL of u6

(for K = 3) comprises the 3 edges shown bold. The end-
nodes of AEL edges are n6, n8, n9, n2. Among them, n6, n9,
and n2 are border nodes (thus shown as solid diamonds), since
each one is incident to some edge outside the AEL. On the
other hand, end-node n8 is incident to edges n6n8 and n8n9,
both of which are inside the AEL. Hence, n8 is not a border
node.

Border nodes have an important property. It follows from
Definition 1 that any shortest path from a point inside the AEL
to some object outside the AEL passes through some border
node. Based on this property, Theorem 1 below constitutes the
foundation of CS computation in NAP.

Theorem 1: Assume that the LS receives an AEL for a
kNN (r-range) query with parameter k (r, respectively). An
inclusive and minimal CS is formed as the union of

• the objects that fall on the AEL edges
• the kNN objects of all border nodes (the objects within

distance r from any border node, respectively).

Proof: We focus on the kNN case, as the proof for r-
range queries follows the same lines. We prove inclusiveness
by contradiction. Suppose that there is some object o among
the k NNs of u that is not in the CS. The CS includes
all objects on AEL edges, so o must fall outside the AEL.
User u lies inside the AEL and, thus, the shortest path
from u to o passes through some border node n; i.e., it
holds that dN (u, o) = dN (u, n) + dN (n, o) (A). The CS
includes the k NNs of n, so (i) o must lie further from n
than its k-th NN, i.e., dN (n, o) > kNN dist(n) (B), and
(ii) there are at least k objects o′ (where o′ 6= o) within
distance dN (u, n) + kNN dist(n) from u in the CS, i.e.,
kNN dist(u) ≤ dN (u, n) + kNN dist(n) (C). By adding
factor dN (u, n) to both sides of inequality (B), we derive
dN (u, n) + dN (n, o) > dN (u, n) + kNN dist(n), which ac-
cording to (A) and (C) (applied to the left and right side of the
inequality, respectively) leads to dN (u, o) > kNN dist(u).
The latter contradicts the original hypothesis that o is one of
the k NNs of u. Thus, CS is inclusive.

The querying user u could coincide with (and thus have zero
distance from) any object that falls on an AEL edge. Thus, all
such objects should be in the CS. On the other hand, the k
NNs of the border nodes should also be in the CS, since u
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may be located at any one of them. Hence, the derived CS
contains no unnecessary objects, i.e., it is minimal.

From Theorem 1 it follows that the CS size and the (AEL-
based) processing cost at the LS increase with the number
of border nodes in the AEL. To compute an optimal ordering
(i.e., an ordering that achieves the minimum number of border
nodes for any user) is impossible, since the same ordering must
serve different user-specific anonymity degrees K. Therefore,
we use heuristic-based algorithms.1

Random orderings. We describe two naı̈ve orderings, RE and
RN, used as baseline approaches. RE (random edge ordering)
is a random permutation of the network edges; their settings
are also decided at random. On the other hand, RN (random
node ordering) first forms a random permutation of network
nodes. Then, it scans the permutation and for each considered
node ni, it includes its incident edges ninj (with setting from
ni to nj) into the produced ordering; previously encountered
edges are ignored to avoid duplicates.

Traversal-based orderings. This family of orderings adapts
the standard breadth-first and depth-first traversal algorithms
(resulting in orderings termed BF and DF, respectively). The
intuition behind traversal-based algorithms is that connected
edges are likely to exhibit locality, and share common end-
nodes (thus reducing the number of AEL border nodes). The
traditional depth-first/breadth-first algorithms visit every node
once (by marking them as visited). We adapt them so that they
visit every edge once (by marking edges as visited instead),
and allowing passing through a node multiple times. The
settings are set according to the direction of the traversal. The
ordering in Figure 5(a) is produced by DF, whose traversal
follows (top-down) the search tree shown in Figure 5(b); the
number next to each edge represents its visiting (and, thus,
assigned) order.

Hilbert-based orderings. The rationale behind this approach
is that nodes/edges close in Euclidean space are likely to be
close in terms of network distance. In turn, this means that
consecutive edges in the ordering are likely to share end-
nodes. HE (Hilbert edge ordering) and HN (Hilbert node
ordering), work in the same way as RE and RN, respectively,
the difference being that edges and nodes are considered in
Hilbert order (in HE, the Hilbert values of the edge midpoints
are used as their sorting keys). We establish the convention
that the settings are from left to right and, in case of vertical
edges, from down to up. Intuitively, HE/HN are adaptations of
the HilbASR (Euclidean) cloaking to road networks2. Hilbert-
based orderings (as opposed to the previous two categories) are
inapplicable to environments where the Cartesian coordinates
of nodes/users are unknown or undefined (see Section 5.3).

Edge ordering is performed once when the AZ is set up for
the first time. Upon termination, the computed orders/settings

1. To provide an intuition, even if the optimization criterion were simplified
to computing an Eulerian path [13], [34] (i.e., a continuous path that traverses
every edge exactly once), finding such a path (if any) is an NP-complete
problem [32].

2. We experimented on different traversals, based on more complicated (and
expensive) heuristics, but none performed better than the best of the above,
as also discussed in Section 6. We also tried different space-filling curves, but
Hilbert-based orderings were superior.

are stored in the edge hash-table described in Section 3.

4.2 Anonymization Procedure
Given an edge ordering, the next question is how AEL com-
putation can be implemented efficiently at the AZ. Parameter
K is not known in advance and varies, since different users
have different anonymity requirements, and even queries by
the same user may specify different K, depending on the
nature of the queried data. As buckets are defined according
to K, they cannot be explicitly materialized. Instead, the AZ
employs an index that keeps the users sorted on their order and
allows efficient AEL computation for arbitrary K. The index
is an aggregate B-tree (similar to an aggregate R-tree [29]),
whose internal nodes keep for each child the number of users
in the corresponding sub-tree. Figure 6 shows this tree in the
example of Figure 5(a). For each user (e.g., u6) we store the
ID of the edge it falls on (n9n2), the edge’s order (7), and its
distance from the edge’s first end-node (|n9u6|). The latter two
values are used (primarily the edge order and secondarily the
distance from the first end-node) as the sorting key of the tree.
In Figure 6 the numbers in the shaded boxes correspond to the
aggregate information maintained, i.e., the cardinalities of the
sub-trees rooted thereof. Note that we use a B-tree instead of a
B+-tree (i.e., user information is also stored in internal nodes),
because it is faster for in-memory indexing [27].

u4 u83 3 2

u1 u2 u3 u5 u6 u7 u9 u10ptr1 ptr2 ptr3
n9n2, 7, |n9u6| 

Fig. 6. Aggregate B-tree

When a user u poses a query requiring K-anonymity, the
first task of the AZ is to acquire the order ordu of u. To
achieve this, it initially identifies the edge u falls on (using the
edge quadtree) and the order of this edge. Next, it computes
ordu by traversing the aggregate B-tree according to the edge
order and the distance of u from its first end-node, down to
the leaf that contains u; ordu is equal to the sum of all sub-
tree cardinalities and users encountered on the left of u. In
Figure 6, if the querying user is u6, we first visit the B-tree
root and infer that there are 3 users with smaller order under
pointer ptr1 plus user u4. Then, we visit u6’s leaf node, which
adds u5 in the set of users preceding u6. In total, there are 5
users before u6 and, thus, its order is 6.

The next task of the AZ is to retrieve the users falling
in u’s bucket. Having computed ordu, its bucket is the
min(B, dordu/Ke)-th. The remaining users that correspond
to this bucket are retrieved by moving to the left and to the
right of u in the B-tree. In our example, where u6 requires 3-
anonymity, its bucket additionally includes users with orders
4 and 5, i.e., u4 and u5. Finally, the AZ forms the AEL
by collecting all edges between the boundary users of b2, as
explained previously.

To conclude the discussion about the AZ, we need to clarify
the issue of user movement. When the users move, they send
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an update to the AZ reporting their old and new position.
These updates are efficiently handled by deleting the old user
location from the aggregate B-tree and then inserting the new
one. Prior to the deletion (insertion), the AZ probes the edge
quadtree with the old (new) position to find the user’s old
(new) edge and offset from its first end-node. While traversing
the B-tree to perform the deletion (insertion), we update its
aggregate information by decrementing (incrementing) by one
the cardinality of each sub-tree visited. If updates and queries
arrive at the same time, updates are processed first so that
anonymization is correct. A final remark is that if the AZ
information is stored in secondary storage, the adaptation
of the above cloaking technique is easy, using a disk-based
aggregate B+-tree to index the users.

4.3 Analysis of Edge Orderings
The number of border nodes is an important indicator of the
CS size and of the LS processing cost. To provide an insight
on the behavior of our proposed edge orderings, we analyze
their numbers of border nodes in a simple road network. A
typical road network branches from the city center (e.g., the
root) and exhibits a self-similar structure. We decompose the
network into junctions and road sections. The junctions are
nodes of degree higher than 2. The sections are paths (i.e.,
sets of connected edges) between two consecutive junctions
that pass strictly through non-junction nodes. We treat the
decomposed network as a tree with parameters: the fanout
f , and the average number of edges per road section l. Figure
7 depicts a road network with f = 2 and l = 2.

An edge is said to be at level m if its path to the root
passes through m−1 junctions; there are l ·fm edges at level
m. To simplify our analysis, we assume that there is exactly
one user per edge (the general case is obtained by scaling K
accordingly). Thus, the AEL of a query contains K edges for
any edge ordering.

1

root

7

2 8

3

4

5

6

9

10

11

12

 

(a) DF ordering

1

root

2

3 4

5

9

6

10

7

11

8

12
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Fig. 7. Typical road network topology, f = 2, l = 2

For RE, the probability that an edge is included in the AEL
is K/|E|, where |E| is the number of edges in the network.
A (2/l) fraction of the edges have a junction as an end-node
(incident to another f edges), while the remaining have strictly
non-junction end-nodes (i.e., each end-node is adjacent to one
other edge). It follows that the number of border nodes for RE
is:

ΦRE = K ·
(

2
l
(1− (

K

|E|
)f ) +

2l − 2
l

(1− K

|E|
)
)

(1)

This number converges to 2 ·K when K � |E|.
An example of the depth-first ordering (DF) is shown in

Figure 7(a). Assuming that the traversal begins from the root
node, the label of each edge indicates its order. The AEL
covers at most dK/le+ 1 connected road sections. Thus, the
number of border nodes for DF is:

ΦDF = dK/le+ 1 (2)

Clearly, DF leads to much fewer border nodes than RE.
The breadth-first ordering (BF) is illustrated in Figure

7(b). Our analysis involves investigation of different cases,
depending on: (i) the level of the user in the tree, and (ii) the
value of K. Suppose that the user is located on an edge at level
m. When K ≤ fm, the AEL edges are distributed across K
different road sections, i.e., those edges are incident to some
edge outside the AEL. In case K is between fm and l · fm,
the AEL covers fm road sections and there are 2 border nodes
per road section. If K is larger than l · fm, then the number
is defined recursively by considering also the road sections in
the next level m+1. In summary, the number of border nodes
for BF is given by:

ΦBF (K,m)=2K if K ≤ fm

2fm if K ∈ (fm, l·fm]
2fm+ΦBF (K−l·fm,m+1) if K > l · fm

(3)

Note that BF leads to fewer border nodes than RE, but more
than DF.

The analysis of Hilbert-based orderings is non-trivial be-
cause they heavily rely on the actual coordinates of the nodes
in the map. We conjecture that the Hilbert curve roughly
preserves the connectivity of the road network and thus its
number of border nodes is close to that of DF.

5 ANONYMOUS QUERY PROCESSING

In this section we describe AEL query processing at the LS; in
Section 5.1 we present algorithms for minimal and inclusive
CS computation for a single query, while in Section 5.2 we
propose additional optimizations for the case where multiple
AEL queries are processed in a batch. In Section 5.3 we
demonstrate the generality of NAP with respect to the network
storage scheme used at the LS.

5.1 Single Query Processing
Processing is based on Theorem 1. A direct implementation
of the theorem uses (network-based) search operations as off-
the-shelf building blocks. Thus, the NAP query evaluation
methodology is readily deployable on existing systems, and
can be easily adapted to different network storage schemes,
as we discuss in Section 5.3. As a case study, in this section
we focus on the storage scheme and the network expansion
framework of [30], in order to provide a concrete NAP
prototype.

Consider first the scenario where the AZ sends a single AEL
query to the LS. CS computation follows Algorithm 1. Step 1
computes the border nodes of the AEL (using the edge R-tree
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and the adjacency index). Step 2 queries the ORT and places
into the CS all objects falling on some AEL edge. Then, steps
3 and 4 expand all border nodes to include in the CS their
kNN objects (or, for r-range query type, the objects within
distance r from them). Depending on the query type, some
optimizations are possible to reduce the LS processing cost.

Algorithm 1 Candidate Set Computation in NAP
Search(AEL L)
1. Identify the border nodes of L
2. Query the ORT and collect all objects falling on L edges
3. For every border node n
4. Perform range (or NN) search with parameter r (k) at n
5. Form CS as the union of objects retrieved in steps 2 and 4

Range query optimizations. If the query type is r-range,
border node expansion (in step 4) does not need to proceed
to AEL edges, because the corresponding objects are either
on some AEL edge (and, thus, retrieved by step 2) or, if they
are outside the AEL, they are discovered by the expansion
of another border node. An additional optimization particular
to the range query type is to combine steps 2 and 4 so that
CS objects are collected by querying the ORT only once.
Specifically, after step 1, we expand the network (using only
the adjacency index) for every border node up to distance r,
and then query the ORT to retrieve the objects that fall in
some of the acquired edges or inside the AEL. An additional
optimization is that when the expansion of a border node n
visits (i.e., de-heaps) a previously expanded node n′, then
expansion needs not proceed to (i.e., en-heap) the adjacent
nodes of n′, since the objects reachable through n′ are inserted
into the CS by n′’s expansion.

kNN query optimizations. If the query type is kNN, in step 4
the LS retrieves the k NNs of each border node using network
expansion in all directions, i.e., it also proceeds on the AEL
edges. The reason is that, even if some NNs fall inside the
AEL or belong to the k NN set of other border nodes, they
lead to earlier termination of the expansion. However, kNN
processing allows for an optimization on ORT accesses; if
a border node expansion needs to process objects that fall
inside the AEL or lie on an edge encountered in a previous
expansion, we need not query the ORT, but may directly use
the data objects already fetched into the memory-resident CS.
Another optimization is to reuse kNN results of previously
expanded border nodes; if during the expansion we de-heap
some of these nodes, we directly insert their kNN objects into
the temporary result (denoted by W in Section 2.1) and do
not en-heap their adjacent nodes.

An important point in CS formation concerns the acceler-
ation of AZ filtering. When the AZ receives the CS, it maps
all objects onto network edges (using the edge quadtree) and
performs expansion (using the edge hash-table) around u to
retrieve the actual result. To minimize the cost of mapping,
the LS organizes the CS by grouping together objects that fall
on the same edge, and delimiting the groups with a special
character. This way, upon receipt of the CS, the AZ identifies
the containing edge of a group by probing the edge quadtree

only once (for one of the objects)3.

5.2 Batch Query Processing

In general, the LS processes queries in discrete timestamps,
and multiple AEL-based queries may be arriving in the same
timestamp. In this case, the queries are evaluated in a batch.
Below we propose strategies aiming at maximizing computa-
tion sharing among different queries.

Sharing among expansions from a common border node.
The nature of NAP enables computation sharing for common
border nodes. In particular, the border nodes are not at arbitrary
positions in the network; instead, they are network nodes and
they are likely to be border nodes of multiple AELs. Let n
be such a node and let Qr and QNN be the sets of range
and kNN queries, respectively, that have n as a border node.
We share computations by performing a single expansion at
n, based on the following two rules:

Rule 1. Among queries in Qr (QNN ) only the one with
the largest parameter rmax (kmax, respectively) needs to be
processed, since its result is by definition a superset of that
for any other query in Qr (QNN ).

Rule 2. The rmax range query is evaluated before the kmaxNN
one (recall that range search is simpler/faster than kNN). Let
Sr be the set of objects retrieved by the rmax range search
and |Sr| be their number. If |Sr| ≥ kmax, then no further
processing is necessary for QNN , as Sr is a superset of any
kNN result for QNN . Otherwise (i.e., |Sr| < kmax), we need
to additionally retrieve kmax− |Sr| more NNs; the expansion
continues from the point where the rmax range search stopped,
starting with Sr as the set of NNs found so far and reusing
the search heap of the range search.

Sharing among different border node expansions. Com-
putation sharing is possible not only among queries with
common border nodes, but also among different border node
expansions. Stated this fact, before proceeding with the cor-
responding techniques, we point out that the range queries
posed at the LS are processed before kNN ones, due to the
relative complexity of the latter; i.e., we prefer having the kNN
queries benefiting from available range results rather than the
other way around. Different expansions share computations as
follows.

When the processing of an rmax range query from border
node n reaches another node n′ for which r′max range ex-
pansion has been previously performed, then if rmax ≤ r′max

the expansion of n needs not en-heap n′’s adjacent nodes.
The reasoning is similar to the corresponding optimization
discussed at the end of Section 5.1. To maximize the ef-
fectiveness of this enhancement, we expand border nodes of
range queries in descending rmax order. Computation sharing
is possible in the case of kmaxNN expansions too, exploiting
formerly retrieved kNN and range results. Specifically, when
a kmaxNN expansion from a border node n reaches (i.e., de-
heaps) another border node n′ for which a result is computed

3. In general, the LS cannot directly include the edge ID into the CS, since
the AZ does not necessarily use the same ID to refer to the same edge.
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with |S′r| ≥ kmax or k′max ≥ kmax (where |S′r| and k′max

refer to n′’s results), we insert objects retrieved for n′ into the
the temporary result W of n, and do not proceed to (i.e., en-
heap) n′’s adjacent nodes. To fully exploit this enhancement,
we process different NN expansions in descending kmax order.

Algorithm 2 integrates the above and presents batch query
processing at the LS. Given a set Q of AEL-based queries,
step 1 extracts the border nodes for each of them. Step 2
expands the network (using only the adjacency index at this
stage) for all range queries, applying the aforementioned order
among them and following Rule 1. Step 3 inserts into the CS
all objects that satisfy some range query or fall on some AEL
edge; this is performed in a single probe of the ORT, thus
avoiding multiple traversals. Steps 4 and 5 process the border
nodes of kNN queries (i.e., nodes with non-empty QNN ) in
the order described above and following Rule 2. Note that in
step 5 we establish the convention that |Sr| = 0 if no range
query has been performed for n in steps 2, 3 (i.e., if Qr = ∅).
A point worth stressing is that Algorithm 2 produces a unified
CS for all queries. It can be easily seen that this CS is the
union of the individual candidate sets for every query in the
batch, and is thus inclusive. It is also minimal, in the sense that
it does not contain duplicate objects. To assist AZ filtering, the
CS is organized in the way described in Section 5.1.

Algorithm 2 CS Computation for Multiple Queries in NAP
Search(Set of AEL-based queries Q)
1. Identify the border nodes of every AEL in Q
2. Expand each border node to rmax range
3. Find objects on AEL edges or in step 2 ranges (using ORT)
4. For every border node n with non-empty QNN

5. If |Sr| < kmax, perform kmaxNN search at n
6. Form CS as the union of objects retrieved in steps 3 and 5

5.3 Alternative Storage Schemes

NAP processing can be applied to any network storage scheme,
as long as it provides the weights and the connectivity of the
edges, and allows retrieval of the objects that fall on a given
edge. To exemplify this, we use as a case study an alternative,
widely used storage scheme [36], illustrated in Figure 8. Given
a node id (e.g., ni), the adjacency tree links to the location of a
flat file (the adjacency file) that contains the node’s adjacency
list. The first entry of this list implies that ni is adjacent to
nj and provides the weight of edge ninj ; it also maintains a
pointer into the object file that stores the data objects lying
on ninj . For each object (e.g., pm), the object file includes
its partial weight from the first end-node of the edge (i.e.,
w(nipm)).

Let us apply Algorithm 1 to the above storage scheme.
In step 1, for each end-node n of the AEL edges we query
the adjacency tree and determine whether n is a border node
by examining its adjacency list (from the adjacency file). By
definition, the adjacency list of n includes an entry for the
corresponding AEL edge; we follow this entry’s pointer to
retrieve the objects falling on the edge (step 2). Regarding
steps 3 and 4, network expansion can be easily applied to this

ni
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.
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.
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ni+1

.
.
.

w(ninj)
.
.
.

pl w(nipl)
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Adjacency file Object file

pm w(nipm)
pl
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Fig. 8. Network storage scheme of [36]

scheme [36]. The adaptation of Algorithm 2 follows the same
lines.

Note that NAP does not require the coordinates of nodes,
users and objects (e.g., the above scheme does not include
them). This property is essential, since Cartesian coordinates
may be unknown or undefined (i.e., when mapping to a
coordinate system is not meaningful). For instance, in un-
derground spatial networks (e.g., metro systems) where GPS
fails, RFID technology is used instead. Objects/users (e.g.,
trains) are tracked using the id of the closest RFID sensor,
which may be dealt with as a network node (without requiring
its coordinates). Anonymization in this case is similar to
Section 4, but Hilbert-based orderings are inapplicable due
to the lack of Cartesian coordinates.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the robustness and scalability of
our proposed methods on a real road network. Our algorithms
were implemented in C++ and experiments were executed on
a Pentium D 2.8GHz PC. We measured the average of the
following performance values over a query workload of 100
queries: (i) anonymization time and refinement time at the
anonymizer AZ, (ii) I/O time and CPU time for query pro-
cessing at the location server LS, and (iii) the communication
cost (in terms of transmitted points) for the anonymizing edge
list AEL and the candidate set CS. Note that each edge in
AEL is counted as two points.

6.1 Experiment Setup

We use the real road network of San Francisco, obtained
from [7]. By default, our experiments use a subnetwork with
50000 edges. Weights of the edges are set to their lengths.
We generate |U | users and |O| objects. The locations of users
and objects follow either uniform distribution (by default) or
Gaussian distribution4. At the LS, the disk page is 4KBytes
and each index structure (edge R-tree, ORT, etc) is associated
with a memory buffer with capacity set to 5% of its disk
size. Table 3 summarizes the investigated parameters and their
examined values, with the defaults shown bold. Parameter r
is expressed as a multiple of the average edge weight.

4. The mean of the Gaussian distribution is at the network center and its
standard deviation is 10% of the maximum network distance.
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Parameter Values
Number of users |U | (× 1000) 10, 50, 100, 150, 200

Number of objects |O| (× 1000) 64, 128, 256, 512, 1024
User distribution Uniform, Gaussian

Object distribution Uniform, Gaussian
Anonymity degree K 10, 20, 40, 80, 160

NN query parameter k 1, 5, 10, 15, 20
Range query parameter r 1, 1.5, 2, 2.5, 3

TABLE 3
Summary of parameters and their values

6.2 Robustness Experiments

In this section, we illustrate the achieved anonymity and
study the performance of our methods for different orderings,
location privacy models, and user/object distributions.

Anonymity strength. NAP is theoretically guaranteed to
honor reciprocity and provide K-anonymity. Figure 9 empir-
ically demonstrates this fact, i.e., that no user in the AEL is
more than 1/K likely to have issued the query. We generate
1000 random queries with K = 40 and record the position
of the querying user within the AEL according to ordu (we
include results only for DF as those for other orderings are
almost identical). Figure 9(a) plots the querying frequency
per user position in the AEL. The dashed line, labeled “safe
bound”, corresponds to probability 1/K = 0.025. There are
more than K = 40 positions (up to 48) because the AEL may
contain over K users. Figure 9(b) provides another viewpoint,
considering the median AEL position as slot 0. No frequency
in Figure 9 exceeds the safe bound, i.e., an adversary with
knowledge of all user locations and of the anonymization
algorithm cannot pinpoint the querying u with a probability
higher than 1/K.
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Fig. 9. Querying frequency across AEL positions

Effect of the proposed orderings. Table 4 shows the cost
of the orderings presented in Section 4.1 for kNN queries,
by fixing the parameters to their default values. Observe
that the AEL size accounts for only a small fraction of the
communication cost and it is insensitive to the particular
ordering used. In RE, the AEL contains edges that are widely
distributed in the network, leading to high processing cost (at
LS) and communication cost due to the large CS size. RN
places close to each other edges that share a common end-
node and, thus, its cost is much lower than RE. Between the
traversal-based orderings, DF outperforms BF because edges
along a path are arranged next to each other, so the AEL
contains many connected edges. The Hilbert-based orderings

(HE, HN) perform similarly and are slightly worse than DF.
The results for range queries are similar to those in Table 4. In
subsequent experiments, we only compare the representative
orderings: RE, DF, and HN.

LS processing cost (sec) Comm. cost (points)
Ordering I/O time CPU time AEL CS

RE 0.8563 0.3092 44.75 390.01
RN 0.5236 0.2093 44.28 287.36
BF 0.3850 0.2078 45.72 292.94
DF 0.0989 0.0798 44.12 156.68
HE 0.0975 0.0959 44.93 177.11
HN 0.0925 0.0921 44.19 169.55

TABLE 4
Cost of kNN queries, default parameter values

Statistics of edge orderings. To understand the character-
istics of NAP anonymization, we measure two statistics that
are indicative of the query processing performance (at LS):
(i) the actual number of users covered by AEL, and (ii) the
number of border nodes in AEL.

Figure 10(a) shows the total number of users covered by
AEL, as a function of the anonymity degree K. This number
must be at least K by definition, but we wish to keep it as
small as possible to enhance performance. We observe that the
number of covered users stays close to K for all orderings,
confirming that our edge-based anonymization approach does
not produce unnecessarily large AELs.
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Fig. 10. AEL statistics vs. anonymity degree K

Figure 10(b) plots the number of border nodes in AEL as a
function of the anonymity degree K. In RE, the AEL edges are
far apart, leading to a large number of border nodes. Among
our proposed edge orderings, DF is the best. The results in
Figure 10(b) verify the qualitative analysis in Section 4.3. As
explained in Section 4.1, the number of border nodes is an
important indicator of CS size and query processing cost. This
fact (that is quintessential to NAP) is verified later by the
experiments in Figures 13 and 14.

Anonymization type. In the next experiment, we examine
whether the prevention of exact user locations in NAP (see
Section 3) comes at the cost of poorer performance. In
particular, we consider two types of anonymization: (i) edge-
based anonymization (i.e., as in standard NAP), and (ii) point-
based anonymization (where the AZ sends directly the exact
user locations covered by the AEL). Figure 11 compares the
cost between these two anonymization strategies, with respect
to the anonymity degree K. In point-based anonymization,
the CS is by definition a subset of the AEL-based CS.
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Fig. 11. Effect of anonymization type

Nevertheless, for the best orderings (HN and DF), there is
no observable difference between these two anonymization
types. The reason is the strong AEL locality, which diminishes
the additional costs of sending entire edges instead of points.
This experiment verifies that the NAP guarantee of not leaking
exact user locations, comes without performance sacrifices.

Effect of user/object distribution. Figure 12 illustrates
the cost of queries with respect to the distribution of users
and objects on the road network. The terms U and G denote
uniform and Gaussian distributions, respectively; e.g., the label
U/G represents the case where users are uniformly distributed
and objects follow Gaussian distribution. HN and DF have
consistently good performance across different user/object
distributions. Under Gaussian object distribution, some AEL
edges of RE fall in areas with low object density. RE becomes
prohibitively expensive in such cases as its expansions need to
search in large parts of the network to retrieve the candidate
objects for those edges.

6.3 Scalability Experiments
In this section, we investigate the scalability of NAP with
respect to various factors. To provide an indication of the space
requirements, we note that for the largest tested data sizes
(i.e., |U |=200000 and |O|=1024000), the AZ uses only 12.5
MBytes of main memory (including the network graph) and
the LS needs a total of 23.5 MBytes hard disk storage.

End-to-end time. Before a lower level study, we present
an experiment on the overall response latency. Specifically,
from the user’s viewpoint, the end-to-end time captures the
elapsed time between issuing a query and obtaining the results.
It includes the processing time at AZ, the computation time at
LS, and the communication time between AZ and LS. Figure
13 shows the end-to-end time as a function of the anonymity
degree K, assuming a communication bandwidth of 10Mbps.
Clearly, the processing cost at LS dominates the end-to-end
time, while the communication (between AZ and LS) and the
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Fig. 12. Effect of user/object distribution

AZ computations account only for a small percentage of the
total time. It is worth mentioning that the processing (including
anonymization and refinement) at AZ takes 0.000620 seconds
for RE. HN and DF have similar costs. This implies that the
AZ is capable of serving 1600 requests per second.
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Fig. 13. End-to-end time vs. anonymity degree K

Effect of anonymity degree K. In Figure 14, we look
deeper in the previous experiment, focusing on LS time and
communication cost. Figure 14(a) shows the LS processing
cost of kNN queries, and its breakdown in I/O and CPU time.
In RE, the AEL edges are scattered in the network and many
different disk pages have to be fetched at LS. Also, its AEL
rarely contains edges that share common border nodes, leading
to numerous network expansions and high CPU time. In HN
and DF, edges close in the ordering are usually located nearby
in the network. This improves the access locality of index
structures at LS. Also, edges in AEL have many common
border nodes and their network expansions are shared. As a
result, both HN and DF have low I/O and CPU time.

Figure 14(b) plots the communication cost of kNN queries,
and its breakdown in AEL size and CS size. Even at large
values of K, the AEL size accounts for a small fraction of the
total communication cost. In RE, edges in AEL are broadly
distributed, producing a large CS size. The performance gap
between RE and HN/DF widens as K increases. Figures
14(c), 14(d) illustrate the processing cost (at LS) and the
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Fig. 14. Effect of anonymity degree K

communication cost of range queries, with respect to the
anonymity degree K. The trends are similar to kNN queries.

Effect of query selectivity. Figures 15(a), 15(b) plot the LS
cost and communication cost of kNN queries, by varying the
result size k. The orderings HN and DF preserve the locality of
edges, implying a high degree of computation (and candidate
object) sharing. As a result, their processing time and CS size
only rises slightly as k increases. On the other hand, the cost
of RE grows rapidly with k. Figures 15(c), 15(d) show the
cost of range queries, as a function of the range parameter r.
Again, the trends resemble those for kNN queries.
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Fig. 15. Effect of query selectivity

Effect of user cardinality |U |. Figures 16(a), 16(b) plot the
LS cost and communication cost of kNN queries, with respect
to user cardinality |U |. Observe that the AEL size (and, thus,

the LS processing cost too) is inversely proportional to |U |;
lower user density implies more edges inside the AEL. At the
lowest |U | value, the cost of RE becomes unacceptably high.
On the other hand, for HN and DF, network expansions of
common border nodes are shared, alleviating the impact of
|U | on the performance. Similar trends are observed for range
queries in Figures 16(c), 16(d).
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Fig. 16. Effect of user cardinality |U |

Effect of object cardinality |O|. Figures 17(a), 17(b) show
the LS cost and communication cost of kNN queries, as a
function of object cardinality |O|. Interestingly, the processing
cost of RE first decreases and then increases. This is attributed
to the accesses of different index structures at LS. For low
|O| value, the network expansion tends to be large, leading to
many page accesses in the adjacency index; for high |O| value,
more objects fall on the edges in AEL, increasing the number
of page accesses in the object R-tree (ORT). Regarding the
communication cost (dominated by CS size), it mainly depends
on the number of objects lying on AEL edges, which is high
for a large |O| value. The results for range queries are plotted
in Figures 17(c), 17(d). In general, when |O| is high, more
objects fall within the query range of AEL edges, leading to
high processing and communication cost.

Batch processing experiment. In the next experiment, we
investigate the processing of queries in batches (as opposed to
one-by-one). Within the same batch, half of the queries are of
kNN type and the others are range queries. Their selectivities
(k and r) are randomly chosen among the corresponding
values in Table 3. Figure 18 plots the average cost per query
as a function of the batch size (i.e., number of queries in
the batch). The I/O time of HN and DF decreases with the
batch size due to improved sharing in query processing. On
the other hand, the AEL edges of RE are scattered in the
network, limiting the effectiveness of shared query processing.
The communication cost is not sensitive to the batch size, since
the queries do not have many common candidates.
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Fig. 17. Effect of object cardinality |O|
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Fig. 18. Effect of batch size

7 CONCLUSION
In this paper, we propose the network-based anonymization
and processing (NAP) framework, the first system for K-
anonymous query processing in road networks. NAP relies
on a global user ordering and bucketization that satisfies
reciprocity and guarantees K-anonymity. We identify the
ordering characteristics that affect subsequent processing, and
qualitatively compare alternatives. Then, we propose query
evaluation techniques that exploit these characteristics. In
addition to user privacy, NAP achieves low computational and
communication costs, and quick responses overall. It is readily
deployable, requiring only basic network operations.

In the traditional spatial anonymity model, the data owner
(e.g., a location-based service) makes its data available using a
location server. It may, however, be the case that the owner is
outsourcing its database to a third-party (and, thus, untrusted)
location server. A challenge here is how to encrypt the owner’s
data so that they are hidden from the location server, while
it can still process anonymous queries. Another interesting
question is how (anonymous) users could verify that the
location server did not tamper with the original owner data.
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