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Many real-world text classification tasks involve imbalanced training examples. The strategies proposed to
address the imbalanced classification (e.g., resampling, instance weighting), however, have not been
systematically evaluated in the text domain. In this paper, we conduct a comparative study on the
effectiveness of these strategies in the context of imbalanced text classification using Support Vector
Machines (SVM) classifier. SVM is the interest in this study for its good classification accuracy reported in
many text classification tasks. We propose a taxonomy to organize all proposed strategies following the
training and the test phases in text classification tasks. Based on the taxonomy, we survey the methods
proposed to address the imbalanced classification. Among them, 10 commonly-used methods were
evaluated in our experiments on three benchmark datasets, i.e., Reuters-21578, 20-Newsgroups, andWebKB.
Using the area under the Precision–Recall Curve as the performance measure, our experimental results
showed that the best decision surface was often learned by the standard SVM, not coupled with any of the
proposed strategies. We believe such a negative finding will benefit both researchers and application
developers in the area by focusing more on thresholding strategies.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of the Web, huge amount of textual
information are now accessible online. Moreover, much more textual
documents are being created through Web 2.0 platforms e.g., blogs,
wikis and forums, where millions of Web users are now active
information providers. This further increases the importance of text
classification (i.e., automatically classifying textual documents into
topical categories), such that the information can be easily searched
and browsed.

In many real-world text classification tasks, a classifier has to learn
from imbalanced training examples. That is, the negative training
examples overwhelmingly outnumber the positive ones1 making the
classifier training to be imbalanced. Classifying news articles received
frommultiple news agencies that are interesting to a particular user is
one example. Besides text domain, imbalanced classification is also an
important problem in medical diagnosis, fraud detection and many
other tasks. In the literature, a number of strategies have been
proposed to address the imbalanced classification and the commonly
used ones are (i) resampling that under-samples negative examples or
over-samples positive examples so as to re-balance the training

examples; (ii) instance weighting that assigns different error-classifi-
cation costs to negative and positive training examples in classifier
training; and (iii) thresholding that adjusts decision thresholds of a
classifier to balance the precision and recall.

1.1. Motivation

Existing works on the effectiveness of these strategies have been
mainly conducted on non-text domain (e.g., using UCI datasets2)
[1,12]. There is a lack of a comparative study on the effectiveness of
these strategies in imbalanced text classification. Given the impor-
tance of imbalanced text classification in real-world applications and
the uniqueness of text classification tasks (e.g., high dimensionality,
sparse feature spaces, and linearly separability in most tasks [13]), we
believe a comparative study of imbalanced text classification will
greatly benefit application developers as well as researchers in
Information Retrieval, Machine Learning, and related areas.

Moreover, most existing studies in imbalanced classification used
the area under the Receiver Operating Characteristic (ROC)-curve for
performance evaluation [1,4,10]. A very recent study [7], however,
showed that the area under ROC-curve (AUR) could present “an
overly optimistic view of an algorithm's performance” in the
imbalanced setting and suggested the area under Precision–Recall
curve (PR-Curve) instead. Such a finding further motivates this study
to evaluate the strategies using the area under the PR-Curve (AUP) as
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the performance evaluation metric, to better reflect their effective-
ness. Specifically, in this paper, we study the effectiveness of the
above-mentioned strategies in imbalanced text classification using
Support Vector Machines (SVM) classifiers with AUP. SVM classifier is
the interest of this study for three reasons.

• First, SVM has been very successfully applied to text classification
and many other supervised learning tasks [3,9,13,24,26,34,36].
Strategies to improve SVM classifiers for imbalanced text classifi-
cation will therefore benefit existing text classification approaches
that use SVM classifiers.

• Second, with SVM being a binary classifier, imbalanced training is
almost inevitable when using SVM classifier in multi-category
classification tasks. These tasks usually adopt one-against-all
learning strategy. That is, one SVM classifier is learned for each
category, and the positive (negative) training examples are the
examples belonging to (not belonging to) the target category. There
is therefore a huge number of training examples from the non-
target categories.

• Third, studies have shown that SVM can be adversely affected by
imbalanced training where negative training examples heavily
outnumber positive ones [1]. With imbalanced training examples,
SVM often gives high precision but low recall on the target category.

1.2. Contributions

We summarize our research contributions as follows.

• First, we propose a clear taxonomy to describe all strategies for
addressing imbalanced classification. Based on the taxonomy, we
survey the techniques that have been studied in literature. Although
this taxonomy is provided in the context of text classification using
SVM classifiers, it can be easily adopted in other imbalanced
classification tasks with minimum modification.

• Second, our comparative study systematically evaluated 10 methods
best representing the various strategies (and their combinations) on 3
benchmark datasets. The 8 methods materialized with SVM as the
underlying classifier are: standard SVM, Stratified RANDom sampling
(SRAND), CLuster-based Under-Sampling (CLUS), Synthetic Minority
Over-sampling Technique (SMOTE), and the above fourmethodswith
instance weighting. The other 2 methods (i.e., SVMBEP and SVMF1) are
based on SVMper f where the two methods are formulated for
optimizing Precision/Recall Break-Even Point (BEP) and F1 respec-
tively in training.

Note that, this paper aims to provide a comparative study of
existing strategies proposed for imbalanced text classification using
SVM through extensive experiments onmultiple benchmark datasets.
Hence proposing new techniques addressing imbalanced text classi-
fication is not the main focus. In our experiments on the three
datasets, standard SVM learned either the best or the second best
decision surface in almost all experiments. That suggests that finding
an appropriate threshold is more worthwhile in imbalanced text
classification tasks. We argue that such a negative finding would
benefit application developers and researchers to focus more on
thresholding strategy when dealing with imbalanced text classifica-
tion tasks.

1.3. Paper organization

The rest of the paper is organized as follows. In Section 2, we give a
brief introduction to SVM and a taxonomy of strategies for handling
imbalanced classification. The experiment design and experimental
results are reported in Sections 3 and 4 respectively. In Section 5, we
study the impact of varying parameters in resampling and instance
weighting and the impact of varying imbalance ratio. In Section 6, the
performance of SVM and SVMper f is compared. The findings from the

experiments are discussed in Section 7. Finally, Section 8 concludes
the paper and proposes future works.

2. SVM and imbalanced learning

We first give a brief introduction to SVM and then review the
strategies addressing the imbalanced classification. The possible
impact of applying these strategies on SVM learning is also discussed.

2.1. Support Vector Machines

The training of a SVM classifier involves finding a hyperplane, as its
decision surface, that separates the positive training examples from
the negative ones with the largest margin [30]. Fig. 1 illustrates the
training of a linear separable SVM. Given training examples
represented as pairs (x→i, yi), where x→i is the weighted feature vector
of the ith training example and yi∈ {1,−1} is the label of the example.
The search for such a hyperplane can be expressed as an optimization
problem of minimizing 1

2 ‖
→w ‖2 subject to yi (w

→·x→i−b)≥1, ∀i, where
w→ is a vector perpendicular to the hyperplane which defines the
orientation of the hyperplane, and b defines the position of the
hyperplane. The learned hyperplane is defined by a subset of positive
and negative training examples, known as positive and negative
support vectors respectively (see Fig. 1).

Once w→and b are learned, SVM computes a score for an unlabeled
document represented by its feature vector x→ using the decision
function f (x→)= w→·x→−b. The sign of the score is used to predict the
label of the document. That is, the document is labeled positive if
f (x→)≥0, and negative otherwise. In other words, SVM takes 0 as the
“default” threshold in its decision function (i.e., default thresholding).

As the hyperplane learned by SVM is defined by support vectors
only, it is expected that SVM is less affected by imbalanced training
examples [31]. However, it is found that with imbalanced training
examples, the hyperplane is often skewed to the minority and the
ratio between the positive and negative support vectors is imbalanced
(i.e., the hyperplane is defined by more negative support vectors than
positive ones) [1,32]. For these two reasons, SVM is more likely to give
a negative score when classifying a document in an imbalanced
setting.

In this work, we model a SVM classifier with two components: a
decision surface H and a threshold θ. As the score f (x→) is a real
number, it is not difficult to introduce a threshold θ, and label a
document positively if f (x→)≥θ. That is, given a set of documents to be
classified, a classifier outputs a score for each document based on H,
indicating the document's likelihood of belonging to the target
category. The category label of each document is then determined
based on a given threshold θ (θ=0 with default thresholding). A
better decision surfaceH is the one which better ranks the documents

Fig. 1. A linear separable Support Vector Machine.
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according to their likelihood of belonging to the target category. To
measure the goodness of a decision surface H, we adopt a threshold-
independent measure, the area under the Precision–Recall curve (see
Section 3.3).

2.2. Strategies for imbalanced classification

Fig. 2 illustrates both the training and classification processes in a
typical text classification task3. Both labeled and unlabeled documents
are represented by feature vectors according to certain weighting
scheme, e.g., tf·idf. In the training and classification processes, the
strategies for handling imbalanced data, e.g., resampling, instance
weighting and thresholding, are applied at different stages, namely,
pre-training, in-training, and post-training stages respectively.

2.2.1. Pre-training stage
Resampling is a pre-training strategy that artificially re-balances

training examples by either under-sampling to select a subset of
negative training examples [5,11,16,18,27], or over-sampling to
(synthetically) generate more positive examples [4].

One typical under-sampling method is random sampling (or
undirected sampling) which refers to the process of randomly
drawing a subset of training examples from the original set. Many
studies have shown that random sampling hurts classifier perfor-
mance [1]. Directed sampling, on the other hand, aims to select the
negative training examples that are expected to be close to the
decision surface [5,27]. As the decision surface is defined by both the
positive and negative examples, negative training examples close to
the decision surface are those that are close to the positive training
examples. In [27], the closeness of a negative training example to the
positive training examples is computed based on the number of
discriminative features it contains. Yoon and Kwek proposed a
method to select negative training examples through clustering in
[35]. Both negative and positive training examples are first clustered
using a supervised clustering algorithm with a class purity maximi-
zation function. The clusters containing almost purely negative
examples are discarded.

Over-sampling refers to the process of generating more positive
training examples. Since studies have shown that over-sampling with
replication does not significantly improve the classification accuracy,
Chawla et al. proposed Synthetic Minority Over-sampling Technique
(SMOTE) to create positive training instances synthetically [4]. For
each positive example, its k nearest neighbors among other positive
examples are identified. The example and one of its neighbors form a
pair which corresponds to two points in the vector space. A new
positive example is created by picking up any random point along the
line linking these two points (see more detailed discussion in
Section 3.2). Despite the effectiveness reported in the literature, it is
known that under-sampling involves loss of information and over-
sampling does not gain any information but increases the training size
[31].

Pre-training methods also include feature selection and term
weighting techniques that address class imbalance [6,20,37]. For
instance, Zheng et al. proposed a feature selection framework to select
positive features that are most indicative of membership of target
category and negative features that are most indicative of member-
ship of non-target category separately. The positive and negative
features are then combined and used to represent training docu-
ments. The proposed technique, however, was not evaluated on SVM
classifiers in their experiments. Combarro et al. proposed a family of
linear measures for feature selection and evaluated their effectiveness

with SVM classifiers on two text datasets (i.e., Reuters-21578 and
Ohsumed) and improvement on F1 was observed. Liu et al. proposed a
probability based feature weighting scheme for imbalanced classifi-
cation [20]. A feature is assigned more weight if it appears more
frequently in the positive training examples than negative ones
measured by document frequency.

2.2.2. In-training stage
Instance weighting is a commonly-used in-training strategy that

assigns different error-classification costs on the positive and the
negative training examples respectively [2]. For instance, in SVMlight

package4, cost-factor j is used to define by which training errors on
the positive examples outweigh errors on negative examples.
Examples of more complicated in-training methods include the
method that modifies the kernel matrix according to the imbalanced
data distribution [32], and SVM formulated to optimize multivariate
performance measures (e.g., to optimize the SVM learning for F1,
Precision/Recall break-even point, or other measures) [14]. Recall
that with imbalanced training examples, SVM often gives high
precision but low recall on the target category. The learning algorithm
aiming at optimizing F1 or Precision/Recall break-even point may
therefore achieve more balanced precision and recall values.

Another option to address imbalanced learning is to partition the
negative training examples into subsets for training multiple SVM
classifiers, each learning from the same set of positive examples and
one subset of negative examples [15,19]. Nevertheless, Rifkin and
Klautau have shown that simple one-against-all learning strategy is as
accurate as any other learning strategy, assuming that the underlying
binary classifiers are well-tuned regularized classifiers such as SVM
[23].

2.2.3. Post-training stage
Thresholding is a post-training strategy that adjusts decision

thresholds (see [24] for a good discussion on thresholding). Provost

Fig. 2. Training and classification processes.

3 As feature selection is often not necessary for SVM classifier, it is not shown in the
training/classification process. 4 http://svmlight.joachims.org/.
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pointed out that it “may well be a critical mistake” to use classifiers
learned from imbalanced data without adjusting the output threshold
[22]. When SVM is used in text classification tasks, the default
threshold (i.e., θ=0 as discussed in Section 2.1), is commonly
adopted. However, depending on the application, a negative threshold
may be used and a document may be labeled positively even if it
receives a negative score from SVM classifier. Such kind of threshold
relaxation has been used in hierarchial text classification to avoid
blocking documents at high-level categories in the hierarchy [29].

Yang studied three thresholding strategies in text classification
and found that proportional thresholding (i.e., PCut) performed well
in classifying rare categories for multi-category classification task
which involves imbalanced classification [33]. With proportional
thresholding, it is assumed that the percentage of positive documents
in the test data matches the percentage in the training data.
Experiments have shown that better SVM classification accuracy can
be achieved by adjusting the thresholds when learning from
imbalanced data [2,25]. Nevertheless, the effectiveness of PCut heavily
depends on the distribution of the data as it assumes that the ratio
between positive and negative examples does not change from
training data to test data.

Another commonly used approach of determining a reasonable
threshold is through validation set (e.g., cross-validation). With this
approach, the training data is further split into two sets. The first set is
used to learn a classifier and the second set is used to search for a
threshold which leads to the best result with respect to the
performance evaluation metric (e.g., F1).

2.2.4. Discussion
Among the above discussed strategies, thresholding does not

directly affect the training of a SVM classifier. However, applying
strategies in pre- and/or in-training stage (e.g., resampling or
instance weighting) could lead to a very different decision surface
compared to the decision surface learned by a SVM classifier without
applying any strategy. In this paper, we therefore aim to find out
through experiments whether or not applying strategies in pre-/in-
training stage (or both) leads to a better decision surface in
imbalanced text classification. The answer to this question has
important implications. For instance, if none of these strategies
could learn a better decision surface than the standard SVM, then
finding an appropriate threshold is more worthwhile when dealing
with imbalanced text classification. On the other hand, if some
strategy could lead to a better decision surface than the standard SVM,
then whether or not to apply such a strategy heavily depends on the
computational cost of applying the strategy and the cost of finding an
appropriate threshold.

Among all methods discussed above, we restrict our investigation
to the commonly-used ones, namely, random sampling, directed
under-sampling, over-sampling, instance weighting, and SVM for
multivariate performance measures.

3. Experiment setup

All our experiments were conducted on three benchmark datasets
commonlyused in text classification tasks, i.e., 20-Newsgroups, Reuters-
21578, and WebKB. In total three sets of experiments were conducted.
In the first set of experiments, we compare the goodness of the decision
surfaces learned by eight methods including standard SVM, random
under-sampling, directed under-sampling, over-sampling, and their
combinationswith instanceweighting. In the secondset of experiments,
we study the impact of varying parameters in resampling and instance
weighting and also the impact of varying imbalance ratios. In the third
set of experiments, the standard SVMwas compared to SVM optimized
for F1 and Precision/Recall break-event point respectively. In summary,
10 methods have been evaluated over 3 datasets.

3.1. Datasets

The three datasets used in our experiments are 20-Newsgroups,
Reuters-21578, and WebKB. All these datasets have been commonly
used in text classification tasks and the three datasets well represent
three types of documents, i.e., UseNet messages, news articles, and
personal/project homepages.

20-Newsgroups contains posts collected from 20 UseNet groups
with nearly 1000 posts from each group. We used the “bydate”
version preprocessed by Ana Cardoso-Cachopo5, which contains
11,293 training documents and 7528 test documents. All the 20
categories were used as target categories in our experiments. Thus,
using one-against-all learning strategy, the imbalance ratio (i.e., the
ratio between the negative and the positive training examples) is
about 19:1 for each category.

Reuters-21578 corpus is one of the most popular datasets used in
text classification6. The 21,578 documents in this collection are
organized in 135 categories. Each document may have zero, one or
more category labels. With “ModLewis” split, we had 13,625 training
and 6188 test documents respectively. We chose 26 categories as
target categories such that each category has at least 50 positive
training documents. This is to avoid lack of training examples to
confound our study on imbalanced classification7. The documents that
do not belong to any of the selected 26 target categories were used as
negative training/test examples in the experiments. The imbalance
ratios range from 4:1 to 272:1 for the 26 categories. Among them, 15
categories have imbalance ratios greater than 100:1.

WebKB dataset contains Web pages collected from Computer
Science departments of four universities by the CMU text learning
group8. The 4162 Web pages collected are classified in 7 categories
and the four target categories used in our experiments are student,
faculty, course and project. All pages from the remaining categories
were used as negative training and test pages. As there is no pre-
defined train/test split, we used leave-one-university-out cross-
validation to conduct training and evaluation. That is, for each
category, pages from three universities were used as training
examples and the classifier learned was tested with the pages from
the remaining university. The imbalance ratios range from 6:1 to 50:1
for WebKB dataset.

The preprocessing of the dataset includes HTML tag removal (for
WebKB dataset only), stopword removal, and stemming. Document
feature vectors are weighted with tf× idf scheme and normalized to
unit length.

3.2. Methods

The methods evaluated in our experiments are divided into three
groups. The first group includes the standard SVM, Stratified Random
Sampling (SRAND), CLuster-based Under-Sampling (CLUS), and
SMOTE. The second group refers to the above four methods with
instance weighting. The third group includes SVM optimized for F1
and SVM optimized for Precision/Recall break-even point.

SVM: or standard SVM, refers to the SVM classifier with all default
setting. We used SVMlight (version 5.0)9 with linear kernel as the
underlying classifier in our experiments. We used linear kernel as
linear kernel has been commonly used in text classification and the

5 20-Newsgroup dataset is available at http://www.gia.ist.utl.pt/~acardoso/datasets/.
6 Reuters-21578 dataset is available at http://www.daviddlewis.com/resources/

testcollections/reuters21578/.
7 Note that, we distinguish the problem of imbalanced classification from the

problem of having limited number of training examples. It has been reported that
having 20 or more training examples provides “stable generalization performance” for
SVM classifier [8].

8 WebKB dataset is available at http://www.cs.cmu.edu/~webkb/.
9 http://svmlight.joachims.org/.
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choice of kernel functions do not affect text classification performance
much [17].

SRAND: Stratified Random Sampling represents undirected under-
sampling method. It selects negative training documents according to
a under-sampling ratio s with stratified sampling. For a given under-
sampling ratio of s, one document is randomly chosen in every s
negative training documents sorted by document id. As there is no
guideline on how to set a proper sampling ratio, in the first set of
experiments, we simply set s=2. That is, half of the negative training
documents were selected and used in SVM training for each category.
The impact of choosing different s is studied in the second set of
experiments, reported in Section 5.

CLUS: CLuster-based Under-Sampling is a parameter-free directed
under-sampling method. The basic idea is to find those negative
examples that are close to any positive example. For each category,
the pool of training documents (including both positive and negative)
are clustered using k-means algorithm, where k is the number of
positive documents and each cluster centroid is initialized as one
positive document. After clustering, the clusters that contain only
negative training documents are discarded. Negative documents from
the clusters that each contains at least one positive example form the
new set of negative training examples10.

SMOTE: Synthetic Minority Over-sampling Technique, is a method
to generate synthetic positive training examples [4]. Given a positive
training document, its k nearest neighbors among other positive
training documents are first identified. Let x→i be the feature vector of
document di, and x→j be the feature vector of one of di's k nearest
neighbors. The feature vector of a synthetic document is created by
(x→i+g(x→j − x→i)) where g is a random value between 0 and 1. In our
experiments, we use k as over-sampling ratio where one synthetic
positive training example is generated from each of the k nearest
neighbors of a positive training example. In the first set of
experiments, we set k=5 as in [4]. The impact of using different k
values is studied in the second set of experiments in Section 5.

Instance weighting: Instance weighting assigns different error-
classification costs to positive and negative training examples. In our
experiments, instance weighting was implemented by setting the
cost-factor (parameter j) in SVMlight. Following early works [21], in
the first set of experiments, we set j to be the imbalance ratio of the
target category, e.g., j = Ln

Lp, where Ln and Lp refer to the number of the
negative and positive training examples respectively for the category.
The impact of setting different j's is studied in the second set of
experiments. The method where instance weighting is applied to the
standard SVM is denoted by SVMw. Similarly, we use SRANDw, CLUSw,
and SMOTEw to denote the other three methods using instance
weighting together with resampling (See Table 1).

SVMBEP and SVMF1: refer to the SVM classifiers formulated for
optimizing Precision/Recall break-even point (BEP) and F1 respec-
tively. The two methods were based on SVNper f (version 2.1)11

implementation using the corresponding loss function setting.

3.3. Performance metrics
The commonly-used performance measures are Precision, Recall,

and F1. Precision for a category, denoted by Pr, is the percentage of
correct assignments among all the documents assigned to the target
category. Recall, denoted by Re, is the percentage of correct assign-
ments among all the documents that should be assigned to the target
category. F1 = 2⋅Pr⋅Re

Pr + Re
is the harmonic mean of Pr and Re.

However, both Pr, Re (and hence F1) are threshold dependent. To
measure how good a learned decision surface H is, performance
metrics independent of threshold values are required. Both Receiver
Operating Characteristic (ROC)-curve and Precision–Recall curve (or

PR-Curve) have been used in previous works. Although ROC has been
used in many studies [1,4,10], a very recent study showed that ROC
curve could present “an overly optimistic view of an algorithm's
performance” in the imbalanced setting [7]. We therefore adopt PR-
Curve to visualize the performance of a classifier and use the Area
Under the PR-Curve (or AUP for short) to measure the goodness of a
decision surface.

4. Experimental results

Table 2 reports the macro-averaged imbalance ratio over all
categories after resampling with different methods on the three
datasets. Note that, for SRAND and SMOTE, the resultant imbalance
ratios are purely determined by the parameters given. As a parameter-
freemethod, CLUS selected slightlymore than half of negative training
documents on Newsgroups and about a quarter on Reuters. OnWebKB
dataset, CLUS selected 85% of negative training examples.

In the following pages, we report the experimental results of the
8 methods listed in Table 1 as they are all based on the same
underlying classifier (see Section 3.2).

4.1. PR-Curve

The PR-Curves of the eight methods on three datasets are plotted
in Fig. 3. Two sets of PR-Curves are plotted for each dataset for better
illustration. The figures on the left are for those methods that do not
involve instance weighting and the figures on the right are for the
methods with instance weighting. On both sets of figures, the PR-
Curve for SVM classifier is plotted for easy reference. These PR-Curves
are plotted based on macro-averaged precision at each recall value
computed using the tool provided by [7]. The dashed line in each plot
is provided to identify the break-even point.

As shown in Fig. 3(a) and (b), on Newsgroup dataset, the PR-
Curves of all methods are quite similar to each other and hard to
distinguish. Nevertheless, among the eight methods, SRAND and
SRANDw performed slightly worse than others. On Reuters dataset,
SVM was the method that achieved the best PR-Curve. It is also
observed that applying instance weighting hurt the classification
performance (see Fig. 3d). OnWebKB, without instance weighting, all
methods produced similar PR-Curves (see Fig. 3(e)); with instance
weighting, SVM was much better than the other methods and CLUSw
was the worst, shown in Fig. 3(f).

4.2. Area under PR-Curve (AUP)

Table 3 reports the macro-averaged AUP for all methods on the
three datasets. For each category in a dataset, the AUP is computed
using the tool provided by [7]. The value reported for each method is
the average over all categories on the dataset. The best value is in bold

10 CLUS method is similar to the method proposed in [35] with differences in the
clustering algorithm and the way of selecting negative training documents.
11 http://svmlight.joachims.org/.

Table 1
List of the eight methods.

Strategy Without instance weighting With instance weighting

– SVM SVMw

Undirected under-
sampling

SRAND SRANDw

Directed under-sampling CLUS CLUSw
Oversampling SMOTE SMOTEw

Table 2
Macro-averaged imbalance ratio.

Dataset SVM SRAND CLUS SMOTE

Newsgroups 19.3 9.6 8.8 3.2
Reuters 116.4 58.2 25.4 19.4
WebKB 24.1 12.0 20.3 4.0
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and the second best is underlined. Two observations can be made
from the results.

• The standard SVM achieved the best results on Newsgroups and
Reuters, and the second best on WebKB. Such an observation
suggests that the standard SVM could be the best method among all.

• Nomethod involving instance weighting achieved either the best or
the second best. Moreover, each method using instance weighting
gave poorer AUP than the samemethodwithout instanceweighting.
That is, methodM always delivered better AUP than methodMw, for
M∈ {SVM, SMOTE, CLUS, SRAND}.

To verify whether the above two observations are statistically
significant, we conducted paired t-test on AUP over all categories for
each dataset. The p-values are reported in Table 4. Note that, we use
0.001 to indicate that the p-value is either 0.001 or smaller for easy

reading, andweuse aminus sign (‘−’) to indicate that themethod at the
corresponding row is worse than the method at the corresponding
column. All thosep-values that are smaller than0.05 aremarkedwith ‘*’.
Based on the significance test, we conclude the following points.

• Standard SVM was significantly better than any method involving
resampling and/or instance weighting on both Newsgroups and
Reuters datasets (i.e., pb0.05). OnWebKB, SVMwas comparable with
resampling methods (including SRAND, CLUS, and SMOTE),and was
significantly better than all methods involving instance weighting.

• Applying instance weighting resulted in significant performance
degradation for all methods on all datasets. The only exception was
SMOTE (compared to SMOTEw) on WebKB dataset with p=0.058.

• The three resampling methods performed quite differently on the
three datasets. On Newsgroups, SMOTENNCLUSNNSRAND, where NN
means significantly better; on Reuters, SRANDNN{SMOTE, CLUS}
where SMOTE and CLUS were comparable; on WebKB, all these
three methods were comparable.

The first two points well support the two observations made in
Section 4.2. Note that SVM was significantly better than all other
methods on both Newsgroups and Reuters datasets, but were
comparable with SRAND, CLUS and SMOTE on WebKB dataset. One
possible reason is that WebKB dataset is relatively small; it is about

Fig. 3. Precision–Recall curves on Newsgroups, Reuters, and WebKB datasets.

Table 3
Macro-averaged area under PR-Curve.

Dataset SVM SRAND CLUS SMOTE SVMw SRANDw CLUSw SMOTEw

Newsgroups 0.861 0.849 0.855 0.858 0.854 0.844 0.851 0.856
Reuters 0.804 0.795 0.786 0.788 0.780 0.780 0.765 0.781
WebKB 0.427 0.429 0.427 0.420 0.400 0.398 0.368 0.405

For each dataset, the best value is in bold and the second best is underlined.
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one-fifth of the other two datasets in number of documents, and
contains only 4 categories while the other two datasets contains 20 or
more categories. With only 4 categories, it is relatively hard for one
method to be significantly better than another.

4.3. F1
M with optimal thresholding

Using AUP as the performance measure, we found that the
standard SVM could learn better decision surface than other methods
involving resampling and/or instance weighting. That is, the standard
SVM could better rank the documents to be classified according to
their likelihood of belonging to the target category. This also suggests
that, if an appropriate threshold is found, SVM should achieve better
F1 than other methods. To verify, we report the macro-averaged F1,
denoted by F1

M, using optimal thresholding.
With optimal thresholding, all test documents are ranked in

descending order according to their scores returned by a classifier.
The top ranked d documents are labeled as positive such that the F1 of
the category is maximized. The score of the dth document is the optimal
threshold for that category. Note that optimal thresholding is not
possible in practice as the true labels of test documents are not known a
priori. Optimal thresholding however provides the ideal performance of
the decision surface learned by a classifier, as our main objective of this
study is to measure the goodness of a learned decision surface.

Fig. 4(a), (b), and (c) report F1M for eight methods on three datasets
respectively. As shown in the figure, with optimal thresholding, SVM
achieved the best F1M on Newsgroups and Reuters and the second best
onWebKB dataset. This is consistentwith the results of AUP in Table 3.
It is also observed that SMOTE and SMOTEw achieved slightly better
F1
M than other methods on Newsgroups and Reuters. On WebKB,
similar to that of AUP, random sampling was slightly better than SVM.

As mentioned earlier, it is not possible to pre-determine an
optimal threshold for a classifier. In reality, many classification tasks
simply adopt default thresholding. With default thresholding, SVM
assigns a document positive label if the score of the decision function
is non-negative, i.e., f (x→)≥0 (see Section 2.1). For the completeness
of the results, we also report F1M obtained with default thresholding in
Fig. 4. It is interesting to observe that, with default thresholding, SVM
became the worst method on all three datasets. Either resampling or

instance weighting could further improve F1M. This could be the reason
why resampling and/or instance weighting are applied in many
imbalanced classification tasks as those tasks often adopt default
thresholding.

To better explain why SVM became the worst, we plot the optimal
thresholds of all methods in Fig. 4(d). It is observed that the difference
between the optimal threshold and the default threshold (i.e., 0) for
SVM is the largest among all methods. That is, although standard SVM
has learnt the best decision surface, the position of the decision
surface is far away from its optimal position. To achieve better
classification accuracy for standard SVM, one has to find an
appropriate threshold to redefine the learned decision surface close
to its optimal position.

It is worth noting that finding an appropriate threshold itself is a
challenging task [24,25,33] and is out of the scope of this paper.

5. Impact of parameters and imbalance ratio

In our first set of experiments, the over-sampling ratio k in SMOTE,
under-sampling ratio s in SRAND and the cost-factor j for instance
weighting were pre-defined, for easy comparison among all methods.
In this set of experiments, we study the impact of the corresponding
parameter for each of the three methods, and also the impact of
imbalance ratio.

5.1. Impact of parameters

Over-sampling ratio k determines the number of synthetic
documents generated from each positive training document. For
example, if k=1, one synthetic positive training example is generated
from each positive training document. To study the impact of k, we
varied k from 1 to 5 and recorded the macro-averaged AUP on the
three datasets12, shown in Table 5. To verify whether the results are
statistically significant, the p-values resulted from the paired t-test
between SVM and SMOTE (at different k's) are included in Table 5. On
Newsgroups, varying k did not affect the AUP much for SMOTE
method, and on Reuters, a larger k led to slightly poorer AUP. On both
datasets, SVM was significantly better than SMOTE on all k values
except k=2 on Newsgroups. On WebKB, SMOTE methods at all k
values were comparable with SVM.

Under-sampling ratio s determines how many negative samples to
select. For instance, if s=3, one negative training example is selected
among three; hence the imbalance ratio is reduced to the one-third of
the original. Similar to the over-sampling ratio k, we evaluated 5 values
for s from2 to 6. Note that s=1means all negative samples are selected,
i.e., no change made to the original dataset. Table 6 reports the macro-
averaged AUP, together with significance test comparing SVM and
SRAND. On both Newsgroups and Reuters, a larger s led to poorer AUP
for SRAND. SVM was significantly better than SRAND on almost all s
values except s=3onReuters. OnWebKB, no significant different result
is observed comparing SVM with SRAND at different s values. For both
under-sampling parameter s and over-sampling parameter k, the larger
the value, the more the resulted dataset are different from the original
training dataset. As the test dataset usually follows the similar
distribution as the original training dataset, it is not a surprise that the
decision surfaces learned are poorer with larger s and k values.

Cost-factor j defines the weight of training errors on positive
examples over negative examples [21]. In our experiments, we
compared SVM and SVMw at different j's defined based on imbalance
ratio r, shown in Table 7. Similar to the experiments on k and s, 5
values of j were evaluated from 0.2r to r since j has often been set to r
[21,28]. On Newsgroups and Reuters, increasing j resulted in slightly
poorer AUP delivered by SVMw. On WebKB, when j=0.2r, a better

12 The setting of parameter k followed that in [4] where SMOTE was evaluated with
over-sampling ratio from 1 to 5.

Table 4
p-values for paired t-test on AUP.

Method SRAND CLUS SMOTE SVMw SRANDw CLUSw SMOTEw

(a) Newsgroups dataset
SVM 0.001* 0.001* 0.005* 0.001* 0.001* 0.001* 0.001*
SRAND – −0.030* −0.002* −0.060 0.004* −0.293 −0.017*
CLUS – −0.038* 0.350 0.003* 0.004* 0.377
SMOTE – 0.003* 0.001* 0.001* 0.007*
SVMw – 0.001* 0.006* −0.009*
SRANDw – −0.008* −0.001*
CLUSw – −0.001*

(b) Reuters dataset
SVM 0.016* 0.001* 0.002* 0.001* 0.001* 0.001* 0.001*
SRAND – 0.022* 0.022* 0.004* 0.002* 0.001* 0.007*
CLUS – −0.331 0.210 0.243 0.001* 0.264
SMOTE – 0.004* 0.015* 0.001* 0.011*
SVMw – −0.410 0.012* −0.035*
SRANDw – 0.012* −0.404
CLUSw – −0.007*

(c) WebKB dataset
SVM −0.342 0.406 0.144 0.014* 0.040* 0.002* 0.032*
SRAND – 0.317 0.143 0.015* 0.013* 0.002* 0.035*
CLUS – 0.173 0.015* 0.021* 0.002* 0.035*
SMOTE – 0.021* 0.034* 0.003* 0.058
SVMw – 0.335 0.004* −0.018*
SRANDw – 0.010* −0.131
CLUSw – −0.001*

* pb0.05.
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AUP than SVM was achieved. However, the AUP achieved was not
significantly better than standard SVM. Larger j's on WebKB led to
poorer AUP; similar observation holds on the other two datasets.

5.2. Impact of imbalance ratio

Experimental results reported in Sections 4 and 5 are based on
three datasets with fixed imbalance ratios. In this section, we design
another set of experiments to study the impact of different imbalance
ratios on resampling and instance weighting methods, and also the
standard SVM classifier. The objective is to answer the question
whether resampling and/or instance weighting could be more
effective when the imbalance ratio is higher.

We constructed 6 datasets from 20-Newsgroups dataset with
different imbalance ratios ranging from 19:1 to 191:1. To construct
datasets with different imbalance ratios, for each of the 20 categories,
we first derived the category's positive and negative training
documents with one-against-all setting. Keeping the negative training
documents unchanged, we applied stratified sampling to the positive
training examples according to a sampling ratio s. These chosen
documents form the positive training documents for that category in
the new dataset. Stratified sampling (with the same sampling rate)
was also applied to the category's positive test documents to maintain
the positive/negative distribution between the training and test

documents. Dataset Ds is obtained by applying the same sampling
ratio s over the 20 categories. The 6 datasets were obtainedwith s=1,
2, 4, 6, 8, 10. Table 8 reports the averaged positive/negative training/
test documents for each category over the 20 categories in each
dataset, and the averaged imbalance ratios, where Lp, Ln, Tp, and Tn

denote the number of positive training, negative training, positive test
and negative test documents respectively. Note that, D1 refers to the
original 20-Newsgroups dataset.

Table 9 reports the area-under PR-Curve of all methods on the 6
datasets. Similar to our earlier results, the best value is in bold and the
second best is underlined. From Table 9, we can observe that
imbalance ratio has significant impact on all the eight methods

Table 5
Impact of over-sampling ratio k in SMOTE.

Method Newsgroups Reuters WebKB

Parameter k AUP p-value AUP p-value AUP p-value

SVM 0.861 – 0.804 – 0.427 –

SMOTE (k=1) 0.858 0.023* 0.796 0.001* 0.425 0.356
SMOTE (k=2) 0.859 0.063 0.792 0.001* 0.422 0.138
SMOTE (k=3) 0.858 0.046* 0.792 0.005* 0.427 −0.472
SMOTE (k=4) 0.858 0.011* 0.788 0.001* 0.428 −0.403
SMOTE (k=5) 0.858 0.005* 0.788 0.002* 0.420 0.144

The best results are in bold. * pb0.05.

Table 6
Impact of under-sampling ratio s in SRAND.

Method Newsgroups Reuters WebKB

Parameter s AUP p-value AUP p-value AUP p-value

SVM 0.861 – 0.804 – 0.427 –

SRAND (s=2) 0.849 0.001* 0.795 0.016* 0.429 −0.342
SRAND (s=3) 0.845 0.001* 0.794 0.052 0.436 −0.088
SRAND (s=4) 0.836 0.001* 0.792 0.020* 0.419 0.131
SRAND (s=5) 0.834 0.001* 0.785 0.003* 0.414 0.107
SRAND (s=6) 0.830 0.001* 0.783 0.004* 0.423 0.359

The best results are in bold. * pb0.05.

Table 7
Impact of cost-factor j in SVMw.

Method Newsgroups Reuters WebKB

Parameter j AUP p-value AUP p-value AUP p-value

SVM 0.861 – 0.804 – 0.427 –

SVMw (j=0.2r) 0.856 0.001* 0.781 0.001* 0.429 −0.312
SVMw (j=0.4r) 0.855 0.001* 0.780 0.001* 0.403 0.022*
SVMw (j=0.6r) 0.855 0.001* 0.780 0.001* 0.401 0.026*
SVMw (j=0.8r) 0.854 0.001* 0.780 0.001* 0.401 0.014*
SVMw (j= r) 0.854 0.001* 0.780 0.001* 0.400 0.024*

The best results are in bold. * pb0.05.

Fig. 4. F1M with optimal and default thresholding and optimal threshold values.
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including SVM. The higher the imbalance ratio, the poorer the AUP
values. Nevertheless, SVM remained the best method which achieved
the highest AUP on all 6 datasets. That is, either resampling or instance
weighting could not learn a better decision surface than the standard
SVM regardless of the imbalance ratio.

6. SVM, SVMBEP, and SVMF1

In this set of experiments, we compare the performance of SVM,
SVMBEP, and SVMF1 on the three datasets using AUP as performance
measure.

Table 10 reports the macro-averaged AUP for the three classifiers
on the three datasets. SVM achieved the best AUP on both Newsgroup
and Reuters datasets but the worst on WebKB. According to the
significance test shown in Table 11, SVM significantly outperformed
both SVMBEP and SVMF1 on Newsgroup dataset and SVMBEP on Reuters
dataset. The WebKB is the only dataset where SVMF1 was the best
performer. On all three datasets, SVMBEP was always comparable with
SVMF1. In summary, SVM formulated with optimization for either
break-even point or F1 did not achieve significant performance
improvement on AUP compared to standard SVM on two largest
datasets out of the three evaluated. Note that the PR-Curves are not
reported for this set of experiments as they are very similar to each
other as in Fig. 3.

Similar to the results reported in Section 4.3, we also obtained the
macro-averaged F1 values for the three methods on the three datasets
(see Table 12 ) with default and optimal thresholding respectively.
The results are consistent with that reported earlier; once a suitable
threshold is given, the standard SVM outperformed both SVMBEP and
SVMF1 on the two largest datasets. Even with default thresholding
(e.g., 0), the standard SVM was the best performer on Newsgroups
and Reuters. An interesting observation on the optimal threshold
values is that the optimal threshold values for standard SVM are
always below zero. That is, with default thresholding, SVMwould give
more False Negatives. However, for both SVMBEP and SVMF1, the
optimal threshold values were all above zero. With default thresh-
olding, both classifiers led to more False Positives.

7. Discussion

From our experiments, an interesting observation was that
resampling and instance weighting strategies were not effective as
expected in imbalanced text classification. However, these strategies

have been reported to be effective in some other experiments. We
believe there are mainly three reasons for their poor performance in
our experiments.

• Performance evaluation metric. As discussed in Section 1.1, many
work involving imbalanced classification adopted area under the
ROC-Curve (AUR) as performance measure. With AUR as perfor-
mance metric used in other experiments, sampling or instance
weighting methods may show to be effective. However, a recent
study on the relationship between Precision–Recall and ROC curves
showed that AUR could present “an overly optimistic view of an
algorithm's performance” in the imbalanced setting [7]. This was
also the reason we conducted the comparative study.

• Nature of the classifier. In other experiments, the methods had been
evaluated with classifiers other than SVM including decision tree,
Naïve bayes and others. For instance, in [4], where SMOTE algorithm
was originally proposed, decision tree, Naïve bayes and Ripper
classifiers were evaluated in their experiments. The artificially re-
balancing of the dataset through resampling certainly changes the
statistical properties of the features. Hence the classifiers that
heavily rely on statistical properties of features (e.g., decision tree
and Naïve bayes) may give very different classification results.
However, for SVM, the decision surface relies on the positive/
negative support vectors, hence SVM is less sensitive to the
statistical prosperities of the features.

• Characteristics of the data. Compared to data from other domains,
text data has its unique characteristics such as high-dimensional
feature space, fewer irrelevant features, and sparse feature vectors
[13]. The results obtained on datasets from other domains may not
necessarily be repeated on text dataset.

In our experiments, we have also observed that the setting of
threshold played a critical role in obtaining accurate classification
results. However, it is well known that finding optimal thresholding is
infeasible in reality in most cases. On the other hand, the setting of the
threshold could be heavily application-dependent [24]. Depending on
the application, various thresholding techniques maybe adopted. For
instance, proportional thresholding has shown its effectiveness when
the distribution of the test data (e.g., the ratio between the positive
and negative examples) follows that of the training data [33]. Another
common approach of finding an appropriate threshold is to use a
validation set. In some real-world applications, a classifier may need
to classify data objects received along the time, and the threshold
could be adjusted during the classification when necessary. In such
applications where threshold can be flexibly set, the goodness of the
decision surface learned from the training data determines the
classification accuracy. In our experiments, we showed that the

Table 8
Dataset statistics.

Dataset Lp Ln Tp Tn Imbalance Ratio

D1 565 10,728 376 7152 19.3
D2 283 10,728 188 7152 38.5
D4 142 10,728 94 7152 76.8
D6 94 10,728 63 7152 115.2
D8 71 10,728 47 7152 152.9
D10 57 10,728 38 7152 191.2

Table 9
Area under PR-Curve.

Dataset SVM SRAND CLUS SMOTE SVMw SRANDw CLUSw SMOTEw

D1 .861 0.849 0.855 0.858 0.854 0.844 0.851 0.856
D2 .784 0.770 0.778 0.782 0.776 0.761 0.771 0.777
D4 .680 0.658 0.673 0.673 0.669 0.650 0.665 0.669
D6 .607 0.587 0.602 0.603 0.604 0.584 0.598 0.604
D8 .563 0.539 0.560 0.554 0.539 0.524 0.533 0.540
D10 .487 0.468 0.481 0.485 0.480 0.465 0.478 0.480

For each dataset, the best values are in bold and the second best are underlined.

Table 10
Macro-averaged area under PR-Curve.

Dataset SVM SVMBEP SVMF1

Newsgroups 0.861 0.821 0.822
Reuters 0.804 0.794 0.794
WebKB 0.427 0.430 0.434

For each dataset, the best values are in bold and the second best are underlined.

Table 11
p-values for paired t-test on AUP.

Dataset Newsgroup Reuters Webkb

Method SVMBEP SVMF1 SVMBEP SVMF1 SVMBEP SVMF1

SVM 0.001* 0.001* 0.018* 0.088 −0.084 −0.041*
SVMBEP – −0.182 – 0.487 – −0.151

* pb0.05.
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standard SVM could learn a good decision surface without applying
resampling or instance-weighting techniques.

8. Conclusion and future work

In this paper, we give a comparative study on the strategies
addressing imbalanced text classification using SVM classifiers. We
first summarize the strategies in a taxonomy in the context of text
classification. Based on the taxonomy, we give a survey on the
techniques proposed for imbalanced classification including resam-
pling and instance weighting and others. Through extensive experi-
ments, we evaluated 10 methods on 3 benchmark datasets using AUP
as the performance metric. To the best of our knowledge, this is the
first comparative study on imbalanced classification in text domain.
Our experimental results showed the standard SVM often learn the
best decision surface in most test cases. For the classification tasks
involving high imbalance ratios, it is therefore more critical to find an
appropriate threshold than applying any of the resampling or instance
weighting strategies.

Based on the findings, we suggest two future research directions.
One direction is to look deep into thresholding strategies, which may
consider the data distribution, the information obtained during the
classifier training, and user feedback if available. Another research
direction is to improve the SVM learning objective function to
consider the data imbalance in learning the decision surface such
that the default threshold could be easily adopted.
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Table 12
F1
M with optimal and default thresholding, and optimal threshold values.

Dateset F1
M and Threshold SVM SVMBEP SVMF1

Newsgroup F1
M with Default Threshold 0.753 0.380 0.611
F1
M with Optimal Threshold 0.824 0.792 0.791
Optimal threshold −0.417 2.103 1.437
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M with Default Threshold 0.706 0.125 0.467
F1
M with Optimal Threshold 0.783 0.775 0.773
Optimal threshold −0.269 3.479 2.804

WebKB F1
M with Default Threshold 0.15 0.196 0.366
F1
M with Optimal Threshold 0.480 0.494 0.495
Optimal threshold −0.705 0.739 0.348

The best results are shown in bold.
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