
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2004

SCLOPE: An algorithm for clustering data streams
of categorical attributes
Kok-Leong ONG

Wenyuan LI

Wee-Keong NG

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

DOI: https://doi.org/10.1007/978-3-540-30076-2_21

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ONG, Kok-Leong; LI, Wenyuan; NG, Wee-Keong; and LIM, Ee Peng. SCLOPE: An algorithm for clustering data streams of
categorical attributes. (2004). Data Warehousing and Knowledge Discovery: Proceedings of the 6th International Conference (DaWaK
2004). 3181, 209-218. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-540-30076-2_21
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

SCLOPE: An Algorithm for Clustering Data
Streams of Categorical Attributes

Kok-Leong Ong1, Wenyuan Li2, Wee-Keong Ng2, and Ee-Peng Lim2

1 School of Information Technology, Deakin University
Waurn Ponds, Victoria 3217, Australia

leong@deakin.edu.au
2 Nanyang Technological University, Centre for Advanced Information Systems

Nanyang Avenue, N4-B3C-14, Singapore 639798
liwy@pmail.ntu.edu.sg, {awkng,aseplimg}@ntu.edu.sg

Abstract. Clustering is a difficult problem especially when we consider
the task in the context of a data stream of categorical attributes. In this
paper, we propose SCLOPE, a novel algorithm based on CLOPE’s intuitive
observation about cluster histograms. Unlike CLOPE however, our algo-
rithm is very fast and operates within the constraints of a data stream
environment. In particular, we designed SCLOPE according to the recent
CluStream framework. Our evaluation of SCLOPE shows very promising
results. It consistently outperforms CLOPE in speed and scalability tests
on our data sets while maintaining high cluster purity; it also supports
cluster analysis that other algorithms in its class do not.

1 Introduction

In recent years, the data in many organizations take the form of continuous
streams, rather than finite stored data sets. This possesses a challenge for data
mining, and motivates a new class of problem called data streams [1, 2]. Designing
algorithms for data streams is a challenging task: (a) there is a sequential one-
pass constraint on the access of the data; (b) and it must work under bounded
(i.e., fixed) memory with respect to the data stream.

Also, the continuity of data streams motivates time-sensitive data mining
queries that many existing algorithms do not adequately support. For example,
an analyst may want to compare the clusters, found in one window of the stream,
with clusters found in another window of the same stream. Or, an analyst may
be interested in finding out how a particular cluster evolves over the lifetime of
the stream. Hence, there is an increasing interest to revisit data mining problems
in the context of this new model and application.

In this paper, we study the problem of clustering a data stream of categorical
attributes. Data streams of such nature, e.g., transactions, database records, Web
logs, etc., are becoming common in many organizations [3]. Yet, clustering a
categorical data stream remains a difficult problem. Besides the dimensionality
and sparsity issue inherent in categorical data sets, there are now additional

Y. Kambayashi et al. (Eds.): DaWaK 2004, LNCS 3181, pp. 209–218, 2004.
c⃝ Springer-Verlag Berlin Heidelberg 2004

210 Kok-Leong Ong et al.

stream-related constraints. Our contribution towards this problem is the SCLOPE
algorithm inspired by two recent works: the CluStream [4] framework, and the
CLOPE [3] algorithm.

We adopted two aspects of the CluStream framework. The first is the pyra-
midal timeframe, which stores summary statistics at different time periods at
different levels of granularity. Therefore, as data in the stream becomes outdated,
its summary statistics looses details. This method of organization provides an
efficient trade-off between the storage requirements and the quality of clusters
from different time horizons. At the same time, it also facilities the answering of
time-sensitive queries posed by the analyst.

The other concept we borrowed from CluStream, is to separate the process
of clustering into an online micro-clustering component and an offline macro-
clustering component. While the online component is responsible for efficient
gathering of summary statistics (a.k.a cluster features [4]), the offline component
is responsible for using them (with the user inputs) to produce the different
clustering results. Since the offline component does not require access to the
stream, this process is very efficient.

Set in the above framework, we report the design of the online and offline
components for clustering categorical data organized within a pyramidal time-
frame. We begin with the online component, where we propose an algorithm to
gather the required statistics in one sequential scan of the data. Using an ob-
servation in the FP-Tree [5], we eliminated the need to evaluate the clustering
criterion. This dramatically drops the cost of processing each record, and allows
it to keep up with the high data arrival rate.

We then discuss the offline component, where we based its algorithmic de-
sign on CLOPE. We were attracted to CLOPE because of its good performance
and accuracy in clustering large categorical data sets, i.e., when compared to
k-means, CLARANS [6], ROCK [7], and LargeItem [8]. More importantly, its clus-
tering criterion is based on cluster histograms, which can be constructed quickly
and accurately (directly from the FP-Tree) within the constraints of a data
stream environment.

2 Maintenance of Summary Statistics

For ease of discussion, we assume that the reader are familiar with the CluStream
framework, the CLOPE algorithm, and the FP-Tree [5] structure. Also, without
loss of generality, we define our clustering problem as follows. A data stream D
is a set of records R1, . . . ,Ri, . . . arriving at time periods t1, . . . , ti, . . ., such that
each recordR ∈ D is a vector containing attributes drawn fromA = {a1, . . . , aj}.
A clustering C1, . . . , Ck on D(tp,tq) is therefore a partition of records Rx,Ry, . . .
seen between tp and tq (inclusive), such that C1∪ . . .∪ Ck = D(tp,tq) and Cα ̸= ∅
and ∀α, β ∈ [1, k], and Cα ∩ Cβ = ∅.

From the above, we note that clustering is performed on all records seen in
a given time window specified by tp and tq. To achieve this without accessing
the stream (i.e., during offline analysis), the online micro-clustering component

SCLOPE: An Algorithm for Clustering Data Streams 211

has to maintain sufficient statistics about the data stream. Summary statistics,
in this case, is an attractive solution because they have a much lower space
requirement than the stream itself. In SCLOPE, they come in the form of micro-
clusters and cluster histograms. We define them as follows.

Definition 1 (Micro-Clusters). A micro-cluster µC for a set of records Rx,
Ry, . . . with time stamps tx, ty, . . . is a tuple ⟨L, H⟩, where L is a vector of record
identifiers, and H is its cluster histogram.

Definition 2 (Cluster Histogram). The cluster histogram H of a micro-
cluster µC is a vector containing the frequency distributions freq(a1, µC), . . . ,
freq(a|A|, µ

C) of all attributes a1, . . . , a|A| in µC, In addition, we define the fol-
lowing derivable properties of H:

– the width, defined as |{a : freq(a, µC) > 0}|, is the number of distinct
attributes, whose frequency in µC is not zero.

– the size, defined as
∑|A|

i=1 freq(ai, µC), is the sum of the frequency of every
attribute in µC.

– the height, defined as
∑|A|

i=1 freq(ai, µC) × |{a : freq(a, µC) > 0}|−1, is the
ratio between the size and width of H.

2.1 Algorithm Design

We begin by introducing a simple example. Consider a data stream D with 4
records: {⟨a1, a2, a3⟩, ⟨a1, a2, a5⟩, ⟨a4, a5, a6⟩, ⟨a4, a6, a7⟩}. By inspection, an in-
tuitive partition would reveal two clusters: C1 = {⟨a1, a2, a3⟩, ⟨a1, a2, a5⟩} and
C2 = {⟨a4, a5, a6⟩, ⟨a4, a6, a7⟩}, with their corresponding histograms: HC1 =
{⟨a1, 2⟩, ⟨a2, 2⟩, ⟨a3, 1⟩, ⟨a5, 1⟩} and HC2 = {⟨a4, 2⟩, ⟨a5, 1⟩, ⟨a6, 2⟩, ⟨a7, 1⟩}. Sup-
pose now we have a different clustering, C′

1 = {⟨a1, a2, a3⟩, ⟨a4, a5, a6⟩} and
C′
2 = {⟨a1, a2, a5⟩, ⟨a4, a6, a7⟩}. We then observe the following, which explains

the intuition behind CLOPE’s algorithm:

– clusters C1 and C2 have better intra-cluster similarity then C′
1 and C′

2; in fact,
records in C′

1 and C′
2 are totally different!

– the cluster histograms of C′
1 and C′

2 have a lower size-to-width ratio than
HC1 and HC2 , which suggests clusters with higher intra-cluster similarity
have higher size-to-width ratio in their cluster histograms.

Ideally, a straightforward application of CLOPE should provide us with the
summary statistics we need. Unfortunately, CLOPE requires multiple scans of the
data, where the number of iteration depends on the desired level of intra-cluster
similarity. This violates the one-pass requirement. Furthermore, CLOPE requires
multiple evaluation of the clustering criterion for each record, an expensive op-
eration when the size of the stream is massive.

Our solution in SCLOPE is based on the following observation: the optimal
height of individual cluster histograms (for each micro-cluster) can be obtained

212 Kok-Leong Ong et al.

+

a5

a3

a2

a7

a5

a6

a1

a4

Root node of
FP-Tree L = {2}

a1 a2 a5

1 1 1

L = {3}
a4 a5 a6

1 11

The cluster
histogram, H

The vector L containing
record identifiers for

records inserted along
this path

Summary statistics

Every leaf-node points to 2
vectors forming the summary

statistics: L and H

_

_

_ _

_

_

Cluster C1

Cluster C2

Fig. 1. Each path in the FP-Tree leads to a cluster histogram H and a vector L
containing the record identifiers. Notice that records with common attributes share
common prefixes, leading to a natural way of identifying clusters.

from a FP-Tree–like [5] structure. And this can be done in one sequential scan
without the need to compute the clustering criterion. To understand this ob-
servation, we first revisit our example but this time with the FP-Tree. The
formalism and algorithm follows after that.

Figure 1 shows the FP-Tree constructed for our example. We have omitted
the count, node links and header table in the original FP-Tree definition as they
are not needed in SCLOPE. We also ignore the one-pass constraint for the time-
being, and note that the FP-Tree in the figure requires two scans – the first
to determine the singleton frequency, i.e., freq(a,D(tp,tq)), and the second to
insert each R ∈ D(tp,tq) into the FP-Tree after arranging all attributes a ∈ R
according to their descending singleton frequency.

The implication above is that similar records are inherently “clustered” to-
gether through the sharing of a common prefix in the FP-Tree. In our example,
we can visually confirm two natural clusters from the common prefixes a1, a2

and a4, a5, which suggests that C1 and C2 would be a better clustering than
C′
1 and C′

2. In other words, we can actually consider each path (from the root
to a leaf node) to be a micro-cluster, where the common prefixes suggest the
micro-clusters to merge. This leads us to the following.

Observation 1. An FP-Tree construction on D(tp,tq) produces a set of micro-
clusters (not necessary the optimal) µC

1 , . . . , µC
k , where k is determined by the

number of unique paths P1, . . . ,Pk in the FP-Tree.

Due to space, we shall skip the rationale of all our observations, and refer
the reader to our technical report [9]. Nevertheless, we want to point out the
fact that Observation 1 does not guarantee an optimal result. While this may
not sound ideal, it is often sufficient for most stream applications. In fact, a near
optimal solution that can be quickly obtained (without the need to evaluate the
clustering criterion) is preferred in the design of the online component.

Not obvious is that CLOPE’s clustering technique, which is to maximize the
height of its cluster histograms, is closely related to the properties of FP-Tree’s

SCLOPE: An Algorithm for Clustering Data Streams 213

Algorithm 1 Online Micro-clustering Component of SCLOPE

on begining of (window wi) do
1: if (i = 0) then Q′ ← {a random order of v1 , . . . , v|A|}
2: T ← new FP-Tree and Q ← Q′

3: for all (incoming record R ∈ D(tp,tq)) do
4: order R according to Q and ∀a ∈ R, freq(a,Q′)++
5: if (R can be inserted completely along an existing path Pi in T) then
6: ∀a ∈ R, Li ← Li ∪ rid(Ri) ∧ freq(a,Hi)++
7: else
8: Pj ← new path in T and Hj ← new cluster histogram for Pj

9: ∀a ∈ R, freq(a,Hj) ← 1 and ∀a /∈ R, freq(a, Hj) ← 0
10: end if
11: end for

on end of (window wi) do
12: L ← {⟨n, height(n)⟩ : n is node in T with > 2 children}
13: order L according to height(n)
14: while (|H1 , . . . | > ϕ) do
15: select ⟨n, height(n)⟩ ∈ L where ∀n ̸= m, height(n) ! height(m)
16: select paths Pi,Pj where n ∈ Pi,Pj

17: Hnew ← Hi ∪ Hj

18: delete Hi, Hj

19: end while
20: output micro-clusters µC

1 , . . . , µC
ϕ and cluster histograms H1 , . . . , Hϕ for wi

construction. Recall that each path in the FP-Tree can contain multiple records,
and that the construction is to maximize the overlapping (or sharing of common
prefixes) of nodes, we actually have a natural process of obtaining a good cluster
histogram for each micro-cluster. Observation 2 states this property.

Observation 2. Given a micro-cluster µC
i from a path Pi, its cluster histogram

Hi has a height that is naturally optimized (again, not necessary optimal) by the
FP-Tree construction process.

In the simplest case, once the FP-Tree is obtained, we can output the micro-
clusters as the summary statistics for offline analysis. Unfortunately, these micro-
clusters are often too fine in granularity and thus, continue to consume a lot of
disk space. One solution is to agglomeratively merge the micro-clusters until
they are sufficiently lightweight. However, doing so by evaluating the clustering
criterion will prevent the algorithm from keeping up with the data rate of the
stream. A strategy to do this efficiently is required.

Observation 3. Given any micro-cluster Ci in the FP-Tree and its correspond-
ing unique path Pi, the micro-cluster(s) that give a good intra-cluster similarity
(when merged with Ci) are those whose paths overlap most with Pi.

Essentially, the above observation answers the question: How can we quickly
determine, without the need to evaluate the clustering criterion, the micro-
cluster to merge with t+he one under consideration? Since stream applications

214 Kok-Leong Ong et al.

require only approximate results, we can conveniently exploit the property of
common prefixes (i.e., Observation 3) to select the pair of micro-clusters to be
merged. This is realized in Algorithm 1, lines 12 − 19, where the key operation
is to merge the cluster histograms and the record identifiers.

The idea is to start at the node having more than one child (i.e., more
than one path/micro-cluster). This node would be the furthest from the root
(therefore, lines 12 − 13) and thus, contains the set of paths with the longest
common prefix. By Observation 3, any two paths passing through this node
would have a good intra-cluster similarity. Thus, we select any two paths passing
through the node, and merge its corresponding cluster histograms and record
identifiers (i.e., Hi and Hj , lines 17 − 18). This process repeats until the set of
micro-clusters are sufficiently reduced to fit in the given space.

2.2 Working in Bounded Memory

Up to this point, we have shown how the FP-Tree is used to produce the sum-
mary statistics we need. In this sub-section and the next, we discuss how we
made adjustments to satisfy the data stream constraints.

We begin with the issue of bounded memory. Without doubt, any attempt
to process an unbounded data stream is likely to exhaust the limited computing
resources before producing any results. To overcome this, we process the stream
in a sliding window fashion. We assume δ to be the space allocated for stor-
ing summary statistics in the pyramidal timeframe. In the beginning, δ will be
uniformly shared with each window having ws space. For easy discussion, this
space can be expressed in terms of the maximum number of micro-clusters (and
histograms) allowed in a given window.

At the start of each window, we begin with an empty FP-Tree and insert
each record into the data structure according to the rules given in Algorithm 1,
lines 4 − 9. This continues until we reach the end of the window, where we begin
FP-Tree minimization to produce the summary statistics of size ws. Clearly, by
this process, there will be a time when the δ space is filled by the first δ/ws

windows. Therefore, space must be created for the subsequent windows, i.e.,
(δ/ws) + 1, . . . , (δ/ws) + j, . . ., and so on. In the pyramidal timeframe, there are
two strategies to do so: compress and delete.

Intuitively, we first make room by compressing the statistics that became old,
and then deleting them as they become outdated. Our strategy to create space
for the subsequent (δ/ws) + 1 windows is to redistribute the δ spaces among all
the (δ/ws) + p windows created so far. In other words, rather then to have ws

amount of space for each window, we reduce ws by a fraction using a “decay”
function: (1 − e−µ)×ws that is dependent on the window’s age. Thus, if we have
seen (δ/ws) + p windows, then the size of the (δ/ws) + j th window, would be
(1 − e−j/p) × ws where 1 " j " p (see [9]).

The final step is to resize the summary statistics in each window. We first
reconstruct the FP-Tree from the summary statistics. This procedure is similar
to the FP-Tree construction, where we simply insert a path (i.e., a group of
records) instead of a record at a time. We then perform minimization until the

SCLOPE: An Algorithm for Clustering Data Streams 215

Algorithm 2 Offline Macro-clustering Component of SCLOPE

1: let C = {⟨Hi+1 , µ
C
i+1 ⟩, . . . , ⟨Hi+ϕ, µC

i+ϕ⟩, . . . , ⟨Hj+1 , µ
C
j+1 ⟩, . . . , ⟨Hj+ϕ, µC

j+ϕ⟩}
2: repeat
3: for all (CF ∈ C) do
4: move CF to an existing cluster or new cluster Cj that maximizes profit
5: if (CF has been moved to some cluster Ck) then
6: update cluster label of CF to k
7: end if
8: end for
9: until no further cluster is moved or processing time is exceeded

set of micro-clusters fit in the smaller space. Thus, older windows will have less
space allocated and depending on the domain requirements, they may be deleted
if they become obsolete.

2.3 Accessing Data in One-Sequential Pass

Our solution to the sequential one-pass access of data streams is to use an in-
cremental update strategy to compute the ordering of attributes based on their
descending singleton frequencies. The idea is simple: we begin by assuming a
default order (Algorithm 1, line 1), e.g., attributes are seen in each incoming
record. As we process each of them, we update the singleton frequency (line 4)
of each attribute before inserting the record into the FP-Tree.

Upon reaching the end of window, we update the ordering of attributes (i.e.,
line 1), and use this new ordering in the next window. As a result, a record
can have its attributes ordered differently in each window. Thus, it is possible
to obtain a sub-optimal FP-Tree (initially) depending on the initial assumed
order. Fortunately, this isn’t an issue as the FP-Tree improves on optimality as
the stream progresses. In our empirical results, this proved to be effective and
reduces the construction to a single pass.

More importantly, this strategy is crucial to the success of exploiting Obser-
vation 3 for accurate clustering. Recall that a stream’s characteristics actually
changes over time, it will not be appropriate to use an assumed or pre-computed
ordering. If it’s used, a change in the stream’s characteristics will caused all
subsequent clustering to be sub-optimal, and there will not be any mechanism
to recover from that. In that sense, our proposal is more robust because any
sub-optimality in the FP-Tree (due to changing data characteristics) will be
corrected on the next window cycle.

3 Cluster Discovery

Once summary statistics are generated, the analyst performs clustering over dif-
ferent time-horizons using the offline macro-clustering component. Since the of-
fline component does not require access to the data, its design is not constrained
by the one-pass requirement. Hence, we have Algorithm 2.

216 Kok-Leong Ong et al.

A typical time-sensitive cluster discovery begins with the analyst entering
the time-horizon h, and the repulsion r. The time-horizon of interest usually
spans one or more windows, and determines the micro-clusters involved in the
analysis. On the other hand, the repulsion controls the intra-cluster similarity
required, and is part of the clustering criterion defined as [3]:

profit({C1, . . . , Ck}) =
[∑k

i=1

(
size(Ci)

width(Ci)r × |Ci|
)]

×
(∑k

i=1 |Ci|
)−1

The most interesting aspect of Algorithm 2 is its design for time-sensitive
data mining queries. When used together with the pyramidal timeframe, we
can analyze different parts of the data stream, by retrieving statistics of differ-
ent granularity to produce the clustering we need. And since this is the offline
component of SCLOPE (which can run independent of the data stream), our de-
sign favors accuracy over efficiency, i.e., it makes multiple iterations through the
statistics, and cluster using the profit criterion.

Nevertheless, our offline component is still fast despite the fact that it is
based on the design of CLOPE. The rationale behind this speed is that CLOPE
works with one record at a time while SCLOPE works with a group of records at a
time. In our algorithm, each micro-cluster is treated as a pseudo-record, and are
clustered accordingly to the given r value that in turn, determines the number
of clusters k. Since the number of pseudo-records are very much lower than the
physical records, it takes less time to converge on the clustering criterion.

4 Empirical Results

The objective of our empirical tests is to evaluate SCLOPE in 3 aspects: perfor-
mance, scalability, and cluster accuracy. Due to space constraints, we only report
the overall results of our experiments. The interested can refer to our technical
report [9] for all the test details.

Performance For an accurate comparison, we tested the performance of SCLOPE
using only real-life data sets from the FIMI repository (fimi.cs.helsinki.fi). When
we compared our results against CLOPE, the best algorithm for clustering cate-
gorical data sets, our proposal outperforms CLOPE by a large margin. On cases
where the required number of micro-clusters is large, e.g., 200, CLOPE takes more
than 10 hours to complete while SCLOPE comes in under 900 seconds. In all 4
real-life data sets tested, our results revealed that SCLOPE is very suitable for
processing data streams given its low runtime and insensitivity to the number of
clusters. This is crucial since the number of micro-clusters need to be inherently
large to facilitate different analysis tasks.

Scalability To test scalability, we used the IBM synthetic data generator. We
tested two aspects of scalability: the number of attributes, and the number of
records. In the first test, we injected a data set of 50K records with different
number of attributes from 467 to 4194. We then recorded the runtime of SCLOPE

SCLOPE: An Algorithm for Clustering Data Streams 217

and CLOPE in creating 50, 100 and 500 clusters. In all cases, SCLOPE’s runtime
remains stable while CLOPE’s runtime rises sharply as the attributes goes beyond
800. On the second part of the test, we vary the number of records from 10K to
500K. Again, SCLOPE is faster (or on par) with CLOPE in terms of their runtime
for different number of clusters.

Accuracy In our final test, we used the mushroom data set (also from the FIMI
repository) which contains two predefined classes: 4208 edible mushrooms and
3916 poisonous mushroom. To measure the accuracy, we used the purity metric
(see [3]). In our experiment, we tried different combinations of ws and ϕ which
are the two parameters affecting the cluster quality in SCLOPE. From the results,
SCLOPE consistently attains a higher purity than CLOPE in all situations. Together
with SCLOPE’s performance, we are convinced of its potential.

5 Related Work

Much of the early works in clustering were focused on numerical data, where most
are efficient in situations where the data is of low-dimensionality. Representative
of these include k-means, BIRCH [10], CLARANS [6], and CLIQUE [11].

In recent years, there has been a large amount of categorical data accumu-
lated. Their dimensionality and size are often very much larger than numerical
data, and exhibit unique characteristics that make numerical-based techniques
awkward. This motivated the design of new algorithms leading to works such as
CACTUS [12], ROCK [7], STIRR [13], and CLOPE.

While these algorithms are an advancement over numerical solutions, they
are not designed with the constraints of data streams in mind. As a result, they
are often resource intensive. For example, ROCK has a high computational cost,
and require sampling in order to scale to large data sets. Closest to our work are
therefore CluStream, STREAM [14], FC [15], and binary k-means.

In comparing the CluStream framework, our work differs by the virtue of
the data type we investigate, i.e., we focus on categorical data. Likewise, STREAM
and FC are numerical-based techniques, and is thus different from SCLOPE. In
the case of binary k-means, a different clustering criterion is used, and its design
does not support time-sensitive cluster analysis.

6 Conclusions

In this paper, we propose a fast and effective algorithm, called SCLOPE, that
clusters an evolving categorical data stream. We chose to design our algorithm
within the framework of CluStream so that it not only outperforms algorithms
in its class, but also provide support for time-sensitive cluster analysis not found
in most preceding works.

Our empirical tests, using real-world and synthetic data sets, proved that
SCLOPE has very good performance and scalability. It also demonstrates good
cluster accuracy despite the data stream constraints imposed on the algorithm.

218 Kok-Leong Ong et al.

More importantly, the accuracy of clusters generated by SCLOPE can be improved
by varying the resource parameters: γ and δ, or allowing an extra scan of the
data. This makes SCLOPE an attractive solution for clustering categorical data,
either in the context of streams or conventional snapshots.

The drawback with the current design of SCLOPE is the lack of an error
quantification on its approximated results. In some data stream applications, it
is desirable for the analyst to specify the allowable error in the results, rather
then to specify the amount of space. Therefore, an immediate future work would
be to extend SCLOPE to handle both situations.

References

[1] Bradley, P.S., Gehrke, J., Ramakrishnan, R., Srikant, R.: Philosophies and Ad-
vances in Scaling Mining Algorithms to Large Databases. Communications of the
ACM (2002)

[2] Hulten, G., Domingos, P.: Catching Up with the Data: Research Issues in Mining
Data Streams. In: Workshop on Research Issues in Data Mining and Knowledge
Discovery, Santa Barbara, CA (2001)

[3] Yang, Y., Guan, X., You, J.: CLOPE: A Fast and Effective Clustering Algorithm
for Transactional Data. In: Proc. SIGKDD, Edmonton, Canada (2002)

[4] Aggarwal, C., Han, J., Wang, J., Yu, P.S.: A Framework for Clustering Evolving
Data Streams. In: Proc. VLDB, Berlin, Germany (2003)

[5] J. Han and J. Pei and Y. Yin: Mining Frequent Patterns without Candidate
Generation. In: Proc. SIGMOD, Dallas, Texas, USA (2000)

[6] Ng, R., Han, J.: Efficient and Effective Clustering Methods for Spatial Data
Mining. In: Proc. VLDB, Santiago de Chile, Chile (1994)

[7] Guha, S., Rastogi, R., Shim, K.: ROCK: A Robust Clustering Algorithm for
Categorical Attributes. In: Proc. ICDE, Sydney, Austrialia (1999)

[8] Wang, K., Xu, C., Liu, B.: Clustering Transactions Using Large Items. In: Proc.
CIKM, Kansas City, Missouri, USA (1999)

[9] Ong, K.L., Li, W., Ng, W.K., Lim, E.P.: SCLOPE: An Algorithm for Cluster-
ing Data Streams of Categorical Attributes. Technical Report (C04/05), Deakin
University (2004)

[10] Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: AN Efficient Data Clustering
Method for Very Large Databases. In: Proc. SIGMOD, Canada (1996)

[11] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic Subspace Clus-
tering of High Dimensional Data for Data Mining Applications. In: Proc. SIG-
MOD, Seattle, Washington, USA (1998)

[12] Ganti, V., Gehrke, J., Ramakrishnan, R.: CACTUS: Clustering Categorical Data
Using Summaries. In: Proc. SIGKDD, San Diego, California, USA (1999)

[13] Gibson, D., Kleinberg, J.M., Raghavan, P.: Clustering Categorical Data: An Ap-
proach Based on Dynamical Systems. In: Proc. VLDB, New York, USA (1998)

[14] O’Callaghan, L., Meyerson, A., Motwani, R., Mishra, N., Guha, S.: Streaming
Data Algorithms for High Quality Clustering. In: Proc. ICDE, USA (2002)

[15] Barbara, D.: Requirements for Clustering Data Streams. ACM SIGKDD Explo-
rations 2 (2002)

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2004

	SCLOPE: An algorithm for clustering data streams of categorical attributes
	Kok-Leong ONG
	Wenyuan LI
	Wee-Keong NG
	Ee Peng LIM
	Citation

	SCLOPE: An algorithm for clustering data streams of categorical attributes

