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Towards Better Quality Specification Miners

David Lo and Siau-Cheng Khoo
Department of Computer Science, School of Computing

National University of Singapore
{dlo,khoosc}@comp.nus.edu.sg

Abstract

Softwares are often built without specification. Tools
to automatically extract specification from software are
needed and many techniques have been proposed. One type
of these specifications – temporal API specification – is of-
ten specified in the form of automaton (i.e., FSA/PFSA).
There have been many work on mining software temporal
specification using dynamic analysis techniques; i.e., anal-
ysis of software program traces. Unfortunately, the issues
of scalability, robustness and accuracy of these techniques
have not been comprehensively addressed.

In this paper, we describe a framework that enables
assessments of the performance of a specification miner
in generating temporal specification of software through
traces recorded from its API interaction. Our framework re-
quires the temporal specification produced by the miner to
be expressed as probabilistic finite state automaton (PFSA).
The framework accepts a user-defined simulator PFSA and
a specification miner. It produces quality assurance mea-
sures on the specification generated by the miner. We in-
vestigate metrics used in these measures by adapting tech-
niques found in artificial intelligence, program analysis,
bioinformatics and data mining to the software specifica-
tion domain. Extensive experiments on two specification
miners have been performed to evaluate the effectiveness
of the proposed quality assurance measures.

1 Introduction

Presence of bugs and non-existence of specifications are
common problems faced by software engineers. It is desir-
able if every program is specified formally. Unfortunately,
difficulty in writing formal specification has proven to be a
barrier in adoption of formal specification [1]. Worst yet,
imprecise, changing requirements and short time to mar-
ket [9] contribute to construction of programs with poor or
no specification. The situation is further aggravated by the
lack of specification or irrelevancy of specification during

program evolution (cf. [13]).
These problems have been partially addressed by tech-

niques which infer specifications from program code or pro-
tocols from call sequences, both statically and dynamically.
Some of the dynamic inference techniques also enable test-
ing and detection of semantic anomalies [40, 33].

Recently, there has been a surge in software engineer-
ing research to adopt machine learning and statistical ap-
proaches to address these problems, especially in the area of
specification discovery [12, 15, 34, 1, 4, 14, 33, 39, 22]. In
[16], Fox illuminates the use of machine learning to bridge
the gap between high level abstraction expressing software
engineering problems and low level program behaviors. He
points out that some baseline models can be learned auto-
matically to aid characterization and monitoring of system.

Along similar line of research, Ammonset al. coin the
term specification miningas a machine learning approach
to discover program specification by analyzing program ex-
ecution traces [1]. Under the assumption that the program
being mined must “reveal strong hints of correct protocols”
during its execution, Ammonset al. demonstrate that cor-
rect specification can be obtained through their technique.
Specifically, their technique focuses on mining of specifica-
tion which reflects temporal and data dependency relations
of a program through traces of its API-client interaction.
The specification discovered models API-client interaction
protocol, which is expressed initially as a probabilistic fi-
nite state automaton (PFSA). To reduce the effect of errors
in training traces, transitions with low likelihood of being
traversed can later be pruned. After pruning, the probabili-
ties are dropped and an FSA is obtained.

Despite the proliferation of specification-mining re-
search, there is not much report on issues pertaining to the
quality of specification miners. Specifically, we note that
issues such as scalability and robustness of miners, level
of user intervention required during mining have not been
comprehensively addressed. As an illustration, in [1], it was
reported that “in order to learn the rule [i.e.,automaton], we
need to remove the buggy traces from the training set.” This
indicates the problem with the limitation of choosing good



training sets. In a later work [2], it was noted that in or-
der to debug specification generated by specification miner,
it might be necessary to exhaustively inspect each of the
traces, which can be hundreds or thousands in number.

Hence, there is a demand for a generic framework that
can assess the quality of specification miners. Such a frame-
work must address the issue of limited training sets as well
as provide objective measures to the performance of specifi-
cation miners. Performance should be measured in multiple
dimensions: miners’ scalability, robustness and accuracy.

Scalabilitydetermines a specification miner’s ability to
infer large specification.Robustnessrefers to its sensitivity
to error present in the input data.Accuracyrefers to the
extent of an inferred specification being representative of
the actual specification.

These measurements extend from the existing set of
measurements found in the literature; specifically, the mea-
surement ofaccuracyis supported by the measurement of
recall andprecisionas provided by Nimmeret al. [29].

Together, these measurements do not only define the
quality of specification miners in different dimensions, they
also aid the design and development of new specification
miners.

In this paper, we propose a generic framework for as-
sessing the quality of automaton-based specification min-
ers. For uniformity sake, our framework requires any speci-
fication miner under assessment to have the following input-
output behavior:Let a program execution trace be a se-
quence of method calls to an API interface. Given a (multi-
)set of program execution tracesT , a minority of which
might be erroneous, the specification miner infers sequenc-
ing/temporal constraints among the method calls in the
form of a probabilistic finite-state automaton.

We do not constrain the automaton-based specifications
to be deterministic; in fact, a miner is expected to perform
its task in the presence of non-deterministic specification.

We choose to represent specification as aProbabilis-
tic FSA (PFSA) instead of FSA, for the following reason:
Probabilities attached to a protocol specification enables
the control of trace-generation process so that the collec-
tion of traces generated mimics some characteristics of the
traces that can be collected from actual API interactions.
For example, sub-protocols within a protocol specification
may be present more frequently than others in the actual
interaction with API interface – analogous to the idea of
hotspot found in program execution [21]. Such behavior
can be made to exhibit in a set of generated traces through
supply of appropriate probabilities at various transitions of
a specification automaton.

It has been proven that learning an FSA from examples
of sentences accepted by a language is not decidable [1, 17].
On the other hand, learning a PFSA from examples is de-
cidable (cf. [10, 3]) though inefficient (cf. [24]). This theo-

retical finding has prompted Ammonset al. to use PFSA as
an intermediate step to the learning of a FSA. In our frame-
work, we believe that PFSA is essential to the capturing
of sub-protocol behavior, and a good specification miner
should uncover such sub-protocol behavior by producing a
PFSA containing appropriate probabilistic transitions.

Our framework enables any specification miner with the
required input-output behavior to be assessed under a sim-
ulated environment. The framework operates as follows:
Given a specification miner, a PFSA and a percentage of
expected error, the framework generates a multiset of traces
from the PFSA with the specified percentage of erroneous
traces. Running the specification miner against these traces
will result in a mined PFSA. By comparing the behavior of
the mined PFSA with that of the original PFSA, the frame-
work can assess the accuracy of the mining as performed by
the given miner.

Furthermore, by varying the percentage degree of ex-
pected error and the size of the original PFSA, the frame-
work enables respective assessment of robustness and scal-
ability of the miners.

We also propose several metrics for objective assessment
of automaton-based specification miners, and devise cor-
responding techniques to support these metrics. Some of
the concepts and techniques, such as automation alignment,
are novel, while others are adapted from a wide spectrum
of research, including simulation, software testing, bioin-
formatics, artificial intelligence, program analysis and data
mining. Such a multi-disciplinary approach enables the best
tool to be used in appropriate quality measurement.

We have built a prototype of our framework, and begun
using it to assess some of the existing specification miners.
In this paper, we describe our comprehensive experiments
on two specification miners.

The outline of the paper is as follows: In section 2, a
typical specification mining process is presented and our
framework architecture is outlined. Sections 3 and 4 de-
scribe our solutions to two major issues related to quality as-
surance measurement; they are model-and-trace generation,
and metrics and techniques for quality assurance. Section
5 describes specification miners used including our own in
brief. Section 6 describes our experiments and results. We
discuss related work and conclude in Section 8.

2 Framework Structure

In this section we’ll first discuss typical specification
mining process with its limitation. Next, we’ll describe an
overview of our framework which addresses the limitations
of typical specification mining process.

2
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Figure 1. Typical Specification Miner Process

2.1 Typical Specification Miner Process

Before presenting the framework structure, we describe
a typical specification miner process, which is depicted in
Figure 1. A miner’s input is typically in the form of API
interaction traces, where each trace represents a sequence
of method calls (with or without argument). Preprocess-
ing is then performed on these traces to turn them into
abstract representation of traces. Specification miner then
learns from these traces to produce a specification. The
specification can be expressed in various forms: automa-
ton [1, 12, 39, 34, 4], algebraic equations [22], Hoare-style
equation of pre and post-condition [15],etc. Human judg-
ment is often employed at this stage to assess the accuracy
of the mined specification and to evaluate the performance
of the miner. Some systems, such as [1], in addition permits
mined specification to be modified manually before feeding
back to the specification miner again.

Other systems, such as Daikon [15, 29], assess the miner
through its accuracy in recalling correct information (invari-
ants) and in reducing generation of incorrect information.
However, they fall short of providing systematic support
for assessment of scalability and robustness of miners. It is
clear that scalability and robustness are important determi-
nants for the usability of miners; the former determines the
limit of a miner in handling complex systems, and the lat-
ter determines the usefulness of a miner in handling mildly
corrupted input.
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Figure 2. Framework Structure

2.2 Proposed Framework

Our proposed framework aims to address all the above
quality assurance concerns. It accepts specification mod-
els of varying complexity, and generates sets of simulated
traces that reflect the characteristics of those protocol spec-
ifications, including the presence of error. It then evaluates
miner’s performance in recovering the original model from
three dimensions: its accuracy, robustness and scalability.

The framework is shown in Figure 2. Itstrace generator
component generates traces based on a specification model
in PFSA format. These simulated traces are then used
to train the specification miner, culminating with a mined
PFSA model. The original model and the mined model are
then used by thespecification miner quality assurance sub-
systemto generate various quality assurance metrics.

There are two major issues our framework need to ad-
dress:(1) model and trace generation, and(2) quality as-
surance metrics and their techniques. These major issues
will be discussed in sections 3 and 4 respectively.

3 Simulator Model & Trace Generation

In these section, our simulator model and trace gen-
eration methodology will be discussed. Simulator model
govern the probability distribution of traces. Models can
be specifically generated to test QA properties of interest.
Trace generation methodology ensures generated traces are
representative of the model under some coverage criteria.

3.1 Simulator Model

Our model is in the form of probabilistic finite state au-
tomaton (PFSA), an example of which is shown in Fig-
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Figure 3. Sample Simulator Model

ure 3. Each node in the automaton represents a program
state. There are four types of nodes: start, end, normal and
error nodes . Each transition in the automaton represents
a viable API method call from that state. For every tran-
sition, a probability will be attached to it. The probability
attached to a transition indicates how likely the associated
method call will be invoked from that source state. It is an
invariant of any PFSA under consideration that all transi-
tions emitting from a source, excluding the transitions lead-
ing to error nodes (see the following paragraph), must have
their probabilities summed up to1.0.

The model can beinjected with errorby including er-
ror nodes and error transitions. Error transitions are mod-
elled using dashed lines in Figure 3. This inclusion of error
nodes and error transitions enables generation of erroneous
traces; it aids the evaluation of miner’s ability to learn in
the presence of errors (i.e., robustness). The allocations of
error nodes and transitions will characterize the kind of er-
rors allowed. Lastly, we do not assign any probability to
error transitions, as we do not intend to micro-manage the
generation of error traces.

Furthermore, large (in terms of the number of nodes or
the ratio of number of transitions to nodes) models can be
inputted to test the scalability of a miner. We automati-
cally generate distinct models having n nodes and maxi-
mum of m transitions per state with a common start and
end nodes. Transition labels are chosen from a pool of
fixed number of labels randomly. Loops are introduced
based on the principle of locality where loops between child
and parent/ancestor nodes (including self-loop) occur with
higher probability than those connecting to distant sibling
nodes. The above properties are meant to generatereason-
ably complex models that are more likely to mimic reason-
able protocols even in a large system (e.g. business logic
of an enterprise application). Hence, with injection of error
and variety of model sizes different dimensions of quality
assurance can be obtained.

Our model generation algorithm is shown in Figure 4.

The algorithm initially create a connected automata struc-
ture in the form of a tree until N nodes have been created.
Next, depending on loop level and locality level, a set of
additional transitions will be introduced creating possibly
loops and adding complexity to the model. Loop level and
locality level by default are set to 0.4 and 0.8 respectively.

Procedure ModelGen
Inputs:
N : Total number of nodes,> 0
M : Max number of transitions per node
Labels : Pool of labels
PLoop : Loop level (from 0 to 1)
PAncestor : Locality level : Probability of loop

to ancestor (including self)
Outputs:
Model: Model having N nodes with each node having

at most M trans with labels fromLabels.
Method:
Let Root = Create a new node for root node of model
Let NodeList = List of nodes so far, init to{Root }
Let WorkList = List of nodes to process,init to{Root }
// Step 1: Create Connected Automata Structure
while (#NodeList < N ) do

Let curNode = A random node fromWorkList
Let transNo = A random no btw 1 toM
SetcurNode .maxTrans to transNo
for (i = 0; i < transNo && # NodeList < N;i++)

Let newNode = Create a new node
Add transition fromcurNode to newNode

with label randomly pick fromLabels
Add newNode to NodeList andWorkList
if (i == #transNo −1)

WorkList .Remove(curNode )
end for

end while
// Step 2: Add Loop/Extra Transitions
Let NodeLoopList = TakePLoop ∗ #WorkList

nodes randomly frmWorkList .
for each nodeNLoop in NodeLoopList

Let transNo = NLoop.maxTrans undefined?
A random no btw 1 toM : NLoopmaxTrans

while (NLoop has less thantransNo trans.)
Add a loop toNLoop’s ancestors with

prob.PAncestor or to siblings otherwise
end while

end for
Output Model with root node set toRoot

Figure 4. Model Generation Algorithm

3.2 Trace Generation

Actual program trace can be mapped to string of alpha-
bets as shown by Ammonset al. through ’standardization’
process [1]. Strings of alphabets generated by simulator can
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be considered as abstraction of actual program tracesi.e. an
alphabet representing a particular method call. Based on
this abstraction, we generate traces as strings of alphabets.

Trace generation will generate two types of output - error
and normal traces. Atrace is defined as a sequence of tran-
sition names that forms a path leading from the start node
to the end node of a PFSA. We define anerror traceas one
that includes a transition sinking at an error node.

Since normal traces are generated from a PFSA, we can
determine the probability of a trace by multiplying together
the probability of its constituents. We writep(t) to denote
the probability of a tracet.

We propose two algorithms for trace generation. They
perform stratified random walkguided by the probability
of PFSA’s transitions. Both algorithms ensure that highly
probable traces (sentences) accepted by the PFSA model
will statistically be more likely to appear in the multiset of
generated traces. (We use the term “sentence” and “trace”
interchangeably.) On the other hand, the two algorithms
differ in the complexity in which they attempt to include all
probable traces in the generation process.

The first trace-generation algorithm,TraceGen1, is akin
to the “code and branch coverage” criterion used in gen-
erating program test cases [19, 7, 30]. Given a PFSAM
and a global percentage of error, the algorithm generates a
multiset of tracesT possessing the following property:

Property 1 For a sufficiently largeT , there isn > 0 such
that all transitions in the PFSAM occurs at leastn times
in the traces ofT .

This property ensures that all transitions inM have the
opportunity to be used for trace generation. The algorithm
detail is depicted in Figure 5.

MEI is the PFSAM with error EI injected. At pro-
gram point (*), a trace is generated by starting from start
node of the model and independently ”throwing a dice” at
each node for decision on which transition to takeaccord-
ing to the probability of the transitionsuntil end node is
reached. Traces generated will then reflect the probabilities
of the transitions in the simulator model (i.e. distribution of
generated traces is governed by the model).

Traces will continue to be generated until all transitions
have been covered at least N times or MAX number of
traces have been generated. We use N here rather than 1
to accommodate slower learner that requires more than 1
sentence in the language to infer the automaton model.

In [19], Gupta highlights the limitation of the standard
“code and branch coverage” criterion in generating test
cases: some combinations of branch decisions will not
be executed. Correspondingly, some combinations of se-
quences of transitions may not have the chance to be used
for mining.

Procedure TraceGen1
Inputs:
M : Automaton model
EI : Error injection
N : Cover
I: Maximum number of loop
MaxPopE : Maximum possible error trace population
Max : Maximum trace number
GE: Global error injection probability
Outputs:
A multiset of traces
Method:
let MEI = M ∪ EI
let E = list of all transitions in modelM identified by

the transition name, its source and sink nodes
let Errlist = list of all possible error traces fromMEI

bounded byMaxPopE where for each, transitions in
MEI are traversed at mostI times

let Ctr = a map frome in E to a number
- initialized to 0

do{
Let rand = random number between 0 to 1
if (rand < GE) {

Let TE = a trace generated randomly fromErrlist
Output TE

}
else{

Let T = a trace generated fromM (see text) (*)
OutputT
LetE′ = all transitions traversed byT
For eache′ ∈ E′ increaseCtr[e′] by 1

}
} while (∃e ∈ E: ctr[e] < N & number of traces≤Max)

Figure 5. Trace Generation Approach 1

Our second algorithm,TraceGen2, aims to rectify this
limitation. It generates a multiset of tracesT which pos-
sesses the following property:

Property 2 Given i > 0 and n > 0, let Ki be the set of
all paths inM linking start node to end node such that any
transition ofM cannot occur more thani times in any path.
Then, for a sufficiently largeT generated byTraceGen2,
all paths inKi occurs at least n times in the traces ofT .

Note that Property 2 is a stronger property than Prop-
erty 1. The algorithm can be found in Figure 6.

In trace generation approach 2, a list of all possible paths
– the number of which is bounded byMaxPopN – is gen-
erated fromM such that each transition inM can occur
at mostI times in a trace. The probability of each such
path can be calculated by multiplying the probabilities of
the constituent transitions. Traces will then be generated

5



Procedure TraceGen2
Inputs:
M : Automaton model ;EI : Error injection
N : Cover ; I: Maximum number of loop
MaxPopE : Maximum possible error trace population
MaxPopN : Maximum possible normal trace population
Max: Maximum trace number
GE: Global error injection probability
Outputs:
A multiset of traces
Method:
let MEI = M ∪ EI
Traverse modelM
let T list = list of all possible paths fromM where in

each path a transition can be traversed at most
I times capped byMaxPopN

let Plist = map between trace inT list to its probability
let Ctr = a map from eacht ∈ T list to a number

- initialized to 0
let Errlist = list of all possible error traces bounded by

MaxErrPop where in each, a transition
in MEI is traversed at mostI times

do{
Let rand = a random number between 0 to 1
if (rand < GE) {

Let TE = a trace generated randomly fromErrlist
Output TE

}
else{

let trand = choose at ∈ T list according to its
probability inPlist

Output trand
Ctr[trand]++

}
} while (∃t ∈ T list: Ctr[t] < N &

number of generated traces≤Max)

Figure 6. Trace Generation Approach 2

randomly from this list of possible paths according to their
probabilities.

4 Specification Miner Quality Assurance

The quality of a specification miner is measured along
three dimensions: accuracy, robustness and scalability.

The accuracyof a specification miner is determined by
its ability in recovering simulator models by learning the
simulated traces, in theabsence of error. This is usually
measured via the notion of “recall” and “precision” [29].
However, it is not sufficient when the simulator model is in
PFSA format, as we will elaborate shortly.

We definerobustnessof a specification miner as its abil-

ity in remaining accurate in recovering simulator models
from simulated traces, in thepresence of error. Thus, a
robust miner should be able to filter erroneous traces in
building mined models. As commonly observed, erroneous
traces usually constitute a small proportion of the entire col-
lection of traces.

Lastly, we definescalability of a specification miner as
its ability in remaining accurate in recoveringsimulator
models of varying sizes.

As these measurements are orthogonal, we can conve-
niently compose them, and objectively discuss about the ro-
bustness of a scalable miner, or the scalability of a robust
miner.

4.1 Quality Assurance Metrics

For the sake of presentation, we denote a simulator
model byX and a mined model byY . We use the term
“sentence” and “trace” interchangeably.

Central to our measurements is a thorough treatment of
accuracy. In determining the accuracy of mined models in
PFSA format, we propose four metrics of measurement.

Trace Similarity. The first two metrics measure similarity
in terms of the number of sentences accepted by bothX
andY . That is, the percentage of sentences generated by
X that are accepted byY , and vice versa. We denote them
as TS.XY and TS.YX respectively. They are analogous to
the notion of “recall” and “precision” – a standard measure
from information retrieval (cf. [18, 37]) – respectively.
Nimmeret al. further relate these two metrics to measures
of completeness and soundness respectively [29].

Structural Similarity. Our third metric aims to measure
structural similarity betweenX andY . Structural similar-
ity is important since needlessly complex automaton will
inhibit users’ ability to understand the mined specification.

We measure structural similarity, denoted by SS, ofX
andY by computing three sets of sub-automata:Sim cap-
tures the similarities betweenX andY , andDifX (DifY )
captures the differences betweenX (Y ) andSim. SS is
then a normalized ratio of transitions in similarity and dif-
ference automatons:

SS = ]Sim.Edges
w+]Sim.Edges

w = max (]DifX .Edges, ]DifY .Edges).

Here,]X.Edges denotes the number of transitions inX.

Probability Similarity. For models that are represented by
PFSAs, it is not sufficient to measure their similarity by
simply examining their recall and precision. It is equally
important to determine if both the simulator and the mined

6



models generatethe same traces at similar frequencies, and
thus place emphasis on similar sub-protocols. Thus, our fi-
nal metric measures the similarity in terms of probabilities
assigned to common traces generated by bothX andY : A
trace might possibly be generated by bothX andY ; how-
ever, its probability might differ greatly. This measurement
is calledco-emission.

Co-emission has been used in measuring similarity be-
tween two Hidden Markov Models. Lyngsøet al. propose
several versions of similarity measurement [28, 27]. One
such metric which is adopted here, denoted by PS, provides
an unbiased and normalized similarity measurement of two
models:

PS(X, Y ) = 2∗PCE(X,Y )
(PCE(X,X)+PCE(Y,Y ))

PCE(X, Y ) = Σs∈L(X∩Y )(PX(s)PY (s)).

Here,PCE(X, Y ) denotes aco-emission probability, deter-
mining the probability that a sentences is generated by both
X andY independently.PX(s) andPY (s) denote the prob-
ability of generating sentences byX and byY respectively.

4.2 Quality Assurance Techniques

For each category of metrics we defined in subsec-
tion 4.1, we support them with a measurement technique.
These are: Automaton Language Search, Automaton
Alignment and HMM-HMM Comparison Based Tech-
nique.

Automaton Language Search.Here, we calculate the per-
centage of sentences generated byX that are accepted byY
and vice versa. The generated sentences will be a different
set of samples drawn fromX than the one used for train-
ing Y . Splitting training and test sets ensures the learner
under test avoids ”overfitting”i.e. learns the training set
so closely that it does not generalize well to original model
[20]. Counter-examples – sentences generated byX (or Y )
that are not accepted byY (or X) respectively – will also
be reported. The metrics that are supported by this method
correspond to the TS.XY and TS.YX.

This technique is effective in measuring the quality of
Y (X) provided the set of traces generated are representa-
tive of X(Y ). To this end, we use theTraceGen1proce-
dure in Figure 5 to help in trace generation. This ensures
polynomial time complexity with coverage assurance simi-
lar to “code and branch coverage” criterion. The effective-
ness of the algorithm, in terms of complexity, is important
in the situation where we wish to evaluate the scalability of
a specification miner: It is important that the computation
of quality assurance measurement be itself scalable as well.

Automaton Alignment. This method aims to generate au-
tomatons that capture structural similarity and difference of
X andY . Based on similarity and difference automatons,
we can then calculate the normalized ratio of transitions in
similarity and differences automatons. This number corre-
sponds to SS.

The algorithm, as outlined in Figure 7, comprises five
steps:(1) Provision of a standard representation ofX and
Y in string format, calleds1 ands2 respectively.(2) Align-
ment ofs1 ands2 using a variant of global alignment tech-
nique (cf. [36]). (3) Unification of two aligned strings to
extract a similarity automaton.(4) Extraction of difference
automatons.(5) Calculation of SS based on the similarity
and difference automatons.

In step 2,global sequence alignmentis applied to ex-
plore all possible alignments of nodes lined up consecu-
tively in the stringss1 ands2 respectively. Alignment is
achieved by assigning a score to each pair of nodes. The
score is assigned based on similarities and differences of la-
bels of the outgoing transitions associated with the nodes.
The best alignment results are kept innodesAlign [],
where each element in the array contains two consecutive
subsequences froms1 ands2 – possibly with some pads
inserted to indicate no possible match of nodes – that rep-
resents a best alignment. As an example, assuming that
some of the nodes inX are named asx0, x1, . . ., x5,
xend and some of those inY are namedy0, y1, . . ., y8,
yend. A possible pair of alignments can be as follows:

x0 x1 x4 − − x3 x2 − x5 xend

y0 y2 y1 y4 y3 y7 y8 y5 y6 yend

In this example, the “dash” (“-”) represents an added
pad. Unification operation performed at Step 3 attempts
to discover segments of similaritybetween automatons
X and Y by connecting pairs of aligned nodes to form
similarity automatons. From the pair of alignments kept
in nodesAlign[i] , two pairs of aligned nodes,(x, y)
at somejth position and(x′, y′) at somekth position, are
unifiable if the following conditions hold: (1)x is adjacent
to x′ in X and y is adjacent toy′ in Y , and (2) at least
one transition joiningx and x′ has the same label (i.e.,
method call) as the one that joinsy and y′. Successful
unification results in a small automaton joiningx andx′.
Repetitive application of unification returns a (possibly
disjoint) automaton representing similarity betweenX and
Y .

HMM-HMM Comparison Based Technique. This tech-
nique computes probability similarity (PS). This is based
on the work of Lyngsøet al. on comparison between two
Hidden Markov Models [28, 27]. Figure 8 outlines the algo-
rithm for calculatingPCE between two automatons. Proba-
bility similarity (PS) can be calculated fromPCE as defined

7



Procedure AutomatonAlignment
Inputs: X: First automaton,Y : Second automaton
Outputs:
nodesAlign []: best alignments of nodes inX with

nodes inY
sim [][] : list of similarity automatons for each best

alignment
diffx [][] : list of difference automatons betweensim

andX for each best alignment
diffy [][]: list of difference automatons betweensim

andY for each best alignment
qaMet []: SS values for each best alignments
Method:
// Step1
Let s1 = Enumeration of all nodes inX using breadth-

first search of automaton nodes in ascending
{transition name}++{next node name} order

Let s2 = Enumeration of all nodes inY using the same
techniques as that for generatings1

// Step2
nodesAlign [] =

Global sequence alignment ofs1 ands2 (see text)

For eachi indexingnodesAlign [] do
// Step3
Extract similarity automaton into

sim[i] by a series of unification (see text)
// Step4
Extract difference automaton intodiffx[i] and
diffy[i] by including transitions inX andY that
are not insim[i]
// Step5
Let w=

max(#diffx[i].Edges ,#diffy[i].Edges )
Let qaMet[i] =

#sim[i].Edges /(w+ #sim[i].Edges )
end for
Output

nodesAlign [], sim [][], diffx [][], diffy [][],
qaMet []

Figure 7. Automaton Alignment Algorithm

in subsection 4.1.
Note that at each iteration of probability table update,

we extend (in the worst case) the co-emission probabil-
ity computation to another pair of nodes (each fromX
and Y respectively) which isonly one distance further
away from the start nodes. We approximate co-emission
by ending the probability computation only after each of
the possible loops is executed at least twice. This is en-
sured by repeating the probability table update for2 ∗
min(]X.Edges, ]Y.Edges) times. We refer readers to [27]
for further interesting discussion about the behavior of the
algorithm that our HMM-HMM comparison based algo-
rithm adapt.

Procedure HMM-HMM
Inputs: X: First automaton,Y : Second automaton
Outputs:
PCE (X,Y) : sum of co-emission probabilities for

all sentences s commonly generated by
X andY

Method:
Let uX = Enumeration of all nodes inX
Let uY = Enumeration of all nodes inY
Let n = number of nodes inX
Let m= number of nodes inY
Let dProb [][] = Create table of sizen ×m
Let xStart [] = corresponding rows representing start

nodes ofX according touX
Let yStart []= corresponding cols representing start

nodes ofY according touY
Let xStop [] = corresponding rows representing end

nodes ofX according touX
Let yStop [] = corresponding cols representing end

nodes ofY according touY
Let iterNo = 2∗min (#X.Edges,#Y .Edges)
For each (0≤ i < #xStart ) and (0≤ j < #yStart )

Initialize dProb [xStart[i] ][yStart[j] ] to 1
Iteratively updatedProb [][] for iterNo times by doing
the following at each iteration:

For each (0≤ i < n) and (0≤ j < m)
Let dSum= 0
For eachk whereuX[k] has a transitiontk to uX[i]
and eachh whereuY[h] has a transitionth to uY[j]

If th andtk have the same label, then
Let p(th) = probability of transitionth

Let p(tk) = probability of transitiontk

dSum+= dProb[k][h] * p (th) * p (tk)
dProb[i][j] = dSum

PCE(X,Y) = Sum ofdProb [xStop [i]][ yStop [j]]
for all i andj

Output PCE (X,Y)

Figure 8. HMM-HMM Based Algorithm

5 Specification Miners Used

In this section, the two specification miners used in our
experiments will be briefly described. The two specifica-
tion miners are sk-strings learner [31] used by Ammonset
al. and our own miner (Merged Multiple Filtered Specifica-
tion Miner – MMFSM). Full description of the specification
miners’ algorithms are outside the scope of this paper.

5.1 sk-strings

The sk-strings algorithm is an extension of k-tails heuris-
tic of Biermann and Feldman [6] for stochastic automata.In
k-tails, two nodes are considered equivalent by looking at
up to subsequent k-length strings that can be generated from
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them. Different from k-tails, in sk-strings, the subsequent
strings not necessarily end in an end node except for strings
of length less than k. Furthermore, only top s% of the most
probable strings that can be generated from both nodes are
considered.

The sk-strings algorithm first builds a canonical machine
similar to a prefix tree acceptor from the traces. The nodes
of this canonical machine are later merged if they are indis-
tinguishable with respect to top s% most probable strings of
length at most k that can be generated starting from them.

5.2 Merged Multiple Filtered Specifica-
tion Miner

Merged Multiple Filtered Specification Miner
(MMFSM) comprises four major blocks – clustering,
filtering, learning and merging, as shown in Figure 9.
Filtering and clustering is meant to address the issue of
robustness and scalability respectively.

Traces deviating from common trace population rules
will be removed. The resultant filtered traces are then sep-
arated into multiple clusters whose number is determined
automatically by considering similarities within each clus-
ter and differences among clusters. By clustering common
traces together, it is expected that the learner is able to learn
better and over-generalization of a subset of traces is not
propagated to other clusters. These cluster of traces will
then be fed into a specification miner. The sk-strings learner
described in previous paragraph will be used. Each clus-
ter can be considered as an independent sub-protocols. If
a combined view is desired, a merger sub-system will pro-
duce a merged automaton while ensuring the probabilities
assigned to traces remains correct and no further general-
ization is made during the merging process. By default, we
merged the automatons together.

6 Experiments

Three sets of experiments were conducted to evaluate the
performance of two specification miners in terms of accu-
racy, robustness and scalability respectively.

The first experiment acts to illustrate in detail an accu-
racy experiment using a simple model. The latter, more
extensive experiments were performed to measure robust-
ness (a total of 600 experiments) and scalability (a total
of 160 experiments). Since robustness and scalability are
measured in terms of accuracy in presence of error and in-
creased model size respectively, we indirectly measure ac-
curacy through these experiment.

Off-the-shelf sk-strings learner [31] used by Ammonset
al. and MMFSM was used as the user-defined specification
miners for evaluation. Default parameter settings is used for
sk-strings both when used stand-alone and within MMFSM.
Since MMFSM is meant to improve scalability and robust-
ness, only results pertaining to scalability and robustness
will be shown.

6.1 Material

In the first experiment, we simulated the automaton gen-
erated by Ammonset al. in their analysis of X11 window-
ing library (cf. [1]) with addition of probabilities. This ex-
periment measures the accuracy performance of sk-strings
learner. The simulator model used is shown in Figure 10.
Probabilities aredistributed equallyto transitions from the
same source node (not shown in the diagram). We gener-
ated traces using trace generation method 2 which enumer-
ated all combinations of transitions with parametersN and
I set to 10 and a cap of maximum 10000 traces.

In the second experiment, we evaluated two learners’
performance in terms of robustness. We used similar model
and transition probabilities as that used in experiment 1, but
the model waswithout any non-determinism and repeat use
of alphabet assigned to transitions. This is meant to pro-
duce a base model that can be learned perfectly. Error node
and transitions were then injected to the automaton to con-
duct robustness tests. The model used with injection of er-
rors (nodes and transitions labelled as Z) is shown in Fig-
ure 11.

We expect specification miner to be able to filter error.
We compared the inferred automaton with the simulator
model shown in Figure 11 without error nodes and tran-
sitions and recorded the similarity and difference metrics.
We generated traces using trace generation method 1 with
parametersN andI set to 10 and a cap of maximum 10000
traces. Four, eight and ten percents of error were injected
to the system (i.e., 4, 8 and 10 percent of generated traces
respectively will be erroneous). In each case, we ran a hun-
dred experiments and recorded the average performance.
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Figure 10. Experiment Simulator Model

In the third experiment, we evaluated the scalability of
the learners by generating distinct models of various sizes.
Two sets of experiments were conducted, each with a differ-
ent independent variable. In the first set of experiments, we
varied the number of nodes (by 10, 20, 30, and 40) in the
model and maintained the number of outgoing transitions
per node to at most four. In the second set of experiments,
we varied the number of outgoing transitions per node (by
3,5,7,9) and maintained the number of nodes at 10. For
each case, we performed 10 experiments and recorded their
average performance. The models are generated based on
properties and algorithms described in subsection 3.1.

We generated traces using trace generation method 1
with parametersN andI set to 10 and a cap at maximum
10000 traces. No error was injected to the system. Since
we imposed a cap of 10000 traces, there might be a concern
that training traces might not satisfy the coverage criterion
for model of large size. This was not the case in our exper-
iments, as only once did the cap was reached; for the other
159 experiments, coverage criterion was met first.

6.2 Experiment 1 Findings

Sk-strings inferred automaton – Figure 6.2 – is different
from the simulator automaton (shown in Figure 10).
Language Search
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Figure 11. Simulator Model with Error In-
jected

Using language search method, 100% of the sentences
generated byX using trace generation method 2 were ac-
cepted byY (TS.XY = 1). Conversely, only 66.559% of the
sentences generated byY were accepted byX (TS.YX =
0.66559) .
Automaton Alignment

The best alignments of nodes is as follows:

START 1 5 4 3 2 End
0 1 - 2 3 4 End0

The similarity automatonSim is shown in Figure 13.
Difference automatons can be extracted by subtractingSim
from X andY . Structural similarity (SS) can be calculated
by normalizing the ratio of the number of transitions in sim-
ilarity and difference automatons – 0.583 in this case.
HMM-HMM Comparison Based Technique

The result using HMM-HMM comparison technique
was 0.154 forPCE(X,Y) and 0.865 for PS. The metrics are
defined in subsection 4.1.

Analysis

Trace similarity score indicated that the mined modelY had
almost 35% chance of generating traces not recognizable by
the simulator modelX. This points to a lack of precision in
the mined automaton. Probability similarity score showed
that the probability of generating common sentences is high
(0.865 out of 1). Next, in comparing the two automaton
structures (cf. Figure 13(b)), we noted particularly that the
two transitions which led to nondeterminism were missing
in the mined automaton. In place of these transitions, other
new transitions were introduced. However, these new tran-
sitions are not equivalent with the original ones.

To investigate the cause of inaccuracy, we repeated the
experiment by removing the two transitions from the sim-
ulator model that caused non-determinism. We found that
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sk-strings learner is still unable to recover the same model.
Only 61.017% of the sentences generated byY using trace
generation method 2 are accepted byX. We repeated an-
other experiment by making sure that the model waswithout
any non-determinism and repeat use of alphabet assigned
to transitions. For this case, the original automaton was
able to recoverexactly the same modelwith slightly differ-
ent probability assigned to sentences (PS score 0.944 out
of 1). We therefore conclude that sk-strings learner tends
to over-generalize. This results in generation of inaccurate
inferred model.

6.3 Experiment 2 Findings

Here, we evaluated the robustness of sk-strings learner
and MMFSM. The experiment results are captured in Ta-
ble 1 and Table 2 respectively . Column E% corresponds to
the percentage of erroneous traces; other columns refer to
QA metrics defined in subsection 4.1.

E% TS.XY TS.YX SS PS
4 1.000 0.958 0.693 0.946
8 1.000 0.925 0.597 0.953
10 1.000 0.901 0.549 0.951

Table 1. sk-strings Robustness – Errors

E% TS.XY TS.YX SS PS
4 1.000 0.996 0.962 0.947
8 1.000 0.990 0.925 0.947
10 1.000 0.982 0.888 0.945

Table 2. MMFSM Robustness – Errors

Analysis

For sk-strings, all traces generated by the simulator model
X were accepted by the inferred modelY . On the other
hand, we noted a drop in the acceptance of traces generated
by Y . This drop is equivalent to the noise injected (4.2% vs.
4%, 7.5% vs. 8% and 9.9% vs. 10%); this indicates that the
learner is unable to filter erroneous traces. Structural simi-
larity is affected by injection of error as well. This worsens
as we increase the level of error injection. We conclude that
the sk-strings learner is not robust.

MMFSM is similar to sk-strings in that all traces gener-
ated by the simulator modelX was accepted by the inferred
modelY . Different from sk-strings, we noted only a slight
drop in the acceptance of traces generated byY . This drop
is far less than the noise injected (0.4% vs. 4%, 1% vs. 8%
and 1.8% vs. 10%); this indicates that the learner was able
to filter erroneous traces. Structural similarity is also only
slightly affected by the injection of error.

6.4 Experiment 3 Findings

We analyze the results from two sets of scalability exper-
iments conducted. In the first set of experiments, we gener-
ated distinct models by varying no of nodes while keeping
max transitions per node at 4. In the second set of exper-
iments, we varied max no of transitions while keeping the
total no of nodes constant constant at 10.
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6.4.1 Number of Nodes

The result of varying number of nodes is shown in Ta-
ble 3 and Table 4 for sk-strings and MMFSM respectively.
Columns X.N and X.TN correspond to the number of nodes
and maximum number of transitions per node in the simu-
lator model.

X.N/X.TN TS.XY TS.YX SS PS
10/4 0.998 0.292 0.192 0.460
20/4 1.000 0.006 0.064 0.022
30/4 1.000 0.003 0.045 0.019
40/4 1.000 0.006 0.022 0.026

Table 3. sk-strings Scalability - Nodes

X.N/X.TN TS.XY TS.YX SS PS
10/4 0.988 0.588 0.086 0.663
20/4 0.994 0.158 0.034 0.273
30/4 1.000 0.020 0.025 0.088
40/4 1.000 0.016 0.038 0.072

Table 4. MMFSM Scalability - Nodes

6.4.2 Max Number of Transitions per Node

The result of varying maximum number of transitions per
node is shown in Table 5 and Table 6 for sk-strings and
MMFSM respectively. Columns X.N and X.TN correspond
to the number of nodes and maximum number of transitions
per node in the simulator model.

X.N/X.TN TS.XY TS.YX SS PS
10/3 1.000 0.214 0.211 0.341
10/5 0.994 0.206 0.159 0.334
10/7 0.997 0.253 0.226 0.363
10/9 0.998 0.109 0.102 0.221

Table 5. sk-strings Scalability - Max Transi-
tions

Analysis

The above results shows that both sk-strings and MMFSM
were affected when we scaled-up the model size. Accep-
tance of traces generated byY , structural similarity and
probability similarity were adversely affected. Comparing
the two set of experiments, the effect was less adverse when
we increase the maximum number of transitions per node.

MMFSM was generally better in terms of acceptance of
traces generated byY up to a factor of 27 (i.e. 20 nodes
case). It was also better in terms of probability similarity up

X.N/X.TN TS.XY TS.YX SS PS
10/3 0.998 0.514 0.207 0.574
10/5 0.980 0.489 0.055 0.632
10/7 0.976 0.507 0.049 0.634
10/9 0.976 0.515 0.056 0.625

Table 6. MMFSM Scalability - Max Transitions

to factor of 12 (i.e. 20 nodes case). However, it was worse in
terms of structural similarity up to a factor of 5 (i.e. 7 tran-
sitions case). The worsening performance in structural sim-
ilarity was due to over-generalization of each sub-protocol
at each cluster, causing difficulty in merging.

Comparing the results of the two set of experiments, the
benefit of MMFSM was less in the second set of experi-
ments (i.e. when we increase the maximum number of tran-
sitions). This was so since increasing the number of transi-
tions while maintaining the number of nodes would result in
a more ’bushy’ automaton that is harder to separate during
clustering.

7 Related Works

There have been numerous work in the research of spec-
ification mining. They can be classified into two groups,
depending on how the mined specifications are represented:
automaton-based[1, 12, 39, 34, 4] and non-automaton
based [22, 14, 15, 33] specification mining.

The specification miner described in [1] has been ex-
tensively assessed in this paper. In other work, Whaleyet
al. extract object-oriented component interface sequencing
constraints to form multiple finite state automatons [39].
Reisset al. encode program execution traces as directed
acylic graph to aid visualization and understanding of pro-
gram [34]. Artset al. dynamically extract program models
from Erlang program as state graph model for model check-
ing and visualization [4]. We believe that these and other
similar miners can equally be assessed under our framework
with minimal changes.

In the field of data mining, Keoghet al. provide bench-
mark by providing diverse datasets for testing various time-
series data-mining algorithms [25]. A significant difference
between data mining and specification mining is the avail-
ability of data for learning – as the case in [1]. In the current
work, we tacitly avoid this problem through simulation.

In the area of devising metrics for measurements, there
have been similar work on comparison metrics in differ-
ent domains, such as Bioinformatics and Artificial Intel-
ligence domains. These include comparison of two gene
sequence[36], comparison of two protein structures[5, 8],
comparison of two protein families[35] and comparison of
two Hidden Markov Models[27, 28], to name a few. Several
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of our proposed algorithms benefited from these compari-
son techniques.

8 Conclusion

In this paper, we propose a framework to test quality as-
surance measures for automaton-based specification miner.
Major research issues include model & trace generation and
quality assurance metrics & methods.

Several QA metrics are proposed. These metrics cover
multiple dimensions of quality in terms of similarity of
traces (analogous to recall and precision), structures and
probabilities of specification and mined automaton. They
should be considered together rather than separately in eval-
uating a miner. A good miner should have good recall, good
precision and be able to retain original structure and prob-
abilities of the original specification. These QA metrics
are obtained via language search, automaton alignment and
HMM-HMM comparison methods.

Our framework is geared for software engineering pur-
pose for the following reasons:(1) Actual program trace
can be mapped to string of alphabets as shown in [1],(2)
We have suited the generation of traces and followed known
and acceptable coverage criterions rather than simple ran-
dom walk (Section 3),(3) Generation of models was done
following some known software behavior such as the prin-
ciple of locality (Section 3), and(4) Metrics proposed is di-
rectly related to software engineering concerns (Section 4).
Precision and recall which is a measure of soundness and
completeness ensures usage of generated automata in other
software engineering automatic reasoning (e.g.cf. [38, 23])
produces safe results and less false alarms. Structural sim-
ilarity is useful in aiding software engineers understanding
of the resultant automata. Co-emission provides a measure
of guarantee on the preservation of probabilities of occur-
rence of traces. This ensures that ”protocol/specification
hotspots” are preserved. Its analogy to concepts of hotspots
in java compilers [21] might provide glimpse to future use
in optimization or other related areas. Measures used in au-
tomata research as Minimum Message Length (MML) and
relative entropy (cf. [31, 11]) have not been shown to re-
late well or provide multiple facets of quality of interest in
software engineering domain.

Experiments measuring the accuracy, robustness and
scalability of sk-strings used by Ammonset al. have
been performed. We found that the learner tends to over-
generalize. This resulted in inaccurate inferred specifica-
tion. The learner is also susceptible to the presence of erro-
neous traces. The mined specification reduces in precision
and structural similarity as we scale up the simulator model
under scalability test.

We have compared the quality assurance measures of sk-
strings to MMFSM and found that MMFSM can produce

more accurate results in the presence of error and increas-
ingly large model. MMFSM should be chosen if error filter-
ing and a more precise inferred automaton is desired. Oth-
erwise, if smaller inferred automata with similar recall is
desired, sk-strings should be used instead. In our opinion,
the first case is more likely in typical software specification
mining tasks.

Another performance issue that has not been addressed
so far in our work is thelevel of user involvement. This esti-
mates the degree of user expertise required and the number
of times a user needs to be involved in inferring a specifica-
tion. Similar issue has also been raised by [32, 26], but an
objective measurement of the degree of user involvement is
not yet forthcoming.

The framework and metrics developed here do not only
provide us a means for quality assurance measurement, they
also help discover possible blind spots in the existing re-
search in the field, and provide hints for development of
better specification miners to meet the stringent quality as-
surance requirements. While we acknowledge that some
imperfect dynamically learned specification can be useful
for software engineering taskseg. [40], we also believe that
improvement in specification miners quality will increase
their usefulness even more.
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