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DC-Free Coset Codes 

Abstract-A class of block coset codes with disparity and run-length 
constraints are studied. They are particularly well suited for high-speed 
optical fiber links and similar channels, where dc-free pulse formats, 
channel error control, and low-complexity encoder-decoder implementa- 
tions are required. The codes are derived by partitioning linear block 
codes. The encoder and decoder structures are the same as those of linear 
block codes with only slight modifications. A special class of dc-free coset 
codes are derived from BCH codes with specified bounds on minimum 
distance, disparity, and run length. The codes we derive have low disparity 
levels (a small running digital sum) and good error-correcting capabilities. 

I. INTRODUCTION 

ECENTLY, work on constructing line codes (or R transmission codes) for systems such as fiber optic 
links and magnetic or optical recording has received much 
attention in the literature [1]-[ll]. These codes are de- 
signed to impose some type of spectral constraint on the 
transmitted sequence, e.g., have a null at dc (for fiber optic 
links) or to limit the high-frequency components (magnetic 
recording). In some applications it is also desirable that 
these codes provide some error-correcting or error-detect- 
ing capability as well. The codes we construct in this paper 
simultaneously meet the dc constraints and the error-cor- 
recting requirements and, because of the simplicity of the 
encoder and decoder design, can be used for high-speed 
digital communications. 

Linear block codes can be designed to have powerful 
error-correcting and error-detecting capabilities and can be 
encoded and decoded efficiently due to their elegant alge- 
braic structures [12]. However, they usually do not possess 
desirable dc properties. Line codes, on the other hand, are 
designed to have a zero dc component and limited run 
length to aid in the receiver synchronization and detection 
processes but typically offer little or no error-control capa- 
bilities. The dc-free attribute can be aclueved by strongly 
bounding the running disparity of the transmitted se- 
quences [7]. The disparity of a codeword is the difference 
between the number of ones and the number of zeros. We 
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let D denote the maximum running (cumulative) disparity 
after any bit position, while D' denotes the running dispar- 
ity at the end of a codeword. The run length is defined as 
the number of consecutive 1's or 0's in a sequence of coded 
bits. It is often given in the form ( I ,  I,), where 1 is equal to 
one less than the shortest run length, and L is equal to one 
less than the longest run length. Codes designed for digital 
transmission, such as the ones presented in this paper, 
have I = 0. The preferred codes for magnetic recording, on 
the other hand, usually have 12 1, i.e., the minimum spac- 
ing between transitions is longer than a symbol interval. 

We study a class of dc-free coset codes for use on 
lugh-speed optical links and similar channels, where dc-free 
binary symbol formats, channel error control, and lugh- 
speed (or low-complexity) encoding/decoding are de- 
manded. The dc-free coset code is denoted by (n, k ,  D), 
where n is the codeword length and k is the information 
block length. In Section I1 we first present a class of 
dc-free coset codes that have particularly simple encoding 
and decoding algorithms. This section also serves as an 
introduction to the error-correcting dc-free coset codes 
studied in Section 111. The dc-free coset code considered in 
Section I1 is defined by u =  (0, u ) +  al,, where o is an 
n-bit codeword, u is an (n -1)-bit information vector, 
a E {O, l} ,  and 1, is the n-bit all-one vector. The coset 
code consists of the linear code 

Tl= { u f I u , = ( O , u ) } ,  a = O  

and its coset, 
T2= {q ' Iu~=uf+1, ,} ,  a = l  

for i = 0,l;. -,2"-'-1. (In this paper, the "+" and ''E" 
operators indicate modulo-2 addition when applied to 
binary vectors.) The construction of the dc-free coset code 
is based on the idea of "vector space partitioning." The 
linear space of 2" vectors is partitioned into 2"-' disjoint 
subsets { A o , A l , ~ ~ ~ , A l , ~ ~ ~ , A 2 ~ ~ ~ ~ 1 } , w h e r e A , = { o , , v ~ } ,  
for i=0,1;.. ,2"-'-1. 

In Fig. 1 we show the general encoding scheme for the 
dc-free coset code. The parameter 0,' denotes the running 
disparity at the end of a codeword at time t (one time unit 
corresponding to the transmission period of a codeword). 
The encoding can be described as follows. Suppose an 
(n - ])-bit information vector u (corresponding to message 
i = 0,1,2; . .,2"-'- 1) is to be encoded at time t. The 
n - 1 bits are fed into the subset selector to select the 
subset A , .  Then 0," is used to select one of the code- 
words in A , ,  Le., either u, or u;, such that the output 
codeword sequence has the desired running disparity. 

0018-9448/88/0700-0786$01.00 01988 IEEE 
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Fig. 1. General encoding scheme for dc-free coset code. 

In Section I11 the idea of “vector space partitioning” is 
extended to “code vector space partitioning” to construct 
dc-free coset codes with error-correcting capability. The 
construction of these codes is motivated by the recent 
work of Herro and Hu [4]. The 2k+Jcodewords generated 
by an (n, k + J )  linear block code are partitioned into 2k 
disjoint subsets {Bo ,  B,; * e ,  B,k -1}, and each k-bit infor- 
mation vector is associated with exactly one subset. The 
encoding can also be described by Fig. 1 if A ,  is replaced 
by B,. Because only codewords of the (n, k + J )  linear 
block code are transmitted, the error-correcting dc-free 
coset code has the same error-correcting capability as the 
linear block code, and the encoder/decoder structures of 
the linear block code can be used to encode and decode 
the error-correcting dc-free coset code with only slight 
modifications. 

In Section IV we present a systematic method for con- 
structing error-correcting dc-free coset codes from BCH 
codes. Codes of practical interest are also given and listed. 
Many of the codes we found have low disparity levels (a 
small running digital sum) and good error-correcting capa- 
bilities. Finally, in Section V we draw some conclusions 
from our results. 

11. DC-FREE COSET CODES-WITHOUT 
ERROR-CORRECTING CAPABILITY 

The ( n ,  k, D )  dc-free coset code is defined by 

0 = (0, u )  + a l ,  

= ( a , u + a l , _ , ) ,  a = 0 , 1  (1) 
where u is an n-bit codeword corresponding to a k = 

(n - 1)-bit information vector u, and 1, is the n-bit all-one 
vector. Equation (1) implies that an (n - 1)-bit information 
vector can be encoded into either (0 ,u )  or ( l , u + l n p l ) ,  
both of which have the same absolute disparity but oppo- 
site polarity. The encoding rule requires that the disparity 
polarity of consecutive codewords with nonzero disparity 
alternates. 

Encoding: Suppose an ( n - 1)-bit information vector u 
is to be encoded at time t. Let D,‘l be the running 
disparity at the end of a codeword at time t - 1. We 

proceed as follows: 

time t ;  
1) IJ + (0, u) ,  D,‘ + D/-l; let d ,  be the disparity of IJ at 

2) if D,‘-d, 5 0, 0,‘ +- D,‘ + d, ,  and go to 4; else go to 3; 

4) encode the next n - 1 information bits. 

Decoding: Let 6 = ( el, e,, . . ,e,) be the received ver- 

1) if fil = 0, ri = ( e,, f i 3 , .  . . , e,), and go to 2; else, ri = 
(e2, c3; . -, C , ) + l , - l  = (e;, 6;;. . ,e;), and go to 2; 

2) decode the next n-bit received word. 

From the encoding rule, we see that the running disparity 
at the end of any codeword is bounded by 

3 )  i) i) + l,, 0,‘ 6 0,‘ - d,, go to 4; 

sion of i): 

ID’\ ~ n .  ( 2 )  
(We have dropped the subscript t from D’ since these 
bounds hold for all codewords.) The maximum running 
disparity at any given bit position is given by 

( 3 )  

and the worst case occurs when the disparity at the end of 
a codeword is 0, followed by an all-one codeword, then 
followed by a codeword with [n/2J 1’s in its first [ n / 2 ]  
positions. The maximum run length equals 2n + 1 n /2 J, so 
that 

L = maximum run length - 1 = 2n + 15J-1 (4) 

and the worst case occurs when the disparity at the end of 
a codeword is n, followed by two all-zero codewords, then 
followed by a codeword with [ n / 2 ]  0’s in its first [n/2J 
positions. Table I lists a set of rate R = ( n  - l ) / n  dc-free 
coset codes. Also shown in Table I is the capacity C ( D )  
for the disparity constrained channel given by Chien [13]. 

TABLE I 
RATE R = ( n  - l)/n DC-FREE COSET CODES 

n D R C(D) 

4 6 0.75 0.963 
8 12 0.875 0.989 

16 24 0.938 0.997 
32 48 0.969 0.999 

111. DC-FREE COSET CODES- WITH 
ERROR-CORRECTING CAPABILITY 

In this section we will extend the idea of the previous 
section to construct dc-free coset codes with error-cor- 
recting capabilities. As we will see in the next section, 
error-correcting dc-free coset codes can be derived from 
BCH codes and will have almost the same dc properties as 
the codes constructed in the last section, with only a slight 
decrease in code rate. More importantly, these codes re- 
quire only simple encoding/decoding operations, wluch is 
in contrast to the block line codes found in the existing 
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literature. It is this feature that renders them very attrac- 
tive for applications in high-speed transmission links. 

A. Code Structure 

An (n, k + J )  linear block code C, is specified by its 
(k  + J ) x  n generator matrix G, .  If the code has a mini- 
mum distance d,, then it can correct t or fewer errors and 
simultaneously detect X or fewer errors provided that [12] 

2t + X +1 I d,. ( 5 )  
Although linear block codes can be designed for powerful 
error protection, they usually do not have good dc proper- 
ties. 

The (n, k, D )  error-correcting dc-free coset code, de- 
noted by C,, is defined by 

u = u [ G,G, ] + g ( 6 )  
where u is a k-bit information vector, and G,  is a k X 
(k  + J )  matrix, called the transfer matrix. The matrix G ,  
transfers the k information bits into the last k bits of the 
( k  + J)-bit vector uG,. That is, uG, has the form 
(0,O; - , O ,  u,, u,; . e ,  uk) .  The n-bit codeword 

I 

g =  c u,g,, a,=0,1 (7) 
J = 1  

is a linear combination of the first J rows of the generator 
matrix G ,  of C,. The codeword g plays a similar role to 
the vector 1, in (1) in Section 11, i.e., it is used to control 
the codeword disparity. (In (l), J = 1 and g = all,.) Since 
C, is a subset of c,, the minimum distance of C,, denoted 
by d e ,  is at least as large as d,, i.e., d ,  2 d,. Therefore, C, 
is at least as powerful as c, in error-correcting and error- 
detecting capability. 

To be effective in controlling codeword disparity, the 
first J rows of G ,  are chosen to satisfy 

supp(g,)nsupp(g,) =+, for i + j  (8) 

That is, the { g,} in (10) consist of J - 1 all-zero segments 
and one all-one segment. Obviously, the { g,} in (10) 
satisfy (8) and (9). Divide the n-bit codeword u in (6) into 
J segments, i.e., u = (u, ,  u,; . ., uJ), where u, is a w,-bit 
vector. Then g, only controls the disparity of the j t h  
segment u,. 

The k X ( k  + J )  matrix G ,  is given by 

r o  . . .  0 1 
I o  . . .  0 1  

0 "1 
where Ik is the k x k identity matrix. From (6), (7), and 
(11) we obtain 

J 

u = uG,G, + g = (O,, u ) G ,  + a,g, 
;=l 

= (a,, a,,. . * u J ,  U )  + G , .  (12) 

Note that G,GT= I k .  From (12) the k-bit information 
vector u can be recovered from 

u = (a,, a,,. . . , a,, U )  GT. (13) 

Example 1: Let n = 7, k = 2, and J = 2. Let the d ,  = 3 
(7,4) Hamming code be generated by 

r l  1 1  o o o 01 
0 0 0 1 1 1 1  

G , =  I 1 1 0 1 0 1 0  
L 1 0  0 1 0  0 11 

Note that the first two rows of G, ,  g, = (1 1 1 0 0 0 0) 
and g, = (0 0 0 1 1 1 1) satisfy (10). The 2 X 4  matrix 
G,,  from (11) is given by 

G , = [ O  0 0 0 '1 1 '  

and The 2-bit information vector u = ( u,, u,) is then encoded 
g, +gz + . . . +g, = 1, 

where the support of g,, supp(g,), is the set of coordinates 
at which the components of g, are nonzero. Equation (8) 
implies that g, only controls the disparity of u at coordi- 
nates supp(g,), while (9) guarantees that the disparity at 
all the coordinates of u can be controlled. Let w, denote 
the Hamming weight of g,. Without loss of generality, we 
assume that' 

(9) into 
2 

u =  uG,G, + a,g, = (a l ,  a,, ulr u2)Gl.  
J = 1  

At the decoder, suppose (a,, a,, u,, u,) is recovered cor- 
rectly based on the (7,4) block code decoder, then 

& =  (a,,  a,, u1, u , ) G T =  (u1,uz). 

g,= ~ ~ w l ~ o w 2 ~ ~ w 3 ~ *  . .?OW,> 

g2= ~ ~ w ~ ~ ~ w 2 ~ ~ w ~ ~ ~ ~ ~ ~ ~ w ~ ~  
B. Encoding and Decoding 

Let 0,' be the disparity at the end of a codeword at time 
t. Let d, denote the disparity of the j t h  segment u, of u. If 
g, is added to u, the polarity of d, in the new codeword 
will change, and the disparity d, ,  i #  j ,  i =1,2,..  e ,  J ,  
remains the same as in the old codeword. The encoding 

g,= ( O W , ' O W 2 ' . . . ) O W , _ 1 ~ 1 W , ) .  (10) 

v 

'If g,, j = ~ 2 , .  . ., J satisfy (8) and (9) but are not in the form of (lo), 
the J vectors can be transformed into the form of (10) by reordering the 
coordinates of the original codewords since reordering Droduces an 

rule, as in Section 11, also requires that the disparity 
polarity Of consecutive nonzero disparity segments 

I - I  

equivalent code. nate. 
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Encoding: Suppose a k-bit information vector u is to be ever, by reasoning similar to that given in Section 11, D 
and L can be upper-bounded by encoded at time t. We proceed as follows: 

1) u+uGzG,, j + l ,  D,'+D,',; 
2) if D : . d , I O ,  D : + D : + d , ,  j + j + l , g o t o 4 ; e l s e  

go to 3; 
3)  u + V + g , ,  D : + D ; - d , ,  j + j + l , g o t o 4 ;  
4) if j I J, go to 2; else encode the next information 

Decoding: Let 6 be the received version of u = 

1) find ( d l ,  h,; a ,  d,, 2) based on the block code c b  

block. 

(a, ,  a,,' * * ,  a,, u)G,: 

with generator matrix G,; 
2) ri = (d,, a^, . * d j ,  ri)G,T; 
3)  decode the next received word. 

Example 2: Here we illustrate the encoding/decoding 
rules by using the code of Example 1. Suppose 0:- = 1, 
and u = (0 0) is to be sent at time t .  From the encoding 
rule, we have the following: 

1) v=uG,Gl=(O 0 0 0 0 0 0),  j + l ,  D,'+D:- ,= l ;  
2 )  d J =  d , =  - 3 ,  D : . d l =  - 3  < 0, D , ' + l - 3 =  - 2 ,  

j + j + I  = 2; 
3)  d = d ,  = -4, D,'.d2 = 8 > 0, then 
4) uJ=(0 0 0 0 0 0 O ) + g , = ( O  0 0 1 1  1 I), 

j + j +1= 3; 

block. 
5) since j = 3 > J = 2, encode the next information 

Therefore, u is encoded as u =  (0 0 0 1 1 1 1). Note that 
u = (0 1 0 O)G,, (i.e., a,  = 0 and a ,  = 1). 

Suppose that at most one channel error occurred during 
the transmission, i.e., the received word is decoded cor- 
rectly. Then at the Hamming code decoder output we have 
(dl, d,, ii,, 22,) = (0 1 0 0). The estimated information 
vector is 

h=(O 1 0 O)G,T=(O 1 0 0) [; f ( 0  o), 

which is the transmitted information vector. 

C. Code Properties 

and 

L I 2w,, + 1 - 1 
respectively, where 

w,,= max wj. 
1a;:J 

The actual values of JDI and L may be significantly 
smaller than the bounds. This is because a codeword in C, 
is subject to many constraints. For example, the blocks 
that yield the worst case disparity and run length may not 
even be codewords in C,. Even if these blocks are code- 
words in C,, their weight w must satisfy w s ( n  + wm,)/2. 

Before finishing this section we give some further com- 
ments on the code construction. If the J vectors g, ,  
j = 1,2,. . , J, all have equal weight, then w, = n / J  for all 
j .  If J equal weight vectors cannot be found, then the { g,} 
should be chosen such that their weights are as equal as 
possible. In any case, a larger value of J will result in 
smaller values of ID1 and L. Therefore, the determination 
of the maximum possible value of J is very important. 
This is stated in the following theorem. 

Theorem I :  For an (n, k + J )  linear block code of 
minimum distance d, ,  the number of vectors satisfying (8) 
and (9) is bounded by 

Proof: Because the J vectors g,, g,; . , gJ satisfy 
(8) and (9), we have 

w j = n .  
;=l 

However, since for all j ,  d ,  I w,, 
J 

J - d , I  w j = n  
; = l  

In this subsection we will study the dc properties of the 
( n ,  k ,  D )  error-correcting coset code just presented. n 
Specifically, we give bounds on D and L. The subsection 
ends with some general comments on the code construc- 
tion. 

From the encoding rule we easily see that the disparity 

Or 

J I - .  
d b  

Since J is an integer, we must have JI In/d,]. Q.E.D. 

IV. CONSTRUCTION OF ERROR-CORRECTING 
at the end of any segment of a codeword is bounded by DC-FREE COSET CODES FROM BCH CODES 

(I4) A .  BCH Code Properties ID'( 5 max w, 

where w, is the Hamming weight of g,. The precise deriva- 
tions of the maximum running disparity ( D )  and the 
largest run length ( L )  require detailed knowledge of the 
algebraic structures of the specified linear block code. 
Hence it is impossible to give a unified derivation. How- 

l < , < J  

BCH codes are a powerful class of codes which have 
well-defined code structures. A large selection of block 
lengths, code rates, alphabet sizes, and code minimum 
distances are possible. The most interesting codes to us are 
the binary codes. For any positive integer b, ( b  > 3), and 
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t( t < 2, - l), there exists a binary BCH code with the 
following parameters [ 121: 

are J code polynomials of the t-error-correcting BCH code 
CBCH generated by (18) and their corresponding code- 
words satisfy block length: n = 2" - 1; 

minimum distance: d, 2 2t + 1. 

This code, denoted C,,,, is called a t-error-correcting 
BCH code. Since BCH codes are a class of cyclic codes, we 
treat the components of a codeword 2) = (u l ,  u2,  u3 , -  . e, u,,) 
as the coefficients of a polynomial over GF(2) as follows: 

number of parity-check bits: n - ( k  + J )  I bt; SUPP (z,) n SUPP (z,) = +, i + j (23a) 

z1 + z 2  + . * + Z J  = 1,. (23b) 

and 

Proof: Because m . J  = 2, - 1 = n, the polynomial 
X 2 h - 1 +  1 can be factored as 

u (  x )  = u1 + u 2 x +  u3x2  + . . . + U,,X,-,. X2b-1 + 1 = (1 + X J ) Z l (  x )  
The correspondence between the codeword u and the 

polynomial u ( X )  is one to one. The polynomial u ( X )  is 
called the code polynomial of u. Hereafter, we use the 
terms "codeword" and "code polynomial" interchange- 
ably. The t-error-correcting BCH code is generated by the 
generator polynomial 

g (  x ,  = LCM { @l( @ 2 (  x ) 7 .  ' ' 7 @21( x ) }  
= LCM { @I(  x ,  9 @3( x ,  9 ' . ' 7 @ 2 t -  1 (  x ) }  

g l x +  g 2 x 2  + * * ' + g n - k - J - l X n - k - J - l  

(18) + Xn-k-J 

where GI ( X )  is the minimal polynomial of aI7 and a is a 
primitive element in GF(2,). Therefore, the generator 
polynomial g ( X )  of the t-error-correcting BCH code of 
length 2'-1 is the lowest degree polynomial over GF(2) 
which has 

a, a2, a3; . . , a2t (19) 
as its roots (Le., g ( a ' )  = 0 for 1 I i I 2t). The code poly- 
nomial u ( X )  of the ( n ,  k + J )  BCH code is generated 
from 

where 

z 1 ( X ) = 1 + X J + X 2 J +  . . .  + x ( m - ' ) J  

Let a be a primitive element of GF(2'). Since ( a m ) J =  
& - 1  = 1 , the polynomial X J  + 1 has a' = 1, am, 
a2m,- . ., a(J-')m as all its roots. Since the 2" - 1 nonzero 
elements of GF(2,) form all the roots of X2'-' + 1, zl(  X )  
has a' as a root if and only if i is not a multiple of m .  
From (21b) we have m 2 2t + 1, so a, a2, a3; . ., a2' are the 
roots of zl (  X ) .  From the definition of g(  X )  given in (18) 
and (19), we see that z l ( X )  is a multiple of g ( X ) ,  and 
from (20) it is a code polynomial of the t-error-correcting 
BCH code, C,,,, generated by g ( X ) .  Clearly, z 2 ( X )  = 

Xzl (  X ) ;  . . , zJ( X )  = XJ- l z1 (  X )  are also code polynomi- 
als. From (22) we observe that for i # j ,  and i, j = 1,2, 
. . . , J ,  z I (  X )  and z,( X )  do not have any common non- 

zero coefficients, and therefore their corresponding code- 
words zl, z 2 ,  * * . , z J  satisfy (23a). Moreover, since each z, 
has a weight m ,  and m . J = 2' - 1, their modulo two sum 
must have a weight n = 2" - 1, which proves (23b). 

Example 3: Let a be a primitive element of GF(24). 
The (15,ll) d, = 3, t = 1 BCH code is generated by 

2t + 1 = 3, m can be either 3 or 5. 
= 3 and where the coefficients in u ( X ) ,  (ul, ~ 2 , '  . . 7  ~ k + ~ ) ,  are the 

k + J information bits to be encoded. A polynomial u (  X )  
1) Let = 5. From (22) we have 

is a code polynomial if and only if it has a, a2, a3 , .  . . , z l ( x )  =i+ x5+ xi0 

as roots [12]. 
The construction of the (n, k ,  0) error-correcting dc-free 

coset code from a BCH code is based on the following 
theorem. 

z2(x)=x+x6+x11 

z3(  x )  = x 2  + x7+  X l 2  

z4 (  x )  = x3  + x 8  + x'3 
Theorem 2: Let m and J be two odd integers such that z5 (  x )  = x4 + x9 + X l 4 .  

m .J  = 2" - 1 (21a) We can easily see that g(  X )  divides zl(  X ) ,  in fact, 
and 

Then 
m 2 2 t + 1  

tl( x )  = (1 + x +  x2  + x3  + x 6 ) g (  x ) .  
(21b) 

2) Let m = 5 and J =  3. From (22) we have 

z l ( x )  = 1 +  x J +  x2J+ * f + x ( m - l ) J  z 1 ( x ) = 1 + x 3 + x 6 + x 9 + x 1 2  

z2( x )  = X Z l b )  z 2 ( x ) = x + x 4 + x 7 + x 1 0 + x 1 3  
z 3 ( x ) = x 2 + x 5 + x ~ + x " + x ' 4 .  

Z J (  x )  = xJ- 'z , (  x )  (22) It can be seen that zl (  X )  = (1 + X +  X 2  + X 4  + X s ) g (  X ) .  
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G , = O  

B. Code Construction 

The encoding equation for the (n, k ,  0) error-correcting 
dc-free coset code is given by (6). The code can be con- 
structed from a BCH code by first finding the ( k  + J) X n 
generator matrix G, whose first J rows satisfy (10). 

For an (n,  k + J) t-error-correcting BCH code with two 
odd integers m and J such that m . J  = n and m 2 2t - 1, 
the generator matrix can take the following form: 

- - 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1  
0 1 0 0 0 0 1 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 1 1 0 0  

0 1 1  0 0 0 0 0 0 0 1 0  0 0 
0 0 1 0 0 0 0 1 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0  
0 0 0 1 1 0 0 0 0 0 0 0 1 0 0  
0 0 0 1 0 0 0 0 1 1 0 0 0 0 0  

where z I ,  j = 1,2,. . . , J ,  are the code vectors correspond- 
ing to the code polynominals z,(X) in (22), and z,, j =  
J + 1, J + 2,. . . , J + k ,  are the code vectors corresponding 
to the code polynomials 

G B C H = O  

ZJX) = xj-lg(x). (25 1 

r l O O I O O I O O I O O I O O  
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0  
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1  
0 0 0 1 1 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 1 1 0 0 1 0 0 0 0 0 0  

0 0 0 0 1 1  0 0 1 0  0 0 0 0 
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 1 1 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 1 1 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 1 1 0 0 1 0  

and 

L 1 2 m +  - -1 Kl 
respectively. In Table I1 we give the code parameters for 
some (n, k ,  D )  codes constructed from BCH codes of 
length n. 

It can be seen that the k .t J code vectors in (24) are 
linearly independent. The desired generator matrix G, can 
then be obtained by performing a permutation u on the 
columns of GBc, such that 

TABLE I1 
(n. k ,  D) ERROR-CORIECTING D C - F W E  COSET CODES CONSTRUCTED 

FROM BCH CODES OF LENGTH n 

Upper bound 
n k R on D t 

The new (n,  k + J )  block code generated by G ,  is equiv- 
alent to the BCH code CBcH, Le., they have the same 
weight distribution. 

Example 4: In this example, we construct an n =15, 
k = 8 error-correcting dc-free coset code from the (15,ll) 
t =1 BCH code considered in Example 3. That is, with 
5=3 and m = 5 ,  we find the 11x15 matrix G,. The 
generator matrix GBCH, from (24), (25), and Example 3, is 
given by 

15 
15 
15 
63 
63 
63 
63 

255 
255 
255 
255 
255 
255 
255 
255 
255 
255 

8 
4 
6 

48 
42 
36 
36 

237 
222 
214 
206 
198 
190 
182 
196 
188 
162 

0.533 
0.267 
0.4 
0.762 
0.667 
0.571 
0.571 
0.929 
0.871 
0.839 
0.808 
0.776 
0.745 
0.714 
0.769 
0.737 
0.635 

7 
7 
4 

10 
10 
10 
4 

22 
22 
22 
22 
22 
22 
22 
7 
7 
4 

1 
2 
1 
1 
2 
3 
1 
1 
2 
3 
4 
5 
6 
7 
1 
2 
1 

V. CONCLUSION 

We introduced a class of error-correcting DC-free coset 
codes for high-speed fiber optic communication links and 
similar channels. The codes were derived from partitioning 
linear block codes as coset codes so that high-speed encod- 
ing and decoding could be achieved. 

In Section 111 we gave the geiieral description of the 
(n, k ,  0) error-correcting dc-free coset codes. The key 
problem in code design requires the finding of J basis 
vectors g, ,  g2;  ., gJ which sum to 1, and have disjoint 
supports. The solution to this problem was presented in 
Theorem 2 in Section IV for a large class of primitive 
binary BCH codes. Codes of practical interest constructed 
from BCH codes were listed in Table 11. The (15,8,7) and 
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the (15,6,4) codes in Table I1 can be compared with the 
(16,8,5) code given in [2]. They all have an error-correcting 
capability of r =1, and their code rates are 0.53, 0.4, and 
0.5, respectively. However, the decoding of the (15,8,7) 
and the (15,6,4) codes are far simpler than the decoding of 
the (16,8,5) code. The decoders for our codes can be 
implemented with modified Hamming decoders, while the 
code in [2] requires a 64K X 8 bit table. 

The advantage of increasing the block size is apparent 
from Table 11. The single-error-correcting (63,36,4) and 
the (255,162,4) codes have lower disparity bounds than 
the rate 0.5 code presented in [2] but have rates 0.57 and 
0.63, respectively. The double-error-correcting (255,188,7) 
code has the same disparity bound as the (15,8,7) rate 0.53 
code but has a rate of 0.73. If even longer block lengths are 
acceptable, higher rates and/or better dc performance is 
achievable with these codes. 
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