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Abstract. Signcryption is a new cryptographic primitive that per-
forms signing and encryption simultaneously, at a cost significantly
lower than that required by the traditional signature-then-encryption
approach. In this paper, we present a security analysis of two such
schemes: the Huang-Chang convertible signcryption scheme [12], and
the Kwak-Moon group signcryption scheme [13]. Our results show that
both schemes are insecure. Specifically, the Huang-Chang scheme fails
to provide confidentiality, while the Kwak-Moon scheme does not sat-
isfy the properties of unforgeability, coalition-resistance, and traceability.

Keywords: Signcryption, digital signature, encryption.

1 Introduction

Background. In the area of computer communications and electronic transac-
tions, a very important concern is how to send data in a confidential and authen-
ticated way. Usually, confidentiality of delivered data is provided by encryption
algorithms, and authentication of messages is guaranteed by digital signatures.
In the traditional paradigm, these two cryptographic operations are performed in
the order of signature-then-encryption. Zheng [25,26] first introduced an interest-
ing notion called signcryption to provide confidentiality, unforgeability, and non-
repudiation for the delivered data simultaneously. The motivation is to achieve
significantly lower overheads on both aspects of computation and communica-
tions than that of the traditional signature-then-encryption paradigm.

Following Zheng’s pioneering work, a number of new schemes and improve-
ments have been proposed [3,18,24,27,1,21,6,12,13,14], while literatures [22,4,1,
6] study the formal models and security proofs for signcryption schemes. Origi-
nally, signcryption is performed by a sender Alice for a designated receiver Bob.
In [26], a variant is proposed to support multiple designated receivers. Noticed
that the non-repudiation protocols in [26] are inefficient since they are based
on interactive zero-knowledge proofs, Bao and Deng [3] presented schemes so
that a designated receiver can efficiently convert a signcrypted message into a
publicly verifiable signature. Based on the same idea, Yum and Lee [24], and
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Shin et al. [21] proposed efficient schemes based on KCDSA and DSA [9]. In this
paper, we call such schemes convertible signcryptions. In addition, Wang et al.
[23] identified an interesting attack on a signcryption scheme proposed in [15].
Their attack allows a dishonest receiver Bob to forge a valid signcrypted message
as if it were generated by Alice, under the assumption that Bob knows Alice’s
public key when he registers his public key. Furthermore, a newly convertible
scheme based on the Schnorr signature scheme is presented in [23].

In [13], Kwak and Moon introduced a new notion called group signcryption
by combining the concepts of group signature [8,7,2] and signcryption [25,26]
together. In such a scheme, a member Alice from a sending group GA can produce
a signcrypted message for the receiving group GB so that any member of GB can
unsigncrypt such a ciphertext and then know this ciphertext must be generated
by some member of GA, but cannot identify who is the actual signer. In the
event of dispute, however, as in group signatures, the group manager GMA of
GA can open a valid signcrypted message and then reveal the identity of the true
signer. To construct such a concrete scheme, Kwak and Moon first modified Mu
et al.’s distributed schemes [17,18] to obtain a distributed signcryption scheme
supporting the confidentiality of the sender’s ID. Then, based on this distributed
signcryption scheme, they developed a concrete group signcryption scheme.

In the following, we introduce the security requirements for the convertible
signcryption schemes and group signcryption schemes informally.

Convertible Signcryption. A convertible signcryption scheme should sat-
isfy the following security requirements [3,12]:

– Unforgeability: Except Alice, any attacker (including Bob) cannot forge a
valid signcrypted message so that the verification equation is satisfied.

– Confidentiality: Except the designated receiver Bob, any third party cannot
derive the plaintext from the signcrypted message.

– Non-repudiation: Once Alice generated a valid signcryption message, she can-
not deny this fact. In other words, Bob can prove (maybe inefficiently) to a
third party that such a signcrypted message is indeed generated by Alice.

– Convertibility: For any signcrypted message for receiver Bob, he can efficiently
convert it into a publicly verifiable signature.

Note that those security requirements are almost the same as in standard
signcryption schemes [25,26], except the convertibility.

Group Signcryption. As the combination of group signatures [8,7,2] and
signcryptions [25], a secure group signcryption scheme must satisfy the following
security requirements [13]:

– Correctness: The signcrypted message produced by a group member must be
accepted by the unsigncryption procedure.

– Unforgeability: Only valid group members are able to signcrypt a message on
behalf of the group.

– Anonymity: With a valid decrypted message, identifying the individual who
signcrypted the message is computationally hard for anyone but the group
manager.
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– Unlinkability: Deciding whether two valid unsigncrypted messages were gen-
erated by the same group member is computationally hard for anyone but
the group manager.

– Exculpability: Neither a group member nor the group manager can signcrypt
on behalf of other group members.

– Traceability: For any valid unsigncrypted message, the group manager can
open it and find the true signer.

– Coalition-resistance: This means that a colluding subset of group members
cannot generate a valid signcryption so that the group manager is unable to
link it to one of the colluding group members.

– Confidentiality: Except the members belonging to the receiving group, any
other party cannot derive the unsigncrypted message from the signcrypted
message.

Our Work. In this paper, we present a security analysis of the Huang-Chang
convertible signcryption scheme [12], and the Kwak-Moon group signcryption
scheme [13]. Note that authenticated encryption does not necessarily provide
the property of non-repudiation, so we call Huang-Chang scheme as convert-
ible signcryption scheme, instead of convertible authenticated scheme. Our re-
sults show that both schemes do not meet all the desired security requirements.
More Specifically, the Huang-Chang fails to provide confidentiality, while the
Kwak-Moon scheme does not satisfy the properties of unforgeability, coalition-
resistance, and traceability. In our analysis, we not only demonstrate concrete
attacks to show the insecurity of those two schemes, but also discuss the reasons
leading to such security flaws.

Organization. For self-contained, we first briefly review Zheng’s original
signcryption schemes in Section 2. Then, we review and analyze the Huang-
Chang scheme and the Kwak-Moon scheme in Sections 3 and 4, respectively.
Finally, Section 5 concludes the paper and proposes some future work.

2 Review of Zheng’s Signcryption Schemes

In Zheng’s two original signcryption schemes shown below, Alice signcrypts
a message m and Bob unsigncrypts the ciphertext (c, r, s). Here, (xa, ya =
gxa mod p) and (xb, yb = gxb mod p) denote the certified key pairs of Alice
and Bob, respectively; H(·) is a strong one-way hash function; Hk(·) a keyed
one-way hash function with key k; and (Ek, Dk) a pair of symmetric encryp-
tion/decryption algorithms. Note that Zheng’s schemes are based on the Digital
Signature Standard (DSS) [9], but with a minor modification to make his schemes
more efficient. The two modified versions of DSS are referred to as SDSS1 and
SDSS2, according to [25]. For more discussions on the security and efficiency of
Zheng’s schemes, please refer to [25,26,4].
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Alice
choose z ∈R Zq

compute k = yz
b mod p

split k into k1 and k2
compute r = Hk2(m)

s = z(r + xa)−1 mod q if SDSS1
s = z(1 + xa · r)−1 mod q if SDSS2
c = Ek1(m)

−→ (c, r, s) −→ Bob
k = (ya · gr)s·xb mod p if SDSS1
k = (yr

a · g)s·xb mod p if SDSS2
split k into k1 and k2
compute m = Dk1(c)
verify r ≡ Hk2(m)

3 The Huang-Chang Scheme and Its Security

3.1 Review of the Huang-Chang Scheme

The Huang-Chang scheme [12] is a combination of the the ElGamal encryption
system [10] and the Schnorr signature scheme [20]. There are four phases in their
scheme: setup, signcryption, unsigncryption and conversion. In the setup phase,
system parameters are set. At the same time, a sender Alice and a receiver Bob
register their public keys with a certificate authority (CA). In the signcryption
phase, the signer Alice sincrypts a message for a specified receiver Bob. Using the
unsigncrption algorithm, Bob checks whether an alleged ciphertext is generated
by Alice. In the event of dispute, by using the conversion algorithm, Bob converts
a valid ciphertext into a publicly verifiable signature to convince a judge (or any
third party) that the ciphertex is indeed generated by Alice.
(1) Setup. Initially, the system parameters (p, q, g) are set, where p and q are
two large primes satisfying q|(p − 1), and g ∈ Z

∗
p is an element of order q. It

is assumed that the discrete logarithm (DL) problem and computational Diffie-
Hellman (CDH) problem are difficult in the multiplicative subgroup Gq = 〈g〉.
At the same time, a publicly known one-way hash function H(·) is selected.
In addition, each user i in the system picks a random number xi ∈R Zq as its
private key, and then registers the corresponding public key yi = gxi mod p with
the CA. In the following, we use subscripts a and b to denote the sender Alice
and the receiver Bob, respectively. For example, (xa, ya) and (xb, yb) are the key
pairs of Alice and Bob, respectively.
(2) Signcryption. To signcrypt a message m ∈ Zp for the receiver Bob, the
sender Alice does the following using her private key xa.

(2.1) Pick a random number k ∈R Z
∗
p, and compute c = m · y−k

b mod p.
(2.2) Compute r = H(m, yb, g

k mod p) mod q, and s = k − xar mod q.
(2.3) Finally, send the ciphertext (c, r, s) to the receiver Bob.
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(3) Unsigncryption. Upon receiving the ciphertext (c, r, s), the receiver Bob
uses his private key xb to recover message m and check its validity as follows.

(3.1) Recover the message m by

m = c · (yr
a · gs)xb mod p. (1)

(3.2) Accept the ciphertext (c, r, s) iff the following equality holds:

r ≡ H(m, yb, y
r
ags mod p) mod q. (2)

(4) Conversion. In later potential disputes, Bob just needs to reveal the mes-
sage m and the corresponding signature (r, s). Then, a judge (or any third party)
can check whether the triple (m, r, s) satisfies equation (2). If the answer is pos-
itive, it is concluded that Alice indeed generated the signature (r, s) for Bob.

3.2 The Secuity of the Huang-Chang Scheme

Obviously, the Huang-Chang scheme is indeed the combination of the ElGamal
encryption algorithm and the Schnorr signature scheme. At the same time, it is
widely believed that the ElGamal cryptosytem is secure in practice. Furthermore,
the security of the Schnorr signature scheme is proved to be equivalent to the
DL problem [19]. Based on the above observations, Huang and Chang provided
elaborate but informal analysis to show that their scheme is also secure. Actually,
they claimed that their scheme satisfies the following three security requirements:

(1) Unforgeability: Except Alice, any attacker (including Bob) cannot forge a
valid ciphertext (c, r, s) for any message m so that the verification equations
(1) and (2) are satisfied.

(2) Confidentiality: Except the designated receiver Bob, any third party cannot
derive the message m from the ciphertext (c, r, s).

(3) Non-repudiation: Once Bob reveals a triple (m, r, s), anybody can verify that
(r, s) is Alice’s signature. Therefore, a judge can settle a possible dispute
between Alice and Bob.

We note that the Huang-Chang scheme indeed satisfies the unforgeability
and non-repudiation requirements. The reason is that if an adaptive attacker
(including Bob) can forge a valid ciphertext triple (c, r, s) for a new message m so
that both equations (1) and (2) hold, this exactly means the attacker has forged
a standard Schnorr signature (r, s) for the message m||yb. The latter is contrary
to the known result that the Schnorr signature is existentially unforgeable [11] in
the random oracle model [5], which is proved by Pointcheval and Stern in [19].

The correctness of their conclusion on the confidentiality is another story.
Firstly, let yab = gxa·xb mod p, then equation (1) can be re-written as

m = c · yr
ab · ys

b mod p. (3)

This equation implies that if the value yab is known, the plaintext m can be
derived from ciphertext (c, r, s) and Bob’s public keys yb directly. So, the value
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of yab plays a pivotal role in the Huang-Chang scheme. Any party other than
Alice and Bob cannot compute the value of yab from ya and yb, since it is assumed
that the CDH assumption hold in the subgroup Gq = 〈g〉. However, the point
is that equation (3) also means the value of yab can be carried out from a valid
ciphertext (c, r, s) by the following equation:

yab = (m · c−1 · y−s
b )r−1

mod p. (4)

Therefore, if an eavesdropper obtains a valid ciphertext (c, r, s) for a message
m, he or she can compute the value of yab from equation (4). Then, when a new
valid ciphertext (c′, r′, s′) is received or intercepted, the eavesdropper can decrypt
it easily by computing m′ = c′ ·yr′

ab ·ys′
b mod p. In other words, the Huang-Chang

scheme is vulnerable to the known-plaintext attack. Consequently, the security
requirement of confidentiality is not guaranteed.

To sincrypt a large message m, i.e., m ≥ p, the authors of [12] also proposed
a variant of the above scheme called convertible authenticated encryption scheme
with message linkage. The above attack applies to this variant, too. Specifically,
one can get the value of yab from a known message-ciphertext pair. Then, using
yab any new ciphertext can be decrypted easily by first computing the hidden
random number t = c · yr

ab · ys
b mod p, and then recovering each block of the

plaintext one by one. For more details, please check Section 3.1 of [12].

4 The Kwak-Moon Scheme and Its Security

4.1 Review of the Kwak-Moon Scheme

Similar to group signatures, the Kwak-Moon group signcryption scheme consists
of five procedures: setup, join, signcryption, unsigncryption, and open. In the
setup procedure, system parameters are set, while the join procedure allows
each system user to register with the corresponding group manager and then
get his/her group membership certificate. Then, using this group membership
certificate one user can generate signcrypted messages on behalf of the group
according to unsigncryption procedures, and sends it to the members in the
receiving group. In unsigncryption procedures, users verify signcrypted messages
originated from the sending group. By using the open procedure, the sending
group manager can find out the identity of the true signer who issued a valid
signcrypted messages on behalf of the sending group.
(1) Setup. To setup a group, the group manager GMA performs as follows:

(1.1) Set group manager GMA’s RSA signature public key (nA, eA) and private
key dA, where the RSA modulus nA is the product of two random primes with
approximately equal length, and (eA, dA) satisfies eA · dA = 1 mod φ(nA).

(1.2) Select a discrete logarithm triple (p, q, g), where p and q are two large
primes such q|(p − 1), and g ∈ Z

∗
p is a generator of order q, such that the

DL assumption and CDH assumption hold in the multiplicative subgroup
Gq = 〈g〉. In addition, select a publicly known one-way hash function H(·)
and a random element h ∈R Z

∗
p.
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(1.3) The group manager GMA keeps dA as his secret key, and publishes
(p, q, g, h, H(·), nA, eA) as the system parameters.

(2) Join. When a user l wants to join a group, the following interactive protocols
is executed.

(2.1) User l who wants to join the group GA generates his/her own group
private key εl, and computes τl = hεl mod p as group membership key. Then
he transfers τl to the group manager GMA through secure channel and proves
to group manager GMA that he knows the discrete logarithm of τl to the
base h. εl should be kept secret by the user l.

(2.2) Then, group manager GMA calculates vl = τdA

l mod nA as user l’s mem-
bership certificate as in [7].

(2.3) When n registration applications from n users are received, group manager
GMA computes the following polynomial f(x)’s coefficients αi, i = 1, · · · , n:

f(x) =
n∏

i=1

(x− τi) =
n∑

i=0

αix
i ∈ Zq[x]. (5)

Using the set {α0, α1, ..., αn}, a new set {α′
0, α

′
1, · · · , α′

n} is defined, where
α′

0 = α0, α
′
n = αn, α′

1 = · · · = α′
n−1 =

∑n−1
i=1 αi mod q. Let βi = gα′

i mod p

for each i = 1, · · · , n, and Al =
∑n−1

i=1,j=1,i �=j αjτ
i
l mod q for each l = 1, · · · , n.

Then, each τl satisfies the following property:

F ′(τl) = g−Al

n∏

i=0

βi
τ i

l = g−Alg
∑n

i=0 α′
iτ

i
l = gf(τl) = 1 mod p. (6)

(2.4) In order to create a group public key, group manager GMA picks a random
number γ ∈R Z

∗
q , and sets ρl = −γ · Al mod q for user l. The group public

key is defined as {β0, ..., βn+1}, where βn+1 = gγ−1
mod p.

(2.5) Finally, the pair (vl, ρl) is sent to group member l, while the group manager
keeps γ, and all {αi}, {τl} secret.

(3) Signcryption. Now we assume that two groups, GA and GB , are set up
according to the above procedures, and that the sender Alice belongs to GA and
the receiver Bob belongs to GB . In order to signcrypt a message m for group
GB , Alice with her signing key (εa, τa, va) performs as follows.

(3.1) Choose two random numbers z, t ∈R Zq, and compute k = gz mod p.
(3.2) Split k into k1 and k2 with appropriate lengths.
(3.3) Evaluate r = Hk2(m).
(3.4) Set s = z(r + εa · t)−1 mod q if SDSS1, or s = z(1 + εa · r · t)−1 mod q if

SDSS2.
(3.5) Evaluate w = H(m).
(3.6) Compute λa = (teA · τa mod nA) mod q, δa = gεat mod p, and θa =

t · va mod nA.
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(3.7) The signcrypted message (c1, c2) is computed by

c1 ← {a0, ..., an+2} ← {kβwτa
0 , βwτa

1 , ..., βwτa
n+1, g

λa},
c2 = Ek1(IDGA

||m||r||s||δa||θa),

where IDGA
is the identity of group GA that includes GMA’s public key

(nA, eA).

(4) Unsigncryption. With the secret information (τb, ρb), Bob (or any member
of GB) can unsigncrypt the signcrypted message (c1, c2) as follows.

(4.1) Recover the secret session key k by

k = a0(
n∏

i=1

a
τ i

b
i )aρb

n+1 = gz
n∏

i=0

gwτaαiτ
i
b = gz(gf(τb))wτa = gz mod p. (7)

(4.2) Split k into k1 and k2.
(4.3) Decrypt Dk1(c2) = IDGA

||m||r||s||δa||θa.
(4.4) Compute λ′

a = (θa
eA mod nA) mod q.

(4.5) Accept (c1, c2) iff r ≡ Hk2(m), k ≡ (δa · gr)s mod p if SDSS1 or k ≡
(g · δr

a)s mod p if SDSS2, and an+2 ≡ gλ′
a mod p.

(5) Open. In case of disputes, Bob forwards the (c1, w) to group GA’s manager
GMA. Then, only the group manager GMA can find the group member, Alice,
who issued this signcryption. To do so, GMA searches which τl belonging to GA

satisfying ai = (βw
i )τl , for all i = 1, · · · , n + 1.

4.2 The Secuity of the Kwak-Moon Scheme

The authors of [13] analyzed their scheme on both aspects of security and ef-
ficiency, and claimed that as the combination of group signatures [8,7,2] and
signcryptions [25], their scheme satisfies all security requirements for group sign-
cryption scheme listed in Section 1. However, we find this is not the fact. We
now demonstrate two attacks to show that the Kwak-Moon scheme does not
satisfy the following security requirements: coalition-resistance, traceability, and
unforgeability.

Untraceability. In [13], it is argued that each vl is the group manager’s
RSA signature for member l’s group membership key τl and is sent to member l
securely. So, no colluding subset can generate a valid correlated (εi, τi, vi) without
the help of the right member and the group manager. This conclusion is incorrect.
Firstly, after a careful checking the signcryption procedure we know that to
generate a signcrypted message on behalf of the group GA, it is sufficient that
if one possesses a triple (ε, τ, v) such that the following equations are satisfied:

τ = hε mod p, and v = τdA mod nA. (8)
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Therefore, a group member, say Alice, can forge a new triple (ε′
a, τ ′

a, v′
a) from her

old triple (εa, τa, va) by first selecting a random number ε, and then computing
(ε′

a, τ ′
a, v′

a) as

ε′
a = εa · ε mod q, τ ′

a = τ ε
a mod p, and v′

a = vε
a mod nA. (9)

It is easy to know that the resulting new triple (ε′
a, τ ′

a, v′
a) satisfies equations in

(8). Consequently, Alice can use it to generate valid but untraceable signcrypted
messages. That is, any member from receiving group will accept all signcrypted
messages generated by using (ε′

a, τ ′
a, v′

a), according to signcryption procedure.
When such signcrypted messages are presented, however, the group manager
GMA cannot identify the true singer, since Alice does not use her true certificate.
This attack implies that the property of coalition-resistance should be proved
rigorously.

Forgeability. In the following, we show that even with out any membership
certificate, an attacker can also forge signcrypted messages on behalf of the send-
ing group GA. In other words, the Kwak-Moon scheme is universally forgeable.
The authors of [13] argued that their scheme is unforgeable, since the keyed hash
function Hk(·) behaves as a random function, and the group member’s private
key εa is not revealed to anyone. However, such argument does not guarantee
the unforgeability. The basic idea of the following attack is to select random
values for ε, θ, and τ , but computing λ and δ as the desired values. To forge
a sincrypted message on behalf of group GA, an outsider without any system
secret can mount the following attack.

(1) Choose random numbers ε, z, t ∈R Zq, and compute k = gz mod p.
(2) Split k into k1 and k2 with appropriate lengths.
(3) Evaluate r = Hk2(m).
(4) Set s = z(r+ε · t)−1 mod q if SDSS1, or s = z(1+ε ·r · t)−1 mod q if SDSS2.
(5) Evaluate w = H(m).
(6) Select random number θ ∈R ZnA

, and compute λ = (θeA mod nA) mod q,
δ = gεt mod p.

(7) Pick a random number τ ∈R Zp, the signcrypted message (c1, c2) is com-
puted by

c1 ← {a0, · · · , an+2} ← {kβwτ
0 , βwτ

1 , · · · , βwτ
n+1, g

λ},
c2 = Ek1(IDGA

||m||r||s||δ||θ).
We explain our attack is successful. Firstly, note that equation (7) holds

for the above forged ciphertext (c1, c2), since this is due to the property of the
values (τb, ρb). This means any member of the receiving group, say Bob, can
recover the secret session key k. Then, he can decrypt c2 and get the values of
(IDGA

, m, r, s, δ, θ). By computing λ′ = (θeA mod nA) mod q (= λ), Bob will
find that r ≡ Hk2(m), k ≡ (δ · gr)s mod p if SDSS1 or k ≡ (g · δr)s mod p
if SDSS2, and an+2 ≡ gλ′

mod p. This is, Bob will accepts such forged pair
(c1, c2) as valid signcrypted messages. This attack results from the fact that the
relationships among components of a group membership certificate are not fully
used in sincryption procedure. In other words, to signcrypt a message in the
Kwak-Moon scheme it is not necessarily to have a group membership certificate.
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5 Conclusion

In this paper, we identified security flaws in two signcryption schemes proposed
in [12] and [13]. Our results showed that the convertible signcryption scheme
[12] fails to provide confidentiality, and the first group signcryption scheme [13]
is insecure. About this specifical type of cryptosystems, the following problems
seem interesting in future research: (a) presenting a formal model for group
signcryption, and proposing provably secure schemes; (b) Designing schemes to
support dynamic group member management in the sense that group member
can join or leave the group efficiently and dynamically; (c) Optimizing the open
procedure so that it does not linearly depend on the number of group members,
so that such schemes are suitable for large groups.
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