
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

12-2008

Privacy Engine for Context-Aware Enterprise Application Services Privacy Engine for Context-Aware Enterprise Application Services

Marion BLOUNT
IBM T.J. Watson Research Centre

John DAVIS
Ling Fling Inc

Maria EBLING
IBM T.J. Watson Research Centre

William JEROME
IBM T.J. Watson Research Centre

Barry LEIBA
IBM T.J. Watson Research Centre

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
BLOUNT, Marion; DAVIS, John; EBLING, Maria; JEROME, William; LEIBA, Barry; LIU, Xuan; and MISRA,
Archan. Privacy Engine for Context-Aware Enterprise Application Services. (2008). EUC 2008: Proceedings
of the 5th International Conference on Embedded and Ubiquitous Computing, December 17-20, Shanghai,
China. 94-100. Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/672

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F672&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F672&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Marion BLOUNT, John DAVIS, Maria EBLING, William JEROME, Barry LEIBA, Xuan LIU, and Archan MISRA

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/672

https://ink.library.smu.edu.sg/sis_research/672

Privacy Engine for Context-Aware Enterprise Application Services

Marion Blount1, John Davis2∗, Maria Ebling1, William Jerome1,
Barry Leiba1, Xuan Liu1, Archan Misra1

1 IBM T J Watson Research Center, 2 Ling Fling, Inc.
{mlblount, ebling, wfj, xuanliu, archan}@us.ibm.com; john@lingfling.com; leiba@watson.ibm.com

∗ This work was completed while John was working at IBM

Abstract

Satisfying the varied privacy preferences of
individuals, while exposing context data to authorized
applications and individuals, remains a major
challenge for context-aware computing. This paper
describes our experiences in building a middleware
component, the Context Privacy Engine (CPE), that
enforces a role-based, context-dependent privacy
model for enterprise domains. While fundamentally an
ACL-based access control scheme, CPE extends the
traditional ACL mechanism with usage control and
context constraints. This paper focuses on discussing
issues related to managing and evaluating context-
dependent privacy policies. Extensive experimental
studies with a production-grade implementation and
real-life context sources demonstrate that the CPE
can support a large number of concurrent requests.
The experiments also show valuable insight on how
context-retrieval can affect the privacy evaluation
process.

1. Introduction

Context-aware computing applications, such as real-
time asset tracking, location and calendar-aware
conferencing, and opportunistic collaboration, have
long held the promise of improving the productivity of
people and organizations. To offer the most benefit,
however, these applications require detailed knowledge
of the dynamic state of an individual, device or
business process. Privacy concerns thus remain a
serious roadblock (e.g., [1]) to the practical realization
of such pervasive computing scenarios.
 In this paper, we present the design and evaluation
of the Context Privacy Engine (CPE), a privacy engine
for regulating access to an individual's "context" data,
such as location, movement patterns, and desktop
activities. CPE does not directly enforce privacy, but is
used by a context service to assist in the controlled
release of sensitive information. An important aspect
of CPE’s design was the need to accommodate
context-dependent policies.

 At a high level, CPE is an extended ACL-based
mechanism for context-dependent access control. The
CPE privacy model specifies not only who can access
what data, but also for what purpose and under what
context. A variety of prior work (e.g., [3][4]) has
explored the use of ACL-based privacy systems.
However, CPE addresses unique challenges specific to
a large enterprise domain where large number of
concurrent access is a requirement. As we shall see,
providing low-latency authorization for a large number
of concurrent requests can incur a significant
performance issue, especially when we confront the
realities of accessing the dynamically varying context
data from various sources.
 The main contributions of this paper are as follows:

• We propose a context-dependent policy model
that extends traditional ACL mechanisms with
contextual information and usage control

• We identify the problem of possible unintended
privacy leakage with context constraint
specification, and discuss how to address this
while supporting a flexible policy management
and low-latency policy evaluation.

• We address the practical reality that some
context information for evaluating a privacy
policy may be unavailable.

• Finally, we show, through our performance
studies, that the retrieval of context information
can be expensive (in terms of latency), and
suggest a note of caution against expecting all
enterprise applications to become “context-
aware” overnight.

U s e r

P o lic y
D a ta b a s e

P o lic y G U I P o lic y
E v a lu a tio n

C o n te x t
S e rv ic e

U s e r

P o lic y
D a ta b a s e

P o lic y G U I P o lic y
E v a lu a tio n

C o n te x t
S e rv ic e

Figure 1: Component Architecture of CPE

Figure1 illustrates the overall CPE system architecture.
It consists of three logically distinct components:
1. The Policy UI component for easy policy

management
2. The policy database for storing privacy policies

3. The Policy Evaluation component for evaluating
access requests based on the policies and makes
“Grant/Deny” decisions

Our focus in this paper is to discuss the CPE context-
dependent privacy policies and the Policy Evaluation
component. The discussion of the GUI component for
policy management is relegated to a separate paper. As
CPE focuses purely on a single enterprise domain,
issues related to privacy in multi-domain or federated
environments are beyond the scope of our current
discussion.
 The rest of the paper is organized as follows.
Section 2 reviews the prior work. Section 3 presents
the CPE context-dependent privacy policy with the
focus on addressing the context-dependent issues.
Section 4 presents performance results. Finally,
Section 5 concludes the paper.

2. Related Work
The Aware Home initiative [3] may be the closest in
spirit to our work on CPE. The Aware Home access
control mechanism uses the Context Toolkit [7] to
extend role-based access control with “environment
roles”. Given its focus on residential homes, the Aware
Home framework does not concern itself with practical
features that are intrinsic to an enterprise environment,
such as hierarchical policies and overrides, and low
evaluation latency. Moreover, the Aware Home
approach does not investigate problems encountered by
the unavailability of context data.
 The Houdini framework [4] focuses on the
expression and enforcement of individual privacy
preferences in a cellular network. One of Houdini’s
innovations is the use of Web-based forms for defining
various generic activity-oriented context attributes,
based on a combination of raw location and time data.
Whereas the framework focuses on supporting rapid
evaluation for a single user, we aim to support O(100)
concurrent policy evaluations issued by different users
in an enterprise setting where the needs of individuals
and organizations must be balanced and where context
data may come from a variety of different (and
possibly unavailable) sources.
 Attribute-based Access Control (ABAC) extends the
RBAC paradigm. Policies are specified in terms of
predicates over a set of attributes, and an individual's
access attempt is evaluated on the set of attributes that
she possesses. For example, the RT framework [8]
defines semantics for localized control over roles and
attributes, and techniques for delegating such control,
while trust-based privacy preferences (e.g., [9]) allow
the policy owner to specify the minimum
trustworthiness of a requester to access the specified
context data. Such a framework is used by approaches

such as pawS [10], which mediate user/device
interaction with those devices, or ContextFabric [11],
which supports data sharing between devices and
services in an untrusted domain. Although our focus is
currently on CPE policies and the evaluation
algorithm, the Context field in a CPE policy can easily
be extended to adopt the ABAC framework.

There are a variety of other approaches to privacy
issues in mobile computing environment. A. Kapadia
et al.[21] proposed a privacy language based on the
metaphor of physical walls, and assumes users
understand and accept the privacy implication of a
physical wall. The approaches of collaborative filtering
[12] and K-anonymity [13, 20, 22, 23] assume some
semantics (e.g., spatial or temporal) on the underlying
data to implicitly control the granularity of data
exposure. Similarly, approaches such as “faces” [14] or
pseudonym [15] focus on implicit specification of user
privacy preferences. In contrast, CPE employs an
explicit privacy model, where the evaluation algorithm
does not understand the semantics or the value of the
data.

Other work in supporting explicit fine-grained
privacy policies, such as CoPS [19] and [24] are
focused on extending the RBAC mechanism for
achieving expressiveness. However, these projects did
not discuss the issues related to context-dependent
policies. CPE on the other hand focuses on context-
dependent policy mechanism and proposes solutions to
address corresponding issues.

3. Context-dependent Privacy Policy
CPE is designed as a policy evaluation engine, where a
client (e.g., a context service) issues a request (to CPE)
for permission to release context information
pertaining to one or more subjects to a specified
requester. In this section, we describe the CPE privacy
policy mechanism. We specifically focus on the
context-dependent privacy policies.

3.1 Privacy policy model

To support the twin needs of flexibility and scalability
for policy specification and management, a CPE
privacy policy mainly contains the following fields:
Subject: a user or a group of users whose information
is protected by this policy
Information: the subject’s information that this policy
protects
Requester: an individual user or a group to whom this
policy applies when requesting for information
Application: the applications to which the information
may be released
Context: a set of context constraints that must be
satisfied for the policy to be in effect

Policy level: the hierarchy level of the policy to
support the need of policy overriding
Release: “Grant” or “Deny”, a decision whether to
release the information or not
 By separating "application" and "requester", we
support the flexibility for information to be used to
perform a service without necessarily releasing the
information to the requester. For instance, a policy that
allows Joe to use the "IntelligentDialer" application to
telephone Jane without actually giving Joe Jane’s
telephone number.
 The Subject and Requester fields can be either
individual users or groups. Groups can be defined
hierarchically and usually mirror organizational hier-
archies. The advantage of this is to improve the
scalability of policy management and to separate the
logical privacy policy from concrete deployment.
 An example privacy policy is: President (subject)
allows (Release “Grant”) white house staff (requester)
to know his location (information) when both the
president and the requester are in the white house
(context).
 We support the ability to override policies by using
the policy level field. A policy at a higher level is able
to override all policies at a lower level. This can satisfy
the enterprise requirement for enforcing a
regulation/corporate rule while enabling individualized
user policy at the same time.

For a given request, there can be multiple policies
that are in effect, and the release decision from those
policies could be different. To resolve the conflict, we
can first use the policy level to decide which policies
are higher in the hierarchy. For policies at the same
level, we introduce specificity checking for resolving
the conflict. Policies that are defined more specifically
are considered more specific. For example, in the
information field, specificity follows a hierarchy (e.g.,
location.address.city is more specific than location.-
address). However, there are situations where the
specificity is unclear, for example, the specificity for
two user-defined groups. In these cases, the "Deny
when in doubt" principle is applied and the request is
refused if any policy denies the access.

3.2 Context-dependent Policies
Having explained the basic privacy policy model, we
now focus on discussing context-dependent policies.
As described abpve, a CPE privacy policy has a
“Context” field that essentially expresses the condition
under which the policy is valid. This field is a
collection of context-related predicates that must be
satisfied for the policy to be considered active (e.g.,
Bob.location=home AND Alice.location=office).

3.2.1 Context Field Specification

The Context field is an XML String containing an
XQuery-compliant [16] predicate set over these
attributes. CPE substitutes two keywords in the XML
string during evaluation: "$subject" and "$requester",
referring respectively to the Subject and Requester
values supplied by the external service during an
evaluation request. This allows the XQuery-based
predicate set to be specified either in terms of these
keywords or in terms of a specific user identity (e.g.,
"Bob"). Using the keywords allows the context
predicates to be expressed in terms of the current
requester or subject. For example, a Context field with
the predicate: “/user/$requester/location = ‘office’
AND /user/$requester/location/floor= ‘first’ AND
/user/joe/location = ‘office’” indicates that the policy
is valid only if the requester is in "office.firstfloor" and
Joe himself is located in the "office".

3.2.2 Context Field Restrictions

If users are allowed to specify arbitrary context
predicates for the context-dependent policies, we can
face problems where colluding users glean
unauthorized context information from the system. For
example, suppose Joe specifies a policy that "Bob is
allowed to see my location if Alice is in the office".
Then, the two friends Bob and Joe can implicitly
deduce that Alice is located at the office by having Bob
issue a request for Joe's location and verify if it is
granted (even though Alice’s policy itself may deny
both Bob and Joe access to her location data).
 One way to avoid such leakage is for system to
prevent Joe from creating such a policy. In order to do
that, the system needs to go through a global
consistency check for every policy creation, and may
need to invoke a revocation process. Therefore, this
solution may introduce significant temporal
dependencies in the policy creation process. Another
alternative would be to have the CPE evaluation engine
expressly check the permissions on Alice's location at
runtime before considering whether the policy is
presently applicable or not. (In this case, Bob would be
unable to decide if a Deny response occurred because
Alice was not in the office, or because she had
prohibited access to her location information.) This
approach, however, imposes significant performance
bottlenecks on the evaluation process.
 To enforce privacy without compromising on
evaluation efficiency, CPE policies constrain the
context predicates to only refer to attributes belonging
to either the Subject or the Requester in the policy, or
to the "$subject" or "$requester" wildcards that will be
replaced by the specific user values during the
evaluation process. These mechanisms however do not

prevent all covert data channels. For example, if the
subject of a request learns the result of a query, the
subject may infer the context of the requester at the
time of the query (e..g., if Alice request’s Bob’s
location and Bob has a policy of “grant if
$requester/location= office”). Likewise, if the
requester learns (out-of-band) of the details of the
subject’s policies, the requester may infer the context
of the subject at the time of the query. The system need
to enforce that all the queries are protected to prevent
info leakage.

CPE’s restriction on the Context predicates prevent
users from specifying potentially legitimate policies
based on external context (e.g., user Joe exposing his
location in case “fire-alarm=true”). In our system, such
exposure may only be realized through required
policies specified by an Administrator. Our experience
clearly shows that, in practice, building a high-
throughput privacy engine requires balancing the
expressiveness of context with efficiency.

3.2.3 Absence of Context Information

Given the dynamic nature of context data, CPE must
always retrieve the “freshest” context information from
a context source and evaluate each request
independently, instead of using policy or response
caching [17]. In any realistic environment, context
information will occasionally be unavailable (e.g. due
to loss of source network connectivity or sensor
failure). This reality must be addressed in the CPE
architecture, as otherwise privacy preferences may be
subverted erroneously. For example, the predicate
"Bob.location= office AND Joe.location= office" will
evaluate to "false" if Bob's location cannot be
determined. A policy that has a “Deny” associated with
this predicate will then not be considered to hold,
potentially resulting in an inappropriate grant response.
To avoid such situations, context-dependent policies
with a “Deny” in the Result field are assumed to apply
even if the context data cannot be obtained. However, a
policy with a “Grant” in its Result field is considered
inapplicable in the absence of context data. This
approach ensures that “deny” prevails over “grant” in
the absence of verifiable contextual information.

3.3 Policy Evaluation Algorithm
Having discussed context-dependent privacy policy
model, we now describe how to evaluate a request
based on those policies. A request to CPE is from an
external service specifies {subject, requester,
application, and information}, in other words, it asks
"Can the application X being run by user A be granted
access to the Information S about the subject B?"

The evaluation engine operates the following steps:

 Table 1 and Table 2 illustrate policy evaluation for
a set of requests for President's location. Each column
in table 1 specifies one privacy policy, and each
column in table 2 represent a request.

Table 1: Example Context-Dependent Policy DB
ID 1 2 3

Subject President President President

Requester President.dept President.
friendsnfamily

Advisor1

Application * * *

Context $subject.location =
whitehouse AND
$requester.location
= whitehouse

$subject.location
.room =
whitehouse.
Livingquarters

$subject.
location =
whitehouse

Information Location Location Location

Release Grant Grant Grant

Table 2: Context-Aware Policy Evaluation Example
Requester Spouse Vicepres Employee1 Advisor1
President’s
Location

Living
quarters

Oval office Oval office Blue Room

Requester
Location

NA Green
room

NA Out of the
country

Applicable
policies

2 1 1,2 1,3

Controlling
policies

2 1 2 3

Result Grant Grant Deny Grant

To simplify this example, we assume that all policies
are at the same level in the policy hierarchy. In
addition, the policies shown apply to all applications
and a single type of context information (Location).
Assuming that the two user-defined groups have the
following members: President. friendsNfamily group

Evaluate (requester A, subject B, Application X,
Information S)
1. Find set p1 containing all applicable policies,

i.e., policies where the Subject fields contains B
and Requester field contains X, and the
Application filed and Information fields refer to
S and X or to less-specific values.

2. For all policies in P1, evaluate the context
predicate to form a set of policies P2 with the
context field evaluated to be true (“*” context is
always true). //note: in absence of context,
“Deny” policies evaluate to true, while
“Accept” policies evaluate to false.

3. For all policies in p2, get the Controlling (most-
specific) policy set p3 by considering policy
level and specificity.

4. Grant access if and only if all the Release
values in the controlling policies are Grant,
otherwise, deny.

contains spouse and employee1, President.dept group
contains Vicepres, employee1, and advisor1.

Let’s look at each request (column) listed in table 2:
• Spouse's request is governed by policy 2. The

request is granted if President is presently in the
living quarters, but denied otherwise.

• Vicepres's request is governed by policy 1. If both
President and the vice president are in the White
House, the request will be granted and denied
otherwise.

• Employee1's request is governed by policies 1 and
2. Assuming that Employee1's location is not
available, the request will be granted by policy 2 if
President is in the living quarters and denied
otherwise.

• Advisor1's request is governed by policies 1 and 3.
Assuming that Advisor1 is out of the country, the
request is governed by 3 and will be granted if
President is located in the White House.

4. Performance Evaluation of CPE
We implemented the CPE engine as a Java-based
application, running in its own JVM. The policies were
stored in a relational database. To support context-
dependent policies, we implemented our own XQuery
recursive descent parser and predicate evaluator. Our
implementation uses a context service described in
[18]. We now report on studies used to evaluate the
following performance metrics:
• What is the latency of a single CPE evaluation, and

what is the impact of the number of policies?
• What is the additional overhead of policies that

incorporate context predicates? How does this
vary as the number of context predicates increases,
or as the number of relevant context-dependent
policies changes?

• How does the evaluation latency vary with the
number of concurrent evaluation requests (an
indicator of the system throughput)?

Our base test setup consists of three distinct servers,
the CPE server (for policy evaluation), the context
server (for retrieving context data needed for
evaluating context predicates), and the directory server
(for group membership). Each server machine runs the
Windows 2000 Server OS, and had 4 1.5 GHz Intel®
Xeon™ processors, each with 512 MB of memory.
The basic test method consists of first defining
appropriate policies and populating the database, and
then computing the mean of 100 consecutive
(sequential) evaluation requests of the form "Is <user
A>, using <application X>, permitted to obtain
<information Q> about <user B>?".

 In our first experiment, we study the basic CPE
evaluation latency (in the absence of contextual
constraints), and the impact of number of applicable
policies on the evaluation latency. Figure 3 plots the
average evaluation latency (over 100 consecutive
requests) as a function of the total number of policies
pertaining to the subject in the database.

Policy Evaluations with Many Policies
(without context)

0

200

400

600

800

1000

1200

1400

1600

1 100 500 1000 1500 2000 2500 3000

Number of Total Policies

El
ap

se
d

Ti
m

e/
R
eq

ue
st

 (m
s)

1 Policy Match

1% Policy Match

5% Policy Match

10% Policy Match

Figure 3: Latency vs. No. of Policies

We consider 4 cases, where the eventual number of
controlling policies (i.e., those applicable policies that
are in the highest policy level and are most specific) is
either 1, or 1%, 5% and 10% of the total number of
policies. As Figure 3 shows, the evaluation latency
essentially depends on the number of controlling
policies. CPE’s design choice of eliminating policies
by level and specificity, keeps the overall latency low,
even if the number of applicable policies is quite large.

4.1 Context-Dependent Policies
We now examine performance of context-dependent
policies. To evaluate the additional overhead, we
repeat the experimental setup of Figure 3, except that
all the policies now have a Context field. Figure 4
shows the latency associated with 1, 1%, 5% and 10%
most-specific policies. As we can see that introducing
context in the policy significantly increases the
evaluation latency.

Policy Evaluations with Many Policies

0

5000

10000

15000

20000

25000

30000

1 100 500 1000 1500 2000 2500 3000

Number of Total Policies

El
ap

se
d

Ti
m

e/
Re

qu
es

t (
m

s)

1 Matching Policy

1% Matching Policy

5% Matching Policy

Figure 4: Latency vs. No. of Policies (with context)

It is important to understand that the overhead of
actually evaluating the retrieved context data is
negligible. To demonstrate this, Figure 5 plots the
latency associated with a single context-dependent
policy as a function of the complexity of the predicate.
The figure demonstrates that the complexity of the
predicate itself has little effect on the evaluation

latency (of course, having 0 predicates equals a
context-independent policy and is much faster).

I m p a c t o f C o n t e x t o n E v a l u a t i o n o f L a t e n c y

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

0 1 2 3 4 5
N u m b e r o f C o n t e x t P r e d i c a t e s

El
ap

se
d

Ti
m

e/
R

eq
ue

st
 (m

s)

Figure 5: Latency vs. No. of Context Predicates

We argue that the sharp rise in latency with a context-
dependent policy is not an artifact of CPE, but a
reflection of the reality of today’s enterprise software.
Many of the sources of context-data (such as presence,
calendar information or location) are embedded within
existing enterprise applications (such as instant-
messaging or email), which were not designed to
provide this information to external entities.
Accordingly, the responsiveness of these systems to
queries for “context” data quickly degrades in the face
of even moderately large query rates. To demonstrate
this effect, we ran a stripped-down “thin client” on the
same machine as the context server (thereby also
eliminating any network delays between CPE and the
context server), and measured the average latency of a
single request to retrieve different forms of context.

Cont ext Ret r ieval Lat ency

0

500

1000

1500

2000

2500

3000

3500

Pr esence(Samet ime) Locat ion (B lackber r y) Stock-Value (Web-Ser vice)

Figure 6: Latency of Context retrieval

Figure 6 shows this average latency for three different
types of context—presence (obtained from an Instant
Messaging service), location (from a Blackberry
device) and real-time stock values (from a Web
service). As this figure shows, enterprise-grade context
sources show large variability in response times
(100ms-3s) to queries for context. While some of this
latency can be attributed to the lack of optimizations on
the context server, this latency is often unavoidable due
to the fact that proactive caching of context data is not
trivial. Implementing a useful context caching solution
would require a) policies to accommodate variable
tolerance in the accuracy of the context data, which
would permit the source to perform event-driven
updates and largely avoid synchronous context
retrieval, and b) making good predictions on the user

request patterns. Clearly, the overhead of context-
dependent policies remains a reality in practical
pervasive environments, until such an infrastructure for
context sources is researched and developed in the
future.

4.2 Overall System Throughput
To obtain the system throughput of CPE, we computed
the average evaluation latency against a varying
number of concurrent clients. Figure 7 shows the
experimental results, for both context-independent and
context-dependent policies, with all the clients
synchronized to issue their requests at the same time.
For the case of policies that are not context-dependent,
we observe response times of less than 1 second, as
long as the number of clients simultaneously issuing
requests does not exceed 100. These numbers
demonstrate that the CPE implementation can easily
scale to about O(10,000)) users, assuming that at most
~1% of users would simultaneously issue requests for
privacy-sensitive data.

Policy Evaluation with Many Clients

0

5000

10000

15000

20000

25000

1 5 10 50 100 250 500

Number of Clients

E
la

ps
ed

 T
im

e/
R
eq

ue
st

 (m
s)

No Context
With Context

Figure 7: Avg. Latency vs. No. of Concurrent

Requesters

However, when the privacy preferences are context-
sensitive, the evaluation overhead increases sharply.
The principal reason behind this is the additional
latency incurred in retrieving data from the context
server—as each context request takes longer to
process, the number of available threads in the privacy
engine decreases quickly. The evaluation latency then
sharply increases, as each request has to incur a
significantly larger queuing delay. Our performance
results thus demonstrate that, in practical enterprise
environments, the capacity of a system to deal with
context-aware privacy preferences can be an order of
magnitude lower than what it would for privacy
preferences without any context dependence.

5. Conclusions
We have presented the design and evaluation of our
CPE middleware, targeted at satisfying the privacy
concerns that have often thwarted the deployment of
several “much-touted” context-aware computing
applications in enterprise environments. CPE accepts
requests of the form <requester, subject, application,
information> and goes through the set of existing

policies to decide if the access request should be
granted or denied. While ACL-based privacy
approaches have been presented before, CPE embeds
several design features that are critically needed to
support enterprise-scale deployments in practice.
Overall, the twin notions of policy hierarchy and
specificity provide both the requisite degree of control
and scalability. In addition, we also saw how a
practical implementation of CPE had to deal with the
occasional unavailability of context data, and had to
restrict the acceptable values of the Context field to
prevent privacy leaking.
 Our performance studies showed that the CPE
evaluation algorithm is indeed able to support
reasonably complex privacy policies efficiently. Our
studies also show that retrieving contextual
information is quite expensive in current operating
environments. This is a fact that often seems to be
neglected in discussions on context-based computing.
Our experience suggests that context sources (such as
IM or email applications) will also potentially need to
be re-engineered to support a higher retrieval load.
This observation suggests that context-aware policies
may not immediately become as ubiquitous as
originally perceived, and that the scope of context-
aware policies should be judiciously limited to
preserve overall response times for the time being.

References
[1] M. Reardon, "Mobile Phones that Track Your Buddies,"

CNET.com, 14 Nov. 2006.
[2] Sandhu, R.S., et al., “Role-based Access Control

Models.” IEEE Computer, Vol. 29, No. 2, Feb. 1996,
38-47.

[3] Covington, M., et al., “Securing context-aware
applications using environment roles”, Proceedings of
the IEEE Symposium on Security and Privacy
(Chantilly, Virginia May 2001), pages 10-20.

[4] Hull R, et al., “Enabling Context-Aware and Privacy-
Conscious Data Sharing”, IEEE International
Conference on Mobile Data Management (MDM),
(Berkeley, USA, January 2004).

[5] Palen L, Dourish P., “Unpacking Privacy for a
Networked World”, Proceedings of ACM Conference on
Human Factors in Computing Systems CHI 2004.

[6] Howard J., et al., “Scale and Performance in a
Distributed File System”, ACM Transactions on
Computer Systems, Vol. 6, No. 1, Feb. 1988, 51-81.

[7] Salber, D, et al., “The Context Toolkit: Aiding the
Development of Context-Enabled Applications”,
Proceedings of CHI '99, May 1999, ACM, 434-441.

[8] Li N., et al., “Design of a Role-based Trust Management
Framework”, Proceedings of the IEEE Symposium on
Security and Privacy, May 2002, 114-130.

[9] Wagealla W., Terzis S., English C., “Trust-Based Model
for Privacy Control in Context-Aware Systems”, In 2nd

Workshop on Security in Ubiquitous Computing,
October 2003.

[10] Langheinrich, M., “A Privacy Awareness System for
Ubiquitous Computing Environments”, In Proceedings
of Ubicomp 2002 (Goteborg, Sweden, September 2002).

[11] Hong, J., Landay J., “An Architecture for Privacy-
Sensitive Ubiquitous Computing”, the Proceedings of
the International Conference on Mobile Systems,
Applications and Services (Mobisys), 2004.

[12] Canny, J., “Some Techniques for Privacy in Ubicomp
and Context-Aware Applications”, In the Proceedings
of the Privacy in Ubicomp 2002 Workshop, September
2002.

[13] L. Sweeney., “k-anonymity: A Model for Protecting
Privacy”, International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, 10 (5), 2002;
557-570.

[14] Lederer S., “Everyday Privacy in Ubiquitous
Computing Environments”, Privacy in Ubicomp'2002,
September 2002.

[15] Kobsa A. and Schreck J., “Privacy through
Pseudonymity in User-Adaptive Systems”, ACM
Transactions on Internet Technology, Vol. 3, No. 2,
May 2003, 149-183.

[16] W3C. XQuery 1.0: An XML Query Language,
http://www.w3.org/TR/xquery/

[17] Kaminsky M. et al., “Decentralized User Authentication
in a Global File System”, Proceedings of the 19th ACM
Symposium on Operating Systems Principles, (Bolton
Landing, NY, 2003).

[18] J. Black et al., “Pervasive Computing in Health Care:
Smart Spaces and Enterprise Information Systems,”
Workshop on Context Awareness, MobiSys 2004, June
2004.

[19] Sacramento, V. et al., “A Privacy Service for Context-
aware Mobile Computing”, Security and Privacy for
Emerging Areas in Communications Networks, 2005,
SecureComm 2005.

[20] C-Y. Chow, and et al., “A Peer-to-Peer Spatial Cloaking
Algorithm for Anonymous Location-based Services”, In
Proceedings of the ACM Symposium on Advances in
Geographic Information Systems, ACMGIS, 2006.

[21] A. Kapadia et al., “Virtual Walls: Protecting Digital
Privacy in Pervasive Environments”, Proc. 5th Int'l
Conf. Pervasive Computing (Pervasive 07), Springer,
2007, pp. 162–179.

[22] C. Bettini, S. Mascetti, X. S. Wang, and S. Jajodia,
“Anonymity in Location-based Services: Towards a
General Framework,” in Proceedings of the
International Conference on Mobile Data Management,
MDM, 2007.

[23] B. Bamba, L. Liu, P. Pesti, and T. Wang, “Supporting
Anonymous Location Queries in Mobile Environments
with PrivacyGrid,” in WWW, 2008.

[24] A. Mitseva, et al., “Context-aware privacy protection
with profile management”, Proceedings of the 4th
international workshop on wireless mobile applications
and services on WLAN hotsposts, LA, CA, 2006.

	Privacy Engine for Context-Aware Enterprise Application Services
	Citation
	Author

	untitled

