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Abstract. The Networked Distributed POMDPs (ND-POMDPs) can model multiagent systems in uncertain domains and has
begun to scale-up the number of agents. However, prior work in ND-POMDPs has failed to address communication. Without
communication, the size of a local policy at each agent within the ND-POMDPs grows exponentially in the time horizon. To
overcome this problem, we extend existing algorithms so that agents periodically communicate their observation and action
histories with each other. After communication, agents can start from new synchronized belief state. Thus, we can avoid the
exponential growth in the size of local policies at agents. Furthermore, we introduce an idea that is similar to the Point-based
Value Iteration algorithm to approximate the value function with a fixed number of representative points. Our experimental
results show that we can obtain much longer policies than existing algorithms as long as the interval between communications is
small.

Keywords: Multi-agent system, Distributed POMDPs, Communication

1. Introduction

Distributed Partially Observable Markov Decision
Problems (Dis-POMDPs) are emerging as a popular
approach for modeling sequential decision making in
teams operating under uncertainty [1,10,5]. The uncer-
tainty is due to the nondeterminism in the outcomes of
actions and the limited observability of world states.
Unfortunately, as shown by Bernstein et al. [1], the
problem of finding an optimal joint policy for a dis-
tributed POMDP is NEXP-Complete if no assump-
tions are made about the domain conditions.

To address this significant computational complex-
ity, Networked Distributed POMDPs (ND-POMDPs) [6],
a model motivated by domains such as distributed sen-
sor nets, distributed UAV teams, and distributed satel-

*Corresponding author. E-mail: tasaki@agent.is.kyushu-u.ac.jp

lites, was introduced. These domains are character-
ized by teams of agents coordinating with strong lo-
cality in their interactions. For example, within a large
distributed sensor net, only a small subset of sensor
agents must coordinate to track targets. By exploiting
the locality, LID-JESP [6] (locally optimal) and SPI-
DER [11] (globally optimal), which are leading al-
gorithms in this area, can scale-up in the number of
agents. However, these approaches cannot handle run-
time communication among agents. A consequence
of this shortcoming is the exponential growth in the
size of local policies. Recently, Mareki et.al. [4] devel-
oped the FANS algorithm that utilizes a finite state ma-
chine to represent each local policy. By using a finite
state machine, the size of a local policy becomes fixed.
However, run-time communication is not considered
in [4].
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To overcome this problem, we provide extensions to
these algorithms called LID-JESP-Comm and SPIDER-
Comm by introducing the run-time communication
scheme presented in [5]. More specifically, agents pe-
riodically exchange observation and action histories
with each other. Compared to other approaches such
as [2,8,9], the advantage of using this scheme is that
it allows the agents to build a new joint policy from
a new synchronized belief state, i.e., instead of hav-
ing one huge policy tree, an agent has multiple smaller
policy trees.

Though this approach reduces the size of policies, it
creates an exponential number of synchronized belief
states after communication. To overcome this problem,
we introduce an idea that resembles the Point-based
Value Iteration (PBVI) algorithm [7] for single agent
POMDPs. Instead of computing policies for all the
synchronized belief states, we compute policies (and
corresponding value vectors) only for a set of of repre-
sentative belief points. Thus, we approximate the value
function over the entire belief set by these value vec-
tors, i.e., for any given belief point, we use the policy
corresponding to the value vector that yields the high-
est value.

We develop two new algorithms based on this idea,
i.e., LID-JESP-Comm and SPIDER-Comm (exten-
sions to LID-JESP and SPIDER respectively). Since
communication introduces inter-dependencies among
agent policies, these algorithms lose some of the mer-
its of the original algorithms. In LID-JESP-Comm, to
update the policy of an agent, we need to consider the
policies of all the other agents. SPIDER-Comm can-
not provide global optimality, because it requires the
enumeration of all joint policies. Despite these disad-
vantages, our experimental results show that these al-
gorithms can obtain much longer policies than existing
algorithms within a reasonable amount of time.

2. Model: Networked Distributed POMDP

We follow the networked distributed POMDP (ND-
POMDP) model [6] as a concrete description of a Dis-
POMDP. It is defined for a group of n agents as tuple
〈S, A, P, Ω, O, R, b〉, where S = ×1≤i≤nSi×Su is the
set of world states. Si refers to the set of local states of
agent i and Su is the set of unaffectable states. An un-
affectable state represents the part of world states that
cannot be affected by agent actions. A = ×1≤i≤nAi is
the set of joint actions, where Ai is the set of actions
for agent i.

ND-POMDP assumes transition independence, i.e.,
the transition function is defined as P (s, a, s′) =
Pu(su, s′u) · ∏

1≤i≤n Pi(si, su, ai, s
′
i), where a =

〈a1, . . . , an〉 is the joint action performed in state
s = 〈s1, . . . , sn, su〉 and s′ = 〈s′1, . . . , s′n, s′u〉 is the
resulting state. Ω = ×1≤i≤nΩi is the set of joint ob-
servations where Ωi is the set of observations for agent
i. Observational independence is assumed in ND-
POMDPs i.e., the joint observation function is defined
as O(s′, a, ω) =

∏
1≤i≤n Oi(s′i, s

′
u, ai, ωi). where s′

is the world state that results from the agents per-
forming a in the previous state, and ω is the observa-
tion received in state s′. Reward function R is defined
as R(s, a) =

∑
l Rl(sl1, . . . , slr, su, 〈al1, . . . , alr〉),

where each l could refer to any subgroup of agents
and r = |l|. Based on the reward function, an in-
teraction hypergraph is constructed. Hyper-link l ex-
ists between a subset of agents for all Rl that com-
prise R. The interaction hypergraph is defined as
G = (Ag, E), where agents Ag are the vertices and
E = {l|l ⊆ Ag ∧ Rl is a component of R} are the
edges. The distribution over the initial state b is defined
as b(s) = bu(su)·∏1≤i≤n bi(si), where bu and bi refer
to distribution over the initial unaffectable and agent
i’s belief states, respectively. Each agent i chooses its
actions based on its local policy πi that maps its obser-
vation history to an action. The goal in ND-POMDP
is to compute joint policy π = 〈π1, . . . , πn〉 that max-
imizes the team’s expected reward over finite horizon
T starting from belief state b.

3. Domain: Distributed Sensor Network

Distributed sensor networks are a large, important
class of domains that motivate our work. This paper
focuses on a set of target tracking problems that arise
in certain types of sensor networks [6]. Figure 1 shows
a specific problem instance within this type that con-
sists of three sensors. Here, each sensor node can scan
in one of four directions: North, South, East or West
(see Figure 1). To track a target and obtain associ-
ated reward, two sensors with overlapping scanning ar-
eas must be coordinated by simultaneously scanning
the same area. In Figure 1, to track a target in Loc
1, sensor 1 needs to scan ‘East’ and sensor 2 needs
to scan ‘West’ simultaneously. We assume there exist
two independent targets, whose movements are uncer-
tain and unaffected by the sensor agents. Based on the
area it is scanning, each sensor receives observations
that can have false positives and false negatives. Sen-
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Fig. 1. A 3-chain sensor configuration

sors’ observations and transitions are independent of
each other’s actions. Each agent incurs a scanning cost
whether the target is present or not, but no cost if it
is turned off. There is a high reward for successfully
tracking a target.

These targets can be either enemies or friends of
agents, i.e., a sensor network is trying to detect the
incursion of enemy vehicles, or these agents want to
localize friendly robots in an environment. Having an
accurate probabilistic model of targets would be eas-
ier in a friendly environment. Also, co-learning of sen-
sor agents and robot agents in a friendly environment
would be an interesting research topic.

4. Existing Algorithms

4.1. LID-JESP

The locally optimal policy generation algorithm
called LID-JESP (Locally interacting distributed joint
search for policies) is based on DBA [12,3] and
JESP [5]. In LID-JESP, each agent starts from its ini-
tial, randomly selected policy. By fixing the local poli-
cies of its neighbors, each agent tries to find the way to
improve its local policy. Then, one agent who can max-
imally improve the expected reward within the neigh-
bors can change its local policy. Agents repeat this pro-
cess until no agent can find a better policy. This pro-
cess of trying to improve the local neighborhood utility
is done in a distributed manner similar to DBA.

More specifically, each agent i starts with a random
policy and exchanges its policies with its neighbors. It
then computes its local neighborhood utility with re-
spect to its current policy and its neighbors’ policies.
The local neighborhood utility of agent i is defined as
the expected reward for executing joint policy π accru-
ing due to the hyper-links that contain agent i. Agent
i then tries to improve upon its current policy by com-
puting the local neighborhood utility of agent i’s best
response to its neighbors’ policies. Agent i then com-
putes the gain that it can make to its local neighbor-
hood utility, and exchanges its gain with its neighbors.
If i’s gain is greater than any of its neighbors’ gain, i
changes its policy and sends its new policy to all its
neighbors. This process of trying to improve the local

neighborhood utility is continued until the joint poli-
cies reach an equilibrium.

4.2. SPIDER

In this subsection, we briefly describe SPIDER [11].
In essence, SPIDER performs a depth-first branch &
bound search procedure using an admissible heuristic
function, while exploiting the locality of agent inter-
actions. By utilizing an admissible heuristic function,
SPIDER can obtain the upper bounds on the expected
values of policies and prune a search space that cannot
be an optimal solution. Also, agents are organized into
a Depth First Search (DFS) tree (i.e., pseudo tree) that
allow links between ancestors and children. In a DFS
tree, agents in different branches can be considered in-
dependent, given the policies of ancestors are fixed.

In Figure 2, we show a snapshot of search trees in
the SPIDER algorithm. The middle agent in Figure 1
is the root of the tree. Each agent is assigned a policy
with T = 2. Each rounded-edge rectangle (search tree
node) indicates a partial/complete joint policy, a rect-
angle (internal to a rounded-edge rectangle) indicates
an agent and the ovals (internal to a rectangle) show its
policy.

A heuristic or actual expected value for a joint pol-
icy is indicated in the top right corner of the rounded
rectangle. If the number is underlined, the actual ex-
pected value of the joint policy is provided. SPIDER
begins with no policy assigned to any of the agents
(shown in level 1 of the search tree). Level 2 of the
search tree indicates that the joint policies are sorted
based on upper bounds computed for the root agent’s
policies. Level 3 shows one SPIDER search node with
a complete joint policy (a policy assigned to each
agent). The expected value for this joint policy is used
to prune the nodes in level 2 (those with upper bounds
< 234). When creating policies for each non-leaf agent
i, SPIDER potentially performs two steps:

STEP 1 Obtaining upper bounds and sorting In this
step, agent i computes the upper bounds on the
expected values of the joint policies correspond-
ing to each of its policies and the fixed ances-
tor policies. The upper bounds (heuristic value) is
calculated assuming that agents that do not have
their local policies assigned yet will search for
their optimal policies assuming full observabil-
ity, i.e., using MDP policy search All the policies
of agent i are then sorted based on these upper
bounds in descending order.



STEP 2 Exploring and pruning Exploring implies
computing the best response joint policy that cor-
responds to the fixed ancestor policies of agent i.
This is performed by iterating through all policies
of agent i and summing two quantities for each
policy: (i) the best response for all of i’s children;
(ii) the expected value obtained by i for fixed poli-
cies of ancestors. Pruning refers to avoiding the
exploration of all policies at agent i using the cur-
rent best expected value as threshold. A policy
need not be explored if its upper bound is less
than the threshold. For example, if the best re-
sponse policies from the leaf agents yield an ac-
tual expected value of 240, a policy with upper-
bound 232 is pruned (see Figure 2).

Fig. 2. Execution of SPIDER, an example

5. Communication in ND-POMDP

The basic idea of introducing the run-time commu-
nication scheme to ND-POMDPs is as follows. Agents
periodically communicates their observation/action
histories with each other. As a result, agents reach a
new synchronized belief state and start a new policy.
This corresponds to having multiple smaller policy
trees rather than having a single huge policy tree. How-
ever, the number of new synchronized belief states
grows exponentially. To overcome this problem, we

use a fixed number of representative points to approx-
imate the values of new synchronized belief states.

More specifically, we introduce the run-time com-
munication scheme presented in [5] to ND-POMDPs
as follows.

– In the initial state, agents have a synchronized be-
lief state. Each agent has a local plan for subse-
quent k steps1.

– Each agent executes its local plan for k steps.
Then, agents go through the communication
phase.

– During the communication phase, agents com-
municate their observation/action histories with
each other. By exchanging the observation and
action histories with each other, they have com-
mon knowledge on the observation/action histo-
ries of all agents. Thus, they can update their be-
liefs and reach a new synchronized belief state.

– Each agent chooses a part of its policy that corre-
sponds to that belief point

Thus, we use multiple small policy trees with a con-
stant depth k instead of one huge policy tree whose
size is exponential to the length of the time horizon.

However, the number of joint (small) policies grows
exponentially to the length of the time horizon. To
overcome this problem, we introduce an idea that re-
sembles the Point-based Value Iteration (PBVI) al-
gorithm [7] for single agent POMDPs. More specifi-
cally, we use a fixed number of representative belief
points and compute the k-step optimal joint policy for
each representative belief point. By using a fixed num-
ber of representative belief points, the obtained policy
can be suboptimal. However, as shown in [7], we can
bound the the difference between the obtained approx-
imated policy and the optimal policy in a single agent
POMDPs2.

Let us assume we fix one particular k-step joint pol-
icy π. The expected reward of π starting from one
particular belief state b is represented as a weighted
linear combination of the expected reward for each
state (Figure 3). More specifically, assume that pos-
sible states are {s1, s2, . . . , sN} and a belief state

1For simplicity, we assume one communication phase occurs ex-
actly once after k non-communication steps. Extending the algo-
rithms to the cases where one communication phase occurs at least
once within k steps is rather straightforward.

2On the other hand, our proposed methods, i.e., LID-JESP-Comm
and SPIDER-Comm, utilize other approximation methods. There-
fore, we cannot bound the difference between the obtained approxi-
mated joint policy and the optimal joint policy.
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Fig. 3. Value function and α vectors

b = 〈b(s1), b(s2), . . . , b(sN )〉. The expected reward
for joint policy π starting from b, denoted as V π(b),
can be represented as:

b(s1) ∗ V π(〈1, 0, . . .〉) + b(s2) ∗ V π(〈0, 1, . . .〉)
+ . . . + b(sN) ∗ V π(〈0, . . . , 1〉)

Here, we call the vector 〈V π(〈1, 0, . . .〉), V π(〈0, 1, . . .

)〉 . . . , V π(〈0, . . . , 1〉)〉 as α vector. The expected reward
starting from belief state b is obtained by calculating
the inner product of the belief state and the α vector.
Since the optimal reward of the entire belief space is
obtained by taking the maximal value for all possible
joint polices, it is clear that the optimal reward satisfies
piece-wise linear, convex (PWLC) property.

We approximate this optimal reward for the entire
belief space (value function) using these α vectors of
representative belief points (Figure 3).

5.1. ND-POMDP-Comm Algorithm (the mechanism)

Next, we describe the details of algorithm in ND-
POMDP with communication. We employ the follow-
ing notation to denote the policies and the expected
values:

π∗ ⇒ optimal joint policy of all agents.
πi,∗ ⇒ joint policy computed before searching for the

policy of agent i.
πj+ ⇒ joint policy of agents searched for after j.
πi ⇒ local policy of agent i.
v[�α, b] ⇒ the expected value for �α given belief state b.
v̂[πi,∗||πi] ⇒ upper bound on the expected value

given πi,∗ and πi.
B ⇒ the set of representative points.

We need to find a joint policy for each representative
point after each communication phase. If there are |B|
representative points and c communication phases, we
need to find c|B| joint policies for belief points after
communication and one joint policy for the initial be-
lief state.

π20 π21 π22

π11π10 π13π12

ω0 ω1 1
2
3

4
5
6

7
8

step

πmx the policy used 
after m-th communication 

π20

Fig. 4. Policy obtained by LID-JESP-Comm or SPIDER-Comm

Figure 4 shows the local policy given k = 2. First,
our algorithm computes the joint policy for each of
the representative points after the last communication
phase, i.e., the joint policy for time steps 7-8 (Figure
4). This results in three policies: π20, π21, and π22. Our
algorithm computes the α-vectors for these joint poli-
cies.

Next, it computes a joint policy for time steps 4-6.
A rectangle (represented by dashed lines) indicates the
communication phase and lines from filled circles in-
dicate the transitions to synchronized belief states after
communication. The policies generated are π10, π11,
π12, and π13. The algorithm computes the α-vectors
for these joint policies. Finally, it determines the joint
policy for the initial belief state.

Algorithm 1 provides the pseudo code for ND-
POMDP with communication. This algorithm outputs
a joint policy π∗. CommPhase represents the num-
ber of communication phases. In line 2, a set of rep-
resentative belief points is generated using the method
described in the next subsection. Then, a joint pol-
icy is calculated for each representative belief point
b ∈ B, and the obtained joint policy is stored in
π∗[b, CommPhase] (lines 5-7). In each action phase,
FINDPOLICY function finds a joint policy and its α-
vector, based on the extension of LID-JESP-Comm or
SPIDER-Comm described in Sections 5.3 and 5.4.

5.2. Belief Point Selection

The way to choose representative belief points can
affect the solution quality. We consider the following



Algorithm 1 ND-POMDP-Comm(k, CommPhase)
1: initialize �α∗, π∗ ← null
2: B ←BeliefExpansion(binit)
3: while CommPhase ≥ 0 do
4: for all b ∈ B do
5: 〈π∗[b, CommPhase], �α〉 ←

FINDPOLICY(b, root, null,−∞, k, �α∗)
6: �α∗ ← �α
7: CommPhase = CommPhase− 1
8: return π∗

two methods. We assume that initial belief state binit

is always included in representative belief points B.

Random Belief Selection (RA) In this method, we
sample belief points from uniform distribution
over the entire belief space.

Stochastic Simulation with Exploratory Action (SSEA)
This method is based on the algorithm presented
in [7]. We gradually expand B by adding new
reachable belief points after k actions and com-
munication. More specifically, we stochastically
run k actions in the forward trajectory from the
belief points already in B and obtain several can-
didates. From these candidates, we select belief
points that improve the worst-case density, i.e.,
we choose the point farthest from any point al-
ready in B.

5.3. LID-JESP with Communication

LID-JESP with Communication (LID-JESP-Comm)
performs the following procedure:

(i) For each representative point, we find the joint
equilibrium policy (where each policy of an agent
is the best response for other agents’ policies) for
k steps after the last communication using LID-
JESP [6].

(ii) Then, for each representative point, we find the
joint equilibrium policy for k steps after the sec-
ond to the last communication. For the current k
steps, we need only the policies of neighbors to
evaluate the expected reward. On the other hand,
to evaluate the expected reward after communi-
cation, we consider the policies of non-neighbors
and obtain the probability distribution of the new
synchronized belief states. For each new synchro-
nized belief state, we use the best expected reward
for the joint policies obtained in (i).

(iii) Then, we find the joint equilibrium policy for k
steps after the third to the last communication,
and so on.

5.4. SPIDER with Communication

Next, we describe the details of SPIDER with Com-
munication (SPIDER-Comm). SPIDER can obtain
global optimal joint policies by exploiting the locality
of agent interaction. However, communication phase
invalidates the locality in interaction that original SPI-
DER was relying on. In essence, agents on different
hyperlinks are independent without communication,
but they become interdependent after communication.
More specifically, a new synchronized belief state (and
the expected reward after communication) depends on
all agents’ policies. In SPIDER-Comm, we utilize a
greedy method i.e., when finding a best response pol-
icy for agent i in the DFS tree, we don’t enumerate the
combinations of the joint policies of different subtrees,
while we enumerate the combinations within a subtree.
Thus, although the SPIDER-Comm cannot guarantee
to find the global optimal joint policy, it can utilize the
locality of interaction and obtain a reasonable policy
within a reasonable amount of time.

Algorithm 2 provides a pseudo code for procedure
FINDPOLICY for SPIDER-Comm, which finds a
joint policy and its α-vector. First, we store all possi-
ble local policies in Πi (line 2). If i is a leaf agent, the
local policies of all agents in its subtree are already as-
signed. SPIDER-Comm obtains an exact value for the
subtree (and ancestors) and new synchronized belief
states after communication (assuming default policies
are used by the agents whose policies are not assigned
yet), and chooses the best one (lines 3-9). On the other
hand, if i is not a leaf agent, SPIDER-Comm performs
the following procedure: (a) sorts policies in descend-
ing order based on heuristic values (line 12), (b) recur-
sively calls FINDPOLICY for the next agent and cal-
culates the best response policies for each local policy
of agent i as long as the heuristic evaluation of the pol-
icy is better than the solution found so far (line 17), (c)
maintains the threshold, the best solution found so far
(lines 18-21).

5.4.1. Heuristic Function
In SPIDER-Comm, we need to construct a heuris-

tic function that estimates the expected reward for the
current k steps and after communication.

In [11], the MDP heuristic function is introduced.
More specifically, the subtree of agents is a Dis-
POMDP in itself. Thus, we can construct a centralized
MDP corresponding to the (subtree) Dis-POMDP and
obtain the expected value of the optimal policy for this
centralized MDP. The advantage of the MDP heuristic



Algorithm 2 FINDPOLICY(b, i, πi,∗, threshold, k, �α∗)

1: �̂α← null, π̂∗ ← null
2: Πi ← GET-ALL-POLICIES(k, Ai, Ωi)
3: if IS-LEAF(i) then
4: for all πi ∈ Πi do
5: �αi ← GETVECTOR(i, πi, π

i,∗, �α∗)
6: if v

[
�αi, b

]
> threshold then

7: π̂∗ ← πi

8: threshold← v[�αi, b]

9: �̂α← �αi

10: else
11: children← CHILDREN(i)
12: Π̂i ← UPPER-BOUND-SORT(b, i, Πi, π

i,∗, �α∗)
13: for all πi ∈ Π̂i do
14: if v̂[πi,∗||πi] < threshold then
15: Go to line 22
16: for all j ∈ children do
17: 〈πj+, �αi〉 ←

FINDPOLICY(b, j, πi,∗||πi, threshold, k, �α∗)
18: if v[�αi, b] > threshold then
19: π̂∗ ← πi||πj+

20: threshold← v[�αi, b]

21: �̂α← �αi

22: return 〈π̂∗, �̂α〉

is that it is admissible, i.e., it never under-estimates the
optimal value. Thus, the SPIDER is guaranteed to find
an optimal joint policy.

However, if we assume the subtree is solved by a
centralized MDP (in which the current state is fully
observable), we cannot estimate the new synchronized
belief state after communication. Thus, we assign de-
fault policies to agents whose policies are not assigned
yet and estimate the new synchronized belief state af-
ter communication assuming these agents use the de-
fault policies. We can use these default policies also for
evaluating the expected reward for the current k steps.
In this case, the heuristic function is no longer admis-
sible, but it can prune more nodes and the run-time can
be reduced. We will evaluate this trade-off in the next
section.

6. Experimental Results

Our experiments were conducted on the example of
the sensor network domain described in Section 2. We
use three different topologies of sensors shown in Fig-
ure 5. Figure 5 (i) shows the example where there are
three agents and two targets. Target 1 is either absent or
in Loc1, and target 2 is either absent or in Loc2. Thus,
there are 4 unaffectable states. Each agent can perform

(i) 3 agents (ii) 4 agents (iii) 5 agents

Loc 1 Loc 2 Loc 1 Loc 2 Loc 1 Loc 2

Lo
c 3

Lo
c 3

Lo
c 4

 

Fig. 5. Sensor net configurations

Table 1

Run time (msec) /expected value for SPIDER and SPIDER-Comm
(T = 3)

SPIDER SPIDER-Comm

runtime [sec] 20.80 0.39

value 141.90 87.05

turnOff, scanEast, or scanWest. Agents receive +45
as an immediate reward for finding target 1, +35 for
finding target 2, and −5 for failing to find any target.
Figure 5 (ii) shows the example where there are four
agents and three targets, and (iii) shows the example
where there are five agents and four targets.

We have compared two alternative methods for se-
lecting representative points, i.e., RA or SSEA. We
found that SSEA dominates RA, especially when the
number of representative points is small. Thus, we use
SSEA for selecting representative points in the follow-
ing experiments.

Table 1 shows the runtime and the expected reward
of the obtained joint policy of SPIDER and SPIDER-
Comm for a sensor network with three sensors (T = 3
and k = 1). We cannot run SPIDER for larger T , since
the size/number of local policies grow exponentially.
By introducing communication, the runtime is drasti-
cally reduced. In fact, SPIDER takes 20.8 sec, while
SPIDER-Comm takes only 0.39 sec. The expected re-
wards are 141.9 and 87.05, respectively. The expected
reward of SPIDER-Comm is about 66% compared
with SPIDER, since SPIDER spends all of three steps
for executing actions, while SPIDER-Comm spends
one step for communication.

Next, we evaluate the runtime and expected re-
ward of SPIDER-Comm and LED-JESP-Comm. Fig-
ure 6 (a) provides runtime comparisons between
SPIDER-Comm and LID-JESP-Comm that for k = 2
and c = 1 (c is the number of communications).
In Figure 6, SPIDER-Comm (Default policy) indi-
cates that SPIDER-Comm uses default policies both
for the heuristic function for the current k steps and
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Fig. 6. (a)Runtime of SPIDER-Comm and LID-JESP-Comm, (b)expected reward of SPIDER-Comm and LID-JESP-Comm, and (c)runtime of
SPIDER and SPIDER-Comm by increasing the number of communications

for estimating the belief states after communication.
SPIDER-Comm (MDP+Default policy) indicates that
SPIDER-Comm uses the MDP heuristic function for
the current k steps and default policies for estimat-
ing the belief states after communication. The X-axis
denotes the number of agents, while the Y-axis indi-
cates the amount of time taken to compute the solu-
tion. SPIDER-Comm (MDP+Default policy) obtains
runtime improvements over other methods in 3 agents
configuration, while, in 4 and 5 agents configurations,
SPIDER-Comm (Default policy) obtains runtime im-
provements over other methods. In Figure 6 (b), We
evaluate the expected reward of SPIDER-Comm and
LID-JESP-Comm in the same setting as Figure 6 (a).
In 3 agents configuration, all methods obtain the same
expected values. While, in 4 and 5 agents configura-
tions, SPIDER-Comm (MDP+Default policy) obtains
significantly better expected reward over other meth-
ods.

Finally, we evaluate the run-time of SPIDER and
SPIDER-Comm (MDP+Default policy) by increasing
the number of communications c for k = 2 in 4 agents
configuration (Figure 6 (c)). When c = 6, the total time
horizon is 20 (where the total time horizon T is equal
to c(k + 1) + k). When c = 0, agents find a joint pol-
icy for T = 2 without communication (note that the
run-time for c = 0 is small but not zero).

We have obtained similar results for the run-time of
other methods. We can see that our newly developed
methods can obtain policies even if the length of the
time horizon is large, as long as the interval between
communications is small. For the original SPIDER, the
maximal length of the time horizon is around 4, and
for LID-JESP, the maximal length is around 6.

7. Conclusion

In this paper, we extended ND-POMDP so that
agents can periodically communicate their observation

and action histories with each other, and developed
two new algorithms: LID-JESP-Comm and SPIDER-
Comm. To address the problem that the number of
new synchronized belief states after communication
will grow exponentially, we introduced an idea similar
to the PBVI algorithm. Our experimental results show
that these algorithms can obtain much longer policies
than existing algorithms within a reasonable amount
of time. Our future works include introducing a more
flexible communication scheme, such as varying the
interval between communications, introducing partial
communications, etc.
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