
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2011

Structural complexity and programmer team
strategy: An experimental test
Narayan RAMASUBBU
Singapore Management University

Chris F. Kemerer

Jeff Min Teck HONG
Singapore Management University

DOI: https://doi.org/10.1109/TSE.2011.88

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
RAMASUBBU, Narayan; Kemerer, Chris F.; and HONG, Jeff Min Teck. Structural complexity and programmer team strategy: An
experimental test. (2011). IEEE Transactions on Software Engineering. 38, (5), 1054-1068. Research Collection School Of Information
Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1469

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TSE.2011.88
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1469&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Structural Complexity and Programmer Team
Strategy: An Experimental Test

Narayan Ramasubbu, Chris F. Kemerer, Member, IEEE Computer Society, and Jeff Hong

Abstract—This study develops and empirically tests the idea that the impact of structural complexity on perfective maintenance of

object-oriented software is significantly determined by the team strategy of programmers (independent or collaborative). We analyzed

two key dimensions of software structure, coupling and cohesion, with respect to the maintenance effort and the perceived ease-of-

maintenance by pairs of programmers. Hypotheses based on the distributed cognition and task interdependence theoretical

frameworks were tested using data collected from a controlled lab experiment employing professional programmers. The results show

a significant interaction effect between coupling, cohesion, and programmer team strategy on both maintenance effort and perceived

ease-of-maintenance. Highly cohesive and low-coupled programs required lower maintenance effort and were perceived to be easier

to maintain than the low-cohesive programs and high-coupled programs. Further, our results would predict that managers who

strategically allocate maintenance tasks to either independent or collaborative programming teams depending on the structural

complexity of software could lower their team’s maintenance effort by as much as 70 percent over managers who use simple uniform

resource allocation policies. These results highlight the importance of achieving congruence between team strategies employed by

collaborating programmers and the structural complexity of software.

Index Terms—Object-oriented programming, complexity measures, software quality, software productivity, programming teams,

maintenance process, CK metrics, software management

Ç

1 INTRODUCTION

ORGANIZATIONS spend a significant proportion of their IT
budgets on software maintenance with aims to

improve software quality and to prolong system life.
However, a disproportionate allocation of resources to
maintenance activities can potentially reduce the ability of
firms to innovate through new application development, a
phenomenon termed the “legacy crisis” [1].

In response to the challenge of reducing system main-

tenance costs, a wide range of techniques have been

developed by the software engineering research community

[2], [3], [4]. A fundamental principle often utilized by these

techniques is that software maintenance is strongly influ-

enced by structural complexity, i.e., the manner in which

program elements are organized within a system [5], [6]. It

has been shown that through better design the interconnec-

tions between the various elements of a system can be

simplified to aid maintainability [5], [7], [8], [9], [10].

However, a majority of the research investigating the

relationship between software structure and maintenance

has either been conducted 1) pertaining to an individual

maintainer’s approach to maintenance (e.g., cognition and

program comprehension studies [11], [12]), or 2) has
addressed the software structure without detailed attention
to programmers’ strategies (e.g., complexity metrics studies
[2], [13], [14], [15]).

While both of these factors (programmer strategy and
software structure) have influence on the final outcome, the
interactions of these two elements have generally been
neglected, which leaves open the possibility that simply
better matches of programmer strategies and situations
may result in improved performance outcomes. In addi-
tion, there has been a consistent and growing emphasis on
team approaches to software development and mainte-
nance in both commercial software development and in
software engineering education [16], [17], [18], [19], [20],
[21], [22], [23]. Therefore, there is a need to study the
relationship between systems maintenance and system
structure in more detail by accommodating the program-
mer team strategies which influence the conduct of system
maintenance activities in order to determine if there are
complementary team mechanisms for specific software
structures. Expanding the unit of analysis to include both
the software structural elements and the human factors also
presents an opportunity to bridge the prescriptions offered
by both the program comprehension and the software
complexity research streams, and has the opportunity to
positively influence maintenance management practice.
The objective of the study is to take a step forward in this
direction by examining the joint impact of object-oriented
software structure and programmer team strategies on
software maintenance. The study also offers a contribution
to the growing use of experimental design in empirical
software engineering research.

Variations in programmer team strategies during soft-
ware maintenance are typically caused by the different
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ways in which teams achieve their division of labor. Two
widely used team strategies in software projects are
independent team programming and collaborative team
programming [16], [17], [18], [19], [20], [21], [22], [23].
Independent team programming (hereafter simply “indepen-
dent programming”) refers to a team strategy where
maintenance tasks are divided among programmers who
work in parallel on separate parts of a system and
coordinate their efforts [16], [23]. Collaborative team program-
ming (hereafter simply “collaborative programming”) refers
to a scheme where two or more programmers work together
on the same parts of a system, rather than working in
parallel on two different parts of the system [16], [18]. It has
been shown in organizational studies that the efforts
required to achieve mutual understanding of a problem
and to coordinate among team members under alternative
team strategy regimes can differ significantly [25], [26], [27],
and therefore the outcomes for independent versus colla-
borative programming strategies can be expected to also
differ.

Past research studies examining programmer team
strategies (including pair programming) have not expli-
citly accounted for the possible joint effects of system
complexity and team strategy in their design [16], [17],
[18], [19], [20], [21], [23].1 This study investigates main-
tenance tasks done by pairs of programmers and
specifically focuses on the differences between two
different team strategies—independent programming and
collaborative programming—employed by the pairs of
programmers, and how the interaction between the
software structure and the team strategy influences
maintenance performance. The central research question
answered by this study is this: What is the effect of
programmer team strategy on software maintenance perfor-
mance for different levels of structural complexity?

To answer this research question we conducted a
controlled lab experiment with 45 professional programmer
pairs (90 subjects). We found that programmers’ main-
tenance effort levels (in person minutes) and ease-of-
maintenance perceptions for the two different team
strategies were highly contingent upon the structural
complexity levels that they encountered. In the lowest
possible structural complexity environment of the experi-
ment, programmers employing the independent program-
ming strategy required 49 percent less effort than
programmers employing the collaborative programming
strategy. But, in environments with higher structural
complexity levels, teams using the collaborative program-
ming strategy required from a minimum of 12 percent to a
maximum of 51 percent less effort than teams using the
independent programming strategy in the same complexity
settings. Further, programmers’ perceptions of ease-of-
maintenance for modules with low-structural complexity
were approximately 30 percent higher than more structu-
rally complex modules, and all else being equal, the
collaborative programming strategy was perceived to
be easier to use (approximately 28 percent higher) than

the independent programming strategy. The results of this
study highlight how the programmer team strategies and
the structural complexity of a system can interact to jointly
influence maintenance performance variables such as
maintenance effort and ease-of-maintenance perceptions.

The remainder of this paper is organized as follows: The
theoretical background on the key constructs of this study is
presented in Section 2. Research hypotheses are developed
in Section 3. The empirical research design to test the
hypotheses and the experimental procedures are described
in Section 4. Section 5 presents the analysis of the data and
the results of the hypothesis tests. Section 6 discusses the
results and their limitations, and Section 7 concludes the
paper by highlighting the contributions of this study.

2 THEORETICAL BACKGROUND

We used two main theoretical perspectives for hypothesis
development. We conceptualized the properties of software
maintenance tasks undertaken by collaborating program-
mers using the distributed cognition theoretical framework [28].
And we analyzed the impact of the team strategy employed
by the programmers and its impacts on maintenance
performance using the task interdependence theoretical frame-
work [25], [27], [29].

2.1 Distributed Cognition Framework

Software maintenance is recognized both as a cognitive
activity dependent on an individual programmer’s system
comprehension and as a social activity involving frequent
interactions between programmers working in teams [30],
[31]. The distributed cognition framework posits the study
of such cognitive phenomena by taking into account the
social context in which the actors are situated, and
treating the actors, their interactions with one another,
and their environment as a single distributed cognitive
system [28], [32].

Flor and Edwin [24] were among the pioneers in the
application of the distributed cognition framework to the
study of software maintenance activities. Rogers and Ellis
[33] detailed the theoretical basis of distributed cognition
for studying collaborative activity. Other researchers have
also utilized the distributed cognition framework to study
pair programming teams [34]. Collectively, the stream of
literature examining the application of the distributed
cognition framework to study software maintenance teams
recommends the analysis of the following properties:

1. structure and frequency of tasks,
2. team structure and the coordination mechanisms

used,
3. tools, documents, and the patterns of use of these

artifacts,
4. development of shared knowledge.

These properties derived from the distributed cognition
framework are utilized for the design of this study. We
treated a pair of programmers and the software application
they worked on as a distributed cognition system. We then
observed the activities of the programmer pairs, their team
strategies (work division and coordination mechanisms),
and performance under different environments of structur-
al complexity where appropriate tool usage was experi-
mentally controlled.
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2.2 Task Interdependence Framework and Team
Strategies

Task interdependence is the degree to which team members
must rely on each other to perform their tasks [25], [27], [29].
Prior research in organizational studies and psychology has
shown that increased task interdependence is associated
with increased requirements for coordination and commu-
nication effort among team members in order to perform
their tasks well [25], [27]. Different modes of task inter-
dependence have been categorized based on the informa-
tion and workflow sequences between team members
performing the tasks. Under reciprocal interdependence, team
members perform different parts of a task in flexible order
as per their specializations, and then coordinate among
themselves using temporally lagged, two-way interactions
to complete the whole task [27], [29]. In contrast, under team
interdependence, team members jointly diagnose, solve
problems, and collaborate to perform a task. Unlike
reciprocal interdependence, team interdependence involves
simultaneous work interactions and requires group discre-
tion for interactions between team members. In our study,
one pair of programmers performing a maintenance task
had the opportunity to work in parallel and independently,
and this group, referred to as following the independent
programming strategy, corresponds to the theoretical
“reciprocal interdependence” classification. Another group
(pair of maintainers) worked jointly to complete a main-
tenance task, and is referred to as following the collaborative
programming strategy; this group corresponds to the
theoretical “team interdependence” classification.2

By mapping the programmer team strategies to the
theoretical task interdependence classifications, we can
build upon the insights from past psychology and organi-
zation theory research studies which have shown that the
congruence between the nature of a task and the inter-
dependence of team members can significantly impact
group performance and the perceived effectiveness of team
members, and that the selection of appropriate team
strategies often requires a careful assessment of the
information processing and coordination demands of team
tasks [26], [27], [35], [36]. In prior research, structural
complexity of software has been used to examine and assess
the information processing and coordination demands
placed on team members working on a maintenance task
[5]. In this study, we extend the analysis by assessing the
congruency between the structural complexity of software
and the team strategy employed by programmers.

2.3 Structural Complexity of Software

There is a rich body of the software engineering literature
associating the structural properties of systems with their
maintainability [2], [4], [5], [6], [37], [38], [39]. Early studies
adopted specific characteristics of programming languages,
such as usage of long jumps, GO TO statements, depth of IF

statement hierarchies, etc., for characterizing structure, and
this early work has been generalized to focus on coupling
and cohesion as the key measurable conceptual properties
of the structural complexity of software.

Coupling represents the interdependencies between soft-
ware elements in a system, and cohesion captures the
similarities or binding of elements that are grouped together
[5]. Several metrics have been developed for coupling and
cohesion for both procedural and object-oriented designs,
and are described in detail in prior research [40], [41], [42],
[43], [44], [45]. Automated tools to gather coupling and
cohesion metrics from existing software systems are
commercially available as well [46]. A majority of research
studies that have analyzed the impact of coupling and
cohesion on higher order measures of software quality and
productivity have concluded that low coupling and high-
cohesion designs generally yield systems of higher quality
that are easier to maintain [5], [47]. Further, maintenance
effort has been shown to be influenced by the interaction
between coupling and cohesion, implying the advantage of
considering coupling and cohesion jointly, not merely
independently, in software system design decisions [5].

2.4 Maintenance Performance

Maintenance performance of a programming team has been
typically assessed in prior studies by measuring maintenance
effort, i.e., the total person minutes spent by a programming
team to complete a maintenance task [5], [13], [48]. In our
study, we follow a similar plan by measuring effort spent by
programmers on a perfective maintenance task to assess
team maintenance performance. In addition to maintenance
effort, our research design also calls for capturing program-
mers’ perceptions of the ease-of-maintenance using the
chosen team strategy. People’s subjective beliefs on “ease of
doing” have been shown to act as influential behavioral
determinants of accepting technology and processes irre-
spective of their inherent objective qualities [49], [50], [51].
Therefore, it is important to assess programmers’ perceptions
of ease-of-use of maintenance team strategies, along with
other objective measures of performance, such as mainte-
nance effort, to assess the relevance of different team
strategies while planning resource allocation policies and
project work breakdown structures. Further, an understand-
ing of the programmer’s perceptions on ease-of-maintenance
under different team strategies can help managers formulate
policies that aid organization-wide assimilation and accep-
tance of favorable team strategies. Similarly to perceived
ease-of-use measures employed in prior technology accep-
tance studies (e.g., [49], [50], [51]), perceived ease-of-
maintenance is defined as a programming team’s subjective
appraisal (on Likert scales of 1-5 (1 ¼ hardest to perform
maintenance, 5 ¼ easiest to perform maintenance)) of the
ease of conducting the maintenance tasks under the specific
team strategy that was assigned to them.

3 HYPOTHESES

3.1 Coupling, Cohesion, and Maintenance Effort

The main effects of coupling and cohesion on maintenance
effort are well documented (e.g., [5]), and our first set of
hypotheses is designed to check those results in our
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experimental setting and to establish a baseline to compare
against later results.

A highly cohesive system binds similar software elements
in a single place, and is expected to aid program
comprehension by minimizing a software maintainer’s
search and exploration tasks. These benefits are expected
to translate to higher order gains in the form of lowered
maintenance effort. However, a highly coupled system has
relatively many interconnections between its software
elements, which hinder program comprehension. Program-
mers working on highly coupled systems need to carefully
explore a typically large array of possible interconnections
when making changes to individual software elements,
necessitating a higher relative maintenance effort. Further,
highly coupled systems are not easy to “chunk” into logical
information processing units due to the large number of
interconnections, which hinders the learning process of
maintenance personnel, potentially leading to higher main-
tenance effort expenditure [5].

Program comprehension by human actors may depend
upon both coupling and cohesion rather than simply their
individual effects. Following Darcy et al. [5], it is also
expected that a significant interaction effect may exist
between coupling and cohesion that impacts maintenance
effort. Thus, the first set of confirmatory hypotheses is

H1. Maintenance effort is lower for the more highly
cohesive programs.

H2. Maintenance effort is higher for the more highly
coupled programs.

H3. For more highly coupled programs, maintenance
effort is lower if cohesion levels are high.3

3.2 Programmer Team Strategy and Maintenance
Effort

Two specific strategies for programmer teamwork, inde-
pendent programming and collaborative programming, are
considered in this study. Under the independent program-
ming strategy, maintenance tasks are “split and conquered”
among team members, enabling parallel work. But, when
looked at from a task interdependence point of view,
independent programming entails additional effort expen-
diture on explicit coordination (boundary spanning activ-
ities) to synchronize parallel work among team members
[22], [52]. Moreover, additional effort has to be spent on
achieving common ground when team members deal with
errors at the boundary of their individual work that ripples
across in different directions.

Under the collaborative programming strategy, team
members jointly work on all activities and do not have to
spend as much effort on boundary spanning activities.
However, the savings that stem from parallel work are not
possible under the collaborative programming strategy.
Thus, the final relative performance of independent
programming and collaborative programming with regard
to maintenance effort is likely to depend upon other factors
that influence coordination and comprehension effort. For

this research, we view maintenance activity as a distributed
cognition system, with the maintainers and the system as
intertwined elements, and therefore posit that the structural
complexity of the software needs to be considered to
differentiate the effects of independent and collaborative
programming on maintenance performance.

Following the logic of the first set of hypotheses,
maintenance effort is expected to be relatively lower in
low coupling/high-cohesion environments. As established
in prior research [5], it is expected that, in such low-
structural complexity regimes, coordination and boundary
spanning overhead efforts between programmers working
on a maintenance task are lower. Thus, savings arising from
parallel work enabled by the independent programming
strategy would outweigh the costs of overhead efforts
(coordination and boundary spanning) associated with it.
However, such savings are not possible under the colla-
borative programming strategy because it does not facilitate
parallel work between collaborating programmers. There-
fore, in low-structural complexity regimes (high cohesion/
low coupling), we expect that maintenance effort of
independent programming strategy will be lower than that
of collaborative programming strategy.

In contrast, in high-structural complexity environments
(high coupling/low cohesion) where achieving higher
levels of program comprehension is generally harder, it is
expected that the coordination and boundary spanning
overhead costs of independent programming will outweigh
the costs of collaboration programming (lack of parallel
work). Therefore, we expect the maintenance effort of
collaborative programming strategy to be lower in higher
structural complexity regimes.

In summary, we expect the levels of cohesion, coupling,
and their interactions with the chosen team strategy
(independent or collaborative programming) to signifi-
cantly determine effort spent on a maintenance task.
Hypotheses related to the three-way interaction between
coupling, cohesion, and team strategy can be stated in any
combination of lower/higher levels of each of the three
interacting variables. For simplicity, we explicitly enumer-
ate only the following combinations among the three-way
interaction as our second set of hypotheses:

H4. For the more highly cohesive programs, the inde-
pendent programming strategy will be associated
with lower relative maintenance effort.

H5. For the more highly coupled programs, the colla-
borative programming strategy will be associated
with lower relative maintenance effort.

H6. Under the collaborative programming team strategy
for the more highly coupled programs, maintenance
effort will be lower if cohesion levels are high.

H7. Under the independent programming team strategy
for the more highly cohesive programs, maintenance
effort will be higher if coupling levels are high.

3.3 Task Strategy and Perceived Ease

Prior research on antecedents of perceived ease-of-use
shows that individuals use “anchoring and adjustment”
heuristics to form their decisions on ease-of-use [53], [54],
[55]. Initial anchoring might be based on an individual’s
prior knowledge and inherent beliefs, and adjustment to the

RAMASUBBU ET AL.: STRUCTURAL COMPLEXITY AND PROGRAMMER TEAM STRATEGY: AN EXPERIMENTAL TEST 1057

3. The interaction hypothesis can also be stated in several equivalent
alternative ways in terms of characterizing the different levels of coupling
and cohesion. For simplicity, we explicitly state only one of the possible
combinations in the two-way interaction between coupling and cohesion.



initial anchor of perceived ease-of-use is often influenced by

the social contexts of an individual’s task environment.

Formal training, informal learning, and knowledge transfer

through group interactions serve as important facilitating

conditions for adjustments to initial anchors of perceptions

on ease of doing a task [53]. Thus, in the context of software

maintenance teamwork, all else held equal, the ease with

which team members are able to interact with and learn

from each other influences programmers’ perceived ease-of-

system maintenance.
It is expected that the collaborative programming

strategy would be perceived as more easy to use than the
independent task strategy because collaborative program-
ming facilitates the development of communal and “shar-
ing-the-burden perceptions” through explicit joint-work
processes. Under the collaborative programming strategy,
programmers jointly conduct diagnosis and problem sol-
ving activities, and can learn from each other. Since such
group interactions in collaborative programming are built
into the regular work process, programmers do not
experience an extra burden for knowledge transfer. In
contrast, under the independent programming strategy,
programmers encounter an additional burden to coordinate
and exchange knowledge, which could be expected to
dampen the formation of positive ease-of-use perceptions.
Thus, our next hypothesis is:

H8. The perceived ease-of-maintenance of the collabora-
tive programming task strategy will be higher than
the perceived ease-of-maintenance of the indepen-
dent programming task strategy.

Following the logic of interaction effects posited in our
first and second set of hypotheses, it is also likely that
perceptions on ease-of-maintenance for independent and
collaborative programming strategies are varied according to
the structural complexity regimes encountered by the
programmers. Especially, the interdependence between code
elements as represented by coupling can be expected to
influence programmer perceptions on ease-of-maintenance
along with their task interdependence due to their chosen
team strategy. Since coupling acts as a dampening mechan-
ism for easy interactions between collaborating program-
mers, we can expect the positive ease-of-maintenance
perceptions typically engendered by a collaborative

programming strategy to decrease in higher coupling
environments. Therefore, our next hypothesis is:

H9. The difference in perceived ease-of-maintenance
between the collaborative programming task strat-
egy and the independent programming task strategy
will decrease with an increase in the level of
coupling.

4 RESEARCH DESIGN AND EXPERIMENT

PROCEDURES

4.1 Experiment Design

A controlled lab experiment method was chosen to collect
data for testing the hypotheses. A 2� 2� 2 between subjects
experiment design, as shown in Fig. 1, was chosen with the
following three factors: 1) coupling (low-high), 2) cohesion
(low-high), and 3) team strategy (independent program-
ming and collaborative programming), which generates
eight (23) possible conditions.

The dependent variables were maintenance effort and
perceived ease-of-maintenance. As described above, main-
tenance effort was measured in person-minutes and per-
ceived ease-of-maintenance as the average score of a three
item interview questionnaire with responses sought on
5-point Likert scales. Responses from the team members
were sought through an interview on 1) ease of under-
standing the business logic of the system while working on
the maintenance task, 2) ease of understanding the technical
design and operation of the system while working on the
maintenance task, and 3) overall ease of performing the
maintenance task under the assigned team strategy. Cou-
pling and cohesion were measured using two CK object-
oriented software metrics (coupling using CBO, cohesion
using LCOM) [43]. These specific object-oriented metrics to
measure coupling and cohesion were chosen as their proper-
ties with respect to software maintenance are well documen-
ted in prior research [5], [15], [43], [46], providing a sound
basis for comparing our experimental results with prior
published structural complexity experiments, especially [5].

4.2 Experiment System, Manipulation of Factors,
and Subject Tasks

A stable version of an existing database and reporting
application system written in Java (Java SE 6, update 11)
was chosen as the primary experiment artifact. The
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application had 13,400 lines of code, 20 database tables,
185 SQL statements, and 85 interfaces among the various
classes and Java Server Pages. In preparation of the
experiment artifacts an extensive manual walkthrough of
the system source code was conducted, along with an
object-oriented metrics extraction using the CKJM tool [56].

Four different versions of the system with the same
business functionality, but with varying levels of coupling
and cohesion corresponding to the experiment design, were
developed from the original application. The refactoring
techniques we used to manipulate coupling and cohesion
were motivated by prior published structural complexity
experiments [5], [9], [10]. Coupling was primarily manipu-
lated by modifying method calls, and cohesion was
primarily manipulated by adjusting the sharing of instance
variables between method pairs. For example, when a
method is used by more features of another class than the
class on which it is defined, we created a new method with a
similar body in the class where it is used most, and we then
either converted the old method into a simple delegation, or
removed it altogether. We also converted local variables to
fields—if the local variable is initialized on creation, then
the refactoring operation moves the initialization to the new
field’s declaration or to the class’s constructors. These
refactoring manipulations yielded two distinct levels of
cohesion (low, LCOM ¼ 45; high, LCOM ¼ 10) and cou-
pling (low, CBO ¼ 6; high, CBO ¼ 12). The manipulations
did not significantly alter the code size (measured in lines of
code (LOC)) of the application (the differences in LOC
among the four versions was less than 1 percent). Two
independent computer science PhD-holding experts (not
the authors) who were familiar with the system usage and
had more than 10 years of object-oriented software devel-
opment expertise were provided with the source code of the
four different artifacts corresponding to our experiment
design and were asked to verify and report the equivalence
in business functionality and accuracy of the metrics
collection. The experts confirmed that the four different
versions of the system had the same functionality and
depicted different structural complexity levels as measured
by the CBO and LCOM coupling and cohesion metrics. The
level of interrater reliability as measured by Cohen’s Kappa
of the verification exercise was 0.9, indicating a high degree
of consensus between the raters.

We designed a perfective maintenance task to be
completed by all subjects (pairs of professional program-
mers). The context of the perfective maintenance task was
that the organization using the system had instituted a new
operational location, and a subset of its operational
activities was to be run at the new location. The design of
the perfective maintenance task was motivated by a real-
world case drawn from an observation of the development
requests reported for the system, which improves the
ecological validity of our experiment. Subjects were asked
to modify the system in order to accommodate the new user
requirement. The same IDE (JEdit), test data, and sample
reports were provided to all subjects.

4.3 Pretest and Power Analysis

We pretested the experimental system and planned
procedures and conducted a pilot study with two pairs of
professional programmers and four pairs of advanced

university students majoring in information systems. We
conducted a power analysis using the data collected from
the pilot study to estimate the sample size required for the
experiment design. Similarly to past software engineering
research [48], we chose the desired power for the model as
0.8 where the effect size was based on the task completion
rate, cell means, and standard deviations from the pretest
data, with the alpha set to 0.05. The power analysis
indicated that approximately 40 pairs, or 80 programmers,
were needed for the 2� 2� 2 fixed effect experiment design
to appropriately test all main effects and interactions.

4.4 Subjects

In order for the research results to have substantial external
validity to commercial environments, eligibility to serve as
an experimental subject was limited to professional pro-
grammers with a minimum of 2 years of Java programming
language experience and possessing an official “Java
Programmer” certification [57]. Volunteer programmers
were solicited through a professional special interest group
on Java programming in Singapore, the site of the
experiment. E-mail advertisements for the experiment
were also sent through the human resources divisions of
three leading software services firms located in Singapore.
Ultimately, 45 pairs of programmers, or 90 subjects,
participated in the experiment.

4.5 Procedures

Pairing of programmers and subject (pair) allocation to
experimental cells was done randomly. When the subjects
arrived on site they were briefed about the experiment, a
high-level overview of the experimental system was
presented, and two training tasks were given. The training
tasks were different from the main experiment tasks, but
were designed to help the subjects become familiarized
with the different modules of the application. All subjects
received identical training.

Subjects were required to work on laptops provided for
the experiment which had identical hardware configura-
tions and installed applications. For subjects in the
independent programming strategy group, two laptops
were provided for each pair, whereas only one laptop was
provided for subjects in the collaborative programming
group. The laptops were preloaded with the appropriate
variant of the experiment application, test data, and sample
reports, and screen capture recording software. The screen
capture software was used to track the exact timing of
maintenance events. Subjects were required to check in
their completed code to a version control system. Once
subjects indicated task completion, tests were run on their
final checked-in version to determine the accuracy of their
solution. If errors were found, the subjects were notified
and asked to rectify the errors. Only when the solutions
passed all of the acceptance tests was the submission
deemed complete. The time required for solution validation
by the supervisor was not counted as part of the
maintenance effort. Upon completion of the task, subjects
completed a postexperiment interview and were compen-
sated 25 SGD for their participation in the experiment. All
subjects completed the experiment within the planned
2 hours, and there were no dropouts.
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Throughout the experiment an observer was present in
the lab along with the subjects. The observer kept track of
the experiment time (start and end of comprehension
activities, coordination activities, and execution activities),
documented the work division between programmers, and
made nonintrusive general observations of the task pro-
gress. The experiment observations were corroborated with
data from the screen capture videos and check-in, check-out
patterns from the version control system. The three way
check of experimental data from observer notes, screen
capture videos, and the version control system served to
minimize any measurement-related human errors.

5 ANALYSIS AND RESULTS

5.1 Data Analysis

We analyzed the experiment data using version 11 of the
STATA statistical package [58]. In the first stage, we verified
the normal distribution of the response variables, main-
tenance effort, and perceived ease-of-maintenance, using
the Shapiro-Wilk test [59] and through visual inspection of
QQ plots, skewness, and kurtosis graphs [60]. These tests
did not reveal any normality-related issues. An outlier
analysis was performed to check for potentially influential
or erroneous outliers. This analysis revealed two candidate
cases. In one of the cases maintenance effort was lower than
the respective cell mean and in the other case higher. We
checked all data on the two candidate cases and found no
errors, and therefore we retained these cases in the data set
(the final results are robust to both the inclusion and the
exclusion of the two candidate outlier cases).

Descriptive statistics of the potential covariates collected
through the postexperiment interview and their correla-
tions with the response variables are shown in Tables 1
and 2, respectively. None of the potential covariates was
significantly correlated with either maintenance effort or

perceived ease-of-maintenance. We verified the homoge-
nous distribution of covariates across the eight experiment
cells through a series of Analysis of Variance (ANOVA)
tests with the covariates as dependent variables, and
coupling, cohesion, and team strategy as the independent
variables. None of these ANOVA models was statistically
significant, implying homogenous distribution across the
experiment cells.

Since the research model of this study involved two
response variables (maintenance effort and perceived ease-
of-maintenance), we performed a Multivariate Analysis of
Variance (MANOVA). Table 3 shows the results of this
analysis. The overall model was statistically significant
(Table 3, Row 1, F ¼ 2:95, p-value ¼ 0), confirming that
there were significant differences in the means of main-
tenance effort and perceived ease-of-maintenance across the
different experiment cells. Referring to Table 3 it can be seen
that the main effects of cohesion (Table 3, Row 2) and
coupling (Table 3, Row 3) are both highly significant at the
usual levels. The two-way interaction between coupling and
cohesion (Table 3, Row 4) is also significant in the overall
model at the p < 0:10 level. The independent main effect of
team strategy was not significant at usual levels (Table 3,
Row 5), but the two-way and three-way interactions of team
strategy with coupling and cohesion were found to be
statistically significant (Table 3, Rows 6-8), indicating that
the interaction effect of team strategy and structural
complexity of software is a significant driver of perfor-
mance outcomes.

We also performed separate univariate Analysis of
Variance (ANOVA) analyses for both maintenance effort
and perceived ease-of-maintenance. The univariate models
were statistically significant, and results of these univariate
models were similar to the MANOVA analysis (maintenance
effort model: F ¼ 5, p-value ¼ 0:001, adj. R-squared ¼ 0:39;
perceived ease-of-maintenance model: F ¼ 2:9, p-value ¼
0:01, adj. R-squared ¼ 0:23).
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Descriptive Statistics for Potential Covariates

TABLE 2
Correlations for Maintenance Effort and Perceived Ease-of-Use with Potential Covariatesy

Note: y P -Values in parenthesis.



5.2 Hypotheses Tests

We examined the individual hypotheses developed in

Section 2 using posthoc tests following the MANOVA

analysis. Since all the hypothesis tests comparisons were

done using the same MANOVA results, a Bonferroni

adjustment was applied to the p-values to minimize Type 1

errors [62], and these results are shown in Table 4. The

observed differences (reported in Table 4, column 3)

between the hypothesized comparison conditions are

calculated using the experiment cell means, which are
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TABLE 4
Hypothesis Tests Results

Note: y All p-values are two-tailed; Bonferroni adjusted p-values are 0.006 for 5 percent significance (marked as “*” in Table 4).

TABLE 3
MANOVA for Maintenance Effort and Perceived Ease-of-Maintenance

Note: # The results of the MANOVA analysis were identical across different test statistics (Pillai’s trace, Wilk’s lambda, Roy’s largest root, and
Lawley-Hotelling trace.



reported in Table 5 and Fig. 2 for maintenance effort and
Table 6 and Fig. 3 for perceived ease-of-maintenance.

The statistical tests reported in Table 4, column 5, verify
if each of the observed differences are significant at the
Bonferroni adjusted � ¼ :006 level. For example, the value
for H1 in Table 4 is calculated as follows: Total maintenance
effort for the low-cohesion condition is 192.7 as derived
using the cell means of the low-cohesion condition ð¼ 41 þ
19:8þ 70:2þ 61:7 ¼ 192:7Þ. Similarly, total maintenance
effort for high-cohesion condition is derived as 102:2
ð15þ 29:3þ 33:2þ 24:7 ¼ 102:2Þ. Calculating the ratio
[(high cohesion-low cohesion)/low cohesion] as a percen-
tage (i.e., ½ð102:2� 192:7Þ=192:7� � 100 ¼ �46:96Þ, shows that
the highly cohesive programs require about 47 percent
lower maintenance effort than the low-cohesive programs.

This observed difference is statistically significant as shown
by the Chi-squared statistic in Table 4 H1 (p-value ¼ 0:000).

All of the confirmatory hypotheses for the maintenance

effort (H1, H2, and H3) were supported. Maintenance effort
was lower for highly cohesive programs, higher for highly

coupled programs, and there was a significant interaction
effect between coupling and cohesion in determining

maintenance effort.
While we found significant interaction effects for team

strategy in the MANOVA analysis (Table 3, Rows 6-8), a
comparison of means as posited by hypotheses H4 and H5
did not reveal statistically significant results at the Bonfer-
roni adjusted � ¼ 0:006 level. Even though the observed
differences between High-Cohesion and Low-Cohesion
groups under the independent programming strategy (refer
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TABLE 6
Experiment Cell Means Data—Perceived Ease-of-Maintenancey

Note: y Standard deviation in parentheses; perceived ease-of-maintenance measured on a Likert scale ranging from 1-5 (1 = hardest to perform
maintenance, 5 = easiest to perform maintenance).

TABLE 5
Experiment Cell Means Data—Maintenance Efforty

Note: y Standard deviation in parentheses; maintenance effort is measured in person-minutes.

Fig. 2. Effects of coupling, cohesion, and task strategy on maintenance effort.



to Table 4, H4) and the High-Coupling and Low-Coupling

groups under the collaborative programming strategy (refer

to Table 4, H5) are in the hypothesized directions, they are

not statistically significant at the more conservative level.

This indicates that we cannot confirm how the impact of

structural complexity on performance outcomes is influ-

enced by a chosen team strategy by only considering one of

coupling or cohesion. Rather, there is a need to consider the

full three-way interaction effects between coupling, cohe-

sion, and team strategy in order to examine how the

interplay among these variables impacts maintenance

performance. Hypotheses H6 and H7, which proposed a

three-way interaction between coupling, cohesion, and task

strategy, were both strongly supported (p-value ¼ 0:000,
refer to Table 4, H6, H7).

Fig. 2 visually shows the differences in cell means of
maintenance effort for all the groups in the research design
(three-way between coupling, cohesion, and team strategy).
Fig. 2 also includes the subdivision of overall maintenance
effort into program comprehension, explicit coordination,
and execution portions. These subdivisions of maintenance
effort were derived based on the events noted by the
experiment observer and was corroborated using the screen
capture recordings and version control system check-in
timings. The three-way interaction effects between cou-
pling, cohesion, and team strategy on maintenance effort
are visually represented in Fig. 4.
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Fig. 3. Effects of coupling, cohesion, and team strategy on perceived ease-of-maintenance.

Fig. 4. Interaction effects of coupling, cohesion, and task strategy on maintenance effort.



Both of the perceived ease-of-maintenance hypotheses
(refer to Table 4, H8, and H9) were fully supported at the
Bonferroni adjusted � ¼ 0:006 level. As we had expected,
the perceived ease-of-maintenance level for the collabora-
tive programming strategy groups was higher than for the
independent programming strategy groups. Also, as hy-
pothesized in H9, under the collaborative programming
strategy highly coupled programs showed lower perceived
ease-of-maintenance levels than programs with lower levels
of coupling. The perceived ease-of-maintenance levels for
the various experimental groups are presented in Fig. 3. The
significant three-way interaction between coupling, cohe-
sion, and task strategy is depicted visually in Fig. 5.

It is interesting to note that, under the independent
programming team strategy, programmers tended to per-
ceive maintenance of highly coupled programs as easier
than less coupled programs, even though it takes them more
effort to complete the maintenance of highly coupled
programs. We believe that this result is driven by their
difficulty in establishing an initial common ground between
collaborating programmers in higher structural complexity
contexts. This is supported by the observed higher levels of
program comprehension effort expended by the program-
mers for highly coupled programs (see Fig. 2). In Section 6.1,
we discuss the implications of this type of potential
mismatch between what may be programmers’ preferred
choice and what can be shown to be the economically
optimal team strategy.

6 DISCUSSION

The primary objective of this research was to extend the
investigations of the relationship between software struc-
ture and maintenance performance by taking into account
the team strategies employed by maintenance program-
mers. Supported by the theoretical perspectives of the
distributed cognition and task interdependence frame-
works, this study experimentally validated that the team
strategy employed by maintenance teams, along with
structural complexity, are important factors in influencing
performance outcomes such as maintenance effort and
perceived ease-of-maintenance.

Specific differences in maintenance effort across different
levels of structural complexity and team strategies can be
inferred from Fig. 2 and Table 5, which show the cell means of

all the combinations of the interacting variables. Since the
perfective maintenance task (i.e., adding a business function-
ality) across the experiment cells remained constant, the
observed differences in maintenance effort can be interpreted
as productivity differences4 induced due to the congruence
(or lack thereof) of team strategies and software structure.

Referring to Fig. 2, it can be seen that, other than in the
high-cohesion/low-coupling quadrant (lowest structural
complexity), teams using the collaborative programming
strategy were more productive (required less total effort)
than teams using the independent programming strategy,
ceteris paribus. The largest difference in productivity between
the collaborative and independent programming strategies
can be seen in the low-cohesion/low-coupling quadrant
(49.5 percent), and the smallest difference is found in the
low-cohesion/high-coupling quadrant (highest structural
complexity) (14 percent). However, in the lowest possible
structural complexity environment of the experiment (high-
cohesion/low-coupling quadrant), programmers employing
the independent programming strategy were 50.2 percent
more productive on average than the programmers employ-
ing the collaborative team strategy. Irrespective of the team
strategies employed, maintenance of high-cohesion pro-
grams was 47 percent more productive than maintenance of
low-cohesion programs. Similarly, it required on average
80 percent more effort from programmers to finish main-
tenance tasks in highly coupled programs as compared to
programs with lower levels of coupling.

Referring to Fig. 5, it can be seen that programmers’ ease-
of-maintenance perceptions for the team strategies were
also highly contingent on the structural complexity levels
that they encountered. Programmers’ perception of ease-of-
maintenance for modules with high cohesion and low
coupling were 30 percent higher than other more complex
modules, and all else being equal, the collaborative
programming strategy was perceived to be easier to use
(28 percent higher) than the independent programming
strategy. However, the ease-of-maintenance perception
difference between collaborative programming and inde-
pendent programming dropped significantly (86 percent) as
coupling increased.
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Fig. 5. Interaction effects of coupling, cohesion, and team strategy on perceived ease-of-maintenance.

4. That is, the numerator in the equivalent productivity equation
(output/input = maintenance task size/effort) remained the same across
the cells.



Due to the limited sample size of our professional
programmer pool, we performed statistical tests on theore-
tically motivated hypotheses pertinent only to a subset of all
the possible combinations of the 2� 2� 2 experiment
design reported in this paper. However, it is also possible
to glean interesting qualitative results from Figs. 2 and 3 on
the untested effects. For example, from Fig. 2 we can see that
under the collaborative programming strategy, the effects of
coupling on maintenance effort is reversed when cohesion
changes from low to high. That is, collaborative program-
ming becomes a viable team strategy in high-coupling
regimes if accompanied by high cohesion. Similar reversal
of effects with respect to perceived ease-of-maintenance can
be observed from Fig. 3. For example, while the indepen-
dent programming strategy typically yields the best ease-of-
maintenance scores, once high coupling is accompanied by
high cohesion, independent programming no longer out-
weighs the collaborative programming strategy.

Other qualitative results can be derived by observing the
variety of descriptive differences in lower order factors of
program comprehension, coordination, and solution execu-
tion effort due to the dynamic interactions between soft-
ware structure and team strategy. We plotted these patterns
in Fig. 2 using a combination of version control check-in
and screen capture data along with the unintrusive
observations of experiment observers. The pattern of
breakdowns in maintenance effort show that program
comprehension and execution effort are typically higher
in more structurally complex environments, but the co-
ordination effort needed to complete a maintenance task is
more dependent on the team strategy employed by the
collaborators. While coordination effort is generally lower
for the collaborative programming strategy, by employing
the independent programming strategy in less structurally
complex environments it may be possible to exploit the
lower effort needed for solution execution to boost main-
tenance performance.

These results provide evidence for the proposition that
managers should take a contingency view of structural
complexity when planning maintenance projects. When the
maintenance activity of teams is viewed as a distributed
cognitive system, the impacts of structural complexity are
not determined by the structure of the software alone, but
are contingent on the team strategies that are employed by
the software maintainers. Referring to Figs. 2 and 3, one can
see how the results of the programmer team strategy
contingency of structural complexity provides different
maintenance effort levels and perceived ease-of-mainte-
nance for different groups of the interaction.

6.1 Implications for Research and Practice

Software engineering research studies that compare differ-
ent processes or techniques (e.g., individual versus pair
programming) often view structural complexity as a static
function and merely control for its effect by including levels
of coupling and cohesion (or other similar metrics) in their
models. Instead, based on the results of this study, a more
nuanced view of structural complexity is advocated. This
study shows that when examining higher order factors such
as productivity, it is necessary to account for how
maintainers involved in the software activity approach the

inherent software structure and act on it. Our study
provides a rationale using the distributed cognition and
task interdependence frameworks to support a contingency
view of software complexity, and experimentally validated
the use of team strategy-coupling-cohesion interactions as a
way to account for effects of software complexity on
maintenance performance. Team strategy has the benefit
of being a controllable manifest dimension of team
structure, and could be particularly useful when the unit
of analysis in software research is a team or project, rather
than an individual.

An important implication of the contingency view of
structural complexity for practice is on the way work
breakdown structures are achieved in a software project.
This research study shows that there are higher order
benefits, including improved maintenance productivity,
which could be reaped if careful attention is paid to achieve
congruence between project task work breakdown struc-
tures and team strategies employed by programmers. Work
breakdown structures capture the planned division of labor
mechanism by managers. Programmer team strategies
determine how the elements of a work breakdown structure
are further chunked, clustered, and performed during the
actual task execution. Hence, incongruence between
the planned work breakdown structures and the actual
team strategies may result in unexpected overhead costs,
such as unplanned coordination and idle time.

Our study shows that significant improvements in
maintenance performance can be attained if the latent
structural properties of object-oriented systems are
exploited for project planning, deriving work breakdown
structures, and resource allocation. For example, our results
would predict that managers who allocate maintenance
tasks to independent or collaborative programming teams
depending on the structural complexity of software
(e.g., high-cohesion/low-coupling maintenance to indepen-
dent programming teams and more complex tasks to
collaborative programming teams) could lower their team’s
maintenance effort by as much as 70 percent over managers
who use a simple uniform resource allocation policy. It is
important to note, however, that choice of the maintenance
team strategy might be affected by programmers’ will-
ingness to employ it, and managers should be aware that
programmers might prefer a team strategy different than
the economically optimal one. Thus, in order to deploy an
optimal resource allocation policy derived from the con-
tingency view of structural complexity, additional comple-
mentary investments in, for example, training programs
and team-building exercises, might be necessary.

It is possible to discover the latent structural properties of
object-oriented systems at relatively low cost by using
commercially available object-oriented metrics and toolsets.
Therefore, this study further suggests the value of integrating
object-oriented metrics into the early stage project planning
process. However, getting leading indicators of software
structural complexity through object-oriented metrics can
sometimes be challenging in practice, due to customer
restrictions, or to the lack of implementation of automated
tools. One way to break such a deadlock is through local
tailoring of processes and through treating team strategy as a
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response to a given software structure that is being
discovered concurrently. A more refined, metrics-driven
strategy of allowing independent programmers to team
program on high cohesion/low coupled program elements
and collaboratively pairing programmers to handle low
cohesion/highly coupled program elements could poten-
tially result in significant savings in total effort expended.

6.2 Limitations and Future Research

This research study is based on a controlled experiment
using pairs of certified professional programmers with at
least 2 years of commercial experience. Although high
confidence can be placed in the specific results due to the use
of experimental controls, normal caution has to be exercised
on broad generalizations. Nevertheless, since the hypoth-
eses of this study are theoretically motivated, the procedures
can be easily replicated in other empirical settings and the
results verified.

To be able to control the important factors of interest and
to keep the sample size feasible given the use of profes-
sional programmers, some other potentially interesting
variables observed in field settings were not considered as
part of the research design. While keeping the research
model parsimonious helped in maintaining control of the
primary factors of interest, such designs necessitate trade-
offs with other potential research questions. For example,
this experiment leaves to future research possible manip-
ulation of programmer expertise (e.g., novices versus senior
programmers) or variations in team sizes. Future research
could extend the findings of this study to corrective and
adaptive maintenance, and also to study the impact of
structural complexity on other potentially relevant response
variables, such as reuse or conformance quality.

The 2� 2� 2 experiment design we used for the study
did not lend itself to also considering a broad range of
refactoring techniques available for manipulating structural
complexity of software and, unlike other studies [9], [10],
we did not specifically focus on the effects induced by
specific refactoring techniques on programmer behavior.
We restricted our refactoring actions to manipulate cou-
pling and cohesion by modifying method calls and the
sharing of instance variables between method pairs. This
limits the development of finer prescriptions on how a
system with given structural complexity can be altered to
suit a preferred team strategy of a project team. We believe
that this does not pose a serious threat to the validity of our
results since we ensured functional equivalence of the
various versions of the system and also used a completely
randomized assignment for the experiment groups. How-
ever, we caution against broad generalizability until the
results reported in this study have been replicated using a
variety of refactoring techniques. Assessing the sensitivity
of the three-way interaction effects of coupling, cohesion,
and team strategies with respect to refactoring techniques is
a potentially fruitful area of future research.

Also, as is traditional with software engineering experi-
ments, we acknowledge the limitations of generalizing our
findings to large maintenance projects that operate for
extended periods of time. And normal caution has to be
placed on extending laboratory experimental results based
on a relatively small perfective maintenance task to larger

production settings. Replication and verification of the
results using data from larger and diverse production
environments is recommended.

Given that the current study has shown the effect of two
consistent team strategies, independent and collaborative
programming, future research could investigate the possi-
ble effects of mixed or hybrid task strategy models. Finally,
the impact of different modes of pairing programmers in
collaborative programming setting (experts-novices, no-
vices-novices, experts-experts) on the three-way interaction
between team strategy, coupling, and cohesion could be
examined in future research as well.

7 CONCLUSION

This study provides evidence establishing the relationship
between the structure of systems and maintenance perfor-
mance by accommodating the nature of work division
mechanisms employed by maintenance teams. Viewing the
combination of the system and the system maintainers as
intertwined components of a single distributed cognitive
system, a contingency view of structural complexity is
established. Using data collected from a controlled lab
experiment with professional programmer pairs as subjects
the contingency view of structural complexity is illuminated
by demonstrating the presence of interactions between the
structural properties (coupling and cohesion) of the system
and team strategies of the actors (independent program-
ming versus collaborative programming). The key finding of
the experiment is that the latent structural properties of
object-oriented systems can be exploited to improve main-
tenance performance by appropriately choosing between
independent programming and collaborative programming
strategies. Maintenance effort and perceived ease-of-main-
tenance of programmers are significantly influenced by the
complex three-way interactions between coupling, cohesion,
and task strategy. This study provides an empirically
validated rationale for using the coupling-cohesion-team
strategy framework for planning maintenance projects and
for resource allocation. The wide availability of object-
oriented metrics and tool sets provides ample impetus to
accomplish this in software engineering practice.
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