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Fingerprinting Relational Databases:
Schemes and Specialties

Yingjiu Li, Member, IEEE, Vipin Swarup, and Sushil Jajodia, Senior Member, IEEE

Abstract—In this paper, we present a technique for fingerprinting relational data by extending Agrawal et al.’s watermarking scheme.

The primary new capability provided by our scheme is that, under reasonable assumptions, it can embed and detect arbitrary bit-string

marks in relations. This capability, which is not provided by prior techniques, permits our scheme to be used as a fingerprinting

scheme. We then present quantitative models of the robustness properties of our scheme. These models demonstrate that fingerprints

embedded by our scheme are detectable and robust against a wide variety of attacks including collusion attacks.

Index Terms—Fingerprint, relational database, robustness, collusion attack.

�

1 INTRODUCTION

FINGERPRINTING is a class of information hiding techniques

that insert digital marks into data with the purpose of

identifying the recipients who have been provided data.

Watermarking is another class of information hiding techni-

ques whose purpose is to identify the sources of data. Both

techniques can help protect data from piracy, which has
become a severe threat to database applications [25].

Consider a generic scenario where merchants (or owners,

we use “owners” and “merchants” interchangeably) sell

digital data to buyers. Some dishonest buyers (called

traitors) may redistribute the data to others without

permission from the merchants. A merchant may use a

watermarking scheme to embed a merchant-specific mark

into her data; she can subsequently detect the mark in

pirated data and use the detection process to assert

ownership of the data. She may use a fingerprinting scheme

to embed a buyer-specific mark into a data copy provided

to a buyer; she can subsequently detect the mark in pirated

data and use the mark to identify the traitor who

distributed the data.
Watermarking and fingerprinting have different goals

and, hence, require different schemes. Watermarking aims

to identify a data owner and, hence, is subject to attacks

where a pirate claims ownership of the data or weakens a

merchant’s claims. In contrast, fingerprinting aims to

identify a traitor and is subject to attacks that cause an

innocent principal (or no principal) to be identified as a

traitor.

Watermarking and fingerprinting have been studied

extensively in the context of multimedia data (e.g., [5], [6],

[11], [12]). However, little work has been done on

fingerprinting in the context of relational data. Very

recently, research has targeted the watermarking of rela-

tional databases [1], [9], [23], [24]. In [1], a unique scheme

(AK scheme for convenience) is presented for embedding

watermarks within numeric attributes of relations. It

assumes that merchants and buyers can tolerate a small

amount of errors in those attributes, but that introducing

many more errors will reduce the value of the data

substantially. For example, if an attribute contains numeric

values with five decimal places, then a buyer may accept

that 0.1 percent of the tuples have arbitrary fractional errors

as long as the rest are accurate up to five decimal places.

In the AK scheme, each watermark is represented by a

unique secret key K. This key must be used during both

watermark insertion and detection. In watermark insertion,

the key determines (pseudorandomly) multiple mark bits

and the positions where the mark bits are embedded in a

database relation; the detection algorithm merely tests

whether or not a specific key was used to mark the relation.

Since the mark bits are determined by the key, they

represent a single identity who possesses the key. This is

inadequate for many marking applications, e.g., for finger-

printing, where a merchant must have the ability to embed

and detect distinct marks or identities in separate copies of

a relation. In this paper, we will present a marking scheme

that permits an arbitrary mark bitstring to be embedded in a

relation using a single secret key. The mark bitstring can be

used to represent different buyers who purchase the

database relation. Our detection algorithm tests whether a

key was used to mark a relation and, if so, it returns the

actual mark bitstring that was embedded.
Our marking scheme can be used for both watermarking

(the same bitstring is embedded and detected) and
fingerprinting (different bitstrings are embedded and
detected). When used for watermarking, our scheme has a
significant impact on the robustness due to the change of
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embedding marks. In a separate paper [14], we have proven
that our scheme is more robust than the AK scheme in the
sense that it provides an upper bound for the probability
that a valid watermark is detected from pirated data, and an
upper bound for the probability that a fictitious secret key is
discovered from pirated data. A further comparison
between watermarking and fingerprinting schemes is given
in Section 3.

The focus of this paper is to apply such a marking
scheme to fingerprinting relational databases and present a
rigorous analysis on the specialties in fingerprinting: 1) We
define several measures for the robustness properties of
fingerprinting schemes. 2) We present detailed quantitative
models of these measures for our fingerprinting scheme. 3)
We demonstrate the robustness of our scheme under
collusion attacks (which are unique to fingerprinting). This
body of new quantitative analysis is the primary contribu-
tion of this paper.

The rest of the paper is organized as follows: Section 2
presents our fingerprinting scheme. Section 3 compares our
scheme with existing watermarking schemes. Section 4
presents a detailed analysis of the specialties of our
fingerprinting scheme. Section 5 addresses the collusion
problem in fingerprinting relational databases. Section 6
discusses the extension to our work. Section 7 reviews
related work. Finally, Section 8 summarizes the paper and
suggests future directions.

2 A FINGERPRINTING SCHEME FOR

RELATIONAL DATA

Our fingerprinting scheme is developed by extending the
AK scheme, which was proposed by Agrawal et al. for
watermarking relational databases [1]. We first present our
scheme and then clarify the relationship between our
scheme and AK scheme. Table 1 gives the notation that
will be used in our scheme.

Consider a database relation R with primary key P and
� numerical attributes A0; . . . ; A��1. Assume that it is
acceptable to change one of � least significant bits in a
small number of numeric values. The relation has � tuples
and a fraction 1=� of them will be used for fingerprinting.

The owner of R has a secret key K. A cryptographic
pseudorandom sequence generator [22] S is used to select
tuples, attributes, bits, and decide how to change the bits in
fingerprinting. Such a pseudorandom sequence generator
produces a sequence of numbers from an initial seed.
Without the knowledge of the seed, it is computationally
infeasible to compute the next number in the sequence.
Different seeds lead to different sequences. For each tuple r,

S is seeded with the primary key r:P concatenated with the
secret key. Let SiðK; r:P Þ denote the ith number in the
sequence generated by S. The values of SiðK; r:P Þ are
uniformly distributed for different primary key values.

2.1 Fingerprint Codes

It is assumed that there are N buyers and that all
fingerprints are unique binary codewords (i.e., strings)
and have the same length L (L > lnN). In general, any
binary codewords of length L can serve as fingerprints.
However, this requires storing all buyer-fingerprint pairs in
a database for detecting purpose. Not only does this
requirement violate the key-based property, but also
introduces management overhead for keeping the database
secret (it is critical to keep all fingerprints secret to thwart a
collusion attack); some security mechanisms such as access
control and encryption may need to be enforced so as to
protect the database.

To avoid this, let the merchant generate each buyer’s
fingerprint F from the merchant’s secret key K and the
buyer’s series number i (which can be public) using a
cryptographic hash function1 H,

FðK; iÞ ¼ ðf0; . . . ; fL�1Þ ¼ HðKjiÞ;

where “j” indicates concatenation. There is no need to store
the fingerprints which can be computed on the fly during
fingerprint insertion or detection.

The secret key and fingerprinting codes should be long
enough to thwart exhaustive search and various types of
attacks. We assume L � lnN . L can be, for example, 64, 128,
or 160 bits. In most cases, a 128-bit secret key and 64-bit
fingerprinting codes should be good enough. Note that the
fingerprinting codes described in this section are not
collusion resistant and that the collusion issue will be
addressed in Section 5 using Boneh and Shaw’s fingerprint-
ing codes.

2.2 Algorithms

Our fingerprinting scheme consists of two algorithms,
fingerprint insertion and fingerprint detection. The finger-
print insertion algorithm is shown in Fig. 1. The algorithm
inserts the fingerprint of buyer n into relation R. For each
tuple r of R, the algorithm seeds the sequence generator S
with the concatenation of the secret key K and the
primary key r:P of the tuple. If the first sequence number
S1ðK; r:P Þ mod � ¼ 0, the tuple is selected. Therefore, on
average, one out of � tuples are selected. For each selected
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TABLE 1
Notation

1. Using a standard hash function such as MD5,HðKjiÞmay not have the
exact selected length L. We can either truncate it or concatenate multiple
copies of it to obtain an L-bit fingerprint.



tuple, the algorithm selects exactly one attribute; in
particular, it selects attribute i if S2ðK; r:P Þ mod � ¼ i.
Similarly, it selects least significant bit j from the selected
attribute if S3ðK; r:P Þ mod � ¼ j. On the other hand, the
algorithm computes a mask bit x according to S4ðK; r:P Þ;
if S4ðK; r:P Þ is even, then x ¼ 0 else x ¼ 1. It also selects a
fingerprint bit fl if S5ðK; r:P Þ mod L ¼ l. Finally, the
algorithm XOR’s the fingerprint bit with the mask bit
and assigns the selected bit with the XOR’ing result. The
purpose of using mask bits is to hide the distribution of
fingerprint bits.

Note that all selections and computations in fingerprint
insertion are based on SiðK; r:P Þ which are uniformly
distributed. On average, �=� bits (or tuples) are used to
embed a fingerprint, and each fingerprint bit fl is
embedded �=ð�LÞ times. Also, note that the secret key is
involved in every step of the process. Without knowing the
secret key and without comparing multiple fingerprint
copies, buyers are prevented from knowing where the
fingerprint is embedded.

In fingerprint detection, a merchant of database
relation R would like to determine whether another relation
R0 was pirated from R and, if so, identify the traitor who
distributed R0 without authorization. If R0 is pirated, the
algorithm assumes that the primary key attribute values as
well as the order among marked attributes have not
changed (or else can be recovered). Note that R0 may
consist of only a subset of original tuples; it may include
some additional tuples that were not in R, and some bit
values in R0 could have been changed by the traitor before
detection.

The fingerprint detection algorithm is shown in Fig. 2.
The algorithm initiates a fingerprint template F ¼
ðf0; . . . ; fL�1Þ as ð?; . . . ; ?Þ, where “?” indicates that a mark
bit is in an unreadable state (such a symbol is also used in
other fingerprinting papers, such as [3], [21]). It then
locates the marked bits exactly as the insertion algorithm
does. From each marked bit, the algorithm extracts a
fingerprint bit fl by XOR’ing the bit value with a

computed mask bit. If the marked bit has been changed
by the traitor, the extracted fl may not match its original
value. The algorithm uses two counting variables
count½l�½0� and count½l�½1� to indicate the number of times
that fl is extracted to be 0 and 1, respectively. After all
marked bits are checked, the algorithm assigns 0 (or 1,
respectively) to fl if the ratio count½i�½0�=ðcount½i�½0� þ
count½i�½1�Þ (or count½i�½1�=ðcount½i�½0� þ count½i�½1�Þ, respec-
tively) is greater than � , where � 2 ½0:5; 1Þ is a real
parameter that is related to the assurance of the detection
process.

A traitor is detected in a subroutine detect if the
recovered fingerprint template F ¼ ðf0; . . . ; fL�1Þ matches
one of the N buyers’ fingerprints, which is computed in the
same manner as the insertion algorithm (this can be either
calculated on the fly, as shown in Fig. 2, or calculated before
fingerprint detection). There are various methods on how to
match a binary string against a set of strings efficiently (e.g.,
through a Bloom filter [2]). Any of such methods can be
incorporated into our detection algorithm. We simply use
the exact match in the algorithm.

3 COMPARISON WITH WATERMARKING SCHEMES

In this section, we compare our fingerprinting scheme with
the AK scheme as well as other watermarking schemes in
regards to embedding methods, assumptions, properties,
errors, and robustness measures.

3.1 Embedding Methods

The original form of the AK scheme physically embeds and
detects ! (! ¼ �

� ) mark bits, where each mark bit is
computed the same way as the mask bit in our scheme.
Since the mark bits (and where they are embedded) are
determined by the secret key, they represent a single
identity who possesses the key. This is inadequate for
fingerprinting applications where a merchant must have the
ability to embed and detect distinct marks or identities in
separate copies of a relation. Our scheme generalizes
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Fig. 2. Fingerprint Detection Algorithm (note: this algorithm is not collusion resistant).



AK scheme in a simple way based on a “logical view” of
the AK scheme. In this view, the AK scheme logically
embeds and detects a single bit ! times through XOR’ing
mask bits:

. In watermark insertion, embedding a mark bit x is
equivalent to embedding “fingerprint bit” “0”
through mask bit x (0� x ¼ x).

. In watermark detection, extracting a mark bit x
is equivalent to extracting “fingerprint bit” “0”
through mask bit x (x� x ¼ 0).

From this point of view, the AK scheme can be considered
as a special case of our scheme where L ¼ 1 and f0 ¼ 0.

There could be other ways to generalize the AK scheme
for embedding fingerprints. For instance, if each finger-
print is mapped to a different secret key, the merchant
may use the AK scheme with the appropriate secret key to
embed a particular fingerprint. However, fingerprint
detection is inefficient and unscalable because it may
require checking all possible keys before reaching a
decision. In addition, this solution is vulnerable to
collusion attack where a group of buyers collaboratively
compare their data copies, identify differences of em-
bedded marks, and modify their fingerprints. Another
extension is to partition the data and then use the
AK scheme to embed each fingerprint bit into a unique
partition. However, this scheme is vulnerable to those
attacks that delete a large portion of tuples. For example,
in the case that half of the partition blocks are deleted in
an attack, half of the fingerprint bits will not be detected
anyway.

People have proposed other methods so as to directly

embed a bitstring to relational data [16], [24], [27]. In [24], an

arbitrary bit is embedded into a selected subset of data

values by changing the distribution of the values. The

selection of subsets is based on a secret sorting, which could

be expensive for large data sets. In [16], a database relation

is transformed into a two-dimensional image into which a

bitstring is embedded, while, in [27], a bitstring is

embedded by adding or not adding a set of extra tuples

called stealth tuples. We mention that a naive application of

these methods to embedding fingerprints is not secure or

efficient. We shall make this clearer in Section 6.3 after

studying collusion attacks.

3.2 Assumptions and Properties

Compared to the AK scheme, our fingerprint scheme shares
the same set of assumptions, including 1) database users
can tolerate the errors that are caused by changing one of �
least significant bits in a small number of numerical values
(the number is controlled by parameter �), 2) a database
relation has a primary key attribute which does not change
or else can be recovered, and 3) the order of marked
attributes does not change or else can be recovered. Note
that the latter two assumptions are not critical to this
approach and may be dropped with suitable extensions (see
[13], for instance).

Our fingerprinting scheme also inherits the same set of
properties from the AK scheme including: 1) Key-based:
The secret key is involved in every step of the scheme for

embedding and detecting a fingerprint. 2) Blind: It is not

required to have the original database or any fingerprint

involved in fingerprint detection. 3) Incrementally upda-

table: Each tuple is assumed to have a unique primary key,

based on which it is processed independently.

3.3 Errors

Compared to the AK-scheme, our fingerprint scheme uses

the same procedure to locate marked bits in data. The

procedure is determined by the secret key, the primary key

attribute, and the parameters �; �; �. With the same set of

parameters, both schemes locate the same marked bits for

embedding fingerprint or watermark. The only difference is

that, in the AK scheme, mark bits (i.e., mask bits in our

scheme) x are embedded directly, while, in our scheme, the

same bits x are XOR’ed with corresponding fingerprint bits

f before being embedded (i.e., x� f are embedded).

Because x are determined pseudorandomly by S4ðK; r:P Þ,
both schemes modify the underlying data with the same

probability. Therefore, the errors introduced by our scheme

are statistically the same as by watermarking scheme.
We do not repeat the error analysis which has been done

on the AK scheme [1]. Rather, we summarize that the errors

can be controlled to be minuscule by appropriate selection

of parameters �; �; �. The rationale behind this is as follows:

. The number of attribute values modified during

fingerprint insertion is small. In a database with

� tuples, on average, �=� tuples are selected for

marking. In each of these tuples, a single bit from a

single attribute is replaced by a mark value. Since

the mark values are selected pseudorandomly, they

will equal the unmarked bit values about half the

time and, so, will not modify those bits.
. The errors introduced in attribute values are

bounded. When an attribute is marked, only one of

its � least significant bits is replaced by a mark value.

This restricts the changes in attribute values caused

by marking. A merchant can trade off � against � to

control the accuracy of the marked data. That is, the

merchant can reduce the number of marked attri-

butes by increasing the errors introduced in each

marked attribute.

It should be noted that, no matter how small the errors

are, the fingerprinting process does alter the underlying

data as well as its structural properties. For example, if one

considers a natural join operation in which equalities are

specified on k fingerprinted attributes, the probability that a

tuple is missed in the result of the operation is at most

1� ð1� 1=ð2��ÞÞk. Therefore, one should be careful about

the intended use of the fingerprinted data. As indicated in

[1] and the Appendix, the errors introduced by water-

marking or fingerprinting are small enough (in terms of

attribute statistics such as mean and variance), and some

data mining task such as classification is not affected. One

may also apply so-called “on-the-fly quality assessment”

[24] so as to make sure that the usability of data is not

affected by the fingerprinting process in practice.
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3.4 Robustness Measures

Fingerprinting schemes should be robust against benign
database operations and malicious attacks that may destroy
or modify embedded fingerprints. It should be hard for
attacks and benign updates to erase embedded fingerprints,
to modify embedded fingerprints so that an innocent buyer
is implicated as a traitor, or to modify unmarked data so
that the fingerprinting scheme detects a valid but incorrect
fingerprint in the modified data.

As indicated in [1], the embedded marks can always be
destroyed by making substantial modifications to marked
data. Therefore, the robustness of our scheme is considered
relative to the data modifications made by attacks and
updates.

We analyze our fingerprinting scheme using the follow-
ing robustness measures. We say that a binary string is a
valid fingerprint if it is of the form FðK; nÞ (0 � n < N). A
detected fingerprint is incorrect if it is not the one that was
used in fingerprint insertion.

. Misdiagnosis false hit (fhD): The probability of
detecting a valid fingerprint from data that has not
been fingerprinted.

. Misattribution false hit (fhA): The probability of
detecting an incorrect but valid fingerprint from
fingerprinted data.

. False negative (fn): The probability of detecting no
valid fingerprint from fingerprinted data.

. False miss (fm): The probability of failing to detect an
embedded fingerprint correctly. False miss rate is
the sum of the false negative and misattribution false
hit rates, that is, fm ¼ fhA þ fn.

These robustness measures are subtly different from

those used for watermarking [1], [14]. In watermarking,

there are only two types of false detection rates: detecting a

valid watermark from unmarked data (false hit) and

detecting no watermark from marked data (false miss).

The existence of multiple buyer’s fingerprints demands two

types of false detection rates from marked data: Either no

fingerprint is detected (false negative) or a valid but

incorrect fingerprint is detected (misattribution false hit).

Roughly speaking, false miss (sum of false negative and

misattribution false hit) and misdiagnosis false hit in

fingerprinting setting are the counterparts of false miss

and false hit in watermarking setting.

3.4.1 Note

The fingerprinting algorithms presented in Section 2.2 are
similar to that we developed for watermarking [14] except
that 1) a unique fingerprint code is generated for each
buyer, and 2) an additional procedure detect is required for
detecting a traitor.

So far, we have not studied the collusion attack, which is

specific to fingerprinting. We shall show that a collusion

resistant scheme has to combine a watermarking code [14]

and a collusion-resistant code [3]; otherwise, it could result

in 100 percent misdiagnosis false hit rate (see Section 5.1).

Therefore, a direct extension of the watermarking scheme

for fingerprinting is not acceptable.

The analysis in the previous paper [14] focuses on the

significant impact of using multiple watermark bits on the

false hit and false miss rates, while this paper concentrates

on the N different buyer issues, such as misattribution false

hit, invertibility attack, and collusion attack. Uniquely, this

paper studies the specialties of a collusion secure finger-

printing scheme with regard to problems, algorithm,

analysis and experiment.
The overlap between this paper and the previous paper

includes the initial embedding method, analytical model
(cumulative binomials), and data errors. To make this paper
complete, this part of the work is repeated, but it is kept
minimal as consistent with its title.

4 ANALYSIS

We analyze the robustness of our scheme under a range of
representative attacks. Among those attacks, some of them
are common to both fingerprinting and watermarking,
while collusion attacks are unique to fingerprinting. Our
analytical approach for the common part of attacks is
similar to that used for watermarking schemes [1], [14].
However, as mentioned above, we use a different set of
robustness measures (i.e., misdiagnosis false hit, misattri-
bution false hit, and false negative). We brief our results on
this in this section and pay more attention to the collusion
attacks in the next section.

We will use the following notation: Let bðk;n; pÞ ¼
n
k

� �
pkqn�k be the binomial distribution function which gives

the probability of obtaining exactly k successes out of
n Bernoulli trials, where the result of each Bernoulli trial is
true with probability p and false with probability q ¼ 1� p.
Let Bðk;n; pÞ ¼

Pn
i¼kþ1 bði;n; pÞ be the binomial distribution

survival function which returns the probability of having
more than k successes in n independent Bernoulli trials.
Function Bðk;n; pÞ is monotonic decreasing with k. In
particular, Bðk;n; pÞ � 0:5 if p ¼ 0:5 and k � n

2 .

4.1 Misdiagnosis False Hit

It is clear that, in the absence of malicious attacks or
benign updates, our fingerprinting scheme detects the
embedded fingerprint from pirated data. However, the
scheme may extract a fingerprint (purely by chance) from
unmarked data. We investigate the misdiagnosis false hit
in such a case.

If the detection algorithm is applied to unmarked data, it

may return some binary string ðf0; . . . ; fL�1Þ as a potential

fingerprint. Let fi be extracted from data !i times (!i > 0).

Due to the use of pseudorandom mask bits, each time fi is

extracted, it will be extracted as zero or one with probability

0:5, which is modeled as an independent Bernoulli trial.

After all data is processed, fi is detected to be zero or one

with the same probability Bðb�!ic;!i; 0:5Þ. The algorithm

detects a binary string as a potential fingerprint with

probability �L�1
i¼0 2Bðb�!ic;!i; 0:5Þ, where the factor 2 means

that each bit could be either zero or one. Now, the N valid

fingerprints are selected pseudorandomly from the

2L possible binary strings. Thus, the probability that the

binary string is a valid fingerprint is N
2L . The overall

misdiagnosis false hit rate is

LI ET AL.: FINGERPRINTING RELATIONAL DATABASES: SCHEMES AND SPECIALTIES 39



fhD ¼ N

2L
�L�1

i¼0 2Bðb�!ic;!i; 0:5Þ ¼ N ��L�1
i¼0 Bðb�!ic;!i; 0:5Þ:

The misdiagnosis false hit has upper bound N
2L since

Bðb�!ic;!i; 0:5Þ � 0:5 when � 2 ½0:5; 1Þ. Note that the upper

bound is tight in the case that all !i are odd and � ¼ 0:5. The

misdiagnosis false hit rate can be reduced exponentially by

increasing L (fhD ’ 0 if L � logN); it can also be reduced

by increasing � . The upper bound is independent of the size

of the database relation.

4.2 Bit-Flipping Attack

In the presence of various attacks, a fingerprinting scheme

may not be able to detect the embedded fingerprint from

pirated data (false negative); worse, it may extract an

innocent buyer’s fingerprint (misattribution false hit).
First, consider a bit-flipping attack where an attacker

randomly selects some bits and toggles their values [1], [14].

Assume that the attack toggles each least significant bit with

probability p. Let q ¼ 1� p. Also assume that less than half

of the fingerprintable bits are flipped (i.e., p � 0:5);

otherwise, fingerprint detection can be applied to trans-

formed data by flipping each fingerprintable bit back. The

flipping of a bit is modeled as an independent Bernoulli

trial with probability p of success and q of failure.
A bit flipping attack does not change the size of data.

Assume that each fingerprint bit fi is embedded !i > 0

times and will be extracted exactly the same number of

times. For the detection algorithm to fail to extract a correct

fingerprint bit, at least ð1� �Þ!i embedded bits that

correspond to the fingerprint bit must be toggled (or,

equivalently, more than !i � b�!ic � 1 bits are toggled).

Thus, the probability that the fingerprint bit is detected

incorrectly is Bð!i � b�!ic � 1;!i; pÞ. The probability that

the entire fingerprint is detected incorrectly (i.e., the false

miss rate) is

fm ¼ 1��L�1
i¼0 ð1�Bð!i � b�!ic � 1;!i; pÞÞ:

Now, consider the misattribution false hit fhA. For the

detection algorithm to extract a binary bit for fingerprint

bit fi, either at most !i � b�!ic � 1 of its embedded bits are

toggled, or more than b�!ic of its embedded bits are

toggled. If the detection algorithm extracts a binary string,

the probability that the binary string is a valid but

“innocent” fingerprint is N�1
2L . Therefore,

fhA ¼ N � 1

2L
�L�1

i¼0 ð1�Bð!i � b�!ic � 1;!i; pÞ

þBðb�!ic;!i; pÞÞ �
N � 1

2L
:

The misattribution false hit rate has an upper bound N�1
2L

since Bðb�!ic;!i; pÞ�Bð!i�b�!ic� 1;!i; pÞ when � 2½0:5; 1Þ.
The upper bound is tight in the case that all !i are odd and

� ¼ 0:5. It is straightforward to get the false negative

fn ¼ 1��L�1
i¼0 ð1�Bð!i � b�!ic � 1;!i; pÞÞ�

N � 1

2L
�L�1

i¼0 ð1�Bð!i � b�!ic � 1;!i; pÞ þBðb�!ic;!i; pÞÞ:

4.3 Subset Attack and Superset Attack

Assume that a pirate examines each tuple independently
and selects it with probability p for inclusion in the pirated
relation. We call this subset attack.

A subset attack cannot succeed unless it deletes all the
embedded bits for at least one fingerprint bit. Assume that
each fingerprint bit fi is embedded !i times. The
probability that all the embedded bits for fi are deleted
is Bð!i � 1;!i; 1� pÞ ¼ ð1� pÞ!i . Then, the false miss rate is
fm ¼ 1��L�1

i¼0 ð1� ð1� pÞ!iÞ. Since the subset attack alone
does not change any tuples that are included in the pirated
data, the false negative rate is the same as the false miss
rate, and the misattribution false hit rate is zero.

A dual attack of a subset attack is a superset attack. In
a superset attack, an attacker takes a pirated relation and
mixes it with tuples from other sources to create a
relation. Note that the mix-and-match attack discussed in
[1] can be considered as a combination of subset attack
and superset attack. Assume that fingerprint bit fi is
embedded !i times in the original data, and that it is
extracted !0

i times from the additional tuples. Then, the
probability that this fingerprint bit is destroyed in a
superset attack is Bð!i þ !0

i � bð!i þ !0
iÞ�c � 1;!0

i; 0:5Þ. It is
fairly straightforward to derive various robustness mea-
sures for this attack as for subset attack.

4.4 Invertibility Attack

Consider a scenario where a pirate randomly selects a secret
key and runs the fingerprint detection algorithm on a
pirated relation. The “key” may cause the fingerprint
detection algorithm to extract a valid fingerprint from the
pirated relation. This type of attacks is referred to as an
invertibility attack [7]. If such an attack succeeds, a pirate
can use the discovered key to claim legitimate ownership of
the data. Alternately, a pirate can claim innocence by
claiming that the merchant used this attack to obtain
evidence of piracy.

The probability that a tried key will lead to a valid
fingerprint being detected is given by

max
1

2jKj ; N � �L�1
i¼0 Bðb�!ic;!i; 0:5Þ

� �
;

where !i is the number of times that fingerprint bit i is

extracted from data, the first term 1
2jKj is the probability that

the tried key is the real secret key (assume that the length

of the secret key is fixed and public), and the second term

is the misdiagnosis false hit (detecting fingerprint from

pirated data using an incorrect key is modeled the same as

detecting fingerprint from unmarked data using the correct

key). An attacker can choose the parameters �, L, � , and N

to increase his probability shown in the second term (note

!i ’ �
�L ). In particular, if he selects � ¼ 0:5, this may reduce

to N
2L . The attacker can then select N and L to increase his

likelihood of success.
Thwarting this attack requires that L be much larger than

logN (e.g., L� logN � 60) and that K be long enough (e.g.,
jKj ¼ 128). This requirement can be enforced by convention.
Note that an alternate convention might be to require � to be
greater than 0.5; however, an attacker may get around that
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convention by first reducing !i (e.g., via a subset attack)
before launching an invertibility attack.

There are some other types of attacks, such as additive
attack, by which a pirate inserts another fingerprint before
distributing a pirated database, and combination attack, by
which an attacker launches multiple attacks on the same
data. These attacks can be analyzed by similar approaches
as used in watermarking [1], [14].

5 COLLUSION

Fingerprinting schemes are susceptible to collusion
attacks by coalitions with access to multiple fingerprinted
copies of the same relation but with different embedded
fingerprints. Members of a coalition may be able to create
a useful data copy that does not implicate any member of
the coalition. During fingerprint detection, either the copy
may yield the fingerprint of an innocent buyer or it may
not yield a valid fingerprint. The collusion attack is
specific to fingerprinting and there is no collusion attack
in watermarking setting.

5.1 Problem

The fingerprinting scheme of Section 2 is not secure against

collusion attacks. For example, suppose that three finger-

prints ð1; 1; 0Þ, ð1; 0; 1Þ, and ð0; 1; 1Þ are embedded in three

copies (or instances) of the same database relation using the

same secret key and parameters. A coalition which has all

three copies can compare the copies and replace each bit

position where the copies differ with the value shared by a

majority of the copies (note that fingerprint bit i is

embedded to the same positions in different copies). It is

easy to see that the new copy will have an embedded binary

string ð1; 1; 1Þ. The coalition can also replace each identified

bit with a random value, possibly producing a binary string

ð1; 0; 0Þ. These binary strings do not necessarily identify any

members of the coalition as a traitor.

Collusion resistent fingerprinting codes have been

studied extensively in the literature of cryptography (e.g.,

[3], [10], [15], [17], [18], [19], [26]). A well-known finger-

printing code, which we call BoSh code for short, was

proposed by Boneh and Shaw [3]. The basic idea is to use

information that a coalition cannot detect to trace one of the

traitors. BoSh code is designed to be c-secure with �-error as

it enables the capture of a member of a coalition of at most

c members with probability at least 1� �. Integer c and real

� in ½0; 1� are two parameters in the design of BoSh code.

Increasing c or reducing � results in longer BoSh codes.
The effectiveness of BoSh code depends on the “Marking

Assumption,” which states that colluding buyers can detect
a specific fingerprint bit fi if it differs between their copies;
otherwise, a fingerprint bit cannot be detected [3]. Our
fingerprinting scheme satisfies this assumption as each
fingerprint bit fi is embedded to the same positions in all
copies of data. Our scheme is also independent of the
composition of fingerprint codewords; thus, one can easily
incorporate BoSh codes as buyer fingerprints into our
scheme. However, this is inadequate for two reasons:

. The tracing algorithm proposed in [3] returns exactly
one “traitor” no matter what the input is (the
assumed input in [3] is pirated data under collusion
attacks). If the input is a pirated data copy generated
by a coalition, the error rate (i.e., misattribution false
hit) is less than � by design. However, if the input is
unmarked data, then the misdiagnosis false hit rate
will be 100 percent, which is unacceptable.

. The generation of BoSh codes requires recording of
1) a secret, random (outer) code for each buyer and
2) a secret, random permutation for all buyers. The
owner must keep detailed records binding finger-
prints to buyers for detection purpose. This require-
ment violates the key-based property.

5.2 Solution

Our solution is to partition each fingerprint F of L bits into
two parts: The first part, F 1 of L1 bits, is used as a
watermark, while the second part, F 2 of L2 bits, is used as a
fingerprint. Thus, L ¼ L1 þ L2 and F ¼ F 1jF 2.

The watermark part F 1 consists of multiple bits (thus, it
is different from that in the AK scheme), and it is the same
for all data buyers. It is computed directly from the secret
key using a hash function HðKÞ and using truncation or
concatenation to obtain a bit string of length L1.

The fingerprint part F 2 is generated using the BoSh code
[3]. Let a ¼ 2c, b ¼ 2c log 2N

� , and d ¼ 2a2 log 4ab
� . The BoSh

code for buyer n is composed by concatenating b code
words selected from a common “inner code” �0ða; dÞ
according to a buyer-specific “outer code” O. The inner
code �0ða; dÞ consists of a code words, each of which is a
binary string of length ða� 1Þd. The outer code O ¼
ðo0; . . . ob�1Þ is an integer vector, where each element 0 �
oi < a indicates which code word in the inner code is used
in concatenation. The length of the fingerprint part F 2 is
thus L2 ¼ bða� 1Þd. In Boneh and Shaw’s work [3], a fixed,
random permutation is applied on the fingerprint before
use. The inner code is public, while the outer code and the
permutation must be kept hidden from all buyers. The
purpose of keeping the permutation hidden is to hide the
information of which mark bit encodes which fingerprint
bit [3]. Our insertion algorithm already has this property.
Even if a buyer can detect a mark bit in a database tuple, he
cannot tell which fingerprint bit it encodes (without
knowledge of the secret key). Therefore, the permutation
is not needed in our algorithm.

Another point is that the merchant does not need to
remember the secret outer code for each buyer either.
Instead of generating the outer code for each buyer
randomly [3], we generate it using the secret key and the
buyer’s series number n pseudorandomly. We generate
oi ¼ Siþ1ðK; nÞ mod a, where Si is the ith number in the
sequence generated by cryptography pseudorandom
sequence generator S seeded by Kjn. The outer code is
pseudorandom and hidden from the buyer point of view,
but deterministic to the merchant.

Fingerprint insertion is key-based as before. The finger-
print F is embedded (see Fig. 1) except that 1) three
additional parameters are provided: the length of water-
marking part L1, maximum coalition size c, and maximum
false detection rate � in tracing a coalition; and 2) generation
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of the fingerprint F of buyer n (i.e., line 1 in Fig. 1) is
replaced by the concatenation of the watermark part F 1 and
the fingerprint part F 2.

For fingerprint detection, we still use the algorithm
shown in Fig. 2 except that subroutine detect in the
algorithm is revised. From a recovered fingerprint template
F , its watermark part F 1 is first checked against the
codeword used in fingerprint insertion. If there is a single
bit mismatch, the detection procedure returns none sus-
pected. If the watermark part passes the first phase
examination, the fingerprint part F 2 will become the input
of the tracing algorithm proposed in [3] for identifying a
traitor.

5.3 Analysis

We have the following robustness results for our collusion
resistant fingerprinting scheme. If the input of our detection
algorithm is a pirated data copy under collusion attack only,
the watermarking part will be detected correctly because
the collusion attack can change the values only if the
coalition has data copies that differ in those values.
Therefore, the fingerprint part will become the input of
the tracing algorithm proposed by Boneh and Shaw [3]. The
tracing algorithm will return exactly one buyer; the
probability that this returned buyer is a traitor in the
coalition is greater than 1� �, as proven in [3]. Therefore,
the false miss fm, misattribution false hit fhA, and false
negative fn satisfy

fm ¼ fhA � �; fn ¼ 0:

Now, consider the misdiagnosis false hit fhD when the
detection algorithm is applied to unmarked data. Note that
the watermark part is the same for all buyers and it is
examined first in the detection process. The probability of
detecting a binary string for the watermark part is
�L1�1

i¼0 2Bðb�!ic;!i; 0:5Þ. Now, there is only one valid water-
mark codeword. Thus, the probability that the detected
binary string matches the watermark codeword is 1

2L1
. Note

that, whenever watermark detection succeeds, fingerprint
detection returns exactly one valid buyer’s id. Therefore,

fhD ¼ 1

2L1
�L1�1

i¼0 2Bðb�!ic;!i; 0:5Þ

¼ �L1�1
i¼0 Bðb�!ic;!i; 0:5Þ �

1

2L1
:

The misdiagnosis false hit has upper bound 1
2L1

since
Bðb�!ic;!i; 0:5Þ � 0:5 when � 2 ½0:5; 1Þ. The upper bound is
tight in the case that all !i are odd and � ¼ 0:5. The
misdiagnosis false hit rate can be reduced exponentially by
increasing L1 (fhD ’ 0 if L1 � 1); it can also be decreased
by increasing � .

The length of the collusion resistant fingerprint is quite
long even for small c and moderate �. For example, for
c ¼ 2 (where at most two buyers can formulate a
coalition), � ¼ 0:01 and N ¼ 1; 000, the length of the
collusion resistant codeword is 51,695; for c ¼ 3 and 4,
the length increases to 317,185 and 1,098,622, respectively.
Such long fingerprints2 are only suitable for very large

databases such as terabyte scientific databases, surveil-
lance databases, and antiterror databases [20]. If relatively
short fingerprints3 are used in fingerprinting (with
relatively small c and moderate �), one may ask what
happens when more than c buyers collude. Experimental
results for this question are reported in the next section.

5.4 Experiments

We tested our collusion resistant scheme with pirated data
copies (thus, we set L ¼ L2 in testing) generated by
coalitions whose sizes may be larger than c. During
collusion attacks, the traitors in a coalition employ the
“majority” strategy [3], that is, the traitors compare their
copies and replace each bit position where the copies differ
with the value shared by a majority of the copies (a random
choice is made if zero and one appear in the same number
of copies).

We tested our scheme 100 times for each case with
different, randomly selected groups of buyers in collusion
attacks. In order to control the test environment, we use
synthetic data. The synthetic data consists of a primary key
attribute as well as a single numerical attribute (i.e., � ¼ 1).
The primary key attribute is simply the sequence number of
each tuple starting from 1, while the numerical attribute is a
random variable uniformly distributed in the range of ½0; 1�.
Each buyer’s fingerprint is embedded into the last bits of
selected values (i.e., � ¼ 1). The other parameters that are
used in our experiments are: � ¼ 5, �=ð�LÞ ¼ 50, N ¼ 1; 000,
and � ¼ 0:5.

The experimental results for collusion attacks are shown
in Figs. 3 and 4. These figures illustrate that the detection
rate does not drop dramatically as the coalition size goes
beyond c. A high detection rate can be obtained by either
increasing c or decreasing �. Except for the power of BoSh
code, our embedding scheme mitigates the damage of
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Fig. 3. Fingerprint detection under collusion attack.

2. All collusion resistant fingerprints are intrinsically long and there is no
significant improvement to BoSh codes so far.

3. A possible solution to reduce the length of the fingerprint is to group
database buyers, assuming that only buyers in each group will collude
while members from different groups will not collude (e.g., buyers from
competitor companies may not collude). However, because the length of
BoSh codes is loglinear in N , reducing N is not very effective. For example,
if N ¼ 1; 000 buyers are partitioned into 50 groups with 20 buyers per
group, the length of BoSh code changes from 51,696 to 34,353 (still long) for
c ¼ 2 and � ¼ 0:01.



collusion attacks by embedding multiple copies of each
fingerprint bit and recovering it with a majority vote.

6 EXTENSIONS

There are several extensions that can be added to our
fingerprinting scheme. In this section, we discuss finger-
printing codes that resist errors, fingerprinting without a
primary key, and other methods for embedding a bitstring
to a database relation.

6.1 Error-Resistant Fingerprinting Codes

Our scheme is not restricted to a particular form of

fingerprint codes. Other collusion resistant codes can be

easily incorporated into our scheme as long as their tracing

algorithms detect collusion attacks with high probabilities.

Recall that the effectiveness of BoSh code relies on the

Marking Assumption, which states that colluding traitors

cannot change undetected marks of fingerprints. In [10],

Guth and Pfitzmann have extended this assumption to the

case that all embedded marks, including undetected ones,

are erasable. The fingerprinting code they designed is both

error and collusion secure.

If we apply such a code in a similar way as we apply

BoSh code, the code itself will have the power to detect not

only the collusion attack, but also the bit-flipping attack.

Note that the bit-flipping attack changes some embedded

marks that cannot be detected by colluding buyers. This

gives extra power to our detection algorithm, which

employs a majority vote for resisting bit-flipping attack.
Similarly, traitor tracing has been investigated for

shortened and corrupted fingerprints [21]. This comple-
ments our work on fighting against subset attack and bit-
flipping attack. It is thus meaningful to incorporate these
fingerprinting codes into our scheme.

6.2 Fingerprinting without a Primary Key

Both the AK scheme and our scheme depend critically on

primary key attributes. Hence, these techniques cannot

embed marks in a database relation without a primary key

attribute. In [13], we proposed constructing a virtual

primary key from the most significant bits of some of each

tuple’s attributes. The actual attributes that are used to

construct the virtual primary key differ from tuple to tuple,

and the attribute selection is based on the secret key only.

To be consistent with the key-based property, the selection

does not depend on an a priori ordering over the attributes,

or on knowledge of the original relation or fingerprint

codeword.
In particular, the bits of every numerical value r:Ai in

tuple r are partitioned into two parts: 1) mbðr:AiÞ: the � least
significant bits within which a fingerprint bit may be
embedded, 2) vpkðr:AiÞ: the remaining bits which are
used to construct virtual primary key. The virtual primary
key r:V is constructed by concatenating the two (or more)
hash values in fjHðKjvpkðr:AiÞj : i ¼ 0; . . . ; � � 1g that are
closest to zero.

Since the attribute selection is dynamic, it is difficult for
an attacker to destroy the virtual primary key through value
modification or attribute deletion. However, unlike a
primary key, the virtual primary key may not be unique
for each tuple; consequently, the fingerprint bits may not be
embedded evenly into the underlying data, and this renders
the scheme weaker against attacks. The reader is referred to
[13] for more details.

6.3 Other Embedding Methods

There have been other methods on how to embed a bitstring

to a database relation. In [16], a database relation is

transformed to a two-dimensional image which is divided

into many small blocks. Each block is used to embed a

single fingerprint bit. Within a block, different buyer’s

fingerprint bits are embedded into different positions. In

another work [27], a bitstring is embedded by adding or not

adding a set of extra tuples called stealth tuples. The stealth

tuples are generated pseudorandomly and independently,

according to the distribution of the original database

relation.
While these methods are interesting, several precautions

have to be taken (as mentioned in this paper) when they

are used for collusion resistant fingerprinting. The first

method is not collusion secure as it violates the Marking

Assumption: Not only can colluding buyers detect finger-

print bits that have different values, but, also, many of

those have the same values as they are embedded in

different positions. Both methods need to be incorporated

with a combination of multibit watermarking code and

collusion secure fingerprinting code so as to avoid large

false misdiagnosis false hit. In addition, both schemes can

adopt our key-based approach in adapting BoSh code so

that there is no need to remember all fingerprint codes or

the random permutation in BoSh code (both are expensive

due to the length of the code).

7 RELATED WORK

Most of the research on watermarking and fingerprinting
has targeted multimedia data (e.g., [5], [6], [11], [12]).
However, the techniques developed for multimedia data
cannot be extended to relational data since the data
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properties, as well as data operations, differ significantly in
these two areas. For example, multimedia data components
are highly correlated, while database tuples can be
manipulated independently. Multimedia techniques are
designed to be robust against operations such as zooming
and compression, while a fingerprinting scheme should be
robust against typical database operations such as tuple
addition, deletion, and modification.

Watermarking and fingerprinting techniques have also
been proposed for other kinds of data such as computer
programs (e.g., [8]) and text (e.g., [4], [28]). However, those
techniques are based on either hiding a mark in the visual
representation of a program or text or transforming a
program or text into a semantically equivalent alternate
representation. Those techniques are not appropriate for
marking database relations.

Perhaps the most closely related work is the water-
marking of relational databases [1], [9], [14], [23], [24]. Due
to the similarity between watermarking and fingerprinting,
most of the techniques developed in this area are
complementary to our work. As an initial effort, we
extended the watermarking scheme [1] to fingerprinting
relational data. We identified the specialties in fingerprint-
ing (e.g., robustness measures and collusion attacks) and
evaluated our scheme quantitatively.

Fingerprinting has been studied extensively in crypto-
graphy literature, with a focus on how to design collusion
resistent fingerprint codes (e.g., [3], [10], [15], [17], [18], [19],
[26]). This line of work is also complementary to ours as it
provides well-designed fingerprint codes (i.e., the finger-
print part in our scheme) and we present how to embed
(extract) such codes into (from) relational databases. As
indicated in Section 5, however, careful adaptation is
required as a straightforward incorporation may cause
severe problems such as 100 percent misdiagnosis false hit.

8 CONCLUSION

In this paper, we presented a fingerprinting technique for
relational databases by extending the AK scheme in a

significant way. Our contribution is unique in the following
two aspects:

. We extend the AK scheme to embedding an

arbitrary bitstring as fingerprint. The extended

scheme shares the same set of assumptions and

properties. Different measures, such as misattribu-

tion false hit and misdiagnosis false hit, are

identified for evaluating a fingerprinting scheme. A

quantitative analysis is presented for all the evalua-
tion measures under representative types of attacks.

. We show that simply incorporating collusion resis-
tant code from cryptography literature does not

work as it may produce a 100 percent misdiagnosis

false hit when applied to unmarked data. We solve

the problem by combining multibit watermark with

collusion resistant code in our scheme.

We mention that our scheme is symmetric since both a
merchant and a buyer possess the same marked data copy.
In asymmetric fingerprinting schemes (e.g., [18], [19]), only
the buyer knows the marked data copy, so a merchant can
use the mark detection process to prove to a third party
that the data was pirated and that the pirated data was
sold to a specific buyer. Asymmetric fingerprinting
schemes may be constructed based on symmetric finger-
printing schemes and public key cryptographic primitives
in a two-party protocol.

APPENDIX

EXPERIMENTAL RESULTS ON ERRORS

We present experimental results on the errors introduced
by fingerprint insertion. The experiments were performed
on a real-life data set, the Forest Cover Type data set,
available at http://kdd.ics.uci.edu/databases/covertype/
covertype. html. The data set has always been used in [1] for
evaluating the AK scheme. The data set has 581,012 tuples,
each with 61 attributes and no primary key. The first
10 integer-valued attributes are chosen for embedding
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TABLE 2
Change in Variance Introduced by Fingerprinting

After rounding to the nearest integer, the mean does not change except that it decreases by one for attribute Hillshade-3pm when � ¼ 12 and � ¼ 8.



fingerprints (i.e., � ¼ 10). We added an extra attribute,

called id, to serve as the primary key.
Table 2 illustrates the impact of fingerprint insertion on

the mean and variance of the values of marked attributes.

The change in these statistics validates our assertion that the

errors introduced by fingerprinting are minuscule.
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