
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2000

Load Sharing in Distributed Multimedia-on-
Demand Systems
Y. C. TAY
National University of Singapore

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

DOI: https://doi.org/10.1109/69.846293

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
TAY, Y. C. and PANG, Hwee Hwa. Load Sharing in Distributed Multimedia-on-Demand Systems. (2000). IEEE Transactions on
Knowledge and Data Engineering. 12, (3), 410-428. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/113

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/69.846293
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Load Sharing in Distributed
Multimedia-on-Demand Systems

Y.C. Tay and HweeHwa Pang

AbstractÐService providers have begun to offer multimedia-on-demand services to residential estates by installing isolated, small-

scale multimedia servers at individual estates. Such an arrangement allows the service providers to operate without relying on a high-

speed, large-capacity metropolitan area network, which is still not available in many countries. Unfortunately, installing isolated servers

could incur very high server costs, as each server requires spare bandwidth to cope with fluctuations in user demand. In this paper, we

explore the feasibility of linking up several small multimedia servers to a (limited-capacity) network, and allowing servers with idle

retrieval bandwidth to help out servers that are temporarily overloaded; the goal is to minimize the waiting time for service to begin. We

identify four characteristics of load sharing in a distributed multimedia system that differentiate it from load balancing in a conventional

distributed system. We then introduce a GWQ load sharing algorithm that fits and exploits these characteristics; it puts all servers'

pending requests in a global queue, from which a server with idle capacity obtains additional jobs. The performance of the algorithm is

captured by an analytical model, which we validate through simulations. Both the analytical and simulation models show that the

algorithm vastly reduces wait times at the servers. The analytical model also provides guidelines for capacity planning. Finally, we

propose an enhanced GWQ+L algorithm that allows a server to reclaim active local requests that are being serviced remotely.

Simulation experiments indicate that the scheduling decisions of GWQ+L are optimal, in the sense that it enables the distributed

servers to approximate the performance of a large centralized server.

Index TermsÐMultimedia-on-demand, distributed servers, load sharing, performance modeling.

æ

1 INTRODUCTION

IN recent years, there has been a great deal of interest in
multimedia-on-demand (MOD) systems, as evidenced by

the flurry of research publications and MOD trials. While
the basic technologies are already in place, one important
factor that hampers the large scale commercial deployment
of MOD is the prohibitive cost of building the underlying
high-speed distribution network infrastructure.

Instead of waiting for telephone and cable operators to
set up this network infrastructure, service providers have
started to install MOD systems at localized communities.
The size of such a community usually ranges from 50 to a
couple of hundred households, so that a single cable
provides sufficient bandwidth for sending programming
from the server to all of the households in the community.
For example, IPC Interactive Group is offering movie-on-
demand and home shopping services to four condominium
blocks, each with over 300 units, at a residential estate in
Singapore.

While maintaining many small-scale MOD installations
eliminates the reliance on an extensive high-speed, large-
capacity network infrastructure, there are certain associated
disadvantages. Besides administrative overheads, the most
important drawback is the higher server costs: It is well

known in queuing theory that, for a given number of queue
servers1, having several independent queues produces
worse (average) response times than having a common
queue (e.g., [47]). Thus, the aggregate capacity of many
small, isolated MOD servers must be higher than the
capacity required of a single, centralized MOD server in
order to avoid performance degradation. The cost escalation
due to the increased capacity of the isolated servers could
be very substantial, as MOD servers typically scale well up
to a certain point, beyond which the servers must be
upgraded to a higher range of hardwares, e.g., from SPARC
servers to mainframes.

A promising way to contain system cost is to link up
several MOD servers to a network as in Fig. 1. This creates a
distributed system of loosely coupled servers where (some)
objects are replicated, and hence can be retrieved from
alternative servers depending on their respective load
levels. An MOD server with idle retrieval capacity can then
help to service remote requests from another server that is
temporarily overloaded.

Admittedly, this distributed configuration would neces-
sitate high-speed networks between every server and its
local terminals, and between servers. However, only
terminals that are supported remotely generate traffic on
the interserver network; most of the terminals are still
expected to be serviced by their respective host servers, and
hence will only load the local network. Each network thus
needs to accommodate only a couple of hundred concurrent
streams, which is very much less than the hundreds of

1

. Y.C. Tay is with the Department of Mathematics, National University of
Singapore, Kent Ridge, Singapore 119260, Republic of Singapore.
E-mail: tay@acm.org.

. H.-H. Pang is with Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace,
Singapore 119613, Republic of Singapore.
E-mail: hhpang@acm.org.

1. The number of queue servers corresponds to server capacity in our
context, not the number of MOD servers. Henceforth, we shall refer to the
former explicitly as queue servers, using the term ªserversº for MOD
servers.



thousand streams that a centralized, gigantic MOD system
(Fig. 2) might entail. In other words, the configuration in
Fig. 1 allows a service provider like the IPC Interactive
Group to reduce costs by using smaller servers and a small
switch.

Several networks with enough bandwidth to enable the
distributed configuration either are already operational, or
are being installed right now. An example is the recently
announced SingaporeONE, a national network infrastruc-
ture that will be the channel for delivering the multi-
media services envisioned in the Singapore IT2000 plan
(www.s-one.gov.sg). This infrastructure consists of a
broadband network, based on ATM switching and optical
fibre technologies, that connects up local access networks
in businesses, schools, and homes on the island. Applica-
tions planned for include distance learning, government
services, electronic banking, and digital libraries.

The purpose of this study is to develop a way to
overcome the penalty in response time (i.e., waiting time for
service to begin) for a multimedia system consisting of
small servers linked together. Our contributions are as
follows: We first identify the differentiating characteristics
for such systems, then design a Global Wait Queue (GWQ)
algorithm for load sharing that fits and exploits these
characteristics. This algorithm maintains all servers' waiting
requests in a global queue, from which servers with idle
retrieval capacity obtain additional jobs.

An analytical model for the algorithm is also presented.
The model serves two functions: 1) It can estimate the
performance for a network design in a matter of seconds,

compared to simulation which could take many hours. For
example, it enables us to calculate, for a given network
bandwidth, what gains load sharing might bring about. 2) It
can provide closed-form guidelines on the server capacity,
network size and communication bandwidths for a design.
For instance, it can estimate the network bandwidth
necessary for the distributed servers to approximate the
centralized server, and also identify whether link or switch
bandwidth is the bottleneck in a network design. The
estimations and guidelines from the analytical model are
confirmed by a simulator that we developed. Those
estimations indicate that the GWQ algorithm utilizes the
bandwidth of every server effectively, which in turn
produces very substantial reductions in wait time.

Besides GWQ, we also introduce a Global Wait Queue +
Localize (GWQ+L) version that enables a server to take over
its requests that are being serviced remotely. Since the
analytical model is not capable of capturing these dynamic
changes, the performance gains from the GWQ+L algorithm
are quantified by the simulator. Experiments show that the
GWQ+L version lowers wait time even further, enabling the
distributed servers to approximate the performance of a
large centralized server. This confirms that the job assign-
ments generated by GWQ+L are optimal.

The remainder of this paper is organized as follows.
Section 2, summarizes the existing work on load sharing,
and identifies the unique characteristics of distributed
multimedia systems that form the framework for our work.
The next section introduces two algorithms to share the
workload among multimedia servers. In Section 4, we
derive an analytical model to capture the performance of
the GWQ algorithm. The following section begins by
describing the simulator, then proceeds to present a number
of experiments that highlight the gains that load sharing
brings about. Section 6 concludes with a review of our
contributions.

2 THE LOAD SHARING PROBLEM

Load sharing in distributed systems has to satisfy two often
conflicting objectives. On one hand, we would like to
maximize performance by exploiting all available servers.
Usually, the extent to which this can be achieved depends
on the amount of information that the servers exchange to
keep track of each other's load level. On the other hand, we
would like to keep the load sharing algorithms as efficient
as possible, which means keeping a cap on the scheduling
overhead caused by information exchange.

In cases where the total mix of processes in a distributed
system is known in advance, a static execution schedule can
be generated offline to meet both of the above objectives.
Studies that address those cases include [6], [8], [10], [14].
However, in many cases information on the workload is not
available a priori, and the scheduling algorithm has to work
online and dynamically strike a trade-off between the two
conflicting objectives. As a result, most online algorithms
employ heuristics and generate suboptimal schedules.
Examples include [1], [3], [7], [12], [15], [27], [34], [41],
[43], [48]. A few rare instances where optimal schedules are
guaranteed are [17], [31], [46]. [5], [42], [48] provide

TAY AND PANG: LOAD SHARING IN DISTRIBUTED MULTIMEDIA-ON-DEMAND SYSTEMS 2

Fig. 1. Distributed multimedia system.

Fig. 2. Centralized multimedia system.



excellent introductions to the principles underlying those
load sharing solutions.

While the insight from and the solutions for conventional
distributed systems provide a valuable foundation for our
work, distributed multimedia systems possess at least four
unique characteristics that warrant a different load sharing
algorithm:

C1. Local before Remote. From a load sharing perspective,
the most important distinction of a distributed multi-
media system is that servicing a job out of a remote
server incurs service overheads, i.e., it consumes extra
resources (e.g., bandwidth) while the job is active. This is
because a multimedia object retrieval involves pulling
data frames from a server, and sending them over a
network to a display terminal. Hence, serving a job
remotely produces traffic over the interserver network
(typically a MAN or a WAN), in addition to network
traffic on the LAN that hooks up the display terminal.
Consequently, a multimedia system needs to be careful
about assigning jobs to remote servers. While some
conventional distributed system solutions [14], [41]
account for communication overhead, it is not as
important a consideration there because executing jobs
do not interact heavily with the initiating terminals like
in multimedia systems.

Moreover, if the servers belong to different organiza-
tions, then the latter's primary business clients are their
respective communities, and servicing remote requests is
only a secondary source of revenue. In other words, local
requests again have precedence.

C2. Sharing without Balancing. In a conventional distrib-
uted system, it makes sense to balance load by shifting
jobs from a heavily-loaded server to a lightly-loaded one
because those jobs can finish faster after the shift. Jobs in
a multimedia system, however, must be serviced at fixed
rates. For example, an MPEG movie should be played
back at 30 frames/sec. If the system assigns insufficient
resources to a job, it would not achieve the required
quality, i.e., play back would be jittery. However, the
system cannot service the job faster eitherÐeven if
additional resources are availableÐbecause data frames
that have yet to be displayed would accumulate and
eventually overflow the buffer. Consequently, a system
that is perfectly balanced does not necessarily deliver
better quality of service than an unbalanced one where
none of the component servers are overloaded. For
example, a scheme that freely directs jobs to remote
servers for the sake of load balancing is misguided, since
this violates characteristic C1. Moreover, once a server
begins to serve a remote request, service quality
guarantees may mean that it cannot simply preempt
the job when a new local request arrives; thus, local
requests may be delayed by remote requests. To
accommodate characteristics C1 and C2, a multimedia
system should only direct a job to a remote server if the
local host is already operating at full capacity (regardless
of how unbalanced load is at the servers).

In other words, jobs in a conventional distributed
system have no predetermined service rate, so are able to
complete faster if more resources are available. Hence, a

balanced system performs better than an unbalanced
one, and that is why existing algorithms for such systems
are load balancing solutions, e.g., [3], [6], [12], [15], [27],
[48]. Those algorithms are not desirable for a multimedia
system as they incur unnecessary balancing overheads in
trying to even out the workload.

C3. Performance over Overhead. Multimedia object retrie-
vals can last anywhere from several seconds (e.g.,
commercials) to a couple of hours (e.g., movies). A
multimedia system should therefore be able to effectively
assign an incoming job to a remote server that has spare
bandwidth, as otherwise the job may have to wait for an
unacceptably long time until the local server completes
one of its existing jobs. Furthermore, the scheduling
overhead (in contrast to the service overhead in C1) for
load sharing is negligible relative to the huge amounts of
system resources that multimedia jobs consume. These
two factors mean that performance rather than schedul-
ing overhead is the primary issue: A multimedia system
must aim forÐand can afford the scheduling overheads
necessary to achieveÐload sharing that is optimal (i.e.,
minimizes waiting time).

On the other hand, jobs in a conventional distributed
system are usually less resource-intensive, making the
scheduling overhead comparable to job duration, so
there has to be a trade-off between performance and
scheduling overhead. This is why most of the existing
algorithms, e.g. [1], [3], [8], [12], [15], [34], are heuristics-
based and generate suboptimal schedules.

C4. Relocation is Easy. Systems that accept ad hoc requests
can often improve their performance by relocating
executing jobs according to changing load condition.
Job relocation is relatively straightforward in a multi-
media systemÐit needs only to identify an alternate
server that holds the target multimedia object, then
transfer from the current server to the new server the
display terminal address and the playback location
within the object. It does not matter whether the two
servers run the same operating system, or whether they
have the same hardware and software configuration, as
the multimedia object is coded in some standard format
like MPEG or MJPEG. The load sharing algorithm of a
multimedia system should therefore be designed to
exploit the feasibility of job relocation.

In contrast, job relocation in a conventional system is
much less practical. Even with the help of process
migration facilities proposed in [2], [26], [28], [45],
relocating an executing process is still extremely difficult
if the servers run different operating systems, or if the
process has instantiated variables that are server-specific.
For this reason, with a few exceptions like [1], [4],
existing load sharing algorithms for conventional sys-
tems generally do not exploit job relocation.

This paper focuses on the performance issues arising
from the challenge of load sharing in distributed multi-
media systems. Where appropriate, we will discuss the
implications on other issues like stream synchronization,
but we will not attempt to provide detailed solutions to
those problems here. Instead, we refer the interested reader

3



to several previous studies that addressed such issues in

implementing a distributed multimedia system. One of

these problems is devising suitable specification models for

schemes that support the presentation and communication

of multimedia objects. This was the subject of the studies by

Lin et al. [23]. The runtime integration and synchronization

of packets/messages, arriving from various data sources,

that constitute a multimedia object is another challenging

problem. Works that investigated this problem include [24],

[36], [37], [38], [44], [51]. Yet another group of studies

examined the role of operating system support for dis-

tributed multimedia systems: Leslie et al. [22] proposed the

use of a shared address space between different machines,

while CPU scheduling, disk scheduling, and flow control

were discussed in [16] and [49].

3 COOPERATIVE ALGORITHMS FOR LOAD SHARING

In this section, we shall introduce a pair of decentralized
load sharing algorithms, GWQ and GWQ+L, that are
tailored for the characteristics (C1±C4) of distributed
multimedia systems. Instead of attempting to balance load
across all servers (C2), the algorithms will assign a job to a
remote server only if the local server is fully loaded, in
order to avoid unnecessary network traffic flows from
remote servers to display terminals (C1). The algorithms
will also optimize their scheduling decisions as much as
possible, so that the distributed multimedia system can
perform like a centralized, gigantic system (C3). Moreover,
the GWQ+L algorithm will exploit opportunities to relocate
executing jobs back to their local servers, to reduce the
demand for network bandwidth (C4).

3.1 Centralized Versus Decentralized Models

The load sharing algorithm of a distributed system can
adopt either a centralized or a decentralized model. A
centralized model mandates that a single coordinator
controls all job assignments. All of the servers have to
report their load status to the coordinator. In arranging for a
remote job execution, the servers communicate with the
coordinator, rather than with each other. In contrast, all
servers participate as equals in the load sharing protocol in
a decentralized model, and each server can communicate
with every other server.

We base our algorithms on a decentralized model for the
following reasons: First, a decentralized model is more robust
as there is no single point of failure. Second, coordination
overhead in a decentralized model is lower since servers need
only to exchange messages when there is a job that needs a
remote server, rather than to send updates to the coordinator
every time they accept or complete a jobÐthis is significant
because only a minority of the jobs are expected to be served
remotely. Third, servers may have individual admission
controls based on nontrivial local information (e.g., job mix),
thus making a centralized load sharing model infeasible.
Finally, a decentralized model enables a server to choose
which other servers to help out with, and what (kind of) jobs
to accept, thus preserving site autonomy. Retaining control
over the individual servers is especially important in practice
if they belong to different vendors.

3.2 GWQ Load Sharing Algorithm

Under the Global Wait Queue (GWQ) algorithm, the servers
in a distributed multimedia system maintain a global queue
of pending requests. When a new request arrives at a
server, it will service the request locally if there is idle
retrieval capacity; if not, the server immediately notifies the
remote servers to insert the request in their wait queues.
This effectively puts the request on a global queue Ð hence,
the name GWQ.

The first priority of every server is to service the requests
from its host community (C1). A server loans its excess
capacity to a remote community's requests in the global
queue only if there are no waiting local requests. Each
request is serviced by the same server throughout its
lifetime; i.e., the algorithm does not review its scheduling
decisions once service begins. (We relax this condition later
for the GWQ+L algorithm.)

In GWQ, a server that has spare bandwidth may bid for a
remote job. In practice, the bidding price is likely to include
server usage costs and network charges. For example, if the
entire system is owned by a single vendor, the bidding price
may be based on the amount of resources required to run
the job from the remote server; if the system has multiple
vendors, the bidding price may involve some prior
charging agreement among them.

3.2.1 Algorithm Definition

The algorithm is depicted in the asynchronous commu-
nicating finite state automata (FSA) [13] in Fig. 3. In the FSA,
a state transition involves a server reading a nonempty
string of messages addressed to it, writing a string of
messages, and moving on to the next state. For example, in
the FSA on the left, the local server reads a request REQ1,
outputs RFS2, .., RFSn, then changes state from S1 to W1.
The change from one state to the next state is atomic and
instantaneous. Moreover, state transitions at one server are
asynchronous with respect to transitions at other servers.
The FSA for the local server has three states: a start state
(Si), a wait state (Wi), and a commit state (Ci).

The FSA for the remote servers has a hold state (Hi) and
an abort state (Ai), in addition to the three states for the local
server. The difference between Hi and Wi is that in the
former, the server is postponing a decision until some
internal information becomes available, whereas in Wi the
server is waiting for responses from other servers. Ci and
Ai are final states, indicating that the request has been
assigned to a server or withdrawn from a server. When that
happens, the server will notify other remote servers to
remove that request from their wait queues.

3.2.2 Algorithm Implementation

The implementation of GWQ requires each server to
maintain two data structuresÐa LocalRequest queue
for retrieval requests that are generated locally, and a
RemoteRequest queue for requests received from other
servers. The algorithm consists of a series of actions that
each server executes in response to an event:

. Event: Local server in state S1 receives a multimedia
object request REQ1. Actions:

TAY AND PANG: LOAD SHARING IN DISTRIBUTED MULTIMEDIA-ON-DEMAND SYSTEMS 4



if (server has the required bandwidth)

/* service request locally */

reserve the bandwidth;

change to state C1;

else

/* seek help from remote servers */

insert the request in the LocalRequest

queue; broadcast an RFS message to

remote servers; change to state W1;

Note: RFS stands for Request-For-Service. Besides

the identity of the object requested and the address

of the requester, the RFS also indicates the max-

imum price that is acceptable to the local server.
. Event: Remote server in state Si receives an RFSi

message. Actions:

if ((requested object is not available) or

(maximum acceptable price is too low))

/* ignore RFS message */

change to state Ai;

else

if (server has the required bandwidth)

/* bid for the request */

reserve the bandwidth;

send a BIDi message to the

requesting server;

change to state Wi;

else

/* wait till there is bandwidth */

insert the RFS in the RemoteRequest queue;

change to state Hi;

Note: The BID includes a bidding price, which may

be up to the maximum acceptable price.

. Event: Local server in state W1 receives a BIDi

message. Actions:

if (bidding price is satisfactory)

/* accept the bid */

log the award transaction;

remove the request from the

LocalRequest queue;

send back an AWARDi message;

broadcast a CANCELj message to the other

remote servers j;

prepare to receive multimedia

object stream from server i;

change to state C1;

else

/* reject the bid */

send back a CANCELi message;

change to state W1;

Note: The requesting server is not obligated to

accept a bid immediately even though the bidding

price is within the maximum acceptable price. The

server could wait a prespecified duration, then select

the lowest bid and reject the rest.
. Event: Remote server in state Wi receives an AWARDi

message. Actions:

log the award transaction;

change to state Ci;

start streaming the multimedia object

to the (remote) terminal;

. Event: Remote server receives a CANCELi message.
Actions:

5

Fig. 3. Finite state automata for load sharing algorithm.



if (server is in state Wi)

/* has sent in a bid for the request */

same actions as for the request completion

event below;

change to state Ai;

else

if (server is in state Hi)

remove the request from the RemoteRequest

queue;

change to state Ai;

else

/* server has ignored the RFS previously */

ignore the CANCEL message;

. Event: Server receives a request completion message
COMPLETE (from itself). Actions:

free the bandwidth reserved for the

completed request;

if ((there are requests in the

LocalRequest queue) and

(server has the required bandwidth))

/* start as many */

reserve the bandwidth;

/* local requests as */

remove request from LocalRequest queue;

/* bandwidth allows */

broadcast a CANCELi message to

remote servers;

change state from W1 to C1

(for this request);

else

if ((there are RFS's in the RemoteRequest

queue) and

(server has the required bandwidth))

/* bid for as many */

reserve the bandwidth;

/* remote requests as*/

remove RFS from the RemoteRequest queue;

/* bandwidth allows */

send a BIDi message to the requesting

server;

change state from Hi to Wi (for this RFS);

else

idle;

Since the local and remote servers run asynchronously, a
server may receive a message that is not expected for the
current state. For example, the local server may send out
CANCEL messages and transition from state W1 to state C1

after deciding to service a request locally, even as a remote
server is sending in a bid for the same request. While our
simulator (described in Section 5.1) includes provisions to
deal with these ªunexpectedº cases, we shall not delve into
them so as to avoid obscuring the main logic of the
algorithm.

3.3 GWQ+L Load Sharing Algorithm

While the GWQ algorithm attempts to reduce network
usage by assigning new requests to local servers whenever

possible, there may still be ªcross-serviceº situations where
a number of servers are attending to each other's requests
concurrently. Here is one such situation: 1) Server X is busy,
so it awards a request to server Y. 2) A new request arrives
at server Y, which is busy now. 3) Server X finishes a
request. Since it has no pending local requests, it bids for
and is awarded the waiting request from server Y. 4) Servers
X and Y are now serving each other's request over the
network.

Ideally, all servers should be attending to their own
requests, rather than incurring network charges by enga-
ging in ªcross-servicesº (C1). Since a server cannot foresee
what (local) requests it will receive when it is deciding
whether to bid for a remote request, ªcross-servicesº have
to be removed by revising the remote server assignment
decision dynamically during the lifetime of a request (C4).
This is the motivation for our second algorithm.

The Global Wait Queue + Localize (GWQ+L) load sharing
algorithm is designed to prevent ªcross-servicesº by having
each server take over local requests that have been awarded
to remote servers. This entails an enhancement to the
algorithm presented earlier: When a server completes a
request, it will first attend to waiting local requests as
before. However, if there is excess capacity after that, the
server will now take over those active local requests that are
being serviced remotely. A server will bid for remote
requests only if it has no pending local requests, and if none
of its active requests are being supported by remote servers.

To take over service for a client, the server first obtains
from the client its current object stream position and the
identity of the remote server. The two servers then agree on
a switch-over time when the remote server will terminate
service and the local server will continue the object stream.
To ensure that the switch-over is seamless, the clock at the
two servers have to be synchronized. Clock synchronization
is a well-studied problem and is addressed in [9], [11], [19],
[20], [33], [35]. If the client receives its data frames on a UDP
socket, the switch-over is transparent as the local server will
send data to the same socket. In a TCP-based set-up, the
client has to be coded to switch to a new server connection
in the midst of playing back a stream. Other implementa-
tion issues (quality-of-service, buffering, resource schedul-
ing, etc.) are addressed in a separate paper [32].

While the above modification is straightforward, a
system developer may want to ascertain the resulting
performance gain, in terms of shorter wait time and
reduced network usage, before implementing the algo-
rithm. One of the objectives of our study is to quantify this
performance gain. We shall achieve this with the aid of
simulation, as our analytical model does not capture the
dynamic switches produced by the algorithm.

4 ANALYTICAL MODEL

Having introduced the load sharing algorithms, we now
present an analytical model of the GWQ algorithm.
Devising an accurate analytical model for GWQ is challen-
ging for three reasons: 1) the diversion of an arriving
request to a global queue when it cannot be served locally
implies that the queues do not form a separable network
[21], so the many results and algorithms for such networks

TAY AND PANG: LOAD SHARING IN DISTRIBUTED MULTIMEDIA-ON-DEMAND SYSTEMS 6



are not helpful; 2) load sharing is meaningful only when
queue servers have high utilization, but model accuracy is
hard to achieve under such conditions; 3) load sharing
hinges on temporary imbalances in workload, making the
application of steady state modeling techniques nontrivial.

We will use the model to understand the resource

interplays, as well as the performance trade-offs involved in

load sharing (C3). The model can also serve as a system

configuration tool to size the servers and the network when

the algorithm is implemented. We first analyze in Section 4.1

an isolated server and the capacity it must have, then model

the load sharing in Section 4.2. Next, Section 4.3 uses the

model to draw some conclusions about the appropriate size

of a network, including the necessary bandwidths.
In deriving the model, we will assume that each object is

replicated at every server. While it is not always possible or

desirable in practice, and while it is not a prerequisite for

the load sharing algorithms, providing for full replication

enables us to arrive at the resource requirements needed to

fully exploit any load sharing opportunities at run-time.

The parameters of the model and performance measures are

summarized in Table 1.

4.1 Sizing a Server: Model for an Isolated Server

In standard queuing notation, A=S=m=B=J is a queue with

type A arrival process, type S service time distribution,

m servers, buffer size B and job population J [18]. Consider

now arbitrary distributions for the sleep and active times at

an isolated server; then, the server can be modeled as a

G=G=Nstream=Nterm=Nterm queue, i.e., a closed system with

Nterm terminals, and a queue with Nstream servers and Nterm

buffer slots for pending requests. Let � be the throughput

(requests per unit time). By Little's Law,

Nterm � ��Tsleep � Twait � Tactive�; and

� � number of requests being served

Nstream
� � Tactive

Nstream
:

(CPU time makes a negligible contribution in the equation
for Nterm because the terminals, rather than the servers, are
responsible for decoding the streams.) It follows that

� � Nterm

Nstream

Tactive

Tsleep � Twait � Tactive
: �1�

A multimedia stream like a karaoke song typically has
Tactive � 240 seconds; documentaries and movies last
even longer. In contrast, users would tolerate only small
wait times, say Twait < 10 seconds. We therefore expect
Twait << Tactive in practice. From (1), we then get:

Server Utilization.

� � Nterm

Nstream

Tactive

Tsleep � Tactive
: �2�

This gives a good estimate of server utilization for a system
designer. The approximation is robust because it is not
conditioned upon specific arrival and service distributions.
If the RHS exceeds one, then one can expect very high Twaits.
Therefore, the RHS should be less than one, giving:

Capacity Requirement.

Nstream >
Tactive

Tsleep � Tactive Nterm: �3�

7

TABLE 1
Parameters of the Analytical Model



If this inequality is violated, then one can again expect Twait

to be unacceptably high. Thus, from the characteristics of

the multimedia objects (Tactive), customer profile (Tsleep) and

system configuration (Nterm), a system designer can

determine beforehand the minimum number of streams

that the server must support to deliver reasonable

performance.
The validity of (2) and (3) are confirmed in a wide range

of experiments. Fig. 4 and Fig. 5 plot the server utilization

and capacity requirement, respectively, for one of the

experiments. The figures are generated by the simulator

to be described in the next section, using the workload

described in Section 5.3 (Nterm = 200, Tsleep is exponentially

distributed with a mean of 1,200 seconds, and Tactive is

exponentially distributed with a mean of 300 seconds). For

this workload, (3) yields a requirement of Nstream > 40.

When this condition is met, the utilization values from (2)

and the simulator are almost identical, as Fig. 4 shows. For

Nstream < 40, the estimated � is (slightly) higher than

100 percemt, indicating that the wait time is probably

unacceptable. Indeed, Fig. 5 confirms that Twait exceeds a

minute and rises rapidly as Nstream goes below 40. The other

experiments that we did used different settings and

distributions for Nterm, Tsleep, and Tactive.

4.2 Model for Load Sharing

We now model the case where several multimedia servers

are connected to an ATM switch (Fig. 1) and share their

load by using the GWQ algorithm to match idle remote

capacity to queued requests. We assume that the servers are

homogeneous, i.e., they have the same Nterm, Tactive, etc., as

in the example of IPC's multimedia servers at the

condominium (see Section 1).
We overcome the three modeling difficulties, enumer-

ated at the beginning of Section 4, via two key observations

from numerous simulations: 1) load sharing does not

significantly affect the server utilization � although, of

course, it affects the waiting time; and 2) the effect of load

sharing on a server's performance is similar to that of

adding more capacity to that server.
In 1), it is not surprising that waiting time can change

although server utilization is unaffectedÐa similar effect

suggests service counters (in banks, etc.) should use a

common queue instead of individual queues. To under-

stand why � is approximately constant, recall from (1) that

an isolated server has utilization

Nterm

Nstream

Tactive

Tsleep � Twait � Tactive
:

If load sharing is perfect, so that the network behaves like a

single server with NserverNterm terminals and capacity of

NserverNstream, then the utilization is

NserverNterm

NserverNstream

Tactive

Tsleep � T 0wait � Tactive

where T 0wait is the waiting time under load sharing. Since

T 0wait < Twait, utilization is bounded by

Nterm

Nstream

Tactive

Tsleep � Twait � Tactive
� �

� Nterm

Nstream

Tactive

Tsleep � T 0wait � Tactive

:

Since Twait << Tactive, we have, like (2),

� � Nterm

Nstream

Tactive

Tsleep � Tactive
;

i.e., server utilization is approximately constant under any

load sharing scheme. Hence, we can estimate the server

utilization for any load sharing algorithm simply by

calculating � for an isolated server. This observation is the

starting point for our model which, following our other

observation 2) captures the load sharing by adding capacity

to each server.

We will make several approximations, and we will

demonstrate in Section 5 that the resulting accuracy is still

TAY AND PANG: LOAD SHARING IN DISTRIBUTED MULTIMEDIA-ON-DEMAND SYSTEMS 8

Fig. 4. Server utilization. Fig. 5. Wait time.



acceptable. The model is derived from the perspective of

one of the servers, and consists of three steps. While we

make use of the memoryless property in these steps, it is not

essential; it could be replaced with appropriate alternative

distributions for the request arrivals and service times, as

long as there is a calculator, or even simulator, to measure

the desired quantities. In fact, for our experiments, we use

the p (see below) calculated for memoryless distributions

even for cases where the active time is uniformly

distributed. Despite that, the estimations from the model

are not compromised; this illustrates the robustness of the

model. The three steps in our model are:

Step 1. M=M=Nstream=Nterm=Nterm (Fig. 6a).
Measure throughput � and probability p that the

server's capacity is fully allocated (i.e., in queuing
terminology, all Nstream queue servers are busy).

Step 2. M=M=n=n (Fig. 6b).
Use fp� as the arrival rate for a queue that represents

the available remote capacity of n streams, where f is a
calibration factor and n is determined by the link and
switch bandwidths, and the number and utilization of
remote servers. (We will explain how f and n are
calculated shortly.) Measure v, the average number of
requests in service at this M=M=n=n queue.

Step 3. M=M=Nstream � v=Nterm=Nterm (Fig. 6c).
Add v streams to the isolated server and measure the

new wait time (note the difference between Fig. 6a and
Fig. 6c); if this wait time is lower than that calculated
from a global queue (Fig. 2), the latter is used.

We now explain the underlying ideas and calculations
for these steps.

4.3 Step 1

Among the details in the FSA description of the GWQ load
sharing algorithm, the most important is the fact that a
request becomes a candidate for remote service only if there
is no idle local capacity (C1). The first-cut estimate for the
arrival rate of such candidate requests is p�, where p is the
probability that (in queuing terminology) all Nstream queue
servers are busy, and � is the throughput. If there are no

formulas for p (say, because the distributions are not
memoryless), p can be measured with a simulator for the
network in Fig. 6a.

Among the requests that become candidates for remote
service, some will in fact be served locally because spare
capacity may become available while the requests are
waiting for remote service. Thus, the net arrival rate of
requests for remote service is less than p� Ð say fp� for
some f < 1. Some of this effect is captured by Step 2
(below), but not completely. In any case, there are many
other factors that are implementation-dependent and there-
fore impossible to model a priori.

For example, the application interface affects how
quickly a request for service destined for all remote servers
can be assembled and passed down to the network protocol
that underlies the load-sharing protocol; the implementa-
tion of the network protocol and the routing through the
switch affect how quickly the requests are delivered to the
remote servers; the particular hardware used by the remote
servers and the bandwidth reservation protocol affect how
quickly they can respond with a bid, etc.

These effects are captured by the fraction f , which is a
calibration factor [29] that is to be measured empirically.
Once determined, however, the calibration factor for a
given implementation will, to a first approximation, remain
constant regardless of changes in system configuration (i.e.,
Nserver, Blink, Bswitch, etc). Thus, fp� is the estimate for the
arrival rate of requests for remote service (see Fig. 6a).

4.4 Step 2

From the perspective of a server, the total idle remote
capacity may be viewed as additional local capacity of
n streams, and fp� is the offered load for these n streams
(see Fig. 6b). If all of the additional capacity is engaged, the
request is ªlostº from the M/M/n/n queue, which means
that the request will (to a first approximation) be serviced
locally later.

We now describe how n is calculated. A remote server
that operates independently has, on average, idle capacity
for �1ÿ ��Nstream streams. Since the utilization of the remote
server is almost unaffected by load sharing, as observed in
the beginning of this section, a server sees (on average) a
total idle remote capacity of

9

Fig. 6. Three steps in the analytical model. (a) Step 1: M/M/Nstream/Nterm/Nterm (model for isolated server). (b) Step 2: M/M/n/n (model for remote

service). (c) Step 3: M/M/Nstream�v/Nterm/Nterm (model for load sharing).



nidle � �Nserver ÿ 1��1ÿ ��Nstream: �4�
It may seem that this idle capacity should be shared by all
servers, and we did experiment with different ways of pro-
rating the idle capacity. However, none works as well as the
approximation in (4), perhaps because arrivals at different
servers see this idle capacity at different times. How much
of this idle capacity is usable by a server depends on the
link and switch bandwidths: The number of streams that
can flow on a link is at most

nlink � Blink

Bstream
; �5�

and the average number of streams per server flowing
through the switch is at most

nswitch � Bswitch

NserverBstream
: �6�

The average number of streams that can be serviced
remotely is therefore bounded by

n � min�nidle; nlink; nswitch�: �7�
This is illustrated in Fig. 7. (Ignore Na, Nb, and Nc for the
time being.)

Having calculated n, we consider an M=M=n=n queue
(using linear interpolation between the solutions for bnc and
dne) with arrival rate fp� and average service time Tactive.
Let v denote the average number of active streams in this
queue. This v is thus our estimate for the average number of
requestsÐat any timeÐthat are serviced remotely.

4.5 Step 3

After looking through data from numerous simulations, we
found that, if m is the (measured) average number of
requests serviced remotely, then the performance of GWQ
can be closely approximated with an M=M=Nstream �
m=Nterm=Nterm queue; i.e., each server behaves as if a
(virtual) capacity of m streams are added. We therefore use
v from Step 2 as an estimate for m (see Fig. 6c). Then,

Twait � number of waiting requests

�0
�8�

where the number of waiting requests and throughput �0

are calculated from the equations for the M=M=Nstream �

v=Nterm=Nterm queue [18]. If this value is lower than the wait
time for the case where all terminals and capacity from all
servers are pooled in one global queue (Fig. 2), we use the
latter instead. (This is similar to replacing a balanced job
bound on a queuing network's throughput by an asympto-
tic bound when the latter is tighter [50].) The link and
switch utilization are calculated from

�link � vBstream

Blink
and �switch � vNserverBstream

Bswitch
: �9�

Note that �link measures the link utilization in one direction;

the utilization in the other direction is the same since the

network is homogeneous.

4.6 Sizing the Network

We now analyze the model to derive three guidelines for
sizing the system in Fig. 1. In our model, the wait time is
estimated (Step 3) with M=M=Nstream � v=Nterm=Nterm, so
Twait is smallest when the virtual capacity v is largest. If
the parameters (Nstream; Nterm; Tactive; Tsleep) for each server
remain constant, then fp� is fixed (Step 1), so v is largest
when n is maximum (Step 2)Ðthis happens when
Nserver � Na for the case depicted in Fig. 7a and when
Nb � Nserver � Nc for the case in Fig. 7b. For the latter,
simulations show that, as Nserver increases from Nb to Nc,
link utilization actually rises marginally, so m (see Step 3)
continues to peak, which in turn causes wait time to
decrease. Wait time is therefore minimum at

Nmax
server � max�Na; Nc�: �10�

In Fig. 7, Na is defined by nidle � nswitch, so from (4) and (6),

�Na ÿ 1��1ÿ ��Nstream � Bswitch

NaBstream
:

Solving this equation and substituting (2), we get

Na � 1

2
�

���������������������������������������������������������������������������������
1

4
� Bswitchÿ

1ÿ Nterm

Nstream

Tactive

Tsleep�Tactive

�
NstreamBstream

:

s
Similarly, in Fig. 7, Nc is defined by nlink � nswitch, so from
(5) and (6), Nc � Bswitch

Blink
.

As Nserver increases, Twait decreases to a minimum at
Nserver � Nmax

server, after which Twait increases again. Since this

TAY AND PANG: LOAD SHARING IN DISTRIBUTED MULTIMEDIA-ON-DEMAND SYSTEMS 10

Fig. 7. Available idle remote capacity: n � min�nidle; nlink; nswitch� streams.



subsequent increase in Twait is undesirable, the minima

offers a natural constraint on network size (see (10)):

Maximum Network Size.

Nserver � Nmax
server

� max
�
Bswitch

Blink
;
1

2

�
�������������������������������������������������������������������������������
1

4
� Bswitchÿ

1ÿ Nterm

Nstream

Tactive

Tsleep�Tactive

�
NstreamBstream

s � : �11�

The bound suggests, in particular, that the network should

be smaller if the link bandwidth is higher. While this may

sound counterintuitive, the right interpretation is that, if

link bandwidth is increased without a corresponding

increase in switch bandwidth, then the number of servers

should be reduced, so that the increased bandwidth can be

exploited to reduce the wait time (otherwise, congestion at

the switch will negate the increase in link bandwidth).
The inequality (11) gives a closed-form expression for

sizing a network. If the bound is violated when the input

parameters are substituted into the inequality, that indicates

that the wait time can be decreased by reducing the number

of servers Nserver.
From (7), nlink � min�nidle; nswitch� defines the smallest

link bandwidth required to achieve minimum wait time:

Minimum Link Bandwidth.

Blink � Bmin
server

� min

�
Bswitch

Nserver
; �Nserver ÿ 1�

ÿ
1ÿ Nterm

Nstream

Tactive

Tsleep � Tactive

�
NstreamBstream

� : �12�

If this bound is violated, then the link is the bottleneck in

the network design, in the sense that wait time can be

reduced further by increasing link bandwidth (without

changing the other parameters). Similarly, nswitch �
min�nidle; nlink� defines the smallest switch bandwidth

necessary to attain minimum wait time:

Minimum Switch Bandwidth.

Bswitch �
Bmin

switch � min
ÿ
NserverBlink; Nserver�Nserver ÿ 1�ÿ

1ÿ Nterm

Nstream

Tactive

Tsleep � Tactive

�
NstreamBstream

� : �13�

Again, if this bound is violated, then the switch is the

bottleneck (even if its utilization is, say, only 60 percent),

and wait time can be reduced further by increasing switch

bandwidth.
We have thus used the analytical model to estimate the

size of the individual servers (Nstream) and the network

(Nserver, Blink, Bstream). The estimates are all in closed-form,

which is especially convenient at the capacity planning

stage.

5 EXPERIMENTS

In this section, we report several experiments to profile the

behavior of the load sharing algorithms. In the experiments,

we replicate each object at every server in order to

demonstrate the efficacy of the algorithms in exploiting

load sharing opportunities to bring the performance of the

distributed servers to that of a centralized server (C3). Of

course, this does not mean that the algorithms necessitate

full replication; as explained in Section 3, servers that do not

host a requested object will simply ignore that particular

service request. However, we expect most of the requests to

target a small number of popular objects in practice [25]. As

most of the servers are likely to host these popular objects

anyway, there will still be ample load sharing opportunities

without full replication.
Whenever possible, we use both the analytical model,

presented in the previous section, and a simulation model

for each experiment so as to corroborate the estimation of

each model. The experiments should confirm the validity of

the models for typical multimedia-on-demand configura-

tions. They should also sample from a broad range of

parameter settings, as it is impossible to explicitly delimit

the design space in which the models can be used. This is

because the behavior of the load sharing algorithms is

determined by a large number of parameters, and each

variable may follow one of many possible probability

distributions.
We begin with a description of the simulator, followed

by a series of experiment results. We model workloads with

large objects (e.g., movies) in the first experiment, and small

objects (e.g., training videos) in the second experiment.

Besides highlighting the potential of the load sharing

algorithms under these two broad classes of workloads,

the experiments also serve to demonstrate the usefulness of

the analytical model as a capacity planning tool. The third

experiment is intended to show how the algorithms can

help a set of operational servers cope with skewed load

distributions that could not be foreseen when the servers

11

Fig. 8. Bswitch vs. wait time.



were configured. The last reported experiment deals with

workload shifts.
We performed numerous other experiments besides the

ones described here; however, we omit the others because

the observations and qualitative results obtained there are

similar.

5.1 Simulation Model

The simulator, written in the CSIM/C++ process-oriented

simulation language [40], is constructed after the model in

Fig. 1. There are four types of components: a Terminal that

generates object retrieval requests and collects statistics on

completed requests; a Switch and a Link that model the

bandwidth usage of the ATM switch and links, respectively;

and a Server component that models how the multimedia

server allocates its bandwidth to service local and remote

object requests. The details of each component are

presented below. The parameters of the simulator are the

same as those of the analytical model in Table 1.
In the simulation model, there are Nserver multimedia

servers that are connected together by an ATM switch with

a bandwidth of Bswitch, each via a link with a speed of Blink.2

Every server can retrieve up to Nstream streams from its own

disk storage. In addition, every server hosts a total of Nterm

terminals. A terminal repeatedly goes through a period of

idling, followed by an object retrieval. The idle time is

exponentially distributed with a mean of Tsleep seconds,

while the retrieval duration is uniformly distributed

(default) with a mean of Tactive seconds. Unlike the

analytical model which makes certain simplifying assump-

tions, the simulator models the GWQ algorithm in detail,

including message exchanges between servers, wait queue

maintenance, resource scheduling, race conditions (see end

of Section 3.2.2), etc.

In subsequent sections, we will use both the analytical

model and the simulator to profile the behavior of the GWQ

and GWQ+L load sharing algorithms. For comparison

purposes, we will also include two boundary cases in our

evaluationÐM/G/nc and n � M/G/c. (We will instantiate

the algorithms with M/U/nc and n �M/U/c, or M/M/nc

and n � M/M/c, depending on whether the service time is

uniformly or exponentially distributed for the experiment

in question.) On one hand, M/G/nc represents a centra-

lized server with the same aggregate number of terminals

and stream capacity (Fig. 2) as the distributed system that

we are studying, and thus serves as a baseline to measure

the optimality of the load sharing algorithms. On the other

hand, n � M/G/c denotes the ªworst-caseº scenario where

the servers work independently of each other, and serves to

highlight the benefits of the load sharing algorithms.

TAY AND PANG: LOAD SHARING IN DISTRIBUTED MULTIMEDIA-ON-DEMAND SYSTEMS 12

Fig. 9. Bswitch vs. utilization.

Fig. 10. Blink vs. wait time.

Fig. 11. Blink vs. utilization.

2. Of course, in practice the servers may be connected by some other
network topology, so that the distance between pairs of servers may differ.
This can be taken care of in the bidding prices as explained in Section 3.2.



The primary performance metric is the wait time Twait.

Each simulation experiment was run long enough to allow

for a minimum of 20,000 object retrievals at each server,

after discarding the initial 1,000 samples. We also verified

that the size of the 90 percent confidence intervals for wait

time (computed using the batch means approach [39]) was

within a few percent of the mean in almost all cases.

5.2 Movie-on-Demand

We begin our investigation with an experiment to

profile the performance of the two load sharing

algorithms under a movie-on-demand workload, where

Tactive is uniformly distributed in [3,600, 10,800] seconds,

Tsleep is exponentially distributed with a mean of 7,200

seconds, and Bstream = 15 Mbps. As for the resource

parameters, we start with a baseline of Nserver = 6,

Nterm = 90, Nstream = 50 (to satisfy the capacity

requirement in equation (3)), Blink = 155 Mbps, and

Bswitch = 1,000 Mbps. (Although some switches provide

2 Gbps or more, not all of the bandwidth may be

available; some bandwidth could be reserved for
another set of servers, or for some other applications.)

We calibrated f against the simulator with this work-
load for some test cases [29] to arrive at a value of 2

3. As

explained in Section 4.2, f is implementation-dependent

but immune to changes in workload and system config-
uration. This f value is therefore specific to our simulator,

and we will use the same value for the rest of our

experiments.
Let us first examine the accuracy of the analytical

model. According to (13), the wait time is minimum
when Bswitch � 930 Mbps if all other parameters remain

unchanged. This is confirmed by the simulator's results in

Fig. 8. As the figure shows, the wait time produced by

the GWQ load sharing algorithm reduces initially with
increasing Bswitch, but levels off after 900 Mbps as the

switch is no longer the bottleneck resource (see Fig. 9;

there, the two curves are plotted with the simulator, and

13

Fig. 12. Optimal # of servers.

Fig. 13. Minimum wait time.

Fig. 14. Nserver vs. wait time.

Fig. 15. Network scaling.



their intersection is accurately identified by the analytical
model).

Another result from the analytical model (12) is that the
ATM link becomes a bottleneck below 170 Mbps, as Fig. 11
confirms. Fig. 10 plots the (simulated) wait time of the GWQ
algorithm as a function of Blink. The figure shows that,
according to the simulator, wait time improves significantly
as Blink increases from 20 to 180 Mbps, but only very
marginally after that as predicted by the analytical model.

The third result (11) is that, for a given workload and
network bandwidth, there is an optimal network size at
which the average wait time is at its minimum. Below the
optimum, there are insufficient load sharing opportunities,
while performance suffers beyond the optimum as the
network becomes congested by the load sharing activities
that GWQ initiates. Fig. 12 and Fig. 13 plot the optimal
number of servers and minimum wait times, respectively,
for several configurations. In each of the two figures, the x-

axis represents the estimates from the analytical model, the
y-axis gives the outputs from the simulator, and each data
point corresponds to a particular combination of switch and
link bandwidths. Taking into account the deviations
introduced by rounding the calculated network size, the
analytical model and the simulator yield reasonably similar
optimal wait times and number of servers.

Incidentally, the results in Fig. 12 show that, with current
hardware characteristics, the optimal number of servers
should be less than a dozen; this is why we are using small
Nserver settings for all of our experiments.

Next, we consider the benefits of the GWQ load sharing
algorithm. Fig. 14 gives the wait times produced by the
various algorithms as a function of the number of servers.
The figure shows that GWQ results in a vast performance
improvement over isolating the servers (n � M/U/c; recall
that `U' denotes uniform distribution). Moreover, the

TAY AND PANG: LOAD SHARING IN DISTRIBUTED MULTIMEDIA-ON-DEMAND SYSTEMS 14

Fig. 16. Bswitch vs. wait time.

Fig. 17. Bswitch vs. utilization.

Fig. 18. Blink vs. wait time.

Fig. 19. Blink vs. utilization.



GWQ+L version produces a further wait time reduction,
especially if there are many multimedia servers on the
network. In fact, the GWQ+L algorithm manages to help the
distributed system to approximate the performance of a
centralized server (M/U/nc). This is because, by allowing
servers to take back requests that are being served remotely,
the traffic on the ATM switch and links is very much
lightened, so the available network bandwidth becomes
more than sufficient. These trends are evident in Fig. 15, too,
which shows how scaling Bswitch = 1,000 Mbps and Blink =
155 Mbps concurrently by the same percentage (x-axis)
affects the wait time (y-axis). Here GWQ+L does not
perform as well as M/U/nc when bandwidth is low
because the switch and/or link cannot support load sharing
sufficiently.

To summarize, we have arrived at a couple of observa-
tions in this experiment. First, the GWQ load sharing
algorithm produces very substantial reductions in wait
times, though they can be improved further to match those

in a centralized server by adopting the GWQ+L algorithm
(which entails a much more intricate implementation).
Second, there is an optimal number of servers that should
share loads to achieve minimum average wait times. For
realistic workloads and current hardware characteristics,
the optimum should be less than a dozen. This means even
small service providers can enjoy the benefits that GWQ
brings. It also means a large service provider who operates
many servers should partition them into smaller clusters, at
least where load sharing is concerned. Third, the analytical
model is reasonably accurate, both in its numerical
estimation of the wait time and in its analytical conclusion
about the network parameters.

15

Fig. 20. Optimal # of servers.

Fig. 21. Mimimum wait time.

Fig. 22. Nserver vs. wait time.

Fig. 23. Network scaling.



5.3 Just-in-Time Training

For the second experiment, we change the workload from
long-duration object requests to shorter-duration requests
that are more typical in a just-in-time training environment.
This is achieved by setting Tactive = 300 seconds (exponen-
tial), Tsleep = 1,200 seconds (exponential), Bstream = 15 Mbps,
Nserver = 10, Nterm = 90, and Nstream = 20. The rest of the
parameters remain as in the last experiment.

Fig. 16, 17, 18, 19, 20, 21, 22, and 23 give the new results.
Comparing this set of figures with the corresponding
figures for the previous experiment (Fig. 8, 9, 10, 11, 12,
13, 14, and 15) we note that all of our earlier observations
still hold, despite significant changes to the workload.
Specifically, 1) the analytical model is accurate numerically
(Fig. 22 and Fig. 23) and analytically (Fig. 16, 17, 18, 19, 20,
and 21), 2) the GWQ algorithm produces a very substantial
performance improvement over n � M/M/c (Fig. 22, and
Fig. 23), 3) the GWQ+L algorithm leads to a further
improvement to match the performance of a centralized

server (Fig. 22 and Fig. 23), and 4) there is an optimal
number of servers (Fig. 22) Ð less than a dozen (Fig. 20) Ð
that should share load if minimum wait times are to be
achieved.

5.4 Skewed Load Distributions

In the previous experiments, we have used the same Nterm

and Nstream settings for all servers. This reflects the situation
at the capacity planning stage, where no details about
subscriptions are available. When configured and deployed,
the capacity of a multimedia server remains unchanged, but
the number of terminals that it hosts is likely to fluctuate as
subscriptions are added and terminated. Consequently,
some servers may be heavily loaded while others become
underutilized. Our next experiment is intended to study
how the load sharing algorithms might help in such
situations, and thus demonstrate the robustness of the
algorithm with respect to deviations from the homogeneity
assumption adopted during capacity planning.

TAY AND PANG: LOAD SHARING IN DISTRIBUTED MULTIMEDIA-ON-DEMAND SYSTEMS 16

Fig. 24. Lightly loaded server.

Fig. 25. Heavily loaded server.

Fig. 26. GWQ utilizations.

Fig. 27. No load sharing.



To keep the experiment manageable, we set Nstream to 20
for all servers. One-third of the servers are lightly utilized,
with Nterm = 70, while the rest of the servers are heavily
loaded at Nterm = 90. Other parameter settings remain the
same as in the previous experiment. As our analytical
model does not capture unbalanced configurations that
result from fluctuations in user subscriptions, our results
are obtained with the simulator.

The average wait time for the lightly loaded servers are
plotted in Fig. 24. Whereas these servers could have
achieved zero wait time had they shared load only amongst
themselves (not shown), they now take over some of the
jobs from the heavily loaded servers (see the utilization of
the two groups of servers with and without load sharing in
Fig. 26 and Fig. 27), and consequently suffer a performance
penalty as evident in the positive wait times in the figure.
The reason is that, although the servers give priority to local
requests when deciding which jobs to start, a new request
arriving at a server may be delayed, because of quality of
service guarantees, by active jobs from remote servers. This
is one of the differences between a distributed multimedia
system and a general-purpose distributed computing
system (see C1). However, the resulting wait times are still
much better than those produced by n � M/M/c.

The qualitative behavior of both GWQ and GWQ+L are
the same as those observed in the previous experiment: The
wait time of GWQ+L diminishes steadily as the number of
servers increases, while GWQ's performance worsens
beyond a certain number of servers (Fig. 24) because the
ATM switch becomes saturated (Fig. 26), thus hindering the
initiation of remote services to share the workload.

Having examined the deterioration on the lightly utilized
servers, we now consider the gains enjoyed by the heavily
loaded servers. Fig. 25 shows that the performance of these
servers improve vastly, relative to the 29 seconds produced
by n �M/M/c. (This very high wait time for n �M/M/c is
omitted from Fig. 25.) In fact, under both load sharing
algorithms, requests from heavily loaded servers experience
only marginally worse wait times than their underutilized
counterparts (compare Fig. 24 and Fig. 25). From these

results, it is apparent that the load sharing algorithms are
effective under unbalanced load distributions, with the
GWQ+L version again outperforming the GWQ variant.

5.5 Dynamic Workloads

While the previous experiment has workload that is
unbalanced geographically, we now consider workload
that is unevenly spread out over time: We change the
workload at each server periodically by defining two job
classesÐa Light class with Tactive = 240 seconds (exponen-
tial), and a Heavy class with Tactive = 360 seconds
(exponential). Each server runs the Light workload for
ClassDuration seconds, switches to the Heavy workload for
two � ClassDuration seconds, before reverting to the Light
workload. We arrange the starting sequence so that, at any
one time, a third of the servers are running the Light class
and the rest are running the Heavy class. Moreover, we set
Nserver, Nterm, Nstream, and Tsleep to 15, 90, 20, and 1,400
seconds (exponential), respectively. One scenario that could
generate this kind of dynamic workload is where the
primary users of the various servers belong to different
groups, e.g., home users versus office workers.

Fig. 28 and Fig. 29 plot the average wait times for the two
job classes as a function of ClassDuration. Let us first
investigate the curves for n �M/M/c. At a ClassDuration of
five minutes, the workload changes so frequently that
requests from both job classes are running concurrently at
the same server, causing both classes to experience similar
wait times (about 20 seconds). Interestingly, at
ClassDuration = 10 minutes, the Heavy class actually
experiences shorter wait times than the Light class. A close
examination reveals that this is because requests from the
Light class arrive right after the server has become
congested under the Heavy class, while requests from the
Heavy class comes after the server has caught up with its
load under the Light class.

As ClassDuration rises further, the interplay between the
two job classes reduces, thus explaining the diminishing
wait time for the Light class and the worsening trend for the
Heavy class. The behavior of the other algorithms are as
expected: The Light class fares slightly better than the Heavy

17

Fig. 28. Light job class. Fig. 29. Heavy job class.



class under the GWQ algorithm, while both job classes
achieve virtually zero wait time under the GWQ+L
algorithm. This experiment shows that the two algorithms
work well even with dynamic workloads.

6 CONCLUSION

In this paper, we propose a solution to contain the cost
escalation and wait time penalty that result from installing
small, isolated multimedia servers. Our solution entails
linking the servers to a (limited-capacity) network, and
enabling overloaded servers to tap the idle retrieval
bandwidth of other servers. We first identify the unique
characteristics that define the framework for load sharing in
such distributed multimedia systems. These characteristics
are: 1) Servicing a job remotely generates additional
network traffic and should be done judiciously, 2) A load
distribution on the servers that is unbalanced may perform
better than one that is balanced because network bandwidth
is required to service remote jobs, 3) The resources needed
for job execution are much more than the overheads of
enabling load sharing, so the system can afford the
scheduling overheads needed to optimize its load distribu-
tion, and 4) Relocating an executing job is relatively
straightforward, and should be exploited to improve load
distribution.

Based on the above framework, we present in detail a
decentralized GWQ algorithm to effect this load sharing.
Under the algorithm, a user request is supported by the
host server whenever possible. If the host server runs out of
bandwidth, it will broadcast a service request to the other
servers on the network, which will bid for the job if they
have idle capacity. Once a job is awarded, it remains with
the same server until completion.

To understand the performance trade-offs, we then
develop an analytical model to capture the key character-
istics of the load sharing algorithm. The model enables us to
calculate accurately, for a given network bandwidth, what
gains load sharing might bring about, and thus estimate the
network bandwidth necessary for the distributed multi-
media servers to approximate a centralized server. It also
offers closed-form expressions (in terms of workload and
network parameters) that specify the server capacity (3),
bound the number of multimedia servers (11), and identify
whether link or switch bandwidth is the bottleneck in a
network design (12) and (13); these expressions can be used
to estimate the minimum switch and link bandwidths for
the distributed servers to realize the full potential of GWQ.
The model has been verified against a simulator and found
to yield acceptable accuracy in its numerical predictions
and analytical conclusions.

Using the analytical model and the simulator, we carried
out a wide range of experiments to profile the behavior of
the GWQ algorithm. These experiments unanimously
confirm that GWQ vastly reduces wait times at the servers,
compared to operating them in isolation. In practice, the
amount of improvement depends on the availability of
network bandwidths and object replicas at alternative
servers.

Another important conclusion is that there is an optimal
number of servers that should share loads to achieve

minimum average wait times. Below the optimum, there are
insufficient load sharing opportunities, while performance
suffers beyond the optimum as load sharing activities
saturate the network. For realistic workloads and current

hardware characteristics, the optimal number should be
around a dozen servers or less. This means even small
service providers can enjoy the benefits that GWQ brings. It
also means a large service provider who operates many
servers should partition them into smaller clusters, at least

where load sharing is concerned.
Finally, we proposed an enhanced GWQ+L algorithm

that enables a multimedia server to dynamically take over
local retrieval requests that have been awarded to remote
servers, so as to lighten the load on the interconnecting

network. Simulation experiments show that the extension
could produce some additional wait time improvement,
allowing the distributed multimedia servers to approximate
the performance of a centralized server. This confirms that
the scheduling decisions of GWQ+L are optimal.

REFERENCES

[1] G.R. Andrews, D.P. Bobkin, and P.J. Downey, ªDistributed
Allocation with Pools of Servers,º Proc. ACM SIGACT-SIGOPS
Symp. Principles of Distributed Computing, Aug. 1982.

[2] Y. Artsy and R. Finkel, ªDesigning a Process Migration Facility:
The Charlotte Experience,º Computer, vol 22, no. 9, Sep. 1989.

[3] R.M. Bryant and R.A. Finkel, ªA Stable Distributed Scheduling
Algorithm,º Proc. Second Int'l Conf. Distributed Computing Systems,
Apr. 1981.

[4] T.L. Casavant and J.G. Kuhl, ªDesign of a Lossely-Coupled
Distributed Multiprocessing Network,º Proc. Int'l Conf. Parallel
Processing, Aug. 1984.

[5] T.L. Casavant and J.G. Kuhl, ªA Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems,º Trans. Soft-
ware Eng., vol. 14, no. 2, Feb. 1988.

[6] T.C.K. Chou and J.A. Abraham, ªLoad Balancing in Distributed
Systems,º Trans. Software Eng., vol. 8, no. 4, July 1982.

[7] S. Chowdhury, ªThe Greedy Load Sharing Algorithm,º J. Parallel
and Distributed Computing, vol 9, no. 1, May 1990.

[8] W.W. Chu et al., ªTask Allocation in Distributed Data Processing,º
Computer, vol. 13, no. 11, Nov. 1980.

[9] F. Cristian and C. Fetzer, ªFault-Tolerant External Clock Synchro-
nization,º Proc. 15th Int'l Conf. Distributed Computing Systems, May
1995.

[10] K.W. Doty, P.L. McEntire, and J.G. O'Reilly, ªTask Allocation in a
Distributed Computer System,º Proc. InfoCom, 1982.

[11] R. Gusella and S. Zatti, ªThe Accuracy of the Clock Synchroniza-
tion Achieved by TEMPO in Berkeley UNIX 4. 3BSD,º Trans.
Software Eng., vol. 15, no. 7, July 1989.

[12] B. Hamidzedeh and D.J. Lilja, ªDynamic Scheduling Strategies for
Shared-Memory Multiprocessors,º Proc. 16th Int'l Conf. Distributed
Computing Systems, May 1996.

[13] G.J. Holzmann, Design and Validation of Computer Protocols.
Prentice Hall Software Series, pp 167-171, 1991.

[14] C.J. Hou and K.G. Shin, ªAllocation of Periodic Task Modules
with Precedence and Deadline Constraints in Distributed Real-
Time Systems,º Trans. Computers, vol. 46, no. 12, Dec. 1997.

[15] K. Hwang, W.J. Croft, G.H. Goble, B.W. Wah, F.A. Briggs, W.R.
Simmons, and C.L. Coates, ªA Unix-Based Local Computer
Network with Load Balancing,º Computer, vol. 15, no. 4, Apr. 1982.

[16] P.W. Jardetzky, C.J. Sreenan, and R.M. Needham, ªStorage and
Synchronization for Distributed Continuous Media,º Proc. ACM
Multimedia Systems J., vol. 3, no. 4, Sep. 1995.

[17] D. Kappholz and H.C. Park, ªParallelized Process Scheduling for a
Tightly-Coupled MIMD Machine,º Proc. Int'l Conf. Parallel Proces-
sing, Aug. 1984.

[18] L. Kleinrock, Queuing Systems, Vol. I: Theory, Wiley-Interscience,
1975.

[19] L. Lamport, ªTime, Clocks, and the Ordering of Events in a
Distributed System,º Comm. ACM, vol. 21, July 1978.

TAY AND PANG: LOAD SHARING IN DISTRIBUTED MULTIMEDIA-ON-DEMAND SYSTEMS 18



[20] L. Lamport, ªConcurrent Reading and Writing of Clocks,º Proc.
ACM Trans. Computer Systems, vol. 8, no. 4, Nov. 1990.

[21] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik,
Quantitative System Performance, Prentice Hall, pp 64-66, 1984.

[22] I.M. Leslie, D. McAuley, and S.J. Mullender, ªPegasusÐOperating
System Support for Distributed Multimedia Systems,º Proc. ACM
Operating Systems Review, vol. 27, no. 1, Jan. 1993.

[23] C.C. Lin, J. Xiang, and S.K. Chang, ªTransformation and Exchange
of Multimedia Objects in Distributed Multimedia Systems,º Proc.
ACM Multimedia Systems J., vol. 4, no. 1, Feb. 1996.

[24] T.D.C. Little and A. Ghafoor, ªSynchronization and Storage
Models for Multimedia Objects,º J. Selected Areas in Comm.,
vol. 8, no. 3, Apr. 1990.

[25] T.D.C. Little and D. Venkatesh, ªPopularity-Based Assignment of
Movies to Storage Devices in a Video-on-Demand System,º Proc.
Fourth Int'l Workshop Network and Operating System Support for
Digital Audio and Video, Nov. 1993.

[26] M. Litzkow, M. Livny, and M.W. Mutka, ªCondorÐA Hunter of
Idle Workstations,º Proc. Eighth Int'l Conf. Distributed Computing
Systems, Jun. 1988.

[27] C. Lu and S.M. Lau, ªAn Adaptive Load Balancing Algorithm for
Heterogeneous Distributed Systems with Multiple Task Classes,º
Proc. 16th Int'l Conf. Distributed Computing Systems, May 1996.

[28] F. Matthes and J.W. Schmidt, ªSystem Construction in the Tycoon
Environment: Architectures, Interfaces and Gateways,º Proc. Euro-
Arch '93 Congress, Oct. 1993.

[29] D.A. MenasceÂ, V.A.F. Almeida, and L.W. Dowdy, Capacity
Planning and Performance Modeling. P.T.R. Prentice Hall, 1994.

[30] C. Nicolaou, ªAn Architecture for Real-Time Multimedia Com-
munication System,º J. Selected Areas in Comm., vol. 8, no. 3, Apr.
1990.

[31] J. Ousterhout, D. Scelza, and P. Sindhu, ªMedusa: An Experiment
in Distributed Operating System Structure,º Comm. ACM, vol. 23,
no. 2, Feb. 1980.

[32] H.-H. Pang, B. Jose, and M.S. Krishnan, ªResource Scheduling in a
High Performance Multimedia Server,º Trans. Knowledge and Data
Eng., vol. 11, no. 2, Mar. 1999.

[33] M.J. Pfluegl and D.M. Blough, ªA New and Improved Algorithm
for Fault-Tolerant Clock Synchronization,º J. Parallel and Dis-
tributed Computing, vol. 27, no. 1, May 1995.

[34] K. Ramamritham, J.A. Stankovic, and W. Zhao, ªDistributed
Scheduling of Tasks with Deadlines and Resource Requirements,º
Trans. Computers, vol. 38, no. 8, Aug. 1989.

[35] P. Ramanathan, K.G. Shin, and R.W. Butler, ªFault-Tolerant Clock
Synchronization in Distributed Systems,º Computer, vol. 23, no. 10,
Oct. 1990.

[36] S. Ramanathan and P.V. Rangan, ªAdaptive Feedback Techniques
for Synchronized Multimedia Retrieval over Integrated Net-
works,º Proc. IEEE/ACM Trans. Networking, 1992.

[37] P.V. Rangan, H.M. Vin, and S. Ramanathan, ªDesigning an On-
Demand Multimedia Service,º Comm. Magazine, vol. 30, no. 7, Jul.
1992.

[38] P.V. Rangan, H.M. Vin, and S. Ramanathan, ªCommunication
Architectures and Algorithms for Media Mixing in Multimedia
Conferences,º Proc. IEEE/ACM Trans. Networking, 1993.

[39] R. Sargent, ªStatistical Analysis of Simulation Output Data,º Proc.
Sump. Simulation of Computer Systems, 1976.

[40] H. Schwetman, ªSIM Users' Guide,º MCC Technical Report ACT-
126-90, Microelectronics and Computer Technology Corp., Mar.
1990.

[41] K.G. Shin and Y.C. Chang, ªA Coordinated Location Policy for
Local Sharing in Hypercube-Connected Machines,º Trans. Com-
puters, vol. 44, no. 5, May 1995.

[42] N.G. Shivaratri, P. Krueger, and M. Singhal, ªLoad Distributing
for Locally Distributed Systems,º Computer, vol. 25, no. 12, Dec.
1992.

[43] J.A. Stankovic and I.S. Sidhu, ªAn Adaptive Bidding Algorithm
for Processes, Clusters and Distributed Groups,º Proc. Fourth Int'l
Conf. Distributed Computing Systems, May 1984.

[44] R. Steinmetz, ªSynchronization Properties in Multimedia Sys-
tems,º J. Selected Areas in Comm., vol. 8, no. 3, Apr. 1990.

[45] C. Steketee, W. Zhu, and P. Moseley, ªImplementation of Process
Migration in Amoeba,º Proc. 14th Int'l Conf. Distributed Computing
Systems, June 1994.

[46] H.S. Stone, ªCritical Load Factors in Two-Processor Distributed
Systems,º Trans. Software Eng., vol. 4, no. 3, May 1978.

[47] K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications, Prentice Hall, pp. 375-377, 1982.

[48] Y.T. Wang and R.J.T. Morris, ªLoad Sharing in Distributed
Systems,º Trans. Computers, vol. 34, no. 3, Mar. 1985.

[49] J.L. Wolf, P.S. Yu, and H. Shachnai, ªDASD Dancing: A Disk Load
Balancing Optimization Scheme for Video-on-Demand Computer
Systems,º Proc. ACM SIGMETRICS Conf., May 1995.

[50] J. Zahorjan, K.C. Sevcik, D.L. Eager, and B.I. Galler, ªBalanced Job
Bound Analysis of Queueing Networks,º Comm. ACM, vol. 25,
no. 2, Feb. 1982.

[51] P.N. Zarros, M.J. Lee, and T.N. Saadawi, ªA Synchronization
Algorithm for Distributed Multimedia Environments,º ACM
Multimedia Systems J., vol. 4, no. 1, Feb. 1996.

Y.C. Tay received his BSc from the University of
Singapore and PhD from Harvard University. He
is now a faculty member at the National
University of Singapore. His main research
interest is in performance modeling. Other
recent interests are: correctness in distributed
and parallel computing, routing protocols for
mobility support and ad hoc wireless networks,
and application of data mining to online optimi-
zation.

HweeHwa Pang received his BSc (with first
class honors) and MS from the National Uni-
versity of Singapore in 1989 and 1991, respec-
tively. He received his PhD from the University of
Wisconsin at Madison in 1994, all in computer
science. He is now a senior member of the
research staff at Kent Ridge Digital Labs in
Singapore. He heads a mobile computing project
to develop software infrastructure and utilities to
facilitate information access and computing from

mobile devices. His research interests include database management
systems, multimedia servers, and real-time systems.

19


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2000

	Load Sharing in Distributed Multimedia-on-Demand Systems
	Y. C. TAY
	Hwee Hwa PANG
	Citation


	Load sharing in distributed multimedia-on-demand systems - Knowledge and Data Engineering, IEEE Transactions on 

