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Programmable Presence Virtualization for

Next-Generation Context-Based Applications
Arup Acharya∗, Nilanjan Banerjee†, Dipanjan Chakraborty†, Koustuv Dasgupta†,

Archan Misra∗, Shachi Sharma†, Xiping Wang∗ and Charles P. Wright∗

†IBM Research, India Research Lab, New Delhi, India
∗IBM Research, T. J. Watson Research Center, Hawthorne, NY, USA

Abstract—Presence, broadly defined as an event publish-
notification infrastructure for converged applications, has
emerged as a key mechanism for collecting and disseminating
context attributes for next-generation services in both enterprise
and provider domains. Current presence-based solutions and
products lack in the ability to a) support flexible user-defined
queries over dynamic presence data and b) derive composite
presence from multiple provider domains. Accordingly, current
uses of context are limited to individual domains/organizations
and do not provide a programmable mechanism for rapid
creation of context-aware services. This paper describes a
presence virtualization architecture, where a Virtualized
Presence Server receives customizable queries from multiple
presence clients, retrieves the necessary data from the base
presence servers, applies the required virtualization logic
and notifies the presence clients. To support both query
expressiveness and computational efficiency, virtualization
queries are structured to separately identify both the XSLT-
based transformation primitives and the presence sources over
which the transformation occurs. For improved scalability, the
proposed architecture offloads the XSLT-related processing to
a high-performance XML processing engine. We describe our
current implementation and present performance results that
attest to the promise of this virtualization approach.
Keywords: Presence, context, virtualization, scalability,
federation

I. INTRODUCTION

While initially developed as a means for communicating

the “online status” in instant messaging applications, presence

has become a key enabler of Web-based content provider (e.g.,

Google TalkTM, Yahoo! Messenger TMor SkypeTM), enterprise

(e.g., IBM SametimeTM) and service provider/telco (e.g., Push-

to-talk) converged applications. Indeed, presence is rapidly

evolving to become the de-facto method of representing and

querying the context of an individual, both physical (e.g., a

user’s location) and virtual (e.g., the status of avatars visiting

my ‘island’ in SecondLife). Moreover, presence is used to

represent the dynamic attributes of not just individuals, but

also devices (e.g., the battery level of a cellphone) and abstract

entities (e.g., the number of attendees in a conference call).

Presence may be broadly described as a publish-subscribe

system for context, that currently enables a variety of products

and applications (ranging from location tracking, to real-time

discovery of available experts for collaboration, to business

process-enablement). As such, presence embodies the first

practical, large-scale adoption of context-aware computing.

With the proliferation of presence, an individual’s contextual

state is increasingly fragmented across different applications

and provider domains; currently, presence-based applications

operate in domain-specific silos, unaware of the individual’s

presence status in other domains. Obfuscating these tradi-

tional barriers between communications service providers,

enterprises and Internet content providers will, however,

enable a significantly more unified and accurate view of an

individual’s presence attributes across multiple domains. For

example, an employee’s activity status cannot be accurately

derived just from the enterprise-sanctioned Presence system

(e.g., Sametime within IBM), as this infrastructure is unable

to capture the fact that she may be using her cell-phone

(from an external telco). More generally, future converged

applications not only require the presence status from multiple

sources/domains, but also effectively operate over derived

contextual attributes by applying some processing logic over

the raw presence information. For example, a call-center

(Helpdesk) monitoring application may be interested in the

percentage of call-center employees who are available, rather

than the presence status of individual employees.

Current presence solutions are largely based on SIMPLE [5,

8] extensions to the base SIP signaling protocol (with Google

Talk being a notable exception that utilizes the XMPP [4]

protocol). In the SIP-based presence model, an application

server called the Presence Server (PS) acts as the central

repository for a specific domain (a specific organization or

application) where presence information generated by SIP

clients (via a PUBLISH message) belonging to that domain is

matched against prior subscriptions issued (via a SUBSCRIBE

message) by “watcher” [5] clients; the PS informs such

watchers of changes in presence states (via a NOTIFY

message). In the standard SIMPLE model, subscriptions and

publishes are indexed using a single SIP URI, where each URI

is typically associated with a unique entity (called presentity),

such as a user or device. Consequently,

• subscribers can only specify an individual subscription

over a single presentity (e.g., subscribe to the URI

sip:alice@us.ibm.com); the URI restriction applies, even

when group subscription mechanisms (such as the use of

resource-lists [6]) are considered.

• the subscription logic over the content of individual

URIs is restricted to a limited set of pre-defined “filter”

operators specified in SIP standards [8] (e.g., alerts only

on specified changes in the location value).

https://www.researchgate.net/publication/242392817_Session_Initiation_Protocol_SIPSpecific_Event_Notification?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
https://www.researchgate.net/publication/243586102_A_Presence_Event_Package_for_the_Session_Initiation_Protocol_SIP?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
https://www.researchgate.net/publication/245059509_A_Session_Initiation_Protocol_SIP_Event_Notification_Extension_for_Resource_Lists?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
https://www.researchgate.net/publication/242477841_Mapping_the_Extensible_Messaging_and_Presence_Protocol_XMPP_to_Common_Presence_and_Instant_Messaging_CPIM?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
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Accordingly, a monitoring application interested in the

overall status of a call center Helpdesk must subscribe (via

the presence server) to the status of each individual call center

employee and perform the necessary aggregation locally.

This approach not only wastes network resources, but also

precludes multiple clients from being able to “reuse” the same

computation.

We believe that these characteristics present serious limi-

tations to the deployment of a large-scale, scalable presence

infrastructure for future converged applications. In particular,

to effectively support progressively more sophisticated uses

of presence, we believe it is necessary to build a pres-

ence virtualization layer. The virtualization layer provides a

programmable abstraction by which applications can easily

obtain their desired collective “view” of presence by querying

a server-side overlay, without focusing on the details of

individual presentities. The base presence technologies do not

provide a standardized and scalable mechanism for querying

and customizing aggregate views over presence; at best, current

products offer a means for pre-defined aggregation of the

presence information of an explicitly identified user across

several domains. While it may be tempting to view presence

virtualization merely as another instance of generic ‘context

aggregation’, practical presence aggregation and its use by

multiple presence-enabled applications must factor in two key

challenges that are not addressed by current approaches:

• Query Flexibility: Since virtualization is a common

service spanning multiple presence applications, the client

programming model must be expressive enough to sup-

port a wide variety of virtualization queries (for example,

both a query that computes the percentage of available

call-center employees, as well as another application that

monitors the number of free taxicabs within a mile of a

train station).

• Scalability: given the high volumes of presence updates

and queries to be expected in tier-1 service provider and

enterprise environments, the solution should control both

the network traffic (in terms of presence updates and

notifications) and the server processing (in terms of both

subscriptions and the aggregation logic) loads. Scalable

virtualization is critical, for example, to a telecom service

provider that inject a unique set of presence attributes into

a larger federated presence eco-system (e.g., a cellular

provider supplying real-time location of an user to Yahoo,

for use in location-aware advertising).

Given this background, this paper presents our development

of a novel Programmable Presence Virtualization solution,

based on the fundamental ability to apply user-specific cus-

tomized processing logic on a potentially large set of dynam-

ically changing XML documents. The concept of presence

virtualization is intimately linked with manipulation of XML

streams, as the presence status for different objects is typically

represented via XML-based schemas (such as, PIDF [2] format

for SIP-based presence and presence format [4] for XMPP-

based presence). Virtualization thus allows a presence client

to “programmatically push” its application-specific logic, for

deriving composite presence state (from the presence-related

Fig. 1. High Level Presence Virtualization Architecture.

attributes of multiple individual presentities) onto the backend

server infrastructure; this ability to ‘combine’ the application

of such logic from multiple clients promotes scalability by

reducing both the subscription load on individual Presence

Servers and the presence traffic load on the network. Moreover,

our virtualization solution also allows clients to expose and

share the end results of their transformations with other rele-

vant clients; in effect, virtualization allows presence consumers

to define virtual presentities (presentities created in response

to external queries), which become a seamless part of the

presence infrastructure and are functionally indistinguishable

from the ‘raw’ presentities. The complex processing needed to

support virtualization primitives at the backend infrastructure

(which now not only deals with the basic publish-subscribe

presence primitives, but must perform the added virtual

presentity computations) can, however, become a serious

processing bottleneck. We shall addresses this challenge by

appropriate offloading of the more complex aspects of XML

manipulation to a product-grade XML acceleration engine.

A. Key Contributions

The following are the key contributions of this paper:

• We motivate the importance of presence virtualization as

a generic programmable framework for practical “context

awareness” and then introduce the notion of a Virtualized

Presence Server (VPS) that implements this virtualization

logic, shielding clients from the diversity of underlying

presence servers and protocols.

• We detail the implementation and design of the VPS,

with special emphasis on a) how client queries are

structured and specified, b) how virtual presentities

and dynamically generated SIP URIs can be coupled

with standard SIP Redirection mechanisms to allow

presence clients to reuse the offloaded computation logic

at different granularities, and (c) how the offloaded

computation may be efficiently performed at a VPS,

through appropriate coordination of pipelined or par-

allelized XML transformations on a commercial XML

acceleration engine.

https://www.researchgate.net/publication/242477841_Mapping_the_Extensible_Messaging_and_Presence_Protocol_XMPP_to_Common_Presence_and_Instant_Messaging_CPIM?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
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• We present experimental results that demonstrate the

feasibility of our current solution, and identify additional

features requiring enhancements as part of ongoing

investigations.

The rest of the paper is as follows. Section II summarizes

the prior work related to scalable presence composition.

Section III provides the high-level presence virtualization

architecture. Section IV describes how the VPS operates with

existing products, while Section V discusses the specifics

of the VPS implementation. In Section VI, we present

VPS performance results derived from our testbed. Finally,

Section VII concludes the paper.

II. RELATED WORK

The extensions to the SIP base protocol for supporting

presence are specified in [5], while the most commonly used

XML-based PIDF format for representing presence content is

described in [2]. XMPP [4] provides an alternative messaging

architecture for disseminating presence (e.g. in Google Talk)

– however, the presence content is still encapsulated within

XML streams.

A limited number of research prototypes have been pre-

viously suggested for offering advanced presence compo-

sition and services. YooHoo! [13] demonstrates a Web-

service based solution towards presence composition (for

each individual presentity), with presence clients issuing

XQuery based composition requests to the backend server.

Unlike our solution, there is no specific focus on achieving

scalability via XML offload; moreover, the server treats each

XQuery independently, without attempting to reuse common

computational components. PASTA [18] described a rule-

based correlation engine that augments a PS with the ability

to derive higher-level presence attributes for a presentity from

underlying data. Unlike our solution, PASTA does not allow

for user-customized presence queries (only pre-specified rules

are permitted) and applies customized logic (JAVA code) to

presence data – thus lacking the potential scaling benefits

obtained by our approach.

There have been a number of studies on context aware

queries for pervasive and ubiquitous systems. Context query

languages [15], [9] propose composing pervasive data, but

does not provide a framework for optimal subscriptions to

composite events in a pervasive system. Solar [14], provides

a graph based abstraction for context aggregation and dissem-

ination that enables application to subscribe to events corre-

sponding to changes in contextual information in a flexible and

scalable fashion. Solar, however, lacks programmability for

aggregation and dissemination of contextual data. A flexible

self-adaptable query service for getting contextual information

from distributed database repository has been proposed in

[12]. But, the query service does not provide the facility

of subscription to a contextual query and its re-utilization

between multiple queries. Apart from these works, there have

been a host of data aggregation and dissemination frameworks

for evaluating contextual queries in pervasive and ubiquitous

systems [1], [19]. Once again, none of these solve the problem

of optimally answering persistent contextual queries through

a user-oriented programming interface in a single framework.

Recent times have also witnessed a number of activities

in the specific domain of presence aggregation [16] – both

in terms of standardization as well as research prototypes.

[17] proposes script-based aggregation of presence documents

from multiple sources that can be individually controlled for

every subscribed watcher. An extension to the standardized

presence information data format facilitates secure publication

of watcher-specific views on the users presence status. The

aggregation process can be controlled by user-specific rule-

sets that specify how concurring presence notifications from

the contributing sources have to be combined into a single

presence information document. Geopriv [11] defines filters

in XML documents which limit location notification to

events which are of relevance to the subscriber. These filters

persist until they are changed with a replacement filter. The

valueChanges filter event contains a string which is interpreted

as an XPath [W3C.xpath] expression evaluated within the

context of the location-info element of a PIDF-LO [10]

document which would be generated by the notification. For

example, given a logical PIDF-LO document, If the state,

county, city, or postal code changes, then a notification is

sent. Further, RPIDS [3] rpids expands the basic set of

presence states (e.g. active, on-line, off-line, on the phone,

in a meeting, out to lunch, etc.) with states that are applicable

to the broad consumer market (e.g. steering to denote the

user is driving). Rich presence aggregates user information

from multiple devices, networks and applications to provide

a more comprehensive and accurate view of user status.

For example, on the phone is an aggregate of all a users

voice devices: desktop, mobile, remote office and Voice over

Internet Protocol (VoIP) terminals. Applications such as IM

and calendar also provide important user status information,

such as in a meeting.

While presence aggregation plays a critical role in the

vision of all–pervasive presence enabled applications, we take

it a step further by describing a virtualization layer that is

capable of distributing this (aggregated) information through

a well-defined user interface to a plethora of presence-enabled

applications. The underlying query processing techniques

further make this a scalable solution that can support a large

number of applications (queries).

Presence virtualization may also be viewed as a form of

event stream processing, with virtualization queries repre-

sented as a graph of operators operating over PIDF-based

incoming XML data streams. Several middleware platforms

for applying operator graphs [21] or arbitrary processing

code [20] over incoming sensor streams have been recently

proposed. Our virtualization effort differs from this body of

work in that it is tailored to consider several unique features of

the presence environment, such as the association of presence

documents with specific URIs, the encapsulation of presence

data in XML documents (hence, the use of XSLT operators)

and the need to retrieve specific presence documents by

subscribing to the PS (rather than assume that all presence

events are proactively streamed to the VPS). Moreover, we

focus explicitly on ensuring that the virtualization solution

reuses the capabilities of the base SIP signaling protocol to the

maximally possible extent, with a goal to minimizing changes

https://www.researchgate.net/publication/221255276_ESCAPE_-_An_Adaptive_Framework_for_Managing_and_Providing_Context_Information_in_Emergency_Situations?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
https://www.researchgate.net/publication/4336182_A_Context_Query_Language_for_Pervasive_Computing_Environments?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
https://www.researchgate.net/publication/242392817_Session_Initiation_Protocol_SIPSpecific_Event_Notification?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
https://www.researchgate.net/publication/244998199_A_Presence-based_GEOPRIV_Location_Object_Format?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
https://www.researchgate.net/publication/200034116_Aurora_a_New_Model_and_Architecture_for_Data_Stream_Management?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
https://www.researchgate.net/publication/242477841_Mapping_the_Extensible_Messaging_and_Presence_Protocol_XMPP_to_Common_Presence_and_Instant_Messaging_CPIM?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
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Fig. 2. XSLT-Based Query Specification for Presence Virtualization

to either existing presence clients or servers.

III. BASIC DESIGN OF THE PRESENCE VIRTUALIZATION

ARCHITECTURE

The goal of our presence virtualization work is to provide

a semantically-useful abstraction over the underlying hetero-

geneous infrastructure; it is conceptually equivalent to the

notion of “views” in database systems, which define custom

abstractions over underlying physical tables. The conceptual

presence virtualization framework is illustrated in Figure 1.

The central element in the architecture is the Virtualized

Presence Server (VPS), which is responsible for accepting

complex presence queries from clients and responding with the

appropriate “virtual presentity” status. As shown in the figure,

the virtualization layer consists of a set of VPS-es, which

effectively shield the presence clients from the individual

presentities managed by the underlying Presence Servers (PS).

Each individual VPS may itself issue subscriptions to multiple

underlying PS-es, potentially via the use of different presence

protocols. Each VPS supports multiple presence ‘queries’; to

support efficiency, each VPS performs ‘query optimization’

across the queries to essentially avoid redundant computations.

To explain the details of our architecture, we must first explain

our choices for two fundamental, and closely-coupled, aspects

of virtualization:

1) How (i.e., in what structure and language) are the

individual ‘virtualization queries’ expressed?

2) What is the basic unit of presence virtualization appro-

priate for the associated queries?

A. Choice of Virtualization Query Specification Format and

Language

Each client wishing to avail of or instantiate a virtualized

presentity on the VPS must specify its logic in a prescribed

format that is both sufficiently expressive and permits efficient

implementation in the VPS runtime. With the PS providing

presence content in XML-based formats, it stands to reason

that the manipulation logic will be based on one of the various

XML manipulation languages (such as XSLT1).

To promote query expressiveness with efficient query reuse

capabilities, we formulate each query as consisting of two

distinct parts:

• A Membership Set (MS) part identifies the set of

underlying presentities (either as an explicit list of

individual pre-existing SIP URIs or via a group URI

corresponding to a resource list [6]) whose information

is utilized to define different attributes of the virtualized

presentity. In other words, the MS identifies the set of

underlying presentities whose presence state is relevant

to the posed query.

• A Transformation Function (TF) specifies a transforma-

tion (a sequence of operators) that is applied to the set

of presence documents of the MS members to generate

the response to the virtualization query.

Each virtualized presence query issued by a client is

thus uniquely identified by the tuple (MS, TF). As an

example, consider the virtualized query that seeks to return

the subset of IBM buddies from (sip:alice@us.ibm.com,

1http://www.w3.org/TR/xslt

https://www.researchgate.net/publication/245059509_A_Session_Initiation_Protocol_SIP_Event_Notification_Extension_for_Resource_Lists?el=1_x_8&enrichId=rgreq-607eef34-e7cf-4b7f-bf87-c3d6130e4922&enrichSource=Y292ZXJQYWdlOzIyNDQ0MTE5MTtBUzo5OTg0MzAyNDM1OTQyN0AxNDAwODE1ODQwMzUz
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sip:bob@us.ibm.com, sip:carol@us.ibm.com) who are

located in IBM Watson facility and available on IBM

Sametime. In this case, the MS elements consists of

the URIs {sip:alice@us.ibm.com, sip:bob@us.ibm.com,

sip:carol@us.ibm.com}, while the TF consists of the logic

that generates an XML attribute with the URIs of the

buddies available on Sametime and in office. Clearly, multiple

queries may be equal in either one or both elements of the

tuple. As we shall see, this explicit separation of MS and

TF components enables the VPS to efficiently exploit the

commonality among MS elements of different queries.

In our VPS solution, the TF component of the query is

specified as an XSLT transformation over the XML contents

of the presence documents. We choose XSLT due to both

its expressiveness, and the advanced vendor–specific XSLT

support provided by a variety of XML processing appliances.

To maintain consistency with the base SIP signaling infrastruc-

ture, the queries are carried as XML bodies in the Payload

field of SIP SUBSCRIBE messages; these SUBSCRIBE

messages are routed to the VPS, which is then responsible

for extracting and processing the encased query. Figure 2

illustrates the details of an XSLT–based query (and the

response) corresponding to the virtualized query discussed in

the example above.

B. The Query Processing Cell (QPC)

To implement a scalable virtualization platform that can si-

multaneously support a large number of virtualization queries,

we introduce the notion of a Query Processing Cell (QPC)

as the fundamental unit of presence virtualization. A QPC

is a software object that effectively represents a virtual

presentity (with a dynamically assigned URI) defined by

a specific membership set (MS) such that its presence

status is an aggregation of the presence data of individual

members. Multiple queries with identical MS, but distinct

TF, specifications are mapped to the same QPC. Each of

the TF components of queries mapped to a single QPC are

then viewed as subscriber-specific filters over this presence

document. As illustrated in Figure 3, a VPS can then be viewed

as a collection of QPCs, whose creation, termination and inter-

QPC coordination are orchestrated by the QPC Factory.

In the most common interaction model, a presence client

specifies a query (in the BODY of a SIP SUBSCRIBE mes-

sage) that is addressed to a well-known “VPS URI” (i.e. that of

the QPC Factory) and thus routed by a standard SIP Routing

Proxy to the VPS. The QPC Factory acts as a container

for creating and managing multiple individual QPCs, each

representing a ‘virtual presentity’ created by the VPS. The

QPC Factory is also responsible for redirecting virtualization

queries to the appropriate QPC and for maintaining life-cycles

of QPCs (e.g., performing clean up of a QPC when it no longer

has any valid client subscriptions). During the initialization

of a QPC, the QPC Factory sets up a dynamic resource list

URI (containing all the URIs in the MS) on a Group List

Management Server (GLMS). A QPC uses this GLMS URI

to efficiently retrieve the raw presence data from the PS (rather

than create per-URI subscriptions), a point further described

in Section IV.

An additional component of the VPS is the Query Cat-

alogue, which contains the repository for currently running

virtualization queries. By exposing the contents of this cata-

logue through a Web-based interface, the VPS allows clients

to reuse existing queries and QPC objects. To do so, the QPC

Factory maintains a unique tuple, i.e. [MS, TF, QPC URI,

TFid], for each query in the Query Catalogue. On receiving

the ith incoming query, represented by (MSi, TFi), the QPC

Factory first inspects the entries in the query catalogue to

determine if a virtual presentity (URI) exists for an identically

matching MS2. If a match does not exist, the QPC Factory

creates a new QPC object (instantiated with a newly specified

virtual presentity URI) and installs a GLMS group list (with

the virtual presentity URI), containing the individual URIs

of the Membership Set. If, on the other hand, a matching

QPC exists, the QPC Factory simply issues a SIP REDIRECT

message to the client, asking it to reissue its SUBSCRIBE

message to the existing virtual presentity (QPC) URI.

Further, to improve system scalability, each QPC offloads

some of the query computation (involving manipulation of

XML-based presence content) to an XML processing appli-

ance. Whenever the computed result changes, each QPC uses

SIP NOTIFYs to inform the end clients of a new response to

their query.

Internally, each QPC consists of the following components

(Fig. 4):

• A Presence Fetcher that interacts with the Presence

Server to setup subscriptions on the underlying Presence

Server and obtain the presence documents of each of the

members of the MS.

• A Controller that takes the different TF requests from

all clients mapped to the same QPC, and interfaces

with the XML processing appliance (to be described in

Section IV) to efficiently apply the XSLT transformations

to the aggregated presence data of the MS (obtained by

the Presence Fetcher).

• A Query Receiver that manages the external subscriptions

issued by the virtualization query clients – this consists of

handling the SIP-based requests (SUBSCRIBEs) from the

clients of this QPC, and for issuing NOTIFYs (containing

the results of XSLT transforms) to the QPC’s clients.

The operational details of each of these components will

become clear in the next section, which describes the mecha-

nisms by which a QPC interacts with the existing infrastructure

to optimize its query processing.

IV. INTEGRATION OF VPS OPERATION WITH EXISTING

ARCHITECTURE/PRODUCTS

Section III presented the fundamental design principles

behind the VPS and its use of QPCs as units of computation.

We now describe how the interactions between and with

the various VPS components are designed to make optimal

use of existing features and components of the SIP-based

infrastructure that would be already deployed in an existing

network. Figure 3 will be used to explain the component

2Optimizations that permit better reuse of QPCs are specified in the
discussions of ongoing work in Section V-A



6

Fig. 3. Internal Architecture of a VPS, containing a single QPC
Factory and multiple QPCs.

level interaction between the VPS, its individual QPCs and

other functional components. In particular, our virtualization

architecture uses the following three techniques to a) make

efficient use of bulk subscriptions to the PS, b) maximize

the reuse of query components among different clients and

c) mitigate the processing overhead.

A. Interaction between QPC and Presence Server/GLMS:

GLMS is a component of the converged signaling network

that provides the ability to efficiently store and managing

resource lists (e.g. buddy lists). The resource lists are created,

modified and deleted using the XML Configuration Access

Protocol (XCAP).

To enable more efficient specification of subscriptions to

the Presence Server (PS), the MS component of a query is

configured as a resource-list in GLMS. The VPS (in specific,

the QPC Factory) is responsible for interacting with the GLMS

to associate a dynamic resource-list URI with the URIs of

the presentities addressed by the query, and for interacting

with a Presence Server (using standard SUBSCRIBE-NOTIFY

messages) to obtain the presence data for this set of presen-

tities. The GLMS also supports an internal presence service,

through which an external module can subscribe to changes

in status of group lists (e.g. addition/deletion of elements to

a list, deletion of list). The Presence Server (PS) exploits

the above-mentioned functionality of GLMS to accept SIP-

based subscriptions to resource-lists. In particular the PS, upon

receiving a resource-list (MS) SUBSCRIBE message from a

client, uses XCAP to retrieve the list of elements from GLMS

and then subscribes to GLMS to be notified whenever there

are modifications to the resource list. Internally, it subscribes

to the presentities in the MS, gets notified of any changes

in the presence documents of an MS member, and sends

back any changes inside a NOTIFY message to the client

(i.e. the VPS). The presence document inside the NOTIFY

is an aggregated (PIDF) document containing the individual

presence data of each MS member. The Presence Fetcher

within the QPC subscribes to this resource–list URI to obtain

aggregated presence information of MS, rather than maintain

per–URI subscriptions.

B. Virtualization Query Routing to QPCs:

By appropriate use of standard SIP URI qualifiers and

session redirection, the VPS allows different clients to interact

with it in three different ways, without requiring any modifi-

cations to the client-side SIP stack.

Figure 4 (i.e. steps 1, 2, an 3 therein) shows the SIP-based

interaction between a query client and the QPC (QPC Factory):

• A query client can issue its query (a SIP SUBSCRIBE

with a (MS, TF) tuple in the body of the message) ad-

dressed to the QPC Factory URI. If a QPC corresponding

to the MS exists, the client will be redirected to the QPC

URI; else, a new QPC object will be created on-demand

by the QPC Factory (with a dynamically allocated URI

from the URI space managed by the QPC Factory), and

the query client will be redirected to this new URI.

• The (MS,TF) query is then routed by the query router

to the Query Receiver module of the QPC. To promote

reuse, each TF being currently supported by the client is

identified by a “query component” label (a “?id” suffix

appended to the URI for the QPC). As before, if the

TF exists, the query client is again redirected to the

“sip:qpcURI?TFid” URI; else, the QPC Controller creates

the corresponding TF transformation logic (on the XML

processing Engine), generates a new “TFid” and then

redirects the client to this URI.

• The (MS,TF) query addressed to a “sip:qpcURI?TFid”

URI is then managed by the Query Receiver module of

the QPC.

The Query Catalog entries expose the existing (MS, TF,

qpcURI, TFid) bindings to the external world; accordingly,

virtualization clients are able to reuse existing components

on the VPS by directing their query to different URIs (e.g.,

if there is an existing query with identical MS and TF

components, the client can simply send its subscribe directly

to the corresponding “sip:qpcURI?TFid” URI).

C. Interaction between QPC and XML processing appliance:

XSLT-processing on a collection of XML documents can

incur considerable processing overhead; to build a scalable

XSLT-based presence virtualization platform, it is thus imper-

ative to improve the execution of the queries.

To implement a high-performance virtualization solution,

our VPS offloads the bulk of the XML transformation and

processing logic to a “wire-speed”’ XML processing appliance

(referred to as XML engine). The QPC interfaces to the XML

processor through a Web-services based interface. Each QPC

in effect installs a distinct firewall service on the XML engine;

each firewall policy is identified by a specific (name, port)

combination. To support multiple XSLT-based TFs emanating

from query clients transforming a common MS, the QPC

installs multiple TFs onto the firewall policy that can be

applied in parallel (logically) on the arriving MS data. The
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Fig. 4. Internals of QPC with the interactions between a query client and QPC/QPC Factory

QPC additionally spawns a HTTP listener for the response of

each TF (XSLT) from the XML engine.

Recall that, the Presence Fetcher is initialized to receive

an aggregated presence document as part of a NOTIFY, each

time the presence information of any MS member changes.

On receiving the NOTIFY, the QPC ships this merged XML

document to the XML engine and receives a response (as

a transformed PIDF document) from the firewall policy.

The Query Receiver then tranmits this transformed PIDF

(corresponding to the output of the corresponding TF filter

applied to the virtual presentity) via NOTIFY messages to

the client. Figures 3 and 4 illustrate the specific interactions

between the QPC and the XML processing appliance.

V. VPS AND QPC IMPLEMENTATION DETAILS

We next discuss implementation details of the virtualization

architecture. The current implementation of the Virtual Pres-

ence Server consists of a single QPC Factory with mutliple

QPCs that are created, managed and destroyed on–demand.

Each QPC is instantiated with (a) a resource-list URI that

denotes the Membership Set (MS) of the virtual query, and (b)

one (or more) Transformation Functions (TFs) to be applied

to the presence documents of the MS members. The VPS is

implemented in JAVA using IBM JAVA Version 5.0. Query

clients interact with QPC Factory through the west–bound

interface of the VPS, providing the Membership set (list of

presentity URIs) and the Transformation function (TF) in the

payload of a SIP SUBSCRIBE message. The QPC Factory

redirects the client, using SIP RFC 3261 [7] semantics, to the

URI of a newly created QPC or a pre-existing QPC.

Each QPC consists of a Query Receiver that is responsible

for the subsequent interactions of the query client with the

QPC. The Query Receiver is implemented using JAIN–SIP

1.2 3 and supports the requisite functionalities for redirection

(RFC 3261 [7]) and subscription management (RFC 3265 [5]).

Note that, a client subscribes to an installed transformation

3https://jain-sip.dev.java.net/

function by passing the identifier of the transform along

with a SUBSCRIBE message. The QPC registers the client

as a “watcher”’ on the TF. Subsequently, the QPC sends

out any new response received from the XML engine to

watchers subscribed to the corresponding TFid. The body of

the NOTIFY message to the query client contains the new

response.

The implemented VPS infrastructure consists of vendor–

specific implementations of GLMS and Presence Server to

operate with the QPCs. The Presence Fetcher in the QPC

sits at the east–bound interface (implemented using JAIN–

SIP 1.2) and subscribes to all presentities in the Membership

Set. The Presence Server manages these subscriptions and

sends an initial aggregated NOTIFY to the Presence Fetcher

corresponding to the MSet. Subsequent NOTIFYs contain

presence updates of individual members. The Presence Fetcher

parses the NOTIFY and extracts the presence document for

each presentity. It then merges these documents into a well-

formed XML document to be shipped to the XML appliance.

Each QPC has a south–bound interface that communicates

with the firewall service installed at the XML appliance. Each

firewall (one for each TF/XSLT) is responsible for handling

XML transformations on incoming data and sending back the

transformed responses to the appropriate HTTP listener of

the QPC. These responses are then picked up by the Query

Receiver that notifies the corresponding “watcher”’ clients.

Finally, all QPC objects (and their internal TF transforma-

tions) are maintained as “soft-state”’ in accordance with the

base SIP protocols[5, 7]. This implies that each subscription

has a specified duration and must be periodically refreshed.

The QPC Factory and QPC objects maintain the timers to

perform the necessary cleanup. In particular, a QPC object

has the ability to self-destroy when the number of active

subscriptions for its MS drops to zero; at this point, the QPC

Factory removes the QPC, releases the virtual presentity URI

and removes the corresponding entry created in the GLMS.

Similarly, the QPC Factory and QPC coordinate to ensure that

the Query Catalogue is always kept updated, as individual TF
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subscriptions for a specific QPC expire.

A. Ongoing Enhancements for scalability

We are currently investigating several possible architectural

enhancements to the base VPS design detailed in this paper

to support scalability for large-scale deployment of VPS. In

particular, our ongoing work is focusing on the following two

very interesting aspects of presence virtualization:

• MS-Reuse and Hierarchical QPCs: Currently, a new

query q, denoted as (MSq, TFq) is matched to an

existing QPC E (denoted by (MSE , TFE)) only if

the membership sets are identical, i.e., MSq = MSE .

For better reuse of MS-es (which will alleviate the

subscription load on the underlying PS), other forms of

full or partial matching may be used. For example, the

query q can be mapped to the existing QPC E if its MS

is completely contained in MSE , i.e., MSq ⊂ MSE . Of

course, the TFq has be to modified a bit (by the VPS)

to essentially restrict the application of TF on only the

appropriate subset of MSE (i.e., to avoid the application

of the TF operator on the presentities in MSE that

are not part of MSq). More interestingly, the QPC

Factory can also exploit partial membership of QPCs;

for example, it is possible that MSC ⊂ {MSA∪MSB},

but is not wholly contained in either. In this case, the

QPC for MSC may simply aggregate the data from

the QPC objects for MSA and MSB , in effect creating

a QPC hierarchy, without creating a new subscription

on either the GLMS or the PS. We have developed an

efficient maximal set-matching based heuristic to enable

the dynamic creation and maintenance of such QPC

hierarchies, and are currently evaluating its performance

for realistic workloads.

• QPC coordination across multiple VPS-es: The current

QPC design focuses on scalable design of a single

VPS. Our algorithms for creating and maintaining QPCs

must be extended to consider the generic virtualization

architecture, consisting of federated VPS-es. In particular,

the query distribution algorithms may either partition (so

that a particular MS subscription exists only on a single

VPS) or replicate (different queries with the same MS

are routed to different VPS-es) QPCs. We are currently

developing such federated query routing algorithms that

factor in the processing load of each individual VPS

(implicitly preferring the use of a lightly-loaded VPS)

and the possibility of hierarchical aggregation on a single

VPS (implicitly preferring the use of a VPS where lower-

layer QPCs may be locally exploited).

VI. TESTBED PERFORMANCE RESULTS

In this section, we present the performance results observed

with the small-scale deployment of our VPS implementation

on a laboratory testbed. Our principle objective here is to

demonstrate the functioning of our VPS implementation and

gain some initial understanding of how VPS performance of a

single server is affected by factors like the MS cardinality (the

number of presentities in MS) and number of TFs (i.e., when
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more than one transformation logic is applied to the same

MS). We would also like to demonstrate the use of the XML

processing appliance to sustain the throughput of XSLT-based

transformations. In addition to these limited ‘proof-of-concept’

tests, we are working to perform a medium-scale deployment

of our solution in a tier-1 telecom service provider’s test

environment—when completed, this deployment will enable

us to better identify potential implementation bottlenecks and

iteratively refine our implementation.

To demonstrate our ‘proof-of-concept’ implementation, we

focus on two performance metrics:

• The VPS NOTIFY throughput, roughly defined as the

number of NOTIFY messages (per second) generated and

delivered to virtualization end clients.

• The virtualization end-to-end latency, defined as the

interval between the PUBLISHing of a change in the

presence status of a presentity and the corresponding

delivery of the NOTIFY of the query response to the

relevant virtualization clients. In our implementation, this

delay will consist of several components (besides the

network transport delay for each message), including i)

the delay in the issuance of the NOTIFY from the PS,

ii) the latency incurred by the QPC Presence Fetcher in

redirecting the contents of an aggregated NOTIFY to the

XML appliance, iii) the XSLT-processing latency in the

XML appliance and iv) the latency incurred by the QPC

Listener and Query Receiver in sending the transformed

output in a NOTIFY to the virtualization clients.

We deployed a single VPS on a server with Intel(R) Xeon(TM)

CPU 3.40GHz with 5GB of memory, running Red Hat

Enterprise Linux AS release 4 and IBM Java 5.0. The PS

was also deployment on a separated server with a similar

configuration, but with enhanced system memory of 7GB. To

simulate the creation of QPCs and subsequent installation of

the TFs, we have implemented a watcher client that generates

queries to execute the three-step subscription procedure with

the VPS illustrated in Figure 4. The watcher client can

be configured to create multiple QPCs and install multiple

TFs within a QPC. In addition to the watcher client, we
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have also developed a publish load generator that randomly

(with a specified frequency) changes the presence state of

the presentities constituting the MSes. Both the watcher

client and the publish load generator have been implemented

with SIPp [http://sipp.sourceforge.net/], an Open Source light-

weight traffic generator for SIP, and are deployed on different

machines, but on the same local network as the VPS, PS and

the XML processing appliance.

We present here the performance results obtained with three

different tests:

• MS Cardinality: 2; Number of TFs: 1 − 5; Load: 10

publishes/sec

• MS Cardinality: 10; Number of TFs: 1 − 5; Load: 10

publishes/sec

• MS Cardinality: 20; Number of TFs: 1 − 5; Load: 10

publishes/sec

Note that the load is expressed as the number of PUBLISH

messages generated per second by the publish load generator.

Each presentity publishes two different types of dynamic

presence information, viz. Yahoo! IM status and location.

The publish load generator keeps on toggling between these

presence attributes, resulted in cascaded responses from the

relevant ‘downstream’ TFs. In the experiments presented here,

each TF installed on a QPC is associated with a single unique

watcher client.

Figure 5 presents, for varying TF and MS cardinality,(i)

the rate at which NOTIFYs are received by the VPS (from

the PS) and (ii) the rate at which NOTIFYs (corresponding to

virtualization responses) are sent out by VPS to the clients. As

expected, the throughput of VPS NOTIFYs linearly increases

with number of TFs for a fixed value of MS cardinality and

is a multiple of the input NOTIFY rate. Figure 6(a) and 6(b)

present the CDF of the end-to-end latency for the cases where

MS equals 2 and 5 respectively. We can see that the delay

increases slightly with an increase in the number of members

in MS; this is due to the potentially larger size of the XML-

based PIDF that must be transported from the VPS to the PS,

and then transformed by the XML appliance. In both cases, the

end-to-end latency is more sensitive to the number of TFs per

QPC. However, in general, the 95th percentile of the latency

is lower than 1 second; since this includes various network-
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layer delays, we can infer that the architecture is capable of

supporting presence virtualization at low-to-moderate loads

with acceptable latencies. (For large notification loads, we

shall have to employ the federated VPS architecture currently

under investigation).

To further understand the performance of our implementa-

tion, Figure 7 plots the input XML transformation load (in

terms of the number of XML documents input to the XSLT

processor) observed on the XML processing appliance, while

Figure 8 plots the corresponding XML output load (again, in

terms of the number of documents generated as the output

of XSL transforms). The two figures clearly demonstrate that

the XML appliance is able to easily support the required

transformation rates (of approx. 50/second), effectively helping

to lower the processing bottleneck in our implementation.

A. Summary of results

Our presence virtualization solution contributes towards

developing a scalable solution in the following ways:

• Use of virtualization: Without virtualization, applications

would individually need to fetch presence data from the

base presence servers, leading to increase in network

traffic and subscription loads on the PSes. Moving

the query computation load to the VPS enables end–

applications (queries) to re-use presence subscriptions

made to the base servers and scale up to support

thousands of such queries.

• Split and re-use QPCs across virtualization queries:

Splitting presence queries into membership sets and

transformation functions enables the architecture to re-use

commonalities between multiple queries. In particular,

VPS by design re-uses the membership sets to instantiate

managed QPCs that handles response computation and

notifies watchers. This forms the corner-stone of our

design and inherrently addresses scalability of such a

virtualization solution.

• Speed-up of QPC computations: A trade-off of moving

the query computation from the clients into the VPS is

the increased computation (XML processing) needs of

the VPS. To address this, we have designed the QPC to

effectively off-load XML processing to a highly scalable
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XML processing appliance. Our results attest to the

benefit of such a design (ref 7).

At present, we are conducting large scale experiments that

would not only support our claims of scalability, but also help

understand potential bottlenecks and/or design optimizations.

Moving from a single QPC to a hierarchy of connected QPCs

would form the cornerstone of such a highly scalable solution.

VII. CONCLUSIONS AND FUTURE WORK

Presence virtualization is a key enabler for the anticipated

commerical deployment of next-generation, context-aware,

converged applications. We present a novel middleware ar-

chitecture for presence virtualization that allows applications

to consume and compose real–time presence from various

sources, specify their computation needs using XSLT–based

transformations on the presence data, and compute responses

to these queries using scalable XML processing technology.

We are currently implementing several extensions to the base

virtualization architecture, with a goal to further improve the

virtualization efficiency and better exploit a federation of

Virtualized Presence Servers.

Future work in the area of presence virtualization must also

address the challenges of security and privacy, that rely on

the increasingly pervasive use of presence-based contextual

data in multiple enterprise and provider domains. Also,

to support virtualization requests from battery-constrained

pervasive devices, we need to enhance the query specification

primitives to allow specification of tradeoffs between the fre-

quency/accuracy of virtualization responses and the overhead

of virtual presentity notifications.
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