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Automatic Steering of Behavioral Model Inference

David Lo
School of Information Systems
Singapore Management University

{davidlo}@smu.edu.sg

ABSTRACT

Many testing and analysis techniques use finite state mod-
els to validate and verify the quality of software systems.
Since the specification of such models is complex and time-
consuming, researchers defined several techniques to extract
finite state models from code and traces. Automatically
generating models requires much less effort than designing
them, and thus eases the verification and validation of large
software systems. However, when models are inferred au-
tomatically, the precision of the mining process is critical.
Behavioral models mined with imprecise processes can in-
clude many spurious behaviors, and can thus compromise
the results of testing and analysis techniques that use those
models.

In this paper, we increase the precision of automata in-
ferred from execution traces, by leveraging two learning tech-
niques. We first mine execution traces to infer statistically
significant temporal properties that capture relations be-
tween non consecutive and possibly distant events. We then
incrementally refine a simple initial automaton by merg-
ing likely equivalent states. We identify equivalent states
by analyzing set of consecutive events, and we use the in-
ferred temporal properties to evaluate whether two equiv-
alent states can be merged or not. We merge equivalent
states only if the merging does violate any temporal prop-
erty, since a merging that violates temporal properties is
likely to introduce an imprecise generalization. Our gener-
alization process that preserves temporal properties while
merging states avoids breaking non-local relations, and thus
solves one of the major cause of overgeneralized models.
Thus, mined properties steer the learning of behavioral mod-
els. The technique is completely automated and generates
an automaton that both accepts the input traces and satis-
fies the mined temporal properties.
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We evaluated our solution by comparing models inferred
with and without checking mined temporal properties. Re-
sults show that our steering process can significantly improve
precision without noticeable loss of recall.
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D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Tracing

General Terms
Algorithms, Verification
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1. INTRODUCTION

Monitoring applications at testing time and in-the-field
produces useful information that describes the behavior of
software systems. We can use traces to automatically in-
fer baseline models that can help software engineers under-
stand, verify and validate software systems [11]. For exam-
ple, we can trace inter-component method calls, and use the
recorded traces to derive models that summarize and gener-
alize interactions between components [25].

Techniques that extract and generate behavioral models
can be classified into automaton (for example, [3, 7, 17, 23,
31, 34]) and non-automaton based (for example, [9, 8, 20,
35]) techniques, depending on the nature of the models that
they generate. Techniques of both kinds generate models
that can support test case generation [13, 24], debugging [30,
25] and verification [26]. In this paper, we focus on automa-
ton based techniques, namely techniques that generate finite
state automata (FSA) from execution traces.

Classic learning algorithms infer FSA that are neither pre-
cise nor complete: Mined models can include many spu-
rious behaviors that can hinder the effectiveness of down-
stream analysis techniques. In a recent study, Lo et al.
show that automata learners generate imprecise and over-
generalized models especially when models are large and
complex [16]. Overgeneralized models produce many false
negatives or positives that significantly reduce effectiveness
of debugging, verification and validation techniques.

In this paper, we present a technique that generates pre-
cise FSA by using temporal properties inferred from traces
to steer the generation of FSA. Classic algorithms that infer
FSA generate an initial tree that matches the structure of
the traces (prefix tree acceptor), and incrementally merge



states that are equivalent according to their local behav-
iors. For instance, some popular algorithms merge states
with outgoing transitions that generate the same sequences
up to a given length. Such strategies refine models with-
out considering the non-local effect introduced by merging
states. For example, inference algorithms with a limited
look-ahead can merge the intermediate events of the se-
quences <openFile, doX, ..., closeFile> and <openConn,
doX, ..., closeConn>, and generate imprecise behavioral
models that accept spurious sequences like <openFile, doX,
.., closeConn> and <openConn, doX, ..., closeFile>.

We avoid such problems of imprecision by steering the in-
ference of FSA with temporal properties that are inferred
from traces, and that capture relations between potentially
distant events. In the simple example drafted above, we can
easily infer temporal properties that relate openFile with
closeFile events, and openConn with closeConn. We then
use these properties to prevent merging states that violate
the inferred properties, and thus we do not generate the
spurious sequences produced by classic inference algorithms.
The final generated automaton will both satisfy all the tem-
poral properties that are initially identified and will accept
all the traces provided as input. This method is completely
automated, but can also accept user input in the form of
a set of temporal properties that must be satisfied by the
resulting inferred automata.

We developed a framework similar to the one presented
in [35, 20, 19] to automatically discover temporal properties
in the form of future and past-time temporal rules. Depend-
ing on the complexity of the analyzed traces, we can tune
complexity of inferred temporal properties to scale to large
traces. For instance, the algorithm for inferring temporal
properties of length less or equal 2 is less complex than the
algorithm for inferring the FSA, and has no impact on the
complexity of the overall approach, while the algorithm for
inferring temporal properties of unbounded length is more
complex than the algorithm for inferring the FSA, and has a
significant impact on the complexity of the overall approach.

We empirically compared the learning of FSA with and
without steering with a set of automatically generated au-
tomata and case studies that describe the behavior of soft-
ware systems. Our evaluation shows that inferring automata
with temporal properties significantly improves precision
without loss of recall. Moreover, the overhead introduced
by the steering is extremely limited: in our experiments the
cost of steering has always been between 4% and 12% of the
learning phase.

The paper is organized as follows. Section 2 presents
our framework to infer automata with steering. Section 3
presents a technique to infer temporal rules. Section 4 de-
scribes the kTail algorithm to infer regular automata. Sec-
tions 5 extends the kTail algorithm with efficient incremen-
tal refinement based on temporal rules. Section 6 describes
the empirical experience with our solution and presents qual-
itative and quantitative results. Section 7 discusses related
work, and Section 8 concludes.

2. THE MINING FRAMEWORK

The framework to infer automata presented in this pa-
per works in two phases: (1) rule mining and (2) automata
learning with steering. In the rule mining phase, we process
the execution traces to learn a set of statistically significant
temporal rules. In the automata learning phase, we generate

automata, using the mined rules to prevent imprecise gener-
alizations. Figure 1 shows the relation between the two main
phases. In the following, we discuss the rationale underlying
the two phases.

Mining rules. We infer temporal properties structured as
pre- and post-condition pairs, where the post-condition is ex-
pected to hold if the corresponding pre-condition is true. We
mine rules to steer the inference of automata, and thus we
need to identify properties that hold with perfect confidence
and high support. A temporal property holds with per-
fect confidence (100%) if every time a pre-condition holds,
the corresponding post-condition holds as well. Lower con-
fidence levels identify properties that hold in many, but not
all cases. A rule has a high support if its pre-condition is ob-
served a large number of times. It is desirable to mine rules
with high support to prevent inference of incidental prop-
erties. A rule with high confidence but low support could
correspond to an exceptional case rather than a general rule.

Temporal properties inferred with perfect confidence and
high support represent relevant constraints that hold in the
target program. Temporal properties capture relations be-
tween events independently from their distance in the traces,
and thus include relations between non-consecutive events
that can be separated by long sequences of intermediate
events in the trace files. Popular algorithms for learning
automata often miss relations between events that are far in
the traces, and can thus result in over-generalizations that
may introduce many behaviors extraneous to the mined soft-
ware. The technique proposed in this paper avoids undesired
over-generalizations by enforcing temporal properties mined
from traces while inferring the automata. As shown later,
this can significantly increase the precision of the learned
automata.

The set of mined temporal rules can be refined by users,
i.e., users can modify, add and delete rules. User interven-
tion is not necessary for the technique and in most cases we
envision our tool to be used without any manual interven-
tion. However, if users are aware of some rules that must
or must not hold, manual refinement of the mined rules is
supported by our solution.

Learning automata with steering. Many automata learn-
ers have been integrated in testing and analysis techniques
to mine behavioral models [31, 25, 17, 23]. One of the first
and most popular inference algorithm is the kTail algorithm
proposed by Biermann and Feldman in [4]. Many variants of
this algorithm have been investigated [29, 7]. All these algo-
rithms are based on a common schema: First build a prefix
tree acceptor (PTA) that represents the input traces, and
then incrementally merge equivalent states until obtaining
the final automaton. A prefix tree acceptor is a tree repre-
sentation of a set of traces. Each trace corresponds to a path
in the tree. Traces that share the same prefix, share also a
sub-path in the tree. States are merged if they share their
next future, that is, based on similarities among the outgo-
ing transitions up to a given distance from the states. As
mentioned above, this can lead to imprecisions, when states
share their next future, but differ in their distant future. We
augment classic automata learners with mined rules to pre-
vent merging that leads to imprecise automata: We merge
nodes only if the automata produced by the merging satisfies
all the mined rules. We refer to this process as automata
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Figure 1: Deriving precise automata using mined rules

No Trace
1 (UPW,X,G,T,S,A,0,Y)
2 | (DEL,W,X G,C,L,D,0,Y)

Table 1: Sample traces obtained by monitoring
events in a CVS client application.

mining with steering, since the rules “steer” the inference
of the automata. In this paper we illustrate the steering
process on the well known kTail algorithm.

3. MINING TEMPORAL RULES

In this section, we define events, traces and temporal prop-
erties, and we provide additional details about the frame-
work for mining temporal properties that we integrated in
our solution.

Let I be a set of distinct events where an event corre-
sponds to a behavior of interest, for instance, a method call.
A trace corresponds to an ordered sequence of events in
I. Formally, each trace is a tuple (e1,e2,...,€end) Wwhere
(Vi<i<end. €; € I). The input to our mining framework is a
set of traces.

There are many types of temporal constraints that can be
inferred from traces. In this work, we focus on future-time
and past-time relations, which can capture many relevant
properties that are common in software systems.

We define a rule R as a pair of sequences of events that
correspond to the pre- and the post-condition of the rule, re-
spectively. A future-time temporal rule is denoted as pre —
post, where pre and post are the pre- and post-condition, re-
spectively, and — denotes the future-time implication oper-
ator. A past-time temporal rule is denoted as pre < p post,
where pre and post are the pre- and post-condition, respec-
tively, and — p denotes the implication operator.

Future-time temporal rules specify relations of the type
“Whenever a series of events happened (pre-condition), an-
other series of events must eventually happen (post-condi-
tion)”. Techniques for mining future-time temporal rules
have been defined by Yang et al. and Lo et al. [35, 20]. Past-
time temporal rules specify relations of the type “Whenever
a series of events happened (pre-condition), another series of
events must have happened before (post-condition)”. Tech-
niques for mining past-time temporal rules have been intro-
duced by Lo et al. [19].

To infer temporal rules efficiently, we can limit the length
of the rules to be inferred, where the length of a rule is the
sum of the length of the pre-condition (that is the number
of events occurring in the pre-condition) and the length of
the post-condition (that is number of events occurring in
the post-condition). We use temporal properties to steer

the learning of automata, thus, we need properties that
hold with high probability. We measure the probability that
properties hold by computing the statistical metrics of sup-
port and confidence, commonly used in data mining [12].
The support of a rule is the number of times its pre-condition
appears in the traces. The confidence of a rule is the likeli-
hood that the pre-condition is always followed by the post-
condition. In our experiments, we used only rules with a
support greater or equal 20% and confidence of 100%, that
is rules whose pre-condition appears > (20% x the number
of traces), and is always followed by the post-condition in
all traces.

Our solution can mine rules with or without limiting the
length of the mined rules. When mining rules of unlimited
length, we can derive complex rules, but we strongly impact
on the performance of the solution. When mining rules of
limited length, we derive simple rules, but we keep the in-
ference time short. We found that limiting the length of the
mined rules to 2 can be extremely effective, and scales well
to large programs and models. Studying the advantage and
disadvantages of mining longer rules is part of future work.
In this paper we consider mining rules of length 2.

The algorithm for mining future and past time rules of
length 2 works as follows:

1. Mine all frequent pre-condition events of length one
with support > 20%.

2. For each of the pre-conditions do the following:

e Find all occurrences of the pre-condition.

e Find all frequent post-conditions of length one,
scanning the traces forward (future time) and
backward (past time)

e Report all rules with a confidence of 100%

The algorithm is a variant of the algorithms presented by
Lo et al. [20, 19] that infer rules of unlimited length.

The above algorithm for mining rules of length 2 has a
complexity of O(n + (a * b)), where n is the cumulative
length of all the traces, b is the total number of occurences
of all frequent events (with support of at least 20%), and
b is the maximum length of a trace. We can improve time
performance by allocating a quadratic space. However, the
main bottleneck of the approach is the automata learning,
which has a complexity of O(n? x |A|*), where n is the
cumulative length of all the traces, |A| is the size of the
alphabet and k is the length of the tail considered when
evaluating equivalence between states.

Table 2 shows an example of the results of the algorithm
applied to the set of traces shown in Table 1 that are ob-
tained by monitoring a CVS client: The algorithm discov-



Type Rule

Future | (DEL) — (D)
Future (UP) — (S)
Future (W) — (X)

Past | (D) =p (DEL)
Past (S) —p (UP)
Past (G) —p (W)

Table 2: Rules mined from traces in Table 1.

ered a total of 40 past-time rules and 44 future-time tempo-
ral rules of length 2 with a support level greater or equal to
20% and confidence level of 100%.

4. LEARNING AUTOMATA

In this section, we present the kTail algorithm that we use
to learn automata. The kTail algorithm automatically infers
FSA by building an initial tree that represents the input
traces, and then progressively refining the representation by
merging equivalent states to obtain the final FSA.

The initial tree is a prefix tree acceptor (PTA), where each
input trace maps to a branch in the PTA. The language
accepted by the tree is the set of initial traces. Figure 2
shows a sample PTA built from the two traces in Table 1.
The traces have been extracted from executing a Concurrent
Versions System (CVS) client built upon Jakarta Commons
FTP library described in [17].

The labels UP and DEL indicate the uploading and delet-
ing of files to and from the CVS server, respectively. The
symbols W, X and G indicate the initialization of the FTP
library, the connect and the login commands, respectively.
The symbols T', S and A indicate the execution of setFile-
Type, storeFile and appendFile commands, respectively.
The symbols C, I and D indicate the execution of change-
WorkingDirectory, listNames and deleteFile commands,
respectively. Finally, the symbols O and Y indicate the ex-
ecution of logout and disconnect commands, respectively.

Legend
Double circles represent final states.

Figure 2: Sample Prefix Tree Acceptor (PTA)

The kTail algorithm transforms the initial PTA into a
FSA by merging states that are equivalent according to
some equivalence criterion. Various algorithms use differ-
ent equivalence criteria depending on the desired degree
of generalization [4, 29, 25]. The kTasl algorithm merges
states whose equivalence is computed by comparing their
tails of length k, where the tails of length k are the sets
of event sequences that exit the states and include at most

k events!. More formally, an automaton A is defined as
A=(%,85,s0,6, F), where:

e ¥ is the input alphabet (a finite, non-empty set of
symbols).

e S is a finite, non-empty set of states.

e so € S is an initial state.

0 is the state-transition function: § : S x ¥ — S (here
for simplicity we assume that the automaton is de-
terministic, but the definition can be generalized to
non-deterministic automata).

e F C S is the set of final states.

Given a sequence of symbols w = (e1,...ey), the extended
state transition function 6*(s,w) is defined as §*(d(s,e1),
(e2,...en)) if w # €, and s otherwise.

Given a state s, its future of length k (k-future) is the set
of sequences of maximum length k that can be accepted by
0" when applied to state s.

Two states are k-equivalent if they have the same k-future.
The k-equivalence relation captures the intuitive idea that
if two states are not distinguishable by looking to their near
future, they probably represent the same conceptual state,
and thus can be merged. In the practical cases, to mine
a general enough model from limited traces, the value of k
must be small. It is usually fixed between 2 and 4 [31, 7,
25]. As a result, two states are often merged even if they are
not close to be equivalent, thus implicitly introducing many
undesired behaviors in the FSA model. For example, the
top part of Figure 3 shows the automaton resulting from the
execution of kTail on the PTA in Figure 2 with k = 2. We
can notice that kTail merges the states 1 and 10, and 2 and
11, and thus produces a FSA that accepts many erroneous
traces.

Legend
Double circles represent final states.

Figure 3: FSA Built Using kTail (top) and kTail
with Steering (bottom)

S. INFERENCE WITH STEERING

This section describes how we use temporal properties to
steer the learning of automata with improved precision. The

"We do not require that a sequence ends with a final state,
following the description in [7].



Procedure ViolateMinedProperties

Inputs:

FSA: A partial FSA

S1: The first candidate state to be merged

S2: The second candidate state to be merged

FRules: The set of future-time temporal rules

PRules: The set of past-time temporal rules

Outputs:

True if the FSA violates any temporal property, false otherwise.
Methods:

1:

For each fr € FRules
Check for an occurrence of fr.pre in F'SA which is not followed by an fr.post before S1. If
the check holds, check if there exists a sequence of events from S2 to an end node in the in
F'SA which which does not contain fr.post. If the latter check succeeds, return true.
Check for an occurrence of fr.pre in F'SA which is not followed by an fr.post before S2. If
the check holds, check if there exists a sequence of events from S1 to an end node in the in
FSA which which does not contain fr.post. If the latter check succeeds, return true.

Check for an occurrence of pr.pre in F'SA which is not preceded by an pr.post after S1. If
the check holds, check if there exists a sequence of events from S2 to a start node in F'SA
which does not contain pr.post. If the latter check succeeds, return true.
Check for an occurrence of pr.pre in F'SA which is not preceded by an pr.post after S2. If
the check holds, check if there exists a sequence of events from S1 to a start node in F'SA
which does not contain pr.post. If the latter check succeeds, return true.

2:

3:

4: For each pr € PRules
5:

6:

7. return false

Figure 4: A sound and complete algorithm for detecting imprecise merging

initialization step of the kTail algorithm produces a PTA
that accepts all the input traces and satisfies all the tem-
poral rules by construction. In fact, since each branch that
terminates in a final state corresponds to a trace, and each
mined rule has a perfect confidence level, the language ac-
cepted by the PTA includes the exact set of traces, and
satisfies the set of inferred rules.

The kTail algorithm incrementally merges k-equivalent
states until no merges are possible. In order to refine the
model without violating the inferred temporal properties,
we augment the classic kTail merging step that compares
k-futures, with checks that verify wether the FSA resulting
from the merging satisfies the inferred temporal properties
or not, and we allow the merging of k-equivalent states only
if it preserves the temporal properties.

In general checking LTL properties over FSA (model check-
ing) is NP-hard [6], and this is the complexity of our general
configuration. However, since we limit the length of the
mined rules to 2, we can check our LTL properties in linear
time with respect to the size of the model.

We defined two algorithms to check whether temporal
properties of length 2 are satisfied by a refined FSA or not.
The first algorithm is sound and complete, but requires many
passes through the model. the second algorithm traverses
the model only once, and is thus faster than the first algo-
rithm, it is sound but incomplete. We chose the algorithm
depending on the tradeoff between performance and the re-
quired level of accuracy.

Figure 4 shows the sound and complete algorithm that
detects imprecisions when merging two k-equivalent states
S1 and S2. For each future-time temporal rule, the algo-
rithm checks whether its pre-condition occurs before S1 and
the post-condition is neither satisfied before S1 nor after S2
(line 2). If it is true, the F'SA resulting from the merge
violates the future-time temporal rule and thus we do not
merge S1 with S2. The algorithm checks each past-time
temporal rule similarly (line 4). Since the algorithm checks

for future- and past-time temporal rules of length 2, it can
verify each rule by traversing each state of the FSA at most 2
times. If all the temporal properties hold, the algorithm for
detecting imprecise merges returns false and the two states
are merged.

Since we can have many rules and the model can be large,
traversing the entire model can be expensive. Thus, we de-
fined a second algorithm for detecting imprecise merges that
can check each rule in constant time, at the price of incom-
pleteness. The algorithm is sound, since it detects only true
violations of the temporal rules, but incomplete, since it may
miss some violation, and thus can accept FSA that violates
some temporal rules. Figure 5 shows the fast algorithm.

The algorithm computes the set of events that can occur
before and after nodes S1 and S2 in the FSA, and stores
the computed sets in a hashtable (lines 1-4). The algorithm
checks all temporal rules in constant time by using the set of
events stored in the previous step, and thus avoiding scan-
ning the sequences for each rule. The fast algorithm as-
sumes that a temporal rule is satisfied by the past/future of
a state if both the pre- and the post-condition of the rule
are included in the pre-computed past and future sets, thus
it may miss some property violations, and incorrectly merge
the states.

A future time temporal rule fr is violated if its pre-condi-
tion fr.pre holds before occurrence of state S1 (thus the
merge of S1 and S2 can potentially affect fr) and its post-
condition fr.post holds neither before S1 nor after S2. Line
6 in Figure 5 formally specifies these conditions. A similar
check that inverts the role of S1 and S2, detects violations
of a past time temporal rule as shown in line 8 of Figure 5.

Each past time temporal rule pr is violated if its pre-
condition pr.pre holds in the future of S1 (thus the eventual
merge of S1 and S2 can potentially affect pr) and its post-
condition pr.post holds neither after S1 nor in the past of
S52. Line 11 in Figure 5 formally specifies these conditions.
A similar check is performed after inverting the role of S1



Procedure ViolateMinedPropertiesApprox
Inputs:

FSA: Partial FSA to be considered

S1: The first candidate state to be merged

S2: The second candidate state to be merged
FRules: The set of future-time temporal rules
PRules: The set of past-time temporal rules
Outputs:

True if the FSA violates any temporal property, false otherwise.
Methods:

: Let S1.nzt= Events occurring after S1

Let S1.prev = Events occurring before S1
Let S2.nzt= Events occurring after S2

Let S2.prev = Events occurring before S2
For each fr € FRules

return true;

return true;

10: For each pr € PRules

11: If pr.pre € S1.nat A pr.post € S1.nzt A pr.post ¢ S2.prev
12: return true;

13: If pr.pre € S2.nat A pr.post & S2.nzt A pr.post ¢ S1.prev
14: return true;

15: return false;

If fr.pre € Sil.prev A fr.post & S1.prev A fr.post & S2.nat

If fr.pre € S2.prev A fr.post € S2.prev A fr.post & S1.nxzt

Figure 5: A fast, sound but incomplete algorithm
for detecting imprecise merging

and 52, as shown in line 13 of Figure 5. If the candidate
merge passes all the checks, the algorithm returns false and
the states are merged.

The runtime complexity of the sound and complete algo-
rithm for detecting imprecise merges is O(m x r), where m
is the size of the model, and 7 is the number of rules. Since
the model can be large and the number of rules can be high,
the overall runtime costs can be high, especially consider-
ing that checks must be performed for each potential node
merge. The runtime complexity of the fast algorithm for
detecting imprecise merges is O(m + r), and thus the fast
algorithm scales well to large and complex cases.

We illustrate the benefits of the steering process with the
simple example discussed in the previous section: the learn-
ing of a FSA from the two traces that have been produced
by executing the CVS protocol, and are shown in Table 2.
The algorithm presented in this paper can handle FSA of
any complexity, including any combination of branches and
loops. We chose a simple example to simplify the discussion.

Figure 3 (top) shows the FSA learned from the traces us-
ing kTail. Figure 3 (bottom) shows the FSA learned from
the same traces using our steering approach with the mined
rules shown in Table 2. The statistically significant mined
rules (D) —p (DEL) and (S) —p (UP) prevent the merg-
ing of nodes 1 and 10 of the PTA shown in Figure 2, and thus
do not produce an imprecise FSA. In fact, merging nodes 1
and 10 produces a FSA where an event U P can potentially
precede an event D and an event DFEL can potentially pre-
ceded an event S, hence violating the CVS protocol. In fact,
a delete command (DEL) should not be followed by a store
command (S), and an upload command (UP) should not be
followed by a delete command (D). Both behaviors are ac-
cepted by the FSA learned with kTail, but are not accepted
by the FSA learned with our steering approach.

The undesired generation of unexpected behaviors in in-
ferred models is clear from this simple example. Imprecise

merges could be more frequent when the structure of the
inferred FSA is complex. In that case, many imprecise state
merges can introduce a large amount of undesired behaviors
in the mined model, thus hindering debugging, testing and
analysis algorithms based on these models.

Superficially, it might seem that imprecision could be elim-
inated by simply increasing the value of k in the kTail algo-
rithm to a large number. This is not the case, because even
large values of k limit the merging decision to a set of events
close to the considered states, while the steering approach
proposed in this paper considers temporal properties that
predicate on future events that may be very far from the
compared states, and that may reflect semantically relevant
properties of the software system. With very large values for
k, states are merged only if they are almost fully equivalent,
but the merging requires an almost complete set of observa-
tions to be effective. For example, with k£ = 10, the kTail
algorithm merges states only if their outgoing behaviors of
length < 10 matches completely, but would merge almost
no states, unless provided with an almost complete set of
observations, and this occurs very seldom.

6. EMPIRICAL VALIDATION

We empirically evaluated the effectiveness of our algo-
rithm by comparing the quality of the models learned us-
ing the kTail algorithm with the models learned using the
kTail algorithm extended with our steering mechanism. We
measured precision, recall and time required to perform the
mining as evaluation criteria. Precision is the percentage of
mined behaviors that are correct, namely the percentage of
behaviors generated by the mined model that are accepted
by the model to be inferred. Recall is the percentage of cor-
rect behaviors that have been mined, that is, the percentage
of behaviors generated by the model to be inferred that are
accepted by the mined model. We refer to [17, 16] for the
definition and computation of precision and recall of mined
FSA.

In our empirical validation, we considered three sets of em-
pirical studies. In the first empirical study, we evaluated the
effectiveness of our algorithm when mining real-life models.
In the second empirical study, we evaluated our algorithm
when addressing models of increasing size and complexity.
In the third study, we evaluated effectiveness of our solution
with traces that we generated by monitoring a real software
system: the open source MP3 player jIGUI [15]. For the em-
pirical validation we used an extended QUARK automata
mining quality assurance framework [16] that automatically
generates models from software executions, and traces from
models, and that computes precision and recall for the mined
models. In our empirical validation, we used rules of length
2 and the fast algorithm for detecting imprecise merges.

6.1 Effectiveness

We evaluated the effectiveness of our algorithm by experi-
menting with models that describe the behavior of three real
applications: We generated traces from the models, we in-
ferred models from traces by using both kTail and kTail with
steering, and we compared the inferred models by comput-
ing precision and recall. We considered the X11 Windowing
Library (studied in [3]), a CVS client application (studied
in [17]) and the IBM® WebSphere® Business Integration
processes from WebSphere® Commerce (studied in [36]). To
collect a representative set of traces, namely a set of traces



System Model |Evs.| kTail With Refinement
Precs. | Recall | Time | Precs. | Recall | Time
X11 Windowing Library 356.400 | 0.873 | 1.000 | 0.211 | 0.905 | 1.000 | 0.218
CVS Client 2121.000 | 0.169 0.970 | 0.557 | 1.000 0.970 | 0.616
‘WebSphere Business Processes | 9317.080 | 1.000 | 0.999 | 1.453 | 1.000 | 0.999 | 1.528

Table 3: Empirical Results: Precision, Recall and Elaboration Time

that well represent the model, we instructed the QUARK
framework to generate enough traces to cover each transi-
tion in the model at least 2 times.

We compared efficiency and effectiveness of kTail and kTail
with steering by measuring the time necessary to generate
the models, and by computing precision and recall for the
resulting automata. Table 3 shows the results of our exper-
iments. We computed the values of time, number of events
in the input traces (|Evs|), precision, and recall by repeat-
ing each experiment 25 times with 25 different sets of traces,
and by computing the average.

The results show that the precision of the models inferred
with steering is significantly higher than the precision of the
models inferred without steering. We observed the highest
difference in precision when experimenting with the CVS
client application. In this case, the precision of the inferred
model raises from 0.169 in the case of models produced with
kTail, to 1 in the case of models produced with steering.
This impressive improvement is due to the characteristics of
the CVS protocol that requires several properties between
events that occur at the beginning and at the end of se-
quences of operations. Learning without steering generates
overgeneralized models that do not satisfy these properties,
while the steering mechanism successfully refines the infer-
ence by enabling only those generalizations that do not vio-
late the relevant properties of the protocol. It is also worth
noticing that in this study FSA inference with steering al-
ways generated models with almost perfect precision (2 out
of the 3 models have perfect precision and 1 model has pre-
cision higher than 0.9). The data reported in Table 3 show
that steering increases precision without any loss of recall.

The experiments confirm the expected limited cost of the
steering mechanism: The extra time required for learning
models with steering is always between 4 — 8% of the overall
mining time. Thus, that benefits in precision are obtained
with limited overhead.

6.2 Scalability

To investigate the effect of our algorithm when addressing
models of large size, we randomly generated models with an
increasing number of states. To generate realistic combina-
tions of simple and complex structures in each model, the
model generator randomly assigned to each node from 0 to
3 edges.

In the empirical evaluation, we considered 4 configura-
tions corresponding to models with 20, 30, 40 and 50 states.
For each configuration, we generated 100 random models,
we use each random model to generate traces, we fed the
generated traces to both kTail and kTail with steering, and
we computed precision and recall of the learned models with
respect to the random model.

Table 4 shows results for the 4 configurations. Each value
is computed by averaging the values obtained for the 100
random models. The results indicate an improvement in
precision between 9% and 15%, which is far from the im-

provement experienced in the CVS example in Section 6.1.
This is due to a limited number of activations of the steer-
ing process. Since models are randomly generated and little
semantics is associated to event names, there are only a few
rules that can be automatically discovered and used for the
steering. The overhead introduced by steering is minimal
(11% in the worst case).

To study the precision of the results, Table 5 shows pre-
cision and recall obtained by considering only the models
where steering has been activated during the inference, which
are the models that resulted in violations of some temporal
rules. In this case, the improvement in precision is between
20.7% to 23.8%, while recall does not change significantly.

This study confirms that our algorithm can effectively
manage models of different size and complexity. It also
shows that our technique introduces stronger improvements
with models that describe real software systems and pro-
tocols, where several relations between distant events exist,
rather than random models, where few relations between
events exist.

6.3 Experiments with jIGUI

We completed this early validation with an experiment
on a real system: jIGUI, an opensource MP3 player [15]
that represents the interesting case of a medium-size (11981
LOC) GUI-based application written in Java. We focused
our analysis on the methods that are executed when manag-
ing playlists and selecting files to play. Table 6 reports the
methods that we monitored during the experiments.

We instrumented the program using AspectJ, and we col-
lected traces when executing different usage scenarios for the
playlist management, with specific focus on adding songs.
jIGUI provides two ways to add songs to playlists: through
the playerUI button or the playlistUI button. In the former
case, users can update the playlist by: (1a) deleting the cur-
rent playlist and loading a song from a file, or (2a) upload-
ing a saved playlist. In the latter case, users can extend the
playlist by: (1b) appending one song to the current playlist,
or (2b) appending all songs in a directory to the current
playlist. We thus have 4 ways to add songs to playlists. Fig-
ure 6 shows the specification of these 4 cases that we derived
manually. In this case, events represent executed methods.

We collected 15 traces by running the 4 scenarios with
different combinations of data values. We learned FSA from
the traces both with the kTail and the kTail with steering
algorithms. kTail with steering learned the model perfectly
with 100% precision and recall. kTail alone learned a model
with 57.9% precision and 100% recall. This empirical study
shows the benefit of our steering technique when analyzing
a real software system.

7. RELATED WORK

There are many algorithms for learning behavioral mod-
els from execution traces, that are used to serve testing and
analysis techniques. Here, we group learners into four main



Model |Evs.| kTail With Refinement
Size Precs. | Recall | Time | Precs. | Recall | Time
20 Nodes | 1644.200 | 0.715 | 0.996 | 0.252 | 0.801 | 0.996 | 0.272
30 Nodes | 4026.870 0.456 0.998 | 0.339 | 0.609 | 0.997 | 0.367
40 Nodes | 7476.180 | 0.377 | 0.999 | 0.458 | 0.496 | 0.999 | 0.509
50 Nodes | 15560.090 | 0.251 | 0.999 | 1.302 | 0.361 | 0.999 | 1.416

Table 4: Empirical Results: Scalability vs. Accuracy

Model kTail With Refinement
Size Considered | Precs. | Recall | Time | Precs. | Recall | Time
20 Nodes 37 0.588 | 0.997 | 0.258 | 0.822 | 0.995 | 0.282
30 Nodes 72 0.400 | 0.997 | 0.354 | 0.611 | 0.997 | 0.382
40 Nodes 53 0.269 | 1.000 | 0.452 | 0.491 | 0.998 | 0.506
50 Nodes 53 0.197 | 0.999 | 1.249 | 0.404 | 0.998 | 1.357

Table 5: Empirical Results: Effective Steering Cases

classes: learning techniques augmented with steering mech-
anisms to learn FSA, techniques for mining models that de-
scribe the ordering of events, either based on FSA or not,
and techniques for mining behavioral models not related to
the ordering of events.

7.1 Learning FSA With Steering

To the best of our knowledge, the technique presented in
this paper is the only completely automated approach that
uses inferred temporal properties to steer the inference of
FSA.

The learning technique that is closest to our approach is
the one proposed by Walkinshaw and Bogdanov [33]. They
augment the inference of FSA with a steering mechanism
based on LTL properties. We apply the same principle, but
with two main differences: (1) we infer the temporal proper-
ties automatically, while Walkinshaw and Bogdanov require
user-specified properties for the steering process; and (2) we
limit complexity of temporal properties to be checked, while
Walkinshaw and Bogdanov extensively use the expression
power of LTL. Requiring user inputs in the inference process
can increase the precision of the temporal properties that
are used for the steering process, but limits significantly the
usability of the technique that requires the manual gener-
ation of many properties. Moreover the Walkinshaw and
Bogdanov approach requires deep knowledge of the system,
while our approach can be applied without any knowledge
of the system. Finally, the extensive use of LTL properties
can result in a more precise steering than the use of the sim-
ple temporal properties that we integrated in our solution.
However, mining and checking complex LTL properties is ex-
pensive and does not scale well. Here we present an efficient
technique of practical use that can generate many and large
models with low execution overhead, at the cost of some loss
in the expressiveness power of the temporal properties.

7.2 Learning FSA Without Steering

There are many algorithms for generating FSA from posi-
tive execution traces [2, 4, 17, 23, 25, 31]. Many approaches
are variants of the popular kTail algorithm defined by Bier-
mann and Feldman [4]. These techniques can produce useful
models when the models to be inferred are small and sim-
ple, but when the size and the complexity of the models
increase, the precision of the inferred models decrease dra-
matically [16].

Our solution extends the existing approaches to learn FSA

by introducing an automated refinement method based on
the preliminary mining of statistically significant temporal
properties that are used to steer the FSA learning. Early
results reported in this paper show that our solution can
significantly increase precision of inferred models without
any loss of recall.

The work by Lo and Khoo [17] filters erroneous traces dur-
ing mining. In this work, we address the orthogonal issue of
preventing imprecise state merges assuming that the input
traces are correct. The two approaches are complementary
and can be merged to produce a robust and accurate frame-
work to detect both erroneous traces and imprecise merging.

7.3 Learning Models of Ordered Events

Although FSA are a popular model, there are many tech-
nique to learn other models that describe the order of events,
like sequence diagrams, frequent pattern and temporal prop-
erties. In general, different models capture different aspects
and are thus mutually complementary.

Many techniques for mining sequence diagrams simply
represent traces as sequence diagrams [1, 14, 27]. Some of
these techniques can also infer loops [5] or modalities [21,
22]. Different from our work, none of the above mentioned
techniques offers a systematic mechanism for refining mined
models using temporal properties.

Some techniques can infer patterns or sequences of events
that repeat frequently in a set of traces [8, 18, 32]. In our
work, we produce FSA as a final result. FSA can describe
a more complete relations between events as compared to
frequent patterns that only capture some linear relations
between events that appear frequently. The more complete
relations among events can be a very useful input to many
testing and analysis techniques.

Finally, there are several techniques to mine temporal
properties. Yang et al. present interesting work on mining
two-event future-time temporal logic rules, which are signif-
icant with respect to a user-defined satisfaction rate [35].
Lo et al. extended the work by Yang et al. to mine sig-
nificant future-time temporal rules of arbitrary lengths [20].
In further work, Lo et al. propose a method to mine sig-
nificant past-time temporal rules of arbitrary lengths [19].
Differently from rules, automata can represent more rela-
tions between events than linear temporal rules. Inferred
automata can include loops and branches, while temporal
properties inferred with the frameworks proposed in [35, 20,
19] cannot capture disjunction in the mined temporal rules.



Details

mo | boolean javazoom.jlgui.player.amp.PlayerUlloadPlaylist(String)

m1 | boolean javazoom.jlgui.player.amp.playlist. BasePlaylist.load (String)

me | void javazoom.jlgui.player.amp.playlist.ui.Playlist UL processActionEvent(ActionEvent)

ms | File[] javazoom.jlgui.player.amp.util.FileSelector.selectFile(Loader, int, boolean, String, String, File)
ma | File[] javazoom.jlgui.player.amp.util.FileSelector.selectFile(Loader, int, boolean, File, String, String, String, File)
ms | void javazoom.jlgui.player.amp.util. Config.setLastDir(String)

me | void javazoom.jlgui.player.amp.playlist.ui.PlaylistUL.addDir(File)

my7 | void javazoom.jlgui.player.amp.PlayerUl processActionEvent(ActionEvent)

ms | void javazoom.jlgui.player.amp.playlist. BasePlaylist.appendItem (PlaylistItem)

mg | void javazoom.jlgui.player.amp.playlist.ui.PlaylistUl.addFiles(File]])

mao | void javazoom.jlgui.player.amp.PlayerUl.processEject(int)

ma1 | void javazoom.jlgui.player.amp.playlist.BasePlaylist.remove Allltems()

mi2 | void javazoom.jlgui.player.amp.playlist. BasePlaylist.nextCursor()

Table 6: Method calls traced in jIGUI

Legend
Double circles represent final states.

Figure 6: jIGUI Specification to be inferred

Our framework integrates a solution for mining the subset
of the rules described in [20, 19] that can be scalably mined.

7.4 Learning Other Models

There are several techniques that learn behavioral mod-
els, not necessarily related to the ordering of event. The
most popular example is Daikon, a mining approach to learn
boolean expressions that describe likely invariants on values
of program variables [9, 28, 10]. These models usually rep-
resent aspects that complement the information described
by FSA.

8. CONCLUSIONS

Most techniques for mining FSA are based on generating
an initial prefix tree acceptor that is heuristically and incre-
mentally refined through a state merging process that ends
when no states can be further merged. Studies reported
in [16] shows that merges are frequently imprecise, and gen-
erate models with low precision, especially when models are
large and complex.

To improve precision of the inference of FSA from traces,
in this paper we propose a steering mechanism to refine the
state merging strategy. Our technique is based on the in-
ference of statistically significant temporal properties from
traces. These properties are then used to steer the FSA
inference process to prevent state merging that would pro-
duce automata that violate the inferred properties. The al-
gorithm is designed to be scalable and to produce FSA that
both generate all the input traces and satisfy the inferred

temporal properties.

We evaluated our technique on a set of case studies that
show how steering can significantly increase precision with-
out loss of recall, and with a limited overhead on the infer-
ence process. Our studies also show that our solution can
effectively manage real world models and scale with the size
of applications.
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