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Abstract— Searching and mining large graphs today is critical
to a variety of application domains, ranging from personalized
recommendation in social networks, to searches for functional
associations in biological pathways. In these domains, there is
a need to perform aggregation operations on large-scale net-
works. Unfortunately the existing implementation of aggregation
operations on relational databases does not guarantee superior
performance in network space, especially when it involves edge
traversals and joins of gigantic tables.

In this paper, we investigate the neighborhood aggregation
queries: Find nodes that have top-k highest aggregate values over
their h-hop neighbors. While these basic queries are common in
a wide range of search and recommendation tasks, surprisingly
they have not been studied systematically. We developed a Local
Neighborhood Aggregation framework, called LONA, to answer
them efficiently. LONA exploits two properties unique in network
space: First, the aggregate value for the neighboring nodes should
be similar in most cases; Second, given the distribution of at-
tribute values, it is possible to estimate the upper-bound value of
aggregates. These two properties inspire the development of novel
pruning techniques, forward pruning using differential index and
backward pruning using partial distribution. Empirical results
show that LONA could outperform the baseline algorithm up to
10 times in real-life large networks.

I. INTRODUCTION

As witnessed in physical, biological, and social networks,
networks are ubiquitous and proliferating, e.g., the Internet, the
Web, Facebook, LinkedIn, and thousands of online communi-
ties connected by Blogging and Instant Messaging. Managing
and mining these large-scale networks is critical to a variety
of application domains, ranging from personalized recommen-
dation in social networks, to search for functional associations
in biological pathways. Network analysis has attracted great
attention in several research communities. Linkage analysis
has evolved into powerful and easy-to-use search tools like
Google[1]. Furthermore, advanced analysis of social networks
might tackle very complicated mining tasks such as evaluating
the network value of customers [4], [9] and link prediction
[11].

Most of social and biological networks often have a node
attribute set, denoted as Λ = {a1, a2, . . ., at}. Each node has a
value for these attributes, which describe various features and
aspects of the entities that the nodes represent. For example,
a node representing a Facebook user may have attributes

showing if he/she is interested in online RPG games. In
LinkedIn, each node represents a professional and the linkage
shows a reference between two professionals. In communica-
tion networks, the intrusion packets could formulate a large,
dynamic intrusion network, where each node corresponds to
an IP address and there is an edge between two IP addresses
if an intrusion attack takes place between them.

The existing analytical tools usually develop application-
specific criteria to gauge the importance of nodes or to
discover knowledge hidden in complex networks. However
there is a growing need of processing very standard queries
efficiently in large-scale networks. For example, for each node,
find the aggregate value of an attribute for its neighbors within
h-hops. This kind of queries could identify the popularity of
a game console in one’s social circle, or the number of times
a gene is co-expressed with a group of known genes in co-
expression networks.

II. PROBLEM FORMULATIONS

The aggregation queries are useful for emerging applications
in many online social communities such as book recommen-
dation on Amazon, target marketing on Facebook, and gene
function finding in biological networks. These applications can
be unified by a general aggregation query scenario over a
network. A top-k aggregation on graphs needs to solve three
problems:
P1. evaluate the individual strength of a node, f(u), for a

given query. f(u) could be as simple as 1/0, e.g., if a user
recommends a movie or not, or it can be a classification
function, e.g., how likely a user is a database expert.

P2. evaluate the collective strength of a node F (u). F (u) is an
aggregate function over f(v1), f(v2), . . ., f(vm), where
v1, v2, . . . , vm are u’s neighbors within h-hops. F (u) can
be a simple aggregation function such as SUM, f(v1) +
f(v2)+ . . . + f(vm)1, or AVG, f(v1)+...+f(vm)

m . It can be
as complicated as a non-linear function, e.g., learned by
a collective classification method [13].

1If we introduce edge weights, F (u) could be w(u, v1)f(v1) +
w(u, v2)f(v2) + . . . + w(u, vm)f(vm), where w(u, v) measures the con-
nection strength between u and v, e.g., the inverse of the shortest distance
between u and v.



P3. find top-k nodes with the highest scores.

We define the above problems as follows:
Definition 1 (Relevance Function): Given a network G, a

relevance function f : V → [0, 1] assigns a score [0,1] to each
node in G. 0 means the node is not relevant to the query, while
1 means full relevance.

Definition 2 (Neighborhood Aggregate): Given a network
G and a relevance function f : V → R, a sum aggregation
of h-hop neighbors is defined as F (u) =

∑
v∈Sh(u) f(v). An

average aggregation of h-hop neighbors is defined as F (u) =∑
v∈Sh(u) f(v)

|Sh(u)| , where Sh(u) is the set of u’s neighbors within
h-hops.

Definition 3 (Top-k Neighborhood Aggregates): Given a
network G, a relevance function f , and a neighborhood
aggregation function F , find k nodes in V (G) whose
neighbors generate the highest aggregate score.

For a large network, it could be expensive to perform
aggregations over the entire network for various kinds of
queries. Assume on average each node has m 1-hop neighbors,
in order to evaluate the collective strength of all the nodes, the
number of edges to be accessed could be around mh|V | for
h-hop queries. This computational cost is not affordable in
applications involving large-scale networks and heavy query
workloads.

The performance of using a relational query engine to
process aggregation queries over networks is often costly. For
2-hop queries, it has to self-join two gigantic edge tables, if
one indeed chooses table to store large graphs. In this paper,
we introduce a solution to the above question by studying the
two basic aggregation functions SUM and AVG. However, the
similar ideas could be extended to other more complicated
functions.

III. FORWARD PROCESSING

A naive approach to answer top-k neighborhood aggregation
queries is to check each node in the network, find its h-hop
neighbors, aggregate their values together and then choose
the k nodes with the highest aggregate values. We develop
forward pruning techniques to improve the naive approach.
Algorithm 1 shows the high-level procedure, named LONA-
Forward. Line 11 finds new nodes that can be pruned and thus
avoid forward processing in later iterations. The challenge is
how to design an efficient and effective pruning algorithm,
pruneNodes.

We observed that although we are not able to derive a
tight bound for individual nodes, it is possible to derive
a differential bound between a pair of nodes if they are
connected. Intuitively, if one node has a low aggregate value,
very likely its neighbors have low value, thus can be pruned.

Given a node u in a graph, let S(u) denote the set of distinct
nodes in u’s h-hop neighborhood. For every node u, and its
neighbor node v, the differential index tells the number of
nodes in S(v), but not in S(u), denoted delta(v−u) = |S(v)\
S(u)|.

Algorithm 1 Pruning based Forward Processing
LONA-Forward(G)
Output: Top k (node, aggr value) pairs

1: Add G’nodes into a queue Q
2: topklist ={}, topklbound = 0, prunedlist={}
3: while Q is not empty do
4: u = get the top node in Q
5: if u not in prunedlist then
6: F (u) = u’s aggregate value in h-hops
7: if F (u) > topklbound then
8: update topklist with (u, F (u))
9: update topklbound

10: end if
11: pnodes = pruneNodes(u, F (u), G, topklbound)
12: add nodes from pnodes into prunedlist
13: end if
14: end while
15: return topklist

To use differential index for node pruning, suppose we have
conducted forward processing of a node u and denote its h-
hop aggregate value as F (u). We can then compute the upper
bound of the aggregate value of any u’s neighbor node v. For
SUM aggregates, we can derive

F sum(v) = min(F (u) + delta(v − u), N(v)− 1 + f(v)). (1)

We use F (v) to denote the upper bound value of F (v).
Given a node v, its possible upper bound is N(v)− 1 + f(v)
(i.e., node v itself has score f(v) and all the other nodes in
its h-hops have score 1). Given F (u) and delta(v−u), it can
be concluded that F (v) will be at most F (u) + delta(v − u)
(i.e., S(v) contains all of u’s nodes that have values and have
score 1s for all the nodes that are not in S(u)). Therefore, we
take the smaller one as the upper bound of F (v). Actually,
the upper bound of F (v) is the minimum value of the bounds
derived from v’s friends. That is,

F sum(v) = minu∈S(v){F (u)+delta(v−u), N(v)−1+f(v)}.
The upper bound of AVG aggregates is simply dividing the

F sum(v) value by the number of nodes in v’s h-hops, i.e.,

F avg(v) =
F sum(v)

N(v)
. (2)

For the forward pruning, we build the differential index for
all the edges in a graph. After we did a forward processing
on node u, for any u’s neighbor node v that satisfies F (v) <
topklbound, we can prune v and put it into the pruned node
list.

The differential index adopted by forward processing needs
to be pre-computed and stored. While it is more advanced than
the naive approach, we are looking for new pruning techniques
that do not need any pre-computed index. In the next section,
we will introduce these techniques.

IV. BACKWARD PROCESSING

An alternative to forward processing is to apply a backward
distribution method. For each node u, rather than aggregating
the scores of its neighbors, the distribution process sends its



Algorithm 2 Backward Processing
BackwardNaive (G)
Output: Top k (node, aggr value) pairs

1: for each non-zero node u in G do
2: for each node v in u’s h-hops do
3: Fsum(v) = Fsum(v) + f(u)
4: end for
5: end for
6: if SUM function then
7: topklist = pick k nodes with the highest Fsum(u) values.
8: else if AVG function then
9: topklist = pick k nodes with the highest Fsum(u)

N(u)
values.

10: end if
11: return topklist

score to all of its neighbor nodes. When all the scores are
backward distributed, we can calculate the aggregate value of
all the nodes and then select the top k nodes.

The backward process has to wait until all of nodes are
distributed; its cost is equal to the naive forward approach.
However, there is one exception when the relevance function
is 0-1 binary: It can skip nodes with 0 score, since by default
these zero nodes have no contribution to the aggregate values.

In particular, we distribute nodes according to their scores
in a descending order. In this order, when we do backward
processing of a node u, we are able to compute the upper
bound of the aggregate value for u’s h-hop neighbors:

Given a node v, suppose it has been scanned by l nodes
u1, ..., ul using backward processing, and ul is the latest one.
That is, f(ul) is the lowest one among f(u1), ..., f(ul). For
the SUM function, we can compute Fsum(v)’s upper bound
as

F sum(v) =

l∑
i=1

f(ui) + f(ul) ∗ (N(v)− l) + f(v). (3)

This is because v has N(v) neighbors, among which l
neighbors’ score is known and N(v) − l neighbors’ score is
unknown. Since we distribute the score in a descending order,
we could bound N(v)− l neighbors using the lowest one that
has been distributed, i.e., f(ul).

The backward processing does partial distribution on a
subset of nodes whose score is higher than a given threshold
γ. Then it orders all the nodes according to their aggregate
upper bound values, and performs a naive forward processing,
where the unpromising nodes are discarded.

V. EXPERIMENTAL RESULTS

In this section, we report our experiments that validate
the efficiency and effectiveness of LONA algorithms and
illustrate its properties on a series of real-life graph datasets.
In particular, we experimented with the LONA-Forward
algorithm and the LONA-Backward algorithm. These two
algorithms are compared with the baseline algorithm, “Base”,
which performs naive forward processing, without pruning.
We assume memory-resident large networks, as having them
on disk would not be practical in terms of graph traversal.
We are currently developing an infrastructure to partition

large networks into subnetworks and distribute them into
multiple machines. Our experiments demonstrated that LONA
outperforms Base by up to 10 times in three real graph
datasets tested in this study: (1) Condensed Matter Collabora-
tion Network (cond-mat 2005)[14], available at http: www-
personal.umich.edu/∼mejn/netdata/cond-mat-2005.zip. It has
around 40k nodes and 180k edges. (2) Citation Network
(cite75 99) [5]. It has 3M nodes and 16M edges. (3) Intrusion
Network (IPsec) IP traffic data from a security company. It
has 2.5M nodes and 4.3M edges. All our experiments were
performed on a 2.5GHZ Xeon quad core, 8GB memory Server.

Relevance Functions. Given a graph, we need to generate
functions that assign relevance scores to each node (i.e.,
the relevance function f in Definition 1). We designed a
mixture function to mimic the setting of relevance functions in
real-life applications. Our relevance function consists of two
components: random assignment function, fr whose value has
an exponential distribution, and a random walk procedure fw.
fr assigns a score whose range is between 0 and 1. It has a
blacking ratio parameter r, which controls the percentage of
nodes to be assigned “1”.

We tested 2-hop queries since they are much harder than
1-hop queries and more popular than 3+ hop queries.

Results. Figures 1, 2 and 3 show the runtime performance
of the three algorithms for varying top-k SUM queries with
blacking ratio r = 1%. The experiments are conducted on
the Collaboration network, Citation network, and the Intrusion
network. As shown in each figure, both algorithms LONA-
Forward and LONA-Backward outperform Base by a sig-
nificantly large margin, up to 10 times.

We then run the same set of experiments using the AVG
aggregation function. Figures 4, 5 and 6 show the runtime
performance for varying top-k AVG queries with blacking
ratio r = 1%. As shown in each figure, LONA-Backward
outperforms Base by a significantly large margin, up to 10
times. LONA-Forward is also better than Base; however
its performance deteriorates in the citation network when k
increases. In general, AVG queries are more difficult to process
for LONA-Forward when the blacking ratio r is low. The
upper bound derived from the differential index (Equation 1)
in the forward approach is not tight any more since it assumes
all the neighbors of v, but not u, have relevance score 1.

VI. CONCLUSIONS

Top k query processing has been extensively studied in
RDBMS. Some works tackle the problem outside the core of
query processing engines using indexes, views, or application-
level query rewriting [3], [6], [16], [18]. Recent research
mainly focused on supporting top k queries inside relational
query engine [2], [7], [8], [10], because it has been proved
to be more efficient. Supporting top k query in SQL is first
proposed by [2]. Its syntax or similar variations have been
adopted in most of the current RDBMSs. However, the existing
top k optimization techniques cannot be directly applied to
graph data.
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Graph summarization and aggregation methods have been
developed recently. Tian et al. [15] introduced SNAP opera-
tions to consistently merge nodes and edges with regard to
a predefined hierarchy. When such hierarchy is not available,
graph summarization can still be achieved by various kinds of
clustering methods. For example, Wu et. al. adopted geodesic
clustering [17] to achieve multi-level geodesic aggregation.
Navlakha et al. [12] applied the MDL principle to yield
highly intuitive coarse-level aggregate graphs for a large input
graph. The aggregation problem discussed in these studies is
about summarizing networks, different from the neighborhood
aggregation problem studied in our work.

In this paper, we investigated the techniques of answering
local aggregation queries efficiently over large networks. These
query forms have become increasingly important for search
and mining tasks over social networks and biological net-
works. Surprisingly they have not been studied systematically.
We developed a Local Neighborhood Aggregation framework,
called LONA, to answer these queries. LONA exploits two
properties of aggregation functions over a network: First, the
aggregates of neighboring nodes should be similar in many
cases; Second, it is possible to estimate the average value of
aggregates, which is likely less than top-k values. Empirical
results show that LONA could outperform baseline algorithms
up to 10 times in real-life datasets.
Acknowledgements: The work was supported by NSF Grant
IIS-0842769, IIS-0847925, and IIS-0905215.
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