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Visible Reverse k-Nearest Neighbor Query 
Processing in Spatial Databases  

Yunjun Gao, Member, IEEE, Baihua Zheng, Member, IEEE, Gencai Chen,  
Wang-Chien Lee, Member, IEEE, Ken C. K. Lee, and Qing Li, Senior Member, IEEE  

Abstract—Reverse nearest neighbor (RNN) queries have a broad application base such as decision support, profile-based 
marketing, resource allocation, etc. Previous work on RNN search does not take obstacles into consideration. In the real world, 
however, there are many physical obstacles (e.g., buildings), and their presence may affect the visibility between objects. In this 
paper, we introduce a novel variant of RNN queries, namely visible reverse nearest neighbor (VRNN) search, which considers 
the obstacle influence on the visibility of objects. Given a data set P, an obstacle set O, and a query point q in a two-
dimensional space, a VRNN query retrieves the points in P that have q as their visible nearest neighbor. We propose an 
efficient algorithm for VRNN query processing, assuming that P and O are indexed by R-trees. Our techniques do not require 
any pre-processing, and employ half-plane property and visibility check to prune the search space. In addition, we extend our 
solution to several variations of VRNN queries, including (i) visible reverse k-nearest neighbor (VRkNN) search, which finds the 
points in P that have q as one of their k visible nearest neighbors; (ii) δ-VRkNN search, which handles VRkNN retrieval with the 
maximum visible distance δ constraint; and (iii) constrained VRkNN (CVRkNN) search, which tackles the VRkNN query with 
region constraint. Extensive experiments on both real and synthetic datasets have been conducted to demonstrate the 
efficiency and effectiveness of our proposed algorithms under various experimental settings.  

Index Terms—Reverse Nearest Neighbor, Visible Reverse Nearest Neighbor, Spatial Database, Query Processing, Algorithm.  

——————————      —————————— 

1 INTRODUCTION

EVERSE nearest neighbor (RNN) search has received 
considerable attention from the database research 
community in the past few years, due to its impor-

tance in a wide spectrum of applications such as decision 
support [6], profile-based marketing [6], [14], resource 
allocation [6], [19], etc. Given a set of data points P, and a 
query point q in a multidimensional space, an RNN query 
finds the points in P that have q as their nearest neighbor 
(NN). A popular generalization of RNN is the reverse k-
nearest neighbor (RkNN) search, which returns the points 
in P whose k nearest neighbors (NNs) include q. Formally, 
RkNN(q) = {p ∈ P | q ∈ kNN(p)}, where RkNN(q) repre-
sents the set of reverse k nearest neighbors to a query 
point q and kNN(p) denotes the set of k nearest neighbors 
to a point p. Figure 1(a) illustrates an example with four 
data points, labelled as p1, p2, p3, p4, in a 2D space. Each 
point pi (1 ≤ i ≤ 4) is associated with a circle centered at pi 

and having dist(pi, NN(pi))1 as its radius, i.e., the circle 
cir(pi, NN(pi)) covers pi’s NN. For example, the circle cir(p3, 
NN(p3)) encloses p2, the NN of p3 (i.e., NN(p3)). For a given 
RNN query issued at point q, its answer set RNN(q) = {p4} 
as q is only located inside the circle cir(p4, NN(p4)). It is 
worth noting the asymmetric NN relationship, that is, p ∈ 
kNN(q) does not necessarily imply q ∈ kNN(p) (i.e., p ∈ 
RkNN(q)). In Figure 1(a), for instance, we notice that 
NN(p4) = p3, but NN(p3) = p2.  

1.1 Motivation  
There are many RNN/RkNN query algorithms that have 
been proposed in the database literature. Basically, they 
can be classified into three categories: (i) pre-computation 
based algorithms [6], [19]; (ii) dynamic algorithms [13], 
[14], [16]; and (iii) algorithms for various RNN/RkNN 
query variants [7], [8], [15]. Nevertheless, none of the ex-
isting work on RNN/RkNN search has considered physi-
cal obstacles (e.g., buildings) that exist in the real world. 
The presence of obstacles may have a significant impact 
on the visibility or distance between objects, and hence 
affects the result of RNN/RkNN queries. Furthermore, in 
some applications, users may be only interested in the 
objects that are visible or reachable to them.  

Actually, the existence of physical obstacles has been 
considered in certain types of spatial queries. They in-
clude (i) obstructed nearest neighbor (ONN) query [20], 
which returns the k (≥ 1) points in P that have the smallest 
obstructed distances (defined as the length of the shortest 
path that connects any two points without crossing any 
 

1Without loss of generality, dist(pi, pj) is a function to return the Euclid-
ean distance between any two points pi and pj.  
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Fig. 1. Example of RNN and VRNN queries. (a) RNN search. (b) 
VRNN search  

obstacle from an obstacle set) to q; (ii) visible k-nearest 
neighbor (VkNN) search [10], which finds the k nearest 
points that are visible to q; and (iii) clustering spatial data in 
the presence of obstacles [17], which divides a set of 2D data 
points into smaller homogeneous groups (i.e., clusters) by 
taking into account the impact of obstacles. Different from 
the existing work, this paper considers the obstacles in the 
context of RNN/RkNN retrieval. To the best of our 
knowledge, this is the first work to address this problem.  

1.2 Contributions  
In this paper, we introduce a novel form of RNN queries, 
namely visible reverse nearest neighbor (VRNN) search, 
which considers the obstacle influence on the visibility of 
objects. Given a data set P, an obstacle set O, and a query 
point q in a two-dimensional space, a VRNN query re-
trieves all the points in P that have q as their visible NN. 
Take a VRNN query issued at point q as an example (as 
depicted in Figure 1(b)). It returns {p1} as the result set, 
which is different from the result of an RNN query issued 
at q (as shown in Figure 1(a)). In addition, we define sev-
eral variants of VRNN queries, including (i) visible reverse 
k-nearest neighbor (VRkNN) search, a natural generaliza-
tion of VRNN retrieval, which finds all the points p ∈ P 
that have q as one of their k visible NNs; (ii) δ-VRkNN 
search, which answers the VRkNN query with the maxi-
mum visible distance δ constraint; and (iii) constrained 
VRkNN (CVRkNN) search, which processes the VRkNN 
query with region constraint. These potential variants form 
a suite of interesting and intuitive problems from both the 
research point of view and application point of view.  

We focus this paper on VRNN search, not only because 
the problem is new to the research community but also 
because it has a large application base. Some of the exam-
ple applications are listed as follows.  

Outdoor Advertisement Planning.  Suppose P&G 
plans to post advertisements in billboards to promote a 
new shampoo. In order to encourage customers to try this 
new product, the P&G decides to distribute some samples 
near billboards as well. Due to the high cost of sample 
distribution, only those billboard locations that may reach 
a big pool of potential customers are considered. Ideally, 
the more people can view the billboards, the more effec-
tive the promotion will be. We assume that the number of 
candidate billboard locations is small due to limited 
budget, and each customer only pays attention to the bill-
board located closest and meanwhile visible to him/her. 

Hence, VRNN search can be conducted to compare the 
optimality of any two candidate billboard locations q1 and 
q2 in terms of the potential customer base they can reach. 
By performing a VRNN query which takes as inputs a set 
of residential buildings or shopping malls (that represent 
the potential customer base), a set of obstacles (e.g., build-
ings), and a query point q1/q2, the decision-maker can 
identify the customers that would watch the billboard 
located at q1/q2. The one with more customers is better.  

Selection of Promotion Sites.  Suppose Yao Restaurant 
& Bar plans to open a new restaurant YEEHA in Shanghai, 
and wants to distribute coupons to its potential customers 
for promotion. Assume those customers who do not 
know YEEHA previously but have YEEHA as their visible 
nearest restaurant are more likely to visit YEEHA for a trial. 
Consequently, in order to ensure the effectiveness of the 
promotion, the Yao Restaurant & Bar needs to locate all the 
office buildings and residential buildings that have 
YEEHA as their visible nearest restaurant, and identifies 
people working or staying in those buildings as its target 
consumers. VRNN search can provide a perfect match2. It 
is worth noting that the obstructed distance metric can be 
employed to locate all the buildings that have YEEHA as 
their NN by considering the obstructed distance.  

A naive solution to deal with VRkNN (k ≥ 1) queries is 
to find a set of points p ∈ P, denoted as Sq, which are visi-
ble to a specified query point q, perform VkNN search on 
each of them, and return those points p ∈ Sq with q ∈ 
VkNN(p). However, this method is very inefficient be-
cause it needs to traverse the data set P and obstacle set O 
multiple times (i.e., (|Sq| + 1) times3), resulting in high I/O 
cost and CPU cost, especially when |VRkNN(q)| << |Sq|.  

In this paper, we propose an efficient algorithm for 
VRNN query processing, assuming that both P and O are 
indexed by R-trees [2], [4]. Our method follows a filter-
refinement framework, and requires no pre-processing. 
Specifically, a set of candidate objects (i.e., a superset of 
the final query result) is retrieved in the filter step, and 
gets refined in the subsequent refinement step, with these 
two steps integrated into a single R-tree traversal. Since 
the size of the candidate set has a direct impact on the 
search efficiency, we employ half-plane properties (as [16]) 
and visibility check to prune the search space. In addition, 
the search algorithm is general and can be easily extended 
to support different variants of VRNN queries, such as 
VRkNN search, δ-VRkNN search, and CVRkNN search.  

In brief, the key contributions of this paper can be 
summarized as follows:  

 We introduce and formalize VRNN retrieval, a novel 
addition to the family of RNN queries, which is very 
useful in many applications involving spatial data and 
physical obstacles for decision support.  

 We develop an efficient VRNN search algorithm, ana-
lyze its cost, and prove its correctness.   

2Note that if we assume that those customers having YEEHA as their 
closest restaurant (no matter whether YEEHA is visible to them) are more 
likely to visit YEEHA for a trial, the RNN search based on the obstructed 
distance would be more suitable.  

3|P| denotes the cardinality of a set P.  
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 We extend our techniques to several variations of 
VRNN queries, including VRkNN search, δ-VRkNN 
search, and CVRkNN search.  

 We conduct extensive experiments using both real and 
synthetic datasets to demonstrate the performance of 
our proposed algorithms in terms of efficiency and ef-
fectiveness.  

The rest of this paper is organized as follows. Section 2 
formalizes VRkNN query and reviews related work. Sec-
tion 3 discusses how to determine whether an object is 
visible to q in the presence of obstacles, and introduces 
the concept of visible region to improve the search per-
formance. Section 4 proposes an efficient algorithm for 
processing VRNN queries and conducts analytical analy-
sis to prove its correctness. Section 5 extends our solution 
to tackle several VRNN query variants. Extensive ex-
perimental evaluations and our findings are reported in 
Section 6. Finally, Section 7 concludes the paper with 
some directions for future work.  

2 BACKGROUND  
In this section, we present the formal definition of 
VRkNN query and reveal its characteristics, and then sur-
vey related work, including RNN/RkNN search algo-
rithms and visibility queries. Table 1 lists the symbols 
used in this paper.  
 

TABLE 1 
FREQUENTLY USED SYMBOLS  

Notation Description
P
O
Tp

To

q
e
VRq

Lq

CR
RkNN(q)
VkNN(q)
VRkNN(q)

A set of data points in a two-dimensional space
A set of obstacles in a two-dimensional space
The R-tree on P
The R-tree on O
A query point 
An entry (point or MBR node) in an R-tree
The visible region of q

A constrained region
Result set of a RkNN query issued at q
Result set of a VkNN query issued at q
Result set of a VRkNN query issued at q

A list that keeps the obstacle lines of the obstacles affecting the visibility of q

 

2.1 Problem Statement  
Given a data set P, an obstacle set O, and a query point q 
in a two-dimensional (2D) space, the visibility between 
two points is defined in Definition 1, based on which we 
formulate VkNN and VRkNN queries in Definition 2 and 
Definition 3, respectively.  
Definition 1 (Visibility). Given O in a 2D space, points p 

and p′ are visible to each other iff the straight line connect-
ing p and p′ does not cut through any obstacle o in O, i.e., ∀ 
o ∈ O, pp' o∩ = ∅ . 

Definition 2 (Visible k nearest neighbor query) [10]. 
Given P, O, q in a 2D space, and an integer k (≥ 1), a visi-
ble k nearest neighbor (VkNN) query finds a set of points 
VkNN(q) ⊆ P, such that (i) ∀p ∈ VkNN(q) is visible to q; 
(ii) |VkNN(q)| ≤ k4; and (iii) ∀ p′ ∈ P − VkNN(q) and ∀p  

4The cardinality of VkNN(q), i.e., |VkNN(q)|, may be smaller than k 
due to the obstruction of obstacles.  

∈ VkNN(q), if p′ is visible to q, dist(p, q) ≤ dist(p′, q). 
Definition 3 (Visible reverse k-nearest neighbor query). 

Given P, O, q in a 2D space, and an integer k (≥ 1), a visi-
ble reverse k-nearest neighbor (VRkNN) query retrieves 
a set of points VRkNN(q) ⊆ P, such that ∀ p ∈ VRkNN(q), 
q ∈ VkNN(p), i.e., VRkNN(q) = {p ∈ P | q ∈ VkNN(p)}. 
Next, some important properties of the VRkNN query 

that will be utilized to process VRkNN search are pre-
sented in Property 1, Property 2, and Property 3, respec-
tively.  
Property 1. The visible reverse k nearest neighbors (VRkNNs) 

of a query point q might not be localized to the neighborhood 
of q. 

Property 2. Given a query point q, the cardinality of q’s 
VRkNNs (i.e., |VRkNN(q)|) varies by the position of q and 
the distributions of data points/obstacles. 

Property 3. p ∈ VkNN(q) does not necessarily imply p ∈ 
VRkNN(q) and vice versa. 
In order to facilitate the understanding, we illustrate 

those properties using the example depicted in Figure 
1(b). First, although point p1 is the furthest from a speci-
fied query point q compared with other points, it is still 
an answer point to the VRNN query issued at q (i.e., p1 ∈ 
VRNN(q)). In contrast, point p2 that is closer to q than p1 is 
not included in VRNN(q). Second, for the same k, VRkNN 
queries issued at different locations may obtain different 
results with different number of answer points. As an 
example, |VRNN(q)| = |{p1}| = 1, |VRNN(q′)| = |{p3, 
p4}| = 2, and |VRNN(q′′)| = |∅| = 0. Third, the relation-
ship of visible nearest neighbor is asymmetric. For in-
stance, VNN(q) = {p2}, but VRNN(q) = {p1} that does not 
contain p2.  

2.2 Related Work  

2.2.1 Algorithms for RNN/RkNN Search  
Since the concept of RNN was first introduced by Korn 
and Muthukrishnan in [6], many algorithms have been 
proposed, which can be divided into three categories. The 
first category is pre-computation-based [6], [19]. For each 
point p, it pre-computes the distance from p to its nearest 
neighbor p′ (i.e., NN(p)) and forms a vicinity circle cir(p, p′) 
that is centered at p and has dist(p, p′) as the radius. For a 
given query point q, it examines q against all the vicinity 
circles cir(p, p′) with p ∈ P, and those having their vicinity 
circles enclosing q form the final result, i.e., RNN(q) = {p ∈ 
P | q ∈ cir(p, NN(p))}. To facilitate the examination, all the 
vicinity circles can be indexed by RNN-tree [6] or RdNN-
tree [19]. Approaches of this category mainly have two 
shortcomings. First, both the index construction cost and 
the index update overhead are very expensive. To ad-
dress this problem, bulk insertion in the RdNN-tree has 
been proposed in [9]. Second, although these methods can 
be extended to handle the RkNN retrieval (if the corre-
sponding kNN information for each point is available), 
they are limited to answer RkNN queries for a fixed k. To 
support various k, an approach for RkNN search with 
local kNN-distance estimation has been developed in [18].  

The second category does not rely on pre-computation 
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but adopts a filter-refinement framework [13], [14], [16]. 
In the filter step, the space is pruned according to defined 
heuristics, and a set of candidate objects are retrieved 
from the dataset. In the refinement step, all the candidates 
are verified according to kNN search criteria, and those 
false hits are removed. For example, based on a given 
query point q, the original 2D data space can be parti-
tioned around q into 6 equal regions, such that the NNs of 
q found in each region are the only candidates of the RNN 
query [14]. Thus, in the filter step, 6 constrained NN que-
ries are conducted to find the candidates in each region; 
and then, at the second step, NN queries are applied to 
eliminate the false hits. The efficiency of this approach is 
owing to the small number of candidates, e.g., at most 6 
for an RNN query in a 2D space. However, the number of 
candidates grows exponentially with the increase of the 
search space dimensionality, meaning that the search effi-
ciency can only be guaranteed in a low-dimensional space. 
To efficiently process RNN queries in a high-dimensional 
space, an approximated algorithm is proposed in [13]. It 
retrieves m nearest points to q as candidates with m (a 
randomly selected number) larger than k, and then veri-
fies the candidates using range queries. Nevertheless, the 
accuracy and performance of this algorithm is highly de-
pendent on m. The larger the m is, the more candidates 
are identified. Consequently, it is more likely that a com-
plete result set is returned but with a higher processing 
cost. A small m favours the efficiency, whereas it may 
incur false misses, i.e., points that are actual reverse k near-
est neighbors but missed from the final query result set.  

 

p1
p2

p3

p4

q

p6

p5

N
⊥(p4, q)

⊥(p1, q)

⊥(p3, q)  
Fig. 2. Example of TPL algorithm.  

In order to conduct exact RNN search, an efficient algo-
rithm, called TPL, is proposed in [16]. TPL exploits a half-
plane property to locate RkNN candidates. Applying the 
best-first traversal paradigm, TPL traverses the data R-tree 
to retrieve the NNs of q as RkNN candidates. Every time 
an unexplored data point p is retrieved, a half-plane is con-
structed along the perpendicular bisector between p and q, 
denoted as ⊥(p, q). The bisector divides the data space 
into two half-planes: HPq (p, q) that contains q and HPp (p, 
q) that contains p. Any object, including both points and 
minimum bounding rectangle (MBR), falling completely 
inside HPp (p, q) must have p closer to it than q. As shown 
in Figure 2, the bisector ⊥(p3, q) partitions the space into 
two half-planes. As point p1 falls into the half-plane HPq 
(p3, q), it is closer to q than to p3. In addition, the number 
of half-planes HPp (p, q) that a given point p′ falls in 

represents the number of data points that are closer to p′ 
than q. Hence, if a data point is within at least k HPp (p, q) 
half-planes, it cannot be a qualifying RkNN candidate, 
and thus can be safely discarded. The filter step termi-
nates when all the nodes of R-tree are either pruned or 
visited. As illustrated in Figure 2, points p1, p3, and p4 are 
identified as the RNN candidates in the filter step, while 
point p2 that is inside HPp1 (p1, q) ∩ HPp3 (p3, q) and N (en-
closing points p5, p6) that is within HPp3 (p3, q) ∩ HPp4 (p4, 
q)) are filtered out. Later, in the refinement step, TPL 
eliminates false hits by reusing the pruned points/MBRs. 
Continuing the running example, points p3 and p4 are 
false hits, as their vicinity circles enclose other points. The 
final query result set is {p1}. Our proposed algorithms for 
VRNN search and its variations employ half-plane property 
and visibility check to identify result candidates and prune 
the search space.  

Algorithms belonging to the third category are to 
tackle various RNN/RkNN query variants, such as 
bichromatic RNN queries [15], aggregate RNN queries over 
data stream [7], and ranked RNN search [8].  

2.2.2 Visibility Queries  
Visibility computation algorithms that determine object 
visibility from a given viewpoint or a viewing cell have 
been well-studied in the area of computer graphics and 
computational geometry [1]. However, there are only a 
few works on visibility queries in the database commu-
nity [5], [11], [12]. The basic idea is to employ various in-
dexing structures (e.g., LoD-R-tree [5], HDoV-tree [12], 
etc.) to deal with visibility queries in visualization sys-
tems. These specialized access methods are designed only 
for the purpose of visualization test and hence contain 
zero distance information. Thus, they are not capable of 
supporting efficient VRkNN query processing. Recently, 
VkNN search [10] has been investigated, where the goal is 
to retrieve the k NNs that are visible to a specified query 
point. Further study along this line includes continuous 
VkNN retrieval [3].  

3 PRELIMINARIES  
As VRNN search considers the impact of obstacles on 
objects’ visibility, all the objects that are invisible to q for 
sure will not be contained in the result. Consequently, an 
essential issue we have to address is how to determine 
whether an object is visible to q. A simple approach is to 
examine a given object p against all the obstacles w.r.t. q, 
which is inefficient because the examination of each object 
p requires a scanning of the obstacles. In this paper, we 
derive a visible region for the query point q, denoted by 
VRq, by visiting the obstacle set once, and the visibility of 
an object p w.r.t. q can be determined by checking 
whether p is located inside VRq. In this section, we explain 
the formation of the visible region.  

Before we present the detailed formation algorithm, 
we first discuss the presentation of a visible region. As 
shown in Figure 3, a visible region might be in an irregu-
lar shape, and we can use vertex to represent it. Neverthe-
less, it might not be so straightforward to determine 
whether an object is inside an irregular polygon. Alterna-
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tively, we propose to use obstacle lines, defined in Defini-
tion 4, to handle this problem.  
Definition 4 (Obstalce line). The obstacle line of an obsta-

cle o5 w.r.t. q, denoted by olo, is the line segment that ob-
structs the sight lines from q. 
Suppose the rectangle o depicted in Figure 3 is an ob-

stacle, and its corresponding obstacle line is olo. The shad-
owed area, blocked by olo, is not visible to q, and the rest 
(except o) is within the visible region of q (i.e., VRq). Based 
on the concept of obstacle line, we can determine the an-
gular bound and the distance bound of an obstacle line w.r.t. 
q, which can be utilized to facilitate the visibility checking 
of objects.  

 

q x

o

olo.minA
olo.maxA

olo.minD

obstacle line olo
olo.maxD

obstacle

invisible region of q
y search space

olo

 
Fig. 3. An example obstacle line and its angular and distance bounds.  

Taking q as an origin in the search space, the angular 
bound of o’s obstacle line (i.e., olo) w.r.t. q is denoted as 
[olo.minA, olo.maxA], in which olo.minA and olo.maxA are 
respectively the minimum angle and the maximum angle 
of olo, and olo.minA ≤ olo.maxA (see Figure 3). If q is located 
inside o, the angular bound of olo w.r.t. q is set to [0, 2π]. 
When olo intersects with the positive x-axis in the search 
space, we partition olo horizontally along the x-axis into 
olo1 and olo2. In addition, given two obstacles o and o′, if 
their angular bounds are disjoint, i.e., [olo.minA, olo.maxA] 
∩ [olo′.minA, olo′.maxA] = ∅, they will not affect each 
other’s visibility w.r.t. q. The distance bound of o’s obstacle 
line w.r.t. q is denoted as [olo.minD, olo.maxD], where 
olo.minD and olo.maxD are the minimal distance and the 
maximal distance from q to olo, respectively (see Figure 3).  

Without any obstacle, the visible region of q (i.e., VRq) 
is the entire search space. As obstacles are visited, VRq 
gets shrunk. Consequently, an issue we have to solve is 
how to decide whether a new obstacle might change the 
size of VRq. In the following, we first explain the examina-
tion based on line segments (or edges), namely Edge Visi-
bility Check (EVC), and then extend it for obstacles in rec-
tangular shapes.  

EVC gradually examines the obstacles, and maintains 
the obstacle lines of all the obstacles found so far which 
affect the visibility of a given query point q. Given a new 
obstacle o, o might affect those obstacles with angular 
bounds overlapping with o’s but definitely not the rest. 
Consequently, EVC evaluates the impact of o on the size 
of VRq via comparing o’s angular bound against that of 
obstacle lines in Lq.   

5Although an obstacle o may be an arbitrary convex polygon (e.g., tri-
angle, pentagon, etc.), we assume that o is a rectangle in this paper.  
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(a)                                                         (b)  

Fig. 4. Example of edge visibility check. (a) Obstacle placement. (b) 
New visible region.  

Due to the space limitation, the pseudo-code of EVC is 
skipped, while we use an example depicted in Figure 4 to 
illustrate the basic idea. Assume Lq = {olo1, olo2, olo3} and e2 
is the edge to be evaluated. According to the angular 
bound of each obstacle line l ∈ Lq and that of edge e2, there 
are three possible cases: (i) l.maxA ≤ e2.minA (e.g., l = olo1), 
indicating that e2 will not affect the visibility of l w.r.t q; (ii) 
[l.minA, l.maxA] ∩ [e2.minA, e2.maxA] ≠ ∅ (e.g., l = olo2), 
meaning that a detailed examination is necessary as e2 is 
very likely to affect the l’s visibility w.r.t. q; and (iii) 
l.minA ≥ e2.maxA (e.g., l = olo3), which indicates that l and 
all the remaining obstacle lines in Lq with minA larger 
than that of l’s will not be affected by e2, and thus the 
evaluation on e2 can be terminated.  

Now the only left task is how to change Lq when a new 
obstacle line ln overlaps with some existing obstacle line l 
in Lq (i.e., case (ii) above). Again, there are three possible 
cases. First, l.maxD ≤ ln.minD holds, which means that ln 
has no impact on q’s visible region VRq. For example, in 
Figure 4(b), although e1 overlaps with o1 in terms of angu-
lar bounds, it is invisible to q and hence can be ignored. 
Second, l.minD ≥ ln.maxD satisfies, which indicates that 
the entire ln is visible to q. Thus, ln is inserted into Lq, and 
the part of l that is blocked by ln is removed. In Figure 
4(b), for instance, e4 is within the angular bound of o3 and 
its maximal distance to q (i.e., e4.maxD) is smaller than the 
minimal distance between o3’s obstacle line olo3 and q (i.e., 
olo3.minD). Consequently, e4 that is visible to q is included 
into Lq and olo3 is shrunk, as shown in Figure 4(b). Third, ln 
and l intersects, meaning that part of ln is visible to q and 
the other part of l obstructed by ln becomes invisible to q. 
Lq needs to include the new visible part of ln and removes 
the invisible part of l. As an example, in Figure 4(b), edge 
e3 and the obstacle line of o1 (i.e., olo1) intersect, and edge e2 
and o2’s obstacle line olo2 intersect. Thus, we find the inter-
section points, and then update Lq. After evaluating new 
edges e1, e2, e3, and e4, the visible region of q (i.e., VRq) is 
updated to the shaded area (containing the shaded region 
highlighted in dashed line), as illustrated in Figure 4(b).  

Next, we explain how to extend the algorithm of EVC 
to determine the impact of a rectangle N on VRq, namely 
Object Visibility Check (OVC). The basic idea of OVC is to 
invoke EVC to evaluate the edges of a rectangle. It is 
worth noting that OVC only needs to evaluate at most two 
out of four edges of a rectangle, because at most two 
edges may affect the formation of VRq. Take the obstacle 
o7 (i.e., the rectangle that is formed by edges e1, e2, e3, and 
e4) in Figure 5(a) as an example. Since a specified query 
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point q lies in the southwest of o7, only the two edges e1 
and e4 facing towards q need to evaluate, whereas the 
other two edges e2 and e3 are ignored. During the process-
ing of OVC, we distinguish the following two possible 
situations: (i) if two evaluated edges of N are invisible to q, 
OVC returns IV to indicate N is invisible to q and hence N 
and all its enclosed child nodes can be pruned away; oth-
erwise, (ii) two evaluated edges of N are visible (partially 
or completely) to q, OVC returns AV or PV to indicate 
that N is all-visible (i.e., completely visible) or partially 
visible to q. If N represents an obstacle, the impact of N’s 
edges on VRq is evaluated by EVC, which updates Lq if 
necessary. Otherwise, N must be an intermediate node 
and its child nodes are accessed for further exploration. 
We omit the pseudo-code of OVC due to space limitation.  

 
Algorithm 1 Visible Region Computation Algorithm (VRC)  
  algorithm VRC (To, q, Lq)  
  /* To.root: the root node of R-tree To; IV: invisible */  
  1:  insert all entries of To.root into min-heap H; list Lq = ∅  
  2:  while H ≠ ∅ do  
  3:      de-heap the top entry (e, key) from H  
  4:      if Lq.isclose = TRUE and mindist(e, q) > MAXl∈Lq(l.maxD) then  
  5:          break    // terminate  
  6:      if e is an obstacle then  
  7:          OVC (e, Lq, q)    // check e’s visibility w.r.t. q  
  8:      else    // e is a MBR (i.e., an intermediate node)  
  9:          for each entry ei ∈ e and OVC (ei, Lq, q) ≠ IV do  
10:              insert (ei, mindist(ei, q)) into H  

 
We are now ready to present our Visible Region Compu-

tation Algorithm (VRC). We assume all the obstacles are 
indexed by an R-tree To, and VRC traverses To in a best-
first manner, with unvisited nodes maintained by a min-
heap H sorted based on ascending order of their minimal 
distances to a given query point. Algorithm 1 shows the 
pseudo-code of VRC algorithm. It continuously checks 
the head entry e of H. The detailed examination varies, 
dependent on the type of e. If e is an obstacle, it is checked 
against all the obstacle lines preserved in Lq (lines 6-7). If 
it is visible to q, e might contribute to the formation of VRq 
and thus Lq is updated. On the other hand, e must be a 
node and all its child entries that are visible (completely or 
partially) to q are en-heaped for later examination (lines 8-
10). VRC also exploits an early termination condition (lines 
4-5), as proved by Lemma 1.  
Lemma 1. Suppose heap H maintains all the unvisited nodes 

sorted in ascending order of their minimal distances to the 
query point q and list Lq keeps the obstacle lines of all the ob-
stacles found so far that affect the visibility of q. If Lq is 
closed (i.e., ∪l∈Lq[l.minA, l.maxA] = [0, 2π]), denoted as 
Lq.isclose = TRUE, and mindist(e, q) > MAXl∈Lq(l.maxD), e 
and all the rest entries in H are invisible to q. 

Proof. Suppose there is an entry e with mindist(e, q) > 
MAXl∈Lq(l.maxD) = dmax visible to q. As e is visible to q, 
there must be at least one line segment issued at q and 
reaching a point of e (denoted as p) without cutting 
through any other obstacle (by Definition 1). Since Lq is 
closed, without loss of generality, we can assume the 
extension of line segment qp  intersects an obstacle line 
l ∈ Lq at point p′ with dist(p, q) ≤ dist(p′, q) ≤ dmax. As we 
know mindist(e, q) ≤ dist(p, q) holds. Hence, mindist(e, q) 

≤ dmax = MAXl∈Lq(l.maxD) satisfies, which contradicts 
our previous assumption.                                                 
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(a)                                                        (b)  

Fig. 5. Example of VRC algorithm. (a) Obstacle placement. (b) The 
obstacle R-tree.  

An illustrative example of the VRC algorithm is de-
picted in Figure 5, where obstacle set O = {o1, o2, o3, o4, o5, 
o6, o7, o8} is indexed by the R-tree To shown in Figure 5(b). 
We use a list Lq to store the obstacle lines of all the obsta-
cles that can affect the visibility of q, sorted according to 
ascending order of their minimum bounding angles; and 
a heap H to maintain all the unvisited entries, sorted 
based on their minimal distances to q. Initially, H = {N1, 
N2, N3} and the algorithm always de-heaps the top entry 
from H for examination until H becomes empty. First, N1 
is accessed. As it is visible to q, its child nodes are en-
heaped for later examination, after which H = {o1, N2, N3, 
o3, o2}. Then, o1 is evaluated. Since it is the first obstacle 
checked, o1 for sure affects q’s visibility and is added to Lq 
(= {olo1}). Third, N2 is checked. According to current Lq, N2 
is visible to q and thus its child nodes are en-heaped, with 
H = {o5, N3, o3, o2, o4, o6}. Fourth, o5 is examined and be-
comes the second obstacle affecting the visibility of q, i.e., 
Lq = {olo5, olo1}. Next, N3 is de-heaped and its child nodes 
are en-heaped into H (= {o7, o3, o2, o4, o8, o6}). In the sequel, 
VRC de-heaps obstacles from H and keeps updating Lq 
until H = ∅. Finally, Lq = {olo7, olo62, olo5, olo3, olo2, olo1}, in 
which olo62 is the partial obstcle line of obstacle o6, as illus-
trated in Figure 5(a).  

4 VRNN QUERY PROCESSING  
In this section, we explain how to process VRNN query. 
We first present the pruning strategy followed by the de-
tails of VRNN search algorithm. Then, we analyse the 
cost of VRNN algorithm and prove its correctness.  

4.1 Pruning Strategy  
In order to improve the search performance, we utilize 
half-plane property (as [16]) and visibility check (discussed in 
Section 3) to prune the search space. Consider the per-
pendicular bisector between a data point p1 and a given 
query point q, denoted by ⊥(p1, q) i.e., line l1 in Figure 6. 
The bisector divides the whole data space into two half-
planes, i.e., HPp1 (p1, q) containing p1 (i.e., trapezoid EFCD) 
and HPq (p1, q) containing q (i.e., trapezoid ABFE). All the 
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data points (e.g., p2, p3) and nodes (e.g., N1) that fall com-
pletely inside HPp1 (p1, q) and are visible to p1 must have p1 
closer to them than q, and thus they cannot be/contain a 
VRNN of q. However, all the data points (e.g., p6, p7) and 
nodes (e.g., N2, N3) that fall into HPp1(p1, q) but are par-
tially-visible/invisible to p1 might become or contain a 
VRNN of q. Therefore, they cannot be discarded, and a 
further examination is necessary. In the following de-
scription, we term p1 as a pruning point.  

 

q
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p4

p5

p6

p7

⊥(p1, q)

p2

p3

obstacle

N1
N2

N3

invisible region of p1
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pruned by of p1

A B

CD

E

F
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Fig. 6. Illustration of pruning based on half-planes and visibility check.  

4.2 The VRNN Algorithm  
Based on the above pruning strategy, the basic idea of the 
VRNN algorithm proposed in this paper tries to prune 
away unqualified data objects/nodes to save the traversal 
cost. Consequently, it adopts a two-step filter-and-
refinement framework, assuming that data set P and ob-
stacle set O are indexed by two separate R-trees. In order 
to enhance the performance, these two steps are well in-
tegrated into a single traversal of the trees. In particular, 
the algorithm accesses nodes/points in ascending order 
of their distances to the query point q to retrieve a set of 
potential candidates, maintained by a candidate set Sc. All 
the data points and nodes that cannot be/contain a 
VRNN of q are discarded by our proposed pruning strat-
egy, and inserted (without being visited) into a refinement 
point set Sp and a refinement node set Sn, respectively. At 
the second step, the entries in both Sp and Sn are used to 
eliminate false hits.  

 
Algorithm 2 VRNN Search Algorithm (VRNN)  
  algorithm VRNN (Tp, To, q)  
  /* Sc: candidate set; Sp: refinement point set; Sn: refinement node set;  
  Sr: result set of a VRNN query */  
  1:  initialize sets Sc = ∅, Sp = ∅, Sn = ∅, Sr = ∅  
  2:  VRNN-Filter (Tp, To, q, Sc, Sp, Sn)  
  3:  VRNN-Refinement (q, Sc, Sp, Sn, Sr)  
  4:  return Sr  

 
Algorithm 2 presents the pseudo-code of the VRNN 

Search Algorithm (VRNN) that takes data R-tree Tp, obsta-
cle R-tree To, and a query point q as inputs, and outputs 
exactly all the visible reverse nearest neighbors (VRNNs) 
of q. We use an example shown in Figure 7 to elaborate 
the VRNN algorithm. Here, P = {p1, p2, …, p13, p14}, O = {o1, 
o2, o3, o4}, and the corresponding Tp is depicted in Figure 
7(b). A primary heap Hw is maintained to keep all the un-
visited entries ordered in ascending order of their mini-
mal distances to the query point q.  

4.2.1 The Filter Step  
Initially, VRNN visits the root node of Tp, inserts its child 

entries N8 and N9 that are visible to q into Hw (= {N8, N9}), 
and adds the entry N10 that is invisible to q to Sn (= {N10}). 
Then, the algorithm de-heaps N8, accesses its child nodes, 
and en-heaps all the entries that are visible to q, after 
which Hw = {N3, N9, N1, N2}. Next, N3 is visited and it up-
dates Hw to {p1, N9, N1, N2, p11}. The next de-heaped entry 
is p1. As it is visible to q, p1 is the first VRNN candidate 
(i.e., Sc = {p1}) and becomes the current pruning point cp 
that is used for pruning in the subsequent execution.  
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(a)                                                       (b)  

Fig. 7. Example of VRNN algorithm. (a) Data and obstacle placement. 
(b) The data R-tree.  

The next de-heaped entry is N9. As cp (= p1) is not 
empty, VRNN uses Trim algorithm 6  (as [16]) to check 
whether N9 can be pruned. As N9 overlaps with HPq (cp, q), 
its child nodes have to be accessed. Child node N5 is dis-
carded as it locates inside HPcp (cp, q) and it is visible 
(completely) to cp, meaning that it cannot contain any 
qualified candidate. Thus, N5, which is an MBR, is added 
to Sn, i.e., Sn = {N10, N5}. The other child entry N4 is en-
heaped into Hw (= {N4, N1, N2, p11}) because it falls par-
tially into HPcp (cp, q) and is visible (completely) to cp, in-
dicating that N4 may contain VRNN candidates. VRNN 
proceeds to de-heap N4, and visits its child entries, i.e., 
data points p2 and p5. As p2 falls inside HPq (cp, q) and is 
visible to cp, it is added to Hw (= {p2, N1, N2, p11}). On the 
other hand, point p5 is inserted into Sp = {p5} since it lo-
cates inside HPcp (cp, q) and is visible to cp. Next, p2 is de-
heaped. As it cannot be pruned by current pruning point 
(p1), it becomes the second pruning point and maintained 
by an auxiliary heap Ha = {p2}.  

Subsequently, VRNN accesses node N1 and inserts its 
child points p4 and p8 into Hw (= {N2, p4, p8, p11}). Note that 
although p8 falls fully into HPcp (cp, q), it is invisible to the 
current pruning point (i.e., p1) due to the obstruction of 
obstacle o2, and hence p8 cannot be pruned by cp. The next 
processed entry N2 is added to Sn (= {N10, N5, N2}) directly, 
as it locates inside HPcp (cp, q) and is visible (completely) to 
cp. In the sequel, p4 and p8 are retrieved and inserted into 
Ha, after which Ha = {p2, p4, p8}. Finally, p11 is de-heaped 
and it is added to Sp = {p5, p11} since it satisfies the pruning 
 

6If a node MBR can be completely discarded, the Trim algorithm re-
turns ∞; otherwise it returns the minimum distance between a given 
query point q and the residual MBR. Similarly, it will return the actual 
distance from a point to q if the point cannot be pruned, or ∞ otherwise. 
Please refer to [16] for details.  
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condition. Here, as Hw is empty, the first loop stops, with 
Ha, Sc, Sp, and Sn being {p2, p4, p8}, {p1}, {p5, p11}, and {N10, N5, 
N2}, respectively. The heap contents at each phase during 
the aforementioned filter process are illustrated in Table 2 
where, for simplicity, we omit associated distances to q 
for node MBRs and data points.  

 
TABLE 2 

HEAP CONTENTS DURING THE FIRST LOOP OF FILTER STEP  

Action Hw
Visit root
Visit N8

Visit N3

Process p1

Visit N9

Visit N4

Process p2

Visit N1

Process N2

Process p4

Process p8

Process p11

{N8, N9}
{N3, N9, N1, N2}
{p1, N9, N1, N2, p11}
{N9, N1, N2, p11}
{N4, N1, N2, p11}
{p2, N1, N2, p11}
{N1, N2, p11}

{p4, p8, p11}
{p8, p11}
{p11}

{N2, p4, p8, p11}

∅

Ha

{p2}

{p2}
{p2, p4}
{p2, p4, p8}

{p2}

∅
∅
∅
∅
∅
∅

{p2, p4, p8}

Sc

{p1}

{p1}
{p1}
{p1}

{p1}

∅
∅
∅

{p1}

{p1}

{p1}
{p1}

Sp

{p5}

{p5}
{p5}
{p5}

{p5}

∅
∅
∅
∅
∅

{p5, p11}

{p5}

Sn

{N10, N5}

{N10, N5, N2}
{N10, N5, N2}
{N10, N5, N2}

{N10, N5}

{N10, N5, N2}

{N10, N5}

{N10}
{N10}
{N10}
{N10}
{N10, N5}

 
 

Algorithm 3 Filter for VRNN Algorithm (VRNN-Filter)  
  algorithm VRNN-Filter (Tp, To, q, Sc, Sp, Sn)  
  /* Tp.root: the root node of R-tree Tp; IV: invisible; AV: all-visible;  
  PV: partially-visible */  
  1:  insert all entries of Tp.root into min-heap Hw; cp = NULL; Ha = ∅  
  2:  VRC (To, q, Lq)    // compute q’s visible region VRq  
  3:  while Hw ≠ ∅ do  
  4:      de-heap the top entry (e, key) from Hw  
  5:      if e is a data point then  
  6:          Sc = Sc  {∪ e}; cp = e; VRC (To, cp, Lcp)  
  7:          while Hw ≠ ∅ do  
  8:              de-heap the top entry (e′, key′) from Hw  
  9:              if e′ is a data point then  
10:                  if Trim (q, cp, e′) = ∞ and OVC (e′, Lcp, cp) = AV then  
11:                      Sp = Sp  {∪ e′}  
12:                  else  
13:                      insert (e′, dist(e′, q)) into Ha  
14:              else    // e′ is a MBR (i.e., an intermediate node)  
15:                  for each entry ei′ ∈ e′ do  
16:                      if OVC (ei′, Lq, q) ≠ IV then 
17:                          if Trim (q, cp, ei′) = ∞ and OVC (ei′, Lcp, cp) = AV then  
18:                              Sp = Sp  {∪ ei′} if ei′ is a data point or Sn = Sn  {∪ ei′}  
                                   if ei′ is a node  
19:                          else if Trim (q, cp, ei′)=∞ and OVC (ei′, Lcp, cp)=IV then  
20:                              insert (ei′, mindist(ei′, q))  into Ha  
21:                          else  
22:                              insert (ei′, mindist(ei′, q)) into Hw  
23:                      else    // OVC (ei′, Lq, q) = IV  
24:                          Sp = Sp ∪ {ei′} if ei′ is a data point or Sn = Sn ∪ {ei′}  
                               if ei′ is a node  
25:          swap (Hw, Ha)    // change the roles between Hw and Ha  
26:      else    // e is a MBR (i.e., an intermediate node)  
27:          for each entry ei ∈ e do  
28:              if OVC (ei, Lq, q) ≠ IV then  
29:                  if cp ≠ NULL and Trim (q, cp, ei) = ∞ and OVC (ei, Lcp, cp) =  
                       AV then  
30:                      Sp = Sp  {∪ ei} if ei is a data point or Sn = Sn  {∪ ei} if ei  
                           is a node  
31:                  else  
32:                      insert (ei, mindist(ei, q)) into Hw  
33:              else    // OVC (ei, Lq, q) = IV  
34:                  Sp=Sp∪{ei} if ei is a data point or Sn = Sn {∪ ei} if ei is a node  

 
Next, the roles of Hw and Ha are switched. In other 

words, in the rest of current iteration, the algorithm uses 
Hw as an auxiliary heap, while takes Ha as a primary heap. 
VRNN proceeds in the same loop until Hw = Ha = ∅, i.e., 
all the points are either pruned (i.e., inserted into Sp) or 

become candidates (i.e., inserted into Sc). Finally, we have 
Sc = {p1, p2, p4, p8}, Sp = {p5, p11}, and Sn = {N10, N5, N2}.  

Algorithm 3 shows the pseudo-code of the Filter for 
VRNN Algorithm (VRNN-Filter). When an intermediate 
node is visited, it utilizes OVC function to check its visi-
bility to the query point q and then processes it. Similarly, 
when a data point is accessed, it uses OVC function to 
examine its visibility to the current pruning point cp and 
then processes it. For each pruning point cp discovered, 
VRNN-Filter applies VRC algorithm to get its visible re-
gion, i.e., finding the obstacles from To that can affect cp’s 
visibility. Note that all pruned entries are preserved in 
their corresponding refinement sets but not removed 
permanently, as they will be used to verify candidates in 
the next refinement step.  

4.2.2 The Refinement Step  
When the filter step finishes, the refinement step starts, 
with the pseudo-code of Refinement for VRNN Algorithm 
(VRNN-Refinement) depicted in Algorithm 4. In the first 
place, VRNN-Refinement conducts self-filtering (lines 2-4), 
that is, it prunes away the candidates that are visible to 
each other and are closer to each other than to q. Then, the 
algorithm enters the refinement step, where it verifies 
whether each remaining candidate in Sc is a true result 
(lines 7-18). First, it calls Round of Refinement Algorithm 
(Refinement-Round), depicted in Algorithm 5, to elimi-
nate false candidates from Sc based on the contents of Sp 
and Sn, without any extra node access. The remaining 
points p in Sc need further refinement, with each associ-
ated with p.toVisit that records the nodes which might 
enclose some not-yet visited points that may invalidate p. 
Hence, nodes in p.toVisit are visited, with each access up-
dating the contents of Sp and Sn. Note that Sp and Sn are 
reset to ∅ after each round of Refinement-Round (line 12) 
to avoid duplicated checking. The refinement step con-
tinues until Sc = ∅.  

 
Algorithm 4 Refinement for VRNN Algorithm (VRNN-Refinement)  
  algorithm VRNN-Refinement (q, Sc, Sp, Sn, Sr)  
  1:  for each point p ∈ Sc do  
  2:      for each other point p′ ∈ Sc do  
  3:          if OVC (p′, Lp, p) ≠ IV and dist(p′, p) < dist(q, p) then  
  4:              Sc = Sc − {p}; goto 1  
  5:      if p is not eliminated from Sc then  
  6:          initialize p.toVisit = ∅  
  7:  if Sc ≠ ∅ then  
  8:      repeat   
  9:          Refinement-Round (q, Sc, Sp, Sn, Sr)  
10:          let N be the lowest level node of p.toVisit for p ∈ Sc  
11:          remove N from all p.toVisit and access N  
12:          Sp = Sn = ∅    // for the next round  
13:          if N is a leaf node then  
14:              Sp = {p′ | p′ ∈ N and p′ is visible to p}  
15:          else  
16:              Sn = {N′ | N′ ∈ N and N′ is visible to p}  
17:  else  
18:      return    // terminate  

 
Now we explain the details of Refinement-Round algo-

rithm. Specifically, it has three tasks, i.e., pruning false 
positive, identifying nodes that might invalidate the re-
maining points in Sc, and returning final result objects. 
First, points p in Sc satisfying any of following conditions 
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are for sure false positives and can be pruned: (i) ∃ p′ ∈ Sp 
such that p′ is visible to p and dist(p′, p) < dist(q, p) (lines 
2-4), or (ii) ∃ N ∈ Sn such that N is all-visible to p and 
minmaxdist(N, p) < dist(q, p) (lines 5-8). Note that min-
maxdist(N, p) is the upper bound of the distance between 
p and its closest point in N. Thus, minmaxdist(N, p) < dist(q, 
p) meaning that N contains at least one point that is closer 
to p than to q. For example, in Figure 7, p2 ∈ Sc can be 
safely discarded because N5 ∈ Sn is all-visible to it and 
minmaxdist(N5, p2) < dist(q, p2). Second, ∀ p ∈ Sc can be 
reported immediately as an actual VRNN of q when the 
following two conditions are satisfied: (i) ∀ p′ ∈ Sp, p′ is 
either invisible to p or dist(p′, p) > dist(q, p), and (ii) ∀ N ∈ 
Sn, it is all-visible/partially-visible to p and mindist(N, p) > 
dist(q, p). In our example, p4 and p8 satisfy the above con-
ditions, and hence they are removed from Sc and reported 
as the VRNNs of q immediately. The point p ∈ Sc that 
cannot be pruned or reported as a real result must have 
some nodes in Sn that contradict above conditions, and 
we utilize a set p.toVisit to record all those nodes (lines 9-
11). Take p1 as an example. As p1.toVisit = {N2}, we access 
N2 and find out that the enclosed point p3 is the VNN of p1 

and thus p1 is invalidated.  
 

Algorithm 5 Round of Refinement Algorithm (Refinement-Round)  
  algorithm Refinement-Round (q, Sc, Sp, Sn, Sr)  
  1:  for each point p ∈ Sc do  
  2:      for each point p′ ∈ Sp do  
  3:          if OVC (p′, Lp, p) ≠ IV and dist(p′, p) < dist(q, p) then  
  4:              Sc = Sc − {p}; goto 1  
  5:      for each node N ∈ Sn do  
  6:          if OVC (N, Lp, p) = AV then  
  7:              if minmaxdist(N, p) < dist(q, p) then  
  8:                  Sc = Sc − {p}; goto 1  
  9:      for each node N ∈ Sn do  
10:          if OVC (N, Lp, p) ≠ IV and mindist(N, p) < dist(q, p) then  
11:              add N to p.toVisit  
12:      if p.toVisit = ∅ then  
13:          Sc = Sc − {p}; Sr = Sr ∪ {p}  

 
If there are multiple nodes in p.toVisit for each p re-

maining in Sc, we can access all of them to invalidate the 
candidate objects. However, not all the accesses are nec-
essary. Hence, we adopt an incremental approach to ac-
cess the lowest level nodes first in order to achieve a better 
pruning. In our example shown in Figure 7, the second 
refinement round starts with Sc = {p1}, Sp = {p3, p7} (i.e., 
points enclosed in N2), Sn = ∅, and Sr = {p4, p8}. Point p1 is 
eliminated as a false positive since p3 is visible to p1 and 
dist(p3, p1) < dist(q, p1) holds, and then the VRNN algo-
rithm terminates.  

Notice that although VRNN-Refinement and Refine-
ment-Round algorithms are similar to the TPL-
Refinement and TPL-Refinement-Round algorithms pro-
posed in [16], they integrate object visibility check during 
the refinement process.  

4.3 Discussion  
In a two-dimensional space, like the existing SAA [14] 
and TPL [16] methods for RNN queries, the proposed 
VRNN algorithm does not require any pre-processing 
and can return exact result. However, the VRNN algo-
rithm incurs a higher query cost as it considers the obsta-

cle influence on the visibility of objects and it has to trav-
erse not only the data set P but also the obstacle set O. In 
this section, we present the time complexity of the VRNN 
algorithm and prove its correctness.  

The cost of R-tree traversal dominates the total over-
head of the VRNN algorithm. We first derive the upper 
bound of the number of traversals on the R-trees Tp and To, 
respectively.  
Lemma 2. The VRNN algorithm traverses Tp at most once, 

and To at most (|Sc| + 1) times, with Sc representing the 
candidate set. 

Proof. As shown in Algorithm 3, VRNN-Filter algorithm 
only traverses Tp once to obtain a VRNN candidate set 
Sc. It then uses half-plane property and visibility check to 
prune false candidates and invokes the VRC algorithm 
once for each candidate p ∈ Sc to find the obstacles affect-
ing its visibility (line 6 in Algorithm 3). Moreover, 
VRNN-Filter also calls the VRC algorithm once to re-
trieve the obstacles that can affect the visibility of q 
(line 2 in Algorithm 3). Consequently, the VRNN algo-
rithm traverses To at most (|Sc| + 1) times.                   
Let |Tp| and |To| be the tree size of Tp and To respec-

tively, and |Sc|, |Sp|, and |Sn| be the cardinality of Sc, Sp, 
and Sn respectively. We have the following theorems.  
Theorem 1. The time complexity of the VRNN algorithm is O 

(log|Tp|×(|Sc|+1)log|To|+|Sc|2+|Sc|(|Sp|+|Sn|)). 
Proof. The VRNN algorithm follows the filter-refinement 

framework. In the filter step, it takes O (log|Tp| × 
(|Sc| + 1) log|To|) for obtaining candidate set Sc; in the 
refinement step, it incurs O (|Sc|2 + |Sc| (|Sp| + |Sn|)) 
to eliminate all the false hits. Therefore, the total time 
complexity of the VRNN algorithm is O (log|Tp| × 
(|Sc| + 1) log|To| + |Sc|2 + |Sc| (|Sp| + |Sn|)).          

Theorem 2. The VRNN algorithm retrieves exactly the 
VRNNs of a given query point q, i.e., the algorithm has no 
false negatives and no false positives. 

Proof. First, the VRNN algorithm only prunes away those 
non-qualifying points or nodes in the filter step by us-
ing our proposed pruning strategy. Thus, no answer 
points are missed (i.e., no false negatives). Second, 
every candidate p ∈ Sc is verified in the refinement step 
by comparing it with each data point retrieved during 
the filter step and each node that might contain VNNs 
of p, which ensures no false positives.                            

5 EXTENSIONS  
This section discusses three interesting variants of VRNN 
queries, namely VRkNN, δ-VRkNN, and CVRkNN queries.  

5.1 The VRkNN Search  
A VRkNN query retrieves all the points in a dataset 
whose VkNN sets include q, as formalized in Definition 3. 
Our solution to VRNN retrieval can be adapted to sup-
port VRkNN search. The detailed extensions are de-
scribed as follows. First, the pruning strategy (presented 
in Section 4.1) can be extended to an arbitrary value of k. 
Assume a VRkNN query and a data set P with n (≥ k) data 
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points p1, p2, …, pn. Let D = {θ1, θ2, …, θk} be a subset of P. 
If a point/node fully falls into 1

k
i=∩ HPθi (θi, q) and is all-

visible to each point in D, it must have k points (i.e., θ1, θ2, 
…, θk) closer to it than q. Consequently, it can be safely 
pruned away. On the other hand, if a point/node locates 
inside 1

k
i=∩ HPθi (θi, q) and is partially-visible/invisible to 

any subset of D, it can become or contain a VRkNN of q 
and thus needs further examination.  

Next, we explain how to extend the proposed algo-
rithms for VRkNN query processing. To solve a VRkNN 
query, we also follow the filter-refinement framework. In 
particular, we find a set Sc of VRkNN candidates that con-
tains all the actual answer points and then eliminate all 
the false candidates in Sc. The VRNN-Filter algorithm can 
be easily modified to support VRkNN retrieval, by inte-
grating the above-mentioned pruning strategy. Specifi-
cally, the filter step of VRkNN search first finds an initial 
candidate set Sc which contains the k data points closest to 
a given query point q and meanwhile visible to q. Then, 
the algorithm proceeds to retrieve candidates as well as to 
prune away all the non-qualifying data points and node 
MBRs that satisfy the aforementioned pruning condition. 
Data points and node MBRs discarded are kept in the 
refinement point set Sp and the refinement node set Sn, 
respectively. The filter phase finishes when all the nodes 
that may include candidates have been visited.  

 
Algorithm 6 k-Refinement-Round Algorithm (k-Refinement-Round)  
  algorithm k-Refinement-Round (q, Sc, Sp, Sn, Sr)  
  1:  for each point p ∈ Sc do  
  2:      for each point p′ ∈ Sp do  
  3:          if OVC (p′, Lp, p) ≠ IV and dist(p′, p) < dist(q, p) then  
  4:              p.cnt = p.cnt + 1  
  5:              if p.cnt = k then  
  6:                  Sc = Sc − {p}; goto 1  
  7:      for each node N ∈ Sn do  
  8:          if OVC (N, Lp, p) ≠ IV and mindist(N, p) < dist(q, p) then  
  9:              add N to p.toVisit  
10:      if p.toVisit = ∅ then  
11:          Sc = Sc − {p}; Sr = Sr  {∪ p}  

 
The VRNN-Refinement algorithm can be extended for 

VRkNN retrieval as well. Similarly, the refinement step of 
VRkNN search is also executed in rounds, which are 
shown in Algorithm 6. Different from Refinement-Round, 
a point p ∈ Sc can be pruned only if there are at least k 
points visible to p within dist(p, q). Hence, we associate a 
counter p.cnt (initially set to 0) with each point p during 
the processing. Every time the algorithm finds a point p′ 
that satisfies the following two conditions: (i) p′ is visible 
to p, and (ii) dist(p′, p) < dist(q, p), the p’s counter p.cnt is 
increased by one. Eventually, p can be removed as a false 
hit when p.cnt = k. The refinement phase terminates after 
all the points in Sc have been eliminated or verified. We 
omit the pseudo-codes of the filter and main refinement 
algorithms for VRkNN search since they are very similar 
as VRNN-Filter and VRNN-Refinement, presented in Al-
gorithm 3 and Algorithm 4, respectively.  

5.2 VRkNN Queries with Constraints  
In some real applications, users might enforce some con-
straints (e.g., distance, spatial region, etc.) on VRkNN 
queries, and thus we introduce the VRkNN query with 

maximum visible distance δ constraint (called δ-VRkNN 
search) and the VRkNN query with constrained region CR 
constraint (called CVRkNN search), respectively. Take the 
application outdoor advertisement planning described in 
Section 1 as an example. If it is assumed that customers 
pay zero attention to the billboard that is located 50 meters 
away, δ-VRkNN search with δ = 50 is more suitable, com-
pared with VRkNN search, as it takes the distance con-
straint into account. On the other hand, if P&G only tar-
gets for the customers located in certain area (e.g., the 
customers within a shopping mall), CVRkNN query with 
constrained region CR set to the specified shopping mall is 
more suitable. In this section, we explain how to extend 
the CVNN search algorithm to answer δ-VRkNN and/or 
CVRkNN queries.  

Given a data set P, an obstacle set O, a query point q, a 
distance threshold δ, a constrained region CR, and an in-
teger k (≥ 1), (i) a δ-VRkNN query finds a set of points 
from P, denoted by δ-VRkNN(q), such that ∀ p ∈ δ-
VRkNN(q), q ∈ VkNN(p), and dist(p, q) ≤ δ, i.e., δ-VRkNN(q) 
= {p ∈ P | q ∈ VkNN(p) ∧ dist(p, q) ≤ δ}; and (ii) a CVRkNN 
query returns a set of points from P, denoted by 
CVRkNN(q), such that ∀ p ∈ CVRkNN(q), q ∈ VkNN(p), 
and p ∩ CR ≠ ∅ (i.e., p is inside CR), formally, CVRkNN(q) 
= {p ∈ P | q ∈ VkNN(p) ∧ p ∩ CR ≠ ∅}. It is important to 
note that, in addition to the position of q and the distribu-
tions of data pints and obstacles, (i) the cardinality of δ-
VRkNN(q), i.e., |δ-VRkNN(q)|, is affected by the value of 
δ; and (ii) the cardinality of CVRkNN(q), i.e., 
|CVRkNN(q)|, is dependent on the size and distribution 
of CR. As an example, a δ-VRNN (k = 1) query issued at 
point q is illustrated in Figure 8(a), where data set P = {p1, 
p2, p3, p4}, obstacle set O = {o1, o2}, and its distance con-
straint δ is highlighted in the figure. The final result of 
this query is empty, which is different from the result of 
VRNN search on the same data and obstacle sets (as 
shown in Figure 1(b)) due to the impact of δ.  

 

p1
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p3

p4

q
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δ
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p1

p2

p3

p4

q
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o2
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obstacles

constrained region

CR

 
(a)                                                         (b)  

Fig. 8. Variations of VRNN queries with constraints. (a) δ-VRNN 
search. (b) CVRNN search.  

The proposed algorithms for VRNN search can be eas-
ily adjusted to support δ-VRNN and CVRNN queries, by 
integrating constrained conditions (i.e., distance threshold 
δ and constrained region CR) during the query processing. 
Moreover, we develop following heuristics to facilitate 
the search process. First, since the search region (SR) of δ-
VRNN retrieval is bounded by δ (e.g., the shaded area in 
Figure 8(a) representing the SR of the δ-VRNN query is-
sued at q), (i) any obstacle that does not intersect SR can-
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not affect the visibility of objects evaluated currently, and 
can be pruned away safely; and (ii) any point/node that 
does not locate inside or cross SR can be directly excluded 
from the further consideration, because it cannot 
be/contain the final answer object. Second, as the final 
result of CVRNN search must satisfy the specified region 
constraint, (i) any obstacle that is outside CR can be dis-
carded, since it cannot impact the visibility of objects 
evaluated currently; and (ii) any point/node that does not 
intersect CR can be directly excluded from the further 
examination, because it cannot become/contain the actual 
answer object. In addition, algorithm can be extended to 
support δ-VRkNN and CVRkNN queries, which is similar 
to the extension for VRkNN search stated above.  

6 EXPERIMENTAL EVALUATION  
In this section, we evaluate the efficiency and effective-
ness of our proposed algorithms for VRNN query and its 
variants through experiments on both real and synthetic 
datasets. First, Section 6.1 describes the experimental set-
tings, and then Sections 6.2, 6.3, 6.4, and 6.5 report ex-
perimental results and our findings for VRNN, VRkNN, 
δ-VRkNN, and CVRkNN queries, respectively. All the 
algorithms were implemented in C++, and all the experi-
ments were conducted on a PC with a Pentium IV 3.0 
GHz CPU and 2GB RAM, running Microsoft Windows 
XP Professional Edition.  

6.1 Experimental Setup  
We deploy five real datasets7, which are summarized in 
Table 3. Synthetic datasets are created following the uni-
form distribution and zipf distribution, with the cardinal-
ity varying from 0.1 × |LA| to 10 × |LA|. The coordinate 
of each point in Uniform datasets is generated uniformly 
along each dimension, and that of each point in Zipf data-
sets is generated according to zipf distribution with skew 
coefficient α = 0.8. All the datasets are mapped to a [0, 
10000] ×  [0, 10000] square. As VRNN search and its 
variations involve a data set P and an obstacle set O, we 
deploy five different dataset combinations, namely CR, 
LL, NL, UL, and ZL, representing (P, O) = (Cities, Rivers), 
(LB, LA), (NA, LA), (Uniform, LA), and (Zipf, LA), respec-
tively. Note that the data points in P are allowed to lie on 
the boundaries of the obstacles but not in their interior, 
and the obstacles in O are allowed to overlap each other.  

All data and obstacle sets are indexed by R*-trees [2]. 
The disk page size is fixed to 1K bytes, such that the 
maximum node capacity equals 50 entries for dimension-
ality 2, and the number of nodes/pages for LB, NA, LA, 
Cities, and Rivers datasets equals 1178, 9145, 2629, 118, 
and 432, respectively. Note that we choose a small page 
size to simulate practical scenarios where the cardinalities 
of the data and obstacle sets are much larger. The experi-
ments investigate the performance of the proposed algo-
rithms under a variety of parameters which are listed in 
Table 4. In each experiment, we vary only one parameter 
while the others are fixed at their default values, and run 
 

7LB, NA, and LA are available at http://www.maproom.psu.edu/dcw; 
and Cities and Rivers are available at http://www.rtreeportal.org.  

200 queries with their average performance reported. The 
query distribution follows the underlying dataset distri-
bution and the overall query cost is measured. Both the 
I/O overhead (by charging 10ms per page fault, as in [16]) 
and CPU time contribute to the query cost. We assume 
that the server maintains a buffer with LRU as the cache 
replacement policy8. Unless specifically stated, the size of 
buffer is 0, i.e., the I/O cost is determined by the number 
of node/page accesses.  

 
TABLE 3 

DESCRIPTION OF REAL DATASETS USED IN EXPERIMENTS  

Dataset Cardinality
LB
NA
LA
Cities
Rivers

58,945
470,759
131,461
5,922
21,645

Description
2D point in Long Beach
2D point in North America
2D MBRs of streets in Los Angeles
2D cities (as point) in Greece
2D MBRs of rivers in Greece  

TABLE 4 
PARAMETER RANGES AND DEFAULT VALUES  

Parameter Range
k
|P|/|O|
buffer size (% of the tree size)

 (% of the space width)
CR (% of full space)

1, 2, 4, 8, 16
0.1, 0.2, 0.5, 1, 2, 5, 10
0, 10, 20, 30, 40, 50, 60
6, 12, 18, 24, 30
10, 20, 30, 40, 50

Default
1, 4
1
0
100
100

δ

 

6.2 Results on VRNN Queries  
The first set of experiments verifies the performance of 
the proposed VRNN algorithm for VRNN search. First, 
we study the effect of the |P|/|O| ratio on the VRNN 
algorithm using two dataset combinations (including UL 
and ZL). Figure 9 plots the total query cost (in seconds) of 
the VRNN algorithm as a function of |P|/|O|, fixing k = 
1. In Figure 9, each result is broken into two components, 
corresponding to the filter step and the refinement step, 
respectively. The percentage inside the bar indicates the 
ratio of cost incurred in the filter step to that of the overall 
query cost. In addition, we show the percentage of I/O 
time in the entire query cost, denoted by I/O%; the cardi-
nality of the candidate set, denoted as |Sc|; and the num-
ber of node accesses on the data R-tree Tp, denoted by 
N(Tp). For example, as shown in Figure 9(a), when 
|P|/|O| = 1, VRNN accesses 497 out of 2629 nodes of Tp; 
its I/O cost contributes to 92% of overall query cost; and 
the candidate set Sc has 8.3 objects on average. The total 
query cost is around 37 second, while the filtering step 
takes 92% of the time.  

It is observed that the filter step actually dominates the 
overall overhead (> 90%), especially when the |P|/|O| 
ratio is small (e.g., 0.1, 0.2). This is because: (i) the filter 
step of VRNN needs to traverse the obstacle R-tree To 
(|Sc| + 1) times  (according to Lemma 2), incurring ex-
pensive I/O cost and a large number of visible region 
 

8Although we use LRU as the buffer replacement policy in our experi-
ments, other buffer replacement policies (e.g., FIFO, MRU, random, etc.) 
can also be employed. The buffer replacement policy has a direct impact 
on the I/O overhead as it affects the number of nodes/pages accessed 
during the search processing. However, it will not change the total per-
formance trend. Furthermore, the LRU buffer has been adopted exten-
sively in the database literature (e.g., [8]).  
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computation operations; (ii) VRNN reuses all the points 
and nodes pruned from the filter step to perform candi-
date verification in the refinement step, and thus dupli-
cated accesses to the same points/nodes are avoided; and 
(iii) most candidates in Sc are eliminated as false hits di-
rectly by other candidates in Sc or points/nodes main-
tained in the refinement set Sp or Sn, which does not cause 
any data access. The remaining candidates can be vali-
dated by visiting a limited number of additional nodes. 
This observation is also confirmed by the rest of experi-
ments. In addition, we observe that the cost of VRNN 
demonstrates a stepwise behaviour. Specifically, it in-
creases slightly as |P|/|O| changes from 0.1 to 1, but 
then ascends much faster as |P|/|O| grows further. The 
reason behind is that, as the density of data set P grows, 
the number of the candidates retrieved in the filter step 
increase as well, which results in more traversals of To, 
more visibility checks, and more candidate verifications.  
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(a)                                                         (b)  

Fig. 9. VRNN cost vs. |P|/|O| (k = 1, |O| = 131,461). (a) UL. (b) ZL.  
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Fig. 10. VRNN cost vs. buffer size (k = 1, |O| = 131,461). (a) UL 
(|P|/|O| = 1). (b) ZL (|P|/|O| = 1).  

Finally, we examine the performance of the VRNN al-
gorithm in the presence of an LRU buffer, by fixing k to 1 
and varying the buffer size from 0% to 60% of the tree 
size. To obtain stable statistics, we measure the average 
cost of the last 100 queries, after the first 100 queries have 
been performed for warming up the buffer. The results 
under UL and ZL dataset combinations are depicted in 
Figure 10. The overall query cost is reduced as buffer size 
increases. In particular, as the buffer size enlarges, it is 
observed that the VRNN-Filter cost drops, whereas the 
VRNN-Refinement cost almost remains the same. This is 
because the filter step of VRNN requires traversing the 

obstacle R-tree To (|Sc| + 1) times. Consequently, it may 
access the same nodes (e.g., the root node of To) multiple 
times, and hence a buffer space can improve the search 
performance by keeping the nodes locally available.  

6.3 Results on VRkNN Queries  
The second set of experiments evaluates the efficiency 
and effectiveness of VRkNN query processing algorithm. 
First, we inspect the impact of k value on the performance 
of the VRkNN algorithm, using LL and NL dataset combi-
nations. Figure 11 illustrates the total query cost of the 
VRkNN algorithm with respect to k which varies from 1 
to 16. As expected, the overhead of VRkNN grows with k, 
due to the significant increase in the cost of VRkNN-Filter. 
Notice that the number of candidates retrieved during the 
filter step increases almost linearly with k.  
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Fig. 11. VRkNN cost vs. k (|O| = 131,461). (a) LL. (b) NL.  
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Fig. 12. VRkNN cost vs. |P|/|O| (k = 4, |O| = 131,461). (a) UL. (b) ZL.  
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Fig. 13. VRkNN cost vs. buffer size (k = 4, |O| = 131,461). (a) UL 
(|P|/|O| = 1). (b) ZL (|P|/|O| = 1).  
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In the following experiments, we investigate the effect 
of different parameters, including the |P|/|O| ratio and 
buffer size, on the performance of the VRkNN algorithm, 
with UL and ZL dataset combinations. In Figure 12, we 
show the efficiency of the algorithm for VRkNN queries, 
by fixing k = 4 and varying |P|/|O| between 0.1 and 10. 
In Figure 13, we plot the cost of the VRkNN algorithm as 
a function of the buffer size. As the observations are simi-
lar to those made from the VRNN retrieval, we save the 
detailed explanation due to the space limitation.  

6.4 Results on δ-VRkNN Queries  
The third set of experiments explores the influence of the 
maximal visible distance δ constraint on the efficiency of 
the δ-VRkNN query processing algorithm. We fix k at 4 
and change δ values from 6% to 30% of the side length of 
the search space. Figure 14 shows the overall query cost 
of the δ-VRkNN search algorithm with respect to δ for LL 
and NL dataset combinations. Obviously, δ has a direct 
impact on the performance of δ-VRkNN retrieval, since it 
controls the size of the search region. In particular, the 
cost of the algorithm increases gradually as δ grows. This 
is because the number of candidates retrieved in the filter 
step ascends with the growth of δ.  
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Fig. 14. δ-VRkNN cost vs. δ (k = 4, |O| = 131,461). (a) LL. (b) NL.  
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Fig. 15. CVRkNN cost vs. CR (k = 4, |O| = 131,461). (a) LL. (b) NL.  

6.5 Results on CVRkNN Queries  
The last set of experiments investigates the effect of the 
constrained region CR size on the performance of 
CVRkNN query processing algorithm. We deploy real 
datasets, i.e., LL and NL dataset combinations, fix k to 4, 
vary the size of CR from 10% to 50% of the whole data 
space, and present all the experimental results in Figure 

15. As expected, the cost of the algorithm increases with 
the growth of CR. The reason behind is that, as con-
strained region grows, the size of search space enlarges 
and the number of candidates obtained in the filter step 
increases, which leads to more traversals of the obstacle 
R-tree To, more visibility checks, and more candidate ex-
aminations.  

7 CONCLUSIONS  
In this paper, we identify and solve a novel type of re-
verse nearest neighbor queries, namely visible reverse near-
est neighbor (VRNN) search. Although both RNN search 
and VNN search have been studied, there is no previous 
work that considers both the visibility and the reversed 
spatial proximity relationship between objects. On the 
other hand, VRNN retrieval is useful in many decision 
support applications involving spatial data and physical 
obstacles. Consequently, we propose an efficient algo-
rithm for VRNN query processing, assuming that both 
the data set P and the obstacle set O are indexed by R-
trees. We employ half-plane property and visibility check 
to prune the search space, analyze the cost of the pro-
posed VRNN algorithm, and prove its correctness. In ad-
dition, we extend our techniques to tackle three interest-
ing VRNN query variations, including VRkNN, δ-VRkNN, 
and CVRkNN queries. An extensive experimental evalua-
tion with both real and synthetic datasets has been con-
ducted which demonstrates the performance of our pro-
posed algorithms for handling VRNN search and its vari-
ants, under various experimental settings.  
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