
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2009

Visible Reverse k-Nearest Neighbor Query
Processing in Spatial Databases
Yunjun GAO
Singapore Management University

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Gencai CHEN

Wang-Chien LEE

Ken C. K. LEE

See next page for additional authors

DOI: https://doi.org/10.1109/TKDE.2009.113

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
GAO, Yunjun; ZHENG, Baihua; CHEN, Gencai; LEE, Wang-Chien; LEE, Ken C. K.; and LI, Qing. Visible Reverse k-Nearest
Neighbor Query Processing in Spatial Databases. (2009). IEEE Transactions on Knowledge and Data Engineering. 21, (9), 1314-1327.
Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/767

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TKDE.2009.113
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Yunjun GAO, Baihua ZHENG, Gencai CHEN, Wang-Chien LEE, Ken C. K. LEE, and Qing LI

This journal article is available at Institutional Knowledge at Singapore Management University: https://ink.library.smu.edu.sg/
sis_research/767

https://ink.library.smu.edu.sg/sis_research/767?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research/767?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 200X 1

Visible Reverse k-Nearest Neighbor Query
Processing in Spatial Databases

Yunjun Gao, Member, IEEE, Baihua Zheng, Member, IEEE, Gencai Chen,
Wang-Chien Lee, Member, IEEE, Ken C. K. Lee, and Qing Li, Senior Member, IEEE

Abstract—Reverse nearest neighbor (RNN) queries have a broad application base such as decision support, profile-based
marketing, resource allocation, etc. Previous work on RNN search does not take obstacles into consideration. In the real world,
however, there are many physical obstacles (e.g., buildings), and their presence may affect the visibility between objects. In this
paper, we introduce a novel variant of RNN queries, namely visible reverse nearest neighbor (VRNN) search, which considers
the obstacle influence on the visibility of objects. Given a data set P, an obstacle set O, and a query point q in a two-
dimensional space, a VRNN query retrieves the points in P that have q as their visible nearest neighbor. We propose an
efficient algorithm for VRNN query processing, assuming that P and O are indexed by R-trees. Our techniques do not require
any pre-processing, and employ half-plane property and visibility check to prune the search space. In addition, we extend our
solution to several variations of VRNN queries, including (i) visible reverse k-nearest neighbor (VRkNN) search, which finds the
points in P that have q as one of their k visible nearest neighbors; (ii) δ-VRkNN search, which handles VRkNN retrieval with the
maximum visible distance δ constraint; and (iii) constrained VRkNN (CVRkNN) search, which tackles the VRkNN query with
region constraint. Extensive experiments on both real and synthetic datasets have been conducted to demonstrate the
efficiency and effectiveness of our proposed algorithms under various experimental settings.

Index Terms—Reverse Nearest Neighbor, Visible Reverse Nearest Neighbor, Spatial Database, Query Processing, Algorithm.

—————————— ——————————

1 INTRODUCTION

EVERSE nearest neighbor (RNN) search has received
considerable attention from the database research
community in the past few years, due to its impor-

tance in a wide spectrum of applications such as decision
support [6], profile-based marketing [6], [14], resource
allocation [6], [19], etc. Given a set of data points P, and a
query point q in a multidimensional space, an RNN query
finds the points in P that have q as their nearest neighbor
(NN). A popular generalization of RNN is the reverse k-
nearest neighbor (RkNN) search, which returns the points
in P whose k nearest neighbors (NNs) include q. Formally,
RkNN(q) = {p ∈ P | q ∈ kNN(p)}, where RkNN(q) repre-
sents the set of reverse k nearest neighbors to a query
point q and kNN(p) denotes the set of k nearest neighbors
to a point p. Figure 1(a) illustrates an example with four
data points, labelled as p1, p2, p3, p4, in a 2D space. Each
point pi (1 ≤ i ≤ 4) is associated with a circle centered at pi

and having dist(pi, NN(pi))1 as its radius, i.e., the circle
cir(pi, NN(pi)) covers pi’s NN. For example, the circle cir(p3,
NN(p3)) encloses p2, the NN of p3 (i.e., NN(p3)). For a given
RNN query issued at point q, its answer set RNN(q) = {p4}
as q is only located inside the circle cir(p4, NN(p4)). It is
worth noting the asymmetric NN relationship, that is, p ∈
kNN(q) does not necessarily imply q ∈ kNN(p) (i.e., p ∈
RkNN(q)). In Figure 1(a), for instance, we notice that
NN(p4) = p3, but NN(p3) = p2.

1.1 Motivation
There are many RNN/RkNN query algorithms that have
been proposed in the database literature. Basically, they
can be classified into three categories: (i) pre-computation
based algorithms [6], [19]; (ii) dynamic algorithms [13],
[14], [16]; and (iii) algorithms for various RNN/RkNN
query variants [7], [8], [15]. Nevertheless, none of the ex-
isting work on RNN/RkNN search has considered physi-
cal obstacles (e.g., buildings) that exist in the real world.
The presence of obstacles may have a significant impact
on the visibility or distance between objects, and hence
affects the result of RNN/RkNN queries. Furthermore, in
some applications, users may be only interested in the
objects that are visible or reachable to them.

Actually, the existence of physical obstacles has been
considered in certain types of spatial queries. They in-
clude (i) obstructed nearest neighbor (ONN) query [20],
which returns the k (≥ 1) points in P that have the smallest
obstructed distances (defined as the length of the shortest
path that connects any two points without crossing any

1Without loss of generality, dist(pi, pj) is a function to return the Euclid-
ean distance between any two points pi and pj.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
• Y. Gao and B. Zheng are with the School of Information Systems, Singa-

pore Management University, 80 Stamford Road, Singapore 178902,
Singapore. E-mail: {yjgao, bhzheng}@ smu.edu.sg.

• Y. Gao and G. Chen are with the College of Computer Science, Zhejiang
University, 38 Zheda Road, Hangzhou 310027, P. R. China. E-mail:
{gaoyj, chengc}@ zju.edu.cn.

• W.-C. Lee and Ken C. K. Lee are with the Department of Computer Sci-
ence and Engineering, Pennsylvania State University, University Park,
PA 16802, USA. E-mail: {wlee, cklee}@cse.psu.edu.

• Q. Li is with the Department of Computer Science, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China. E-
mail: itqli@cityu.edu.hk.

Manuscript received 7 Nov. 2008; revised 10 Mar. 2009; accepted 17 Apr. 2009;
published online XX XXX. 200X.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2008-11-0589.
Digital Object Identifier no. XX.XXXX/TKDE.200X.XX.

R

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 200X

p1

p2

p3

p4

q

p1

p2

p3

p4

qo1 o2

obstacles

q'

q''

(a) (b)

Fig. 1. Example of RNN and VRNN queries. (a) RNN search. (b)
VRNN search

obstacle from an obstacle set) to q; (ii) visible k-nearest
neighbor (VkNN) search [10], which finds the k nearest
points that are visible to q; and (iii) clustering spatial data in
the presence of obstacles [17], which divides a set of 2D data
points into smaller homogeneous groups (i.e., clusters) by
taking into account the impact of obstacles. Different from
the existing work, this paper considers the obstacles in the
context of RNN/RkNN retrieval. To the best of our
knowledge, this is the first work to address this problem.

1.2 Contributions
In this paper, we introduce a novel form of RNN queries,
namely visible reverse nearest neighbor (VRNN) search,
which considers the obstacle influence on the visibility of
objects. Given a data set P, an obstacle set O, and a query
point q in a two-dimensional space, a VRNN query re-
trieves all the points in P that have q as their visible NN.
Take a VRNN query issued at point q as an example (as
depicted in Figure 1(b)). It returns {p1} as the result set,
which is different from the result of an RNN query issued
at q (as shown in Figure 1(a)). In addition, we define sev-
eral variants of VRNN queries, including (i) visible reverse
k-nearest neighbor (VRkNN) search, a natural generaliza-
tion of VRNN retrieval, which finds all the points p ∈ P
that have q as one of their k visible NNs; (ii) δ-VRkNN
search, which answers the VRkNN query with the maxi-
mum visible distance δ constraint; and (iii) constrained
VRkNN (CVRkNN) search, which processes the VRkNN
query with region constraint. These potential variants form
a suite of interesting and intuitive problems from both the
research point of view and application point of view.

We focus this paper on VRNN search, not only because
the problem is new to the research community but also
because it has a large application base. Some of the exam-
ple applications are listed as follows.

Outdoor Advertisement Planning. Suppose P&G
plans to post advertisements in billboards to promote a
new shampoo. In order to encourage customers to try this
new product, the P&G decides to distribute some samples
near billboards as well. Due to the high cost of sample
distribution, only those billboard locations that may reach
a big pool of potential customers are considered. Ideally,
the more people can view the billboards, the more effec-
tive the promotion will be. We assume that the number of
candidate billboard locations is small due to limited
budget, and each customer only pays attention to the bill-
board located closest and meanwhile visible to him/her.

Hence, VRNN search can be conducted to compare the
optimality of any two candidate billboard locations q1 and
q2 in terms of the potential customer base they can reach.
By performing a VRNN query which takes as inputs a set
of residential buildings or shopping malls (that represent
the potential customer base), a set of obstacles (e.g., build-
ings), and a query point q1/q2, the decision-maker can
identify the customers that would watch the billboard
located at q1/q2. The one with more customers is better.

Selection of Promotion Sites. Suppose Yao Restaurant
& Bar plans to open a new restaurant YEEHA in Shanghai,
and wants to distribute coupons to its potential customers
for promotion. Assume those customers who do not
know YEEHA previously but have YEEHA as their visible
nearest restaurant are more likely to visit YEEHA for a trial.
Consequently, in order to ensure the effectiveness of the
promotion, the Yao Restaurant & Bar needs to locate all the
office buildings and residential buildings that have
YEEHA as their visible nearest restaurant, and identifies
people working or staying in those buildings as its target
consumers. VRNN search can provide a perfect match2. It
is worth noting that the obstructed distance metric can be
employed to locate all the buildings that have YEEHA as
their NN by considering the obstructed distance.

A naive solution to deal with VRkNN (k ≥ 1) queries is
to find a set of points p ∈ P, denoted as Sq, which are visi-
ble to a specified query point q, perform VkNN search on
each of them, and return those points p ∈ Sq with q ∈
VkNN(p). However, this method is very inefficient be-
cause it needs to traverse the data set P and obstacle set O
multiple times (i.e., (|Sq| + 1) times3), resulting in high I/O
cost and CPU cost, especially when |VRkNN(q)| << |Sq|.

In this paper, we propose an efficient algorithm for
VRNN query processing, assuming that both P and O are
indexed by R-trees [2], [4]. Our method follows a filter-
refinement framework, and requires no pre-processing.
Specifically, a set of candidate objects (i.e., a superset of
the final query result) is retrieved in the filter step, and
gets refined in the subsequent refinement step, with these
two steps integrated into a single R-tree traversal. Since
the size of the candidate set has a direct impact on the
search efficiency, we employ half-plane properties (as [16])
and visibility check to prune the search space. In addition,
the search algorithm is general and can be easily extended
to support different variants of VRNN queries, such as
VRkNN search, δ-VRkNN search, and CVRkNN search.

In brief, the key contributions of this paper can be
summarized as follows:

 We introduce and formalize VRNN retrieval, a novel
addition to the family of RNN queries, which is very
useful in many applications involving spatial data and
physical obstacles for decision support.

 We develop an efficient VRNN search algorithm, ana-
lyze its cost, and prove its correctness.

2Note that if we assume that those customers having YEEHA as their
closest restaurant (no matter whether YEEHA is visible to them) are more
likely to visit YEEHA for a trial, the RNN search based on the obstructed
distance would be more suitable.

3|P| denotes the cardinality of a set P.

GAO ET AL.: VISIBLE REVERSE K-NEAREST NEIGHBOR QUERY PROCESSING IN SPATIAL DATABASES 3

 We extend our techniques to several variations of
VRNN queries, including VRkNN search, δ-VRkNN
search, and CVRkNN search.

 We conduct extensive experiments using both real and
synthetic datasets to demonstrate the performance of
our proposed algorithms in terms of efficiency and ef-
fectiveness.

The rest of this paper is organized as follows. Section 2
formalizes VRkNN query and reviews related work. Sec-
tion 3 discusses how to determine whether an object is
visible to q in the presence of obstacles, and introduces
the concept of visible region to improve the search per-
formance. Section 4 proposes an efficient algorithm for
processing VRNN queries and conducts analytical analy-
sis to prove its correctness. Section 5 extends our solution
to tackle several VRNN query variants. Extensive ex-
perimental evaluations and our findings are reported in
Section 6. Finally, Section 7 concludes the paper with
some directions for future work.

2 BACKGROUND
In this section, we present the formal definition of
VRkNN query and reveal its characteristics, and then sur-
vey related work, including RNN/RkNN search algo-
rithms and visibility queries. Table 1 lists the symbols
used in this paper.

TABLE 1
FREQUENTLY USED SYMBOLS

Notation Description
P
O
Tp

To

q
e
VRq

Lq

CR
RkNN(q)
VkNN(q)
VRkNN(q)

A set of data points in a two-dimensional space
A set of obstacles in a two-dimensional space
The R-tree on P
The R-tree on O
A query point
An entry (point or MBR node) in an R-tree
The visible region of q

A constrained region
Result set of a RkNN query issued at q
Result set of a VkNN query issued at q
Result set of a VRkNN query issued at q

A list that keeps the obstacle lines of the obstacles affecting the visibility of q

2.1 Problem Statement
Given a data set P, an obstacle set O, and a query point q
in a two-dimensional (2D) space, the visibility between
two points is defined in Definition 1, based on which we
formulate VkNN and VRkNN queries in Definition 2 and
Definition 3, respectively.
Definition 1 (Visibility). Given O in a 2D space, points p

and p′ are visible to each other iff the straight line connect-
ing p and p′ does not cut through any obstacle o in O, i.e., ∀
o ∈ O, pp' o∩ = ∅ .

Definition 2 (Visible k nearest neighbor query) [10].
Given P, O, q in a 2D space, and an integer k (≥ 1), a visi-
ble k nearest neighbor (VkNN) query finds a set of points
VkNN(q) ⊆ P, such that (i) ∀p ∈ VkNN(q) is visible to q;
(ii) |VkNN(q)| ≤ k4; and (iii) ∀ p′ ∈ P − VkNN(q) and ∀p

4The cardinality of VkNN(q), i.e., |VkNN(q)|, may be smaller than k
due to the obstruction of obstacles.

∈ VkNN(q), if p′ is visible to q, dist(p, q) ≤ dist(p′, q).
Definition 3 (Visible reverse k-nearest neighbor query).

Given P, O, q in a 2D space, and an integer k (≥ 1), a visi-
ble reverse k-nearest neighbor (VRkNN) query retrieves
a set of points VRkNN(q) ⊆ P, such that ∀ p ∈ VRkNN(q),
q ∈ VkNN(p), i.e., VRkNN(q) = {p ∈ P | q ∈ VkNN(p)}.
Next, some important properties of the VRkNN query

that will be utilized to process VRkNN search are pre-
sented in Property 1, Property 2, and Property 3, respec-
tively.
Property 1. The visible reverse k nearest neighbors (VRkNNs)

of a query point q might not be localized to the neighborhood
of q.

Property 2. Given a query point q, the cardinality of q’s
VRkNNs (i.e., |VRkNN(q)|) varies by the position of q and
the distributions of data points/obstacles.

Property 3. p ∈ VkNN(q) does not necessarily imply p ∈
VRkNN(q) and vice versa.
In order to facilitate the understanding, we illustrate

those properties using the example depicted in Figure
1(b). First, although point p1 is the furthest from a speci-
fied query point q compared with other points, it is still
an answer point to the VRNN query issued at q (i.e., p1 ∈
VRNN(q)). In contrast, point p2 that is closer to q than p1 is
not included in VRNN(q). Second, for the same k, VRkNN
queries issued at different locations may obtain different
results with different number of answer points. As an
example, |VRNN(q)| = |{p1}| = 1, |VRNN(q′)| = |{p3,
p4}| = 2, and |VRNN(q′′)| = |∅| = 0. Third, the relation-
ship of visible nearest neighbor is asymmetric. For in-
stance, VNN(q) = {p2}, but VRNN(q) = {p1} that does not
contain p2.

2.2 Related Work

2.2.1 Algorithms for RNN/RkNN Search
Since the concept of RNN was first introduced by Korn
and Muthukrishnan in [6], many algorithms have been
proposed, which can be divided into three categories. The
first category is pre-computation-based [6], [19]. For each
point p, it pre-computes the distance from p to its nearest
neighbor p′ (i.e., NN(p)) and forms a vicinity circle cir(p, p′)
that is centered at p and has dist(p, p′) as the radius. For a
given query point q, it examines q against all the vicinity
circles cir(p, p′) with p ∈ P, and those having their vicinity
circles enclosing q form the final result, i.e., RNN(q) = {p ∈
P | q ∈ cir(p, NN(p))}. To facilitate the examination, all the
vicinity circles can be indexed by RNN-tree [6] or RdNN-
tree [19]. Approaches of this category mainly have two
shortcomings. First, both the index construction cost and
the index update overhead are very expensive. To ad-
dress this problem, bulk insertion in the RdNN-tree has
been proposed in [9]. Second, although these methods can
be extended to handle the RkNN retrieval (if the corre-
sponding kNN information for each point is available),
they are limited to answer RkNN queries for a fixed k. To
support various k, an approach for RkNN search with
local kNN-distance estimation has been developed in [18].

The second category does not rely on pre-computation

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 200X

but adopts a filter-refinement framework [13], [14], [16].
In the filter step, the space is pruned according to defined
heuristics, and a set of candidate objects are retrieved
from the dataset. In the refinement step, all the candidates
are verified according to kNN search criteria, and those
false hits are removed. For example, based on a given
query point q, the original 2D data space can be parti-
tioned around q into 6 equal regions, such that the NNs of
q found in each region are the only candidates of the RNN
query [14]. Thus, in the filter step, 6 constrained NN que-
ries are conducted to find the candidates in each region;
and then, at the second step, NN queries are applied to
eliminate the false hits. The efficiency of this approach is
owing to the small number of candidates, e.g., at most 6
for an RNN query in a 2D space. However, the number of
candidates grows exponentially with the increase of the
search space dimensionality, meaning that the search effi-
ciency can only be guaranteed in a low-dimensional space.
To efficiently process RNN queries in a high-dimensional
space, an approximated algorithm is proposed in [13]. It
retrieves m nearest points to q as candidates with m (a
randomly selected number) larger than k, and then veri-
fies the candidates using range queries. Nevertheless, the
accuracy and performance of this algorithm is highly de-
pendent on m. The larger the m is, the more candidates
are identified. Consequently, it is more likely that a com-
plete result set is returned but with a higher processing
cost. A small m favours the efficiency, whereas it may
incur false misses, i.e., points that are actual reverse k near-
est neighbors but missed from the final query result set.

p1
p2

p3

p4

q

p6

p5

N
⊥(p4, q)

⊥(p1, q)

⊥(p3, q)
Fig. 2. Example of TPL algorithm.

In order to conduct exact RNN search, an efficient algo-
rithm, called TPL, is proposed in [16]. TPL exploits a half-
plane property to locate RkNN candidates. Applying the
best-first traversal paradigm, TPL traverses the data R-tree
to retrieve the NNs of q as RkNN candidates. Every time
an unexplored data point p is retrieved, a half-plane is con-
structed along the perpendicular bisector between p and q,
denoted as ⊥(p, q). The bisector divides the data space
into two half-planes: HPq (p, q) that contains q and HPp (p,
q) that contains p. Any object, including both points and
minimum bounding rectangle (MBR), falling completely
inside HPp (p, q) must have p closer to it than q. As shown
in Figure 2, the bisector ⊥(p3, q) partitions the space into
two half-planes. As point p1 falls into the half-plane HPq
(p3, q), it is closer to q than to p3. In addition, the number
of half-planes HPp (p, q) that a given point p′ falls in

represents the number of data points that are closer to p′
than q. Hence, if a data point is within at least k HPp (p, q)
half-planes, it cannot be a qualifying RkNN candidate,
and thus can be safely discarded. The filter step termi-
nates when all the nodes of R-tree are either pruned or
visited. As illustrated in Figure 2, points p1, p3, and p4 are
identified as the RNN candidates in the filter step, while
point p2 that is inside HPp1 (p1, q) ∩ HPp3 (p3, q) and N (en-
closing points p5, p6) that is within HPp3 (p3, q) ∩ HPp4 (p4,
q)) are filtered out. Later, in the refinement step, TPL
eliminates false hits by reusing the pruned points/MBRs.
Continuing the running example, points p3 and p4 are
false hits, as their vicinity circles enclose other points. The
final query result set is {p1}. Our proposed algorithms for
VRNN search and its variations employ half-plane property
and visibility check to identify result candidates and prune
the search space.

Algorithms belonging to the third category are to
tackle various RNN/RkNN query variants, such as
bichromatic RNN queries [15], aggregate RNN queries over
data stream [7], and ranked RNN search [8].

2.2.2 Visibility Queries
Visibility computation algorithms that determine object
visibility from a given viewpoint or a viewing cell have
been well-studied in the area of computer graphics and
computational geometry [1]. However, there are only a
few works on visibility queries in the database commu-
nity [5], [11], [12]. The basic idea is to employ various in-
dexing structures (e.g., LoD-R-tree [5], HDoV-tree [12],
etc.) to deal with visibility queries in visualization sys-
tems. These specialized access methods are designed only
for the purpose of visualization test and hence contain
zero distance information. Thus, they are not capable of
supporting efficient VRkNN query processing. Recently,
VkNN search [10] has been investigated, where the goal is
to retrieve the k NNs that are visible to a specified query
point. Further study along this line includes continuous
VkNN retrieval [3].

3 PRELIMINARIES
As VRNN search considers the impact of obstacles on
objects’ visibility, all the objects that are invisible to q for
sure will not be contained in the result. Consequently, an
essential issue we have to address is how to determine
whether an object is visible to q. A simple approach is to
examine a given object p against all the obstacles w.r.t. q,
which is inefficient because the examination of each object
p requires a scanning of the obstacles. In this paper, we
derive a visible region for the query point q, denoted by
VRq, by visiting the obstacle set once, and the visibility of
an object p w.r.t. q can be determined by checking
whether p is located inside VRq. In this section, we explain
the formation of the visible region.

Before we present the detailed formation algorithm,
we first discuss the presentation of a visible region. As
shown in Figure 3, a visible region might be in an irregu-
lar shape, and we can use vertex to represent it. Neverthe-
less, it might not be so straightforward to determine
whether an object is inside an irregular polygon. Alterna-

GAO ET AL.: VISIBLE REVERSE K-NEAREST NEIGHBOR QUERY PROCESSING IN SPATIAL DATABASES 5

tively, we propose to use obstacle lines, defined in Defini-
tion 4, to handle this problem.
Definition 4 (Obstalce line). The obstacle line of an obsta-

cle o5 w.r.t. q, denoted by olo, is the line segment that ob-
structs the sight lines from q.
Suppose the rectangle o depicted in Figure 3 is an ob-

stacle, and its corresponding obstacle line is olo. The shad-
owed area, blocked by olo, is not visible to q, and the rest
(except o) is within the visible region of q (i.e., VRq). Based
on the concept of obstacle line, we can determine the an-
gular bound and the distance bound of an obstacle line w.r.t.
q, which can be utilized to facilitate the visibility checking
of objects.

q x

o

olo.minA
olo.maxA

olo.minD

obstacle line olo
olo.maxD

obstacle

invisible region of q
y search space

olo

Fig. 3. An example obstacle line and its angular and distance bounds.

Taking q as an origin in the search space, the angular
bound of o’s obstacle line (i.e., olo) w.r.t. q is denoted as
[olo.minA, olo.maxA], in which olo.minA and olo.maxA are
respectively the minimum angle and the maximum angle
of olo, and olo.minA ≤ olo.maxA (see Figure 3). If q is located
inside o, the angular bound of olo w.r.t. q is set to [0, 2π].
When olo intersects with the positive x-axis in the search
space, we partition olo horizontally along the x-axis into
olo1 and olo2. In addition, given two obstacles o and o′, if
their angular bounds are disjoint, i.e., [olo.minA, olo.maxA]
∩ [olo′.minA, olo′.maxA] = ∅, they will not affect each
other’s visibility w.r.t. q. The distance bound of o’s obstacle
line w.r.t. q is denoted as [olo.minD, olo.maxD], where
olo.minD and olo.maxD are the minimal distance and the
maximal distance from q to olo, respectively (see Figure 3).

Without any obstacle, the visible region of q (i.e., VRq)
is the entire search space. As obstacles are visited, VRq
gets shrunk. Consequently, an issue we have to solve is
how to decide whether a new obstacle might change the
size of VRq. In the following, we first explain the examina-
tion based on line segments (or edges), namely Edge Visi-
bility Check (EVC), and then extend it for obstacles in rec-
tangular shapes.

EVC gradually examines the obstacles, and maintains
the obstacle lines of all the obstacles found so far which
affect the visibility of a given query point q. Given a new
obstacle o, o might affect those obstacles with angular
bounds overlapping with o’s but definitely not the rest.
Consequently, EVC evaluates the impact of o on the size
of VRq via comparing o’s angular bound against that of
obstacle lines in Lq.

5Although an obstacle o may be an arbitrary convex polygon (e.g., tri-
angle, pentagon, etc.), we assume that o is a rectangle in this paper.

q

o1

o2

o3
olo1

olo2olo3obstacle e2

e4

e3

e1

edge

obstacle line

 q

o1

o2

o3
olo1

olo2olo3
obstacle e2

e4

e3

e1

edge

obstacle line

(a) (b)

Fig. 4. Example of edge visibility check. (a) Obstacle placement. (b)
New visible region.

Due to the space limitation, the pseudo-code of EVC is
skipped, while we use an example depicted in Figure 4 to
illustrate the basic idea. Assume Lq = {olo1, olo2, olo3} and e2
is the edge to be evaluated. According to the angular
bound of each obstacle line l ∈ Lq and that of edge e2, there
are three possible cases: (i) l.maxA ≤ e2.minA (e.g., l = olo1),
indicating that e2 will not affect the visibility of l w.r.t q; (ii)
[l.minA, l.maxA] ∩ [e2.minA, e2.maxA] ≠ ∅ (e.g., l = olo2),
meaning that a detailed examination is necessary as e2 is
very likely to affect the l’s visibility w.r.t. q; and (iii)
l.minA ≥ e2.maxA (e.g., l = olo3), which indicates that l and
all the remaining obstacle lines in Lq with minA larger
than that of l’s will not be affected by e2, and thus the
evaluation on e2 can be terminated.

Now the only left task is how to change Lq when a new
obstacle line ln overlaps with some existing obstacle line l
in Lq (i.e., case (ii) above). Again, there are three possible
cases. First, l.maxD ≤ ln.minD holds, which means that ln
has no impact on q’s visible region VRq. For example, in
Figure 4(b), although e1 overlaps with o1 in terms of angu-
lar bounds, it is invisible to q and hence can be ignored.
Second, l.minD ≥ ln.maxD satisfies, which indicates that
the entire ln is visible to q. Thus, ln is inserted into Lq, and
the part of l that is blocked by ln is removed. In Figure
4(b), for instance, e4 is within the angular bound of o3 and
its maximal distance to q (i.e., e4.maxD) is smaller than the
minimal distance between o3’s obstacle line olo3 and q (i.e.,
olo3.minD). Consequently, e4 that is visible to q is included
into Lq and olo3 is shrunk, as shown in Figure 4(b). Third, ln
and l intersects, meaning that part of ln is visible to q and
the other part of l obstructed by ln becomes invisible to q.
Lq needs to include the new visible part of ln and removes
the invisible part of l. As an example, in Figure 4(b), edge
e3 and the obstacle line of o1 (i.e., olo1) intersect, and edge e2
and o2’s obstacle line olo2 intersect. Thus, we find the inter-
section points, and then update Lq. After evaluating new
edges e1, e2, e3, and e4, the visible region of q (i.e., VRq) is
updated to the shaded area (containing the shaded region
highlighted in dashed line), as illustrated in Figure 4(b).

Next, we explain how to extend the algorithm of EVC
to determine the impact of a rectangle N on VRq, namely
Object Visibility Check (OVC). The basic idea of OVC is to
invoke EVC to evaluate the edges of a rectangle. It is
worth noting that OVC only needs to evaluate at most two
out of four edges of a rectangle, because at most two
edges may affect the formation of VRq. Take the obstacle
o7 (i.e., the rectangle that is formed by edges e1, e2, e3, and
e4) in Figure 5(a) as an example. Since a specified query

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 200X

point q lies in the southwest of o7, only the two edges e1
and e4 facing towards q need to evaluate, whereas the
other two edges e2 and e3 are ignored. During the process-
ing of OVC, we distinguish the following two possible
situations: (i) if two evaluated edges of N are invisible to q,
OVC returns IV to indicate N is invisible to q and hence N
and all its enclosed child nodes can be pruned away; oth-
erwise, (ii) two evaluated edges of N are visible (partially
or completely) to q, OVC returns AV or PV to indicate
that N is all-visible (i.e., completely visible) or partially
visible to q. If N represents an obstacle, the impact of N’s
edges on VRq is evaluated by EVC, which updates Lq if
necessary. Otherwise, N must be an intermediate node
and its child nodes are accessed for further exploration.
We omit the pseudo-code of OVC due to space limitation.

Algorithm 1 Visible Region Computation Algorithm (VRC)
 algorithm VRC (To, q, Lq)
 /* To.root: the root node of R-tree To; IV: invisible */
 1: insert all entries of To.root into min-heap H; list Lq = ∅
 2: while H ≠ ∅ do
 3: de-heap the top entry (e, key) from H
 4: if Lq.isclose = TRUE and mindist(e, q) > MAXl∈Lq(l.maxD) then
 5: break // terminate
 6: if e is an obstacle then
 7: OVC (e, Lq, q) // check e’s visibility w.r.t. q
 8: else // e is a MBR (i.e., an intermediate node)
 9: for each entry ei ∈ e and OVC (ei, Lq, q) ≠ IV do
10: insert (ei, mindist(ei, q)) into H

We are now ready to present our Visible Region Compu-

tation Algorithm (VRC). We assume all the obstacles are
indexed by an R-tree To, and VRC traverses To in a best-
first manner, with unvisited nodes maintained by a min-
heap H sorted based on ascending order of their minimal
distances to a given query point. Algorithm 1 shows the
pseudo-code of VRC algorithm. It continuously checks
the head entry e of H. The detailed examination varies,
dependent on the type of e. If e is an obstacle, it is checked
against all the obstacle lines preserved in Lq (lines 6-7). If
it is visible to q, e might contribute to the formation of VRq
and thus Lq is updated. On the other hand, e must be a
node and all its child entries that are visible (completely or
partially) to q are en-heaped for later examination (lines 8-
10). VRC also exploits an early termination condition (lines
4-5), as proved by Lemma 1.
Lemma 1. Suppose heap H maintains all the unvisited nodes

sorted in ascending order of their minimal distances to the
query point q and list Lq keeps the obstacle lines of all the ob-
stacles found so far that affect the visibility of q. If Lq is
closed (i.e., ∪l∈Lq[l.minA, l.maxA] = [0, 2π]), denoted as
Lq.isclose = TRUE, and mindist(e, q) > MAXl∈Lq(l.maxD), e
and all the rest entries in H are invisible to q.

Proof. Suppose there is an entry e with mindist(e, q) >
MAXl∈Lq(l.maxD) = dmax visible to q. As e is visible to q,
there must be at least one line segment issued at q and
reaching a point of e (denoted as p) without cutting
through any other obstacle (by Definition 1). Since Lq is
closed, without loss of generality, we can assume the
extension of line segment qp intersects an obstacle line
l ∈ Lq at point p′ with dist(p, q) ≤ dist(p′, q) ≤ dmax. As we
know mindist(e, q) ≤ dist(p, q) holds. Hence, mindist(e, q)

≤ dmax = MAXl∈Lq(l.maxD) satisfies, which contradicts
our previous assumption.

o1

o2

o3

o4

o5

o6

o7

o8

N1

N2 N3

obstacle line

invisible region of q visible region of q

olo1

olo2

olo3

olo5

olo6

olo62olo61

olo7

q

obstacle

e1

e2

e3

e4

N1 N2 N3

o1 o2 o3 o4 o5 o6 o7 o8

Root

N1 N2 N3

(a) (b)

Fig. 5. Example of VRC algorithm. (a) Obstacle placement. (b) The
obstacle R-tree.

An illustrative example of the VRC algorithm is de-
picted in Figure 5, where obstacle set O = {o1, o2, o3, o4, o5,
o6, o7, o8} is indexed by the R-tree To shown in Figure 5(b).
We use a list Lq to store the obstacle lines of all the obsta-
cles that can affect the visibility of q, sorted according to
ascending order of their minimum bounding angles; and
a heap H to maintain all the unvisited entries, sorted
based on their minimal distances to q. Initially, H = {N1,
N2, N3} and the algorithm always de-heaps the top entry
from H for examination until H becomes empty. First, N1
is accessed. As it is visible to q, its child nodes are en-
heaped for later examination, after which H = {o1, N2, N3,
o3, o2}. Then, o1 is evaluated. Since it is the first obstacle
checked, o1 for sure affects q’s visibility and is added to Lq
(= {olo1}). Third, N2 is checked. According to current Lq, N2
is visible to q and thus its child nodes are en-heaped, with
H = {o5, N3, o3, o2, o4, o6}. Fourth, o5 is examined and be-
comes the second obstacle affecting the visibility of q, i.e.,
Lq = {olo5, olo1}. Next, N3 is de-heaped and its child nodes
are en-heaped into H (= {o7, o3, o2, o4, o8, o6}). In the sequel,
VRC de-heaps obstacles from H and keeps updating Lq
until H = ∅. Finally, Lq = {olo7, olo62, olo5, olo3, olo2, olo1}, in
which olo62 is the partial obstcle line of obstacle o6, as illus-
trated in Figure 5(a).

4 VRNN QUERY PROCESSING
In this section, we explain how to process VRNN query.
We first present the pruning strategy followed by the de-
tails of VRNN search algorithm. Then, we analyse the
cost of VRNN algorithm and prove its correctness.

4.1 Pruning Strategy
In order to improve the search performance, we utilize
half-plane property (as [16]) and visibility check (discussed in
Section 3) to prune the search space. Consider the per-
pendicular bisector between a data point p1 and a given
query point q, denoted by ⊥(p1, q) i.e., line l1 in Figure 6.
The bisector divides the whole data space into two half-
planes, i.e., HPp1 (p1, q) containing p1 (i.e., trapezoid EFCD)
and HPq (p1, q) containing q (i.e., trapezoid ABFE). All the

GAO ET AL.: VISIBLE REVERSE K-NEAREST NEIGHBOR QUERY PROCESSING IN SPATIAL DATABASES 7

data points (e.g., p2, p3) and nodes (e.g., N1) that fall com-
pletely inside HPp1 (p1, q) and are visible to p1 must have p1
closer to them than q, and thus they cannot be/contain a
VRNN of q. However, all the data points (e.g., p6, p7) and
nodes (e.g., N2, N3) that fall into HPp1(p1, q) but are par-
tially-visible/invisible to p1 might become or contain a
VRNN of q. Therefore, they cannot be discarded, and a
further examination is necessary. In the following de-
scription, we term p1 as a pruning point.

q

p1

p4

p5

p6

p7

⊥(p1, q)

p2

p3

obstacle

N1
N2

N3

invisible region of p1

o1
pruned by of p1

A B

CD

E

F

l1

Fig. 6. Illustration of pruning based on half-planes and visibility check.

4.2 The VRNN Algorithm
Based on the above pruning strategy, the basic idea of the
VRNN algorithm proposed in this paper tries to prune
away unqualified data objects/nodes to save the traversal
cost. Consequently, it adopts a two-step filter-and-
refinement framework, assuming that data set P and ob-
stacle set O are indexed by two separate R-trees. In order
to enhance the performance, these two steps are well in-
tegrated into a single traversal of the trees. In particular,
the algorithm accesses nodes/points in ascending order
of their distances to the query point q to retrieve a set of
potential candidates, maintained by a candidate set Sc. All
the data points and nodes that cannot be/contain a
VRNN of q are discarded by our proposed pruning strat-
egy, and inserted (without being visited) into a refinement
point set Sp and a refinement node set Sn, respectively. At
the second step, the entries in both Sp and Sn are used to
eliminate false hits.

Algorithm 2 VRNN Search Algorithm (VRNN)
 algorithm VRNN (Tp, To, q)
 /* Sc: candidate set; Sp: refinement point set; Sn: refinement node set;
 Sr: result set of a VRNN query */
 1: initialize sets Sc = ∅, Sp = ∅, Sn = ∅, Sr = ∅
 2: VRNN-Filter (Tp, To, q, Sc, Sp, Sn)
 3: VRNN-Refinement (q, Sc, Sp, Sn, Sr)
 4: return Sr

Algorithm 2 presents the pseudo-code of the VRNN

Search Algorithm (VRNN) that takes data R-tree Tp, obsta-
cle R-tree To, and a query point q as inputs, and outputs
exactly all the visible reverse nearest neighbors (VRNNs)
of q. We use an example shown in Figure 7 to elaborate
the VRNN algorithm. Here, P = {p1, p2, …, p13, p14}, O = {o1,
o2, o3, o4}, and the corresponding Tp is depicted in Figure
7(b). A primary heap Hw is maintained to keep all the un-
visited entries ordered in ascending order of their mini-
mal distances to the query point q.

4.2.1 The Filter Step
Initially, VRNN visits the root node of Tp, inserts its child

entries N8 and N9 that are visible to q into Hw (= {N8, N9}),
and adds the entry N10 that is invisible to q to Sn (= {N10}).
Then, the algorithm de-heaps N8, accesses its child nodes,
and en-heaps all the entries that are visible to q, after
which Hw = {N3, N9, N1, N2}. Next, N3 is visited and it up-
dates Hw to {p1, N9, N1, N2, p11}. The next de-heaped entry
is p1. As it is visible to q, p1 is the first VRNN candidate
(i.e., Sc = {p1}) and becomes the current pruning point cp
that is used for pruning in the subsequent execution.

qp1

p2

p3

p5

p6

p7

p4

p9

p8

p11

p10 p12

p13

p14

N3

N1

N2

N4

N5
N6

N7

N8

N9
N10

⊥(p1, q)

⊥(p2, q)

⊥(p4, q)

⊥(p8, q)

o1

o2

o3

o4

obstacle

false hit

pruned by p1

pruned by q

invisible region of q visible region of q

N8 N9 N10

N1 N2 N3 N4 N5 N6 N7

Root

N8 N9 N10

p4 p8

p3 p7

N1 N6

p1 p11

p2 p5 p6 p10

p9 p12 p13 p14

N3

N2 N4 N5

N7

(a) (b)

Fig. 7. Example of VRNN algorithm. (a) Data and obstacle placement.
(b) The data R-tree.

The next de-heaped entry is N9. As cp (= p1) is not
empty, VRNN uses Trim algorithm 6 (as [16]) to check
whether N9 can be pruned. As N9 overlaps with HPq (cp, q),
its child nodes have to be accessed. Child node N5 is dis-
carded as it locates inside HPcp (cp, q) and it is visible
(completely) to cp, meaning that it cannot contain any
qualified candidate. Thus, N5, which is an MBR, is added
to Sn, i.e., Sn = {N10, N5}. The other child entry N4 is en-
heaped into Hw (= {N4, N1, N2, p11}) because it falls par-
tially into HPcp (cp, q) and is visible (completely) to cp, in-
dicating that N4 may contain VRNN candidates. VRNN
proceeds to de-heap N4, and visits its child entries, i.e.,
data points p2 and p5. As p2 falls inside HPq (cp, q) and is
visible to cp, it is added to Hw (= {p2, N1, N2, p11}). On the
other hand, point p5 is inserted into Sp = {p5} since it lo-
cates inside HPcp (cp, q) and is visible to cp. Next, p2 is de-
heaped. As it cannot be pruned by current pruning point
(p1), it becomes the second pruning point and maintained
by an auxiliary heap Ha = {p2}.

Subsequently, VRNN accesses node N1 and inserts its
child points p4 and p8 into Hw (= {N2, p4, p8, p11}). Note that
although p8 falls fully into HPcp (cp, q), it is invisible to the
current pruning point (i.e., p1) due to the obstruction of
obstacle o2, and hence p8 cannot be pruned by cp. The next
processed entry N2 is added to Sn (= {N10, N5, N2}) directly,
as it locates inside HPcp (cp, q) and is visible (completely) to
cp. In the sequel, p4 and p8 are retrieved and inserted into
Ha, after which Ha = {p2, p4, p8}. Finally, p11 is de-heaped
and it is added to Sp = {p5, p11} since it satisfies the pruning

6If a node MBR can be completely discarded, the Trim algorithm re-
turns ∞; otherwise it returns the minimum distance between a given
query point q and the residual MBR. Similarly, it will return the actual
distance from a point to q if the point cannot be pruned, or ∞ otherwise.
Please refer to [16] for details.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 200X

condition. Here, as Hw is empty, the first loop stops, with
Ha, Sc, Sp, and Sn being {p2, p4, p8}, {p1}, {p5, p11}, and {N10, N5,
N2}, respectively. The heap contents at each phase during
the aforementioned filter process are illustrated in Table 2
where, for simplicity, we omit associated distances to q
for node MBRs and data points.

TABLE 2

HEAP CONTENTS DURING THE FIRST LOOP OF FILTER STEP

Action Hw
Visit root
Visit N8

Visit N3

Process p1

Visit N9

Visit N4

Process p2

Visit N1

Process N2

Process p4

Process p8

Process p11

{N8, N9}
{N3, N9, N1, N2}
{p1, N9, N1, N2, p11}
{N9, N1, N2, p11}
{N4, N1, N2, p11}
{p2, N1, N2, p11}
{N1, N2, p11}

{p4, p8, p11}
{p8, p11}
{p11}

{N2, p4, p8, p11}

∅

Ha

{p2}

{p2}
{p2, p4}
{p2, p4, p8}

{p2}

∅
∅
∅
∅
∅
∅

{p2, p4, p8}

Sc

{p1}

{p1}
{p1}
{p1}

{p1}

∅
∅
∅

{p1}

{p1}

{p1}
{p1}

Sp

{p5}

{p5}
{p5}
{p5}

{p5}

∅
∅
∅
∅
∅

{p5, p11}

{p5}

Sn

{N10, N5}

{N10, N5, N2}
{N10, N5, N2}
{N10, N5, N2}

{N10, N5}

{N10, N5, N2}

{N10, N5}

{N10}
{N10}
{N10}
{N10}
{N10, N5}

Algorithm 3 Filter for VRNN Algorithm (VRNN-Filter)
 algorithm VRNN-Filter (Tp, To, q, Sc, Sp, Sn)
 /* Tp.root: the root node of R-tree Tp; IV: invisible; AV: all-visible;
 PV: partially-visible */
 1: insert all entries of Tp.root into min-heap Hw; cp = NULL; Ha = ∅
 2: VRC (To, q, Lq) // compute q’s visible region VRq
 3: while Hw ≠ ∅ do
 4: de-heap the top entry (e, key) from Hw
 5: if e is a data point then
 6: Sc = Sc {∪ e}; cp = e; VRC (To, cp, Lcp)
 7: while Hw ≠ ∅ do
 8: de-heap the top entry (e′, key′) from Hw
 9: if e′ is a data point then
10: if Trim (q, cp, e′) = ∞ and OVC (e′, Lcp, cp) = AV then
11: Sp = Sp {∪ e′}
12: else
13: insert (e′, dist(e′, q)) into Ha
14: else // e′ is a MBR (i.e., an intermediate node)
15: for each entry ei′ ∈ e′ do
16: if OVC (ei′, Lq, q) ≠ IV then
17: if Trim (q, cp, ei′) = ∞ and OVC (ei′, Lcp, cp) = AV then
18: Sp = Sp {∪ ei′} if ei′ is a data point or Sn = Sn {∪ ei′}
 if ei′ is a node
19: else if Trim (q, cp, ei′)=∞ and OVC (ei′, Lcp, cp)=IV then
20: insert (ei′, mindist(ei′, q)) into Ha
21: else
22: insert (ei′, mindist(ei′, q)) into Hw
23: else // OVC (ei′, Lq, q) = IV
24: Sp = Sp ∪ {ei′} if ei′ is a data point or Sn = Sn ∪ {ei′}
 if ei′ is a node
25: swap (Hw, Ha) // change the roles between Hw and Ha
26: else // e is a MBR (i.e., an intermediate node)
27: for each entry ei ∈ e do
28: if OVC (ei, Lq, q) ≠ IV then
29: if cp ≠ NULL and Trim (q, cp, ei) = ∞ and OVC (ei, Lcp, cp) =
 AV then
30: Sp = Sp {∪ ei} if ei is a data point or Sn = Sn {∪ ei} if ei
 is a node
31: else
32: insert (ei, mindist(ei, q)) into Hw
33: else // OVC (ei, Lq, q) = IV
34: Sp=Sp∪{ei} if ei is a data point or Sn = Sn {∪ ei} if ei is a node

Next, the roles of Hw and Ha are switched. In other

words, in the rest of current iteration, the algorithm uses
Hw as an auxiliary heap, while takes Ha as a primary heap.
VRNN proceeds in the same loop until Hw = Ha = ∅, i.e.,
all the points are either pruned (i.e., inserted into Sp) or

become candidates (i.e., inserted into Sc). Finally, we have
Sc = {p1, p2, p4, p8}, Sp = {p5, p11}, and Sn = {N10, N5, N2}.

Algorithm 3 shows the pseudo-code of the Filter for
VRNN Algorithm (VRNN-Filter). When an intermediate
node is visited, it utilizes OVC function to check its visi-
bility to the query point q and then processes it. Similarly,
when a data point is accessed, it uses OVC function to
examine its visibility to the current pruning point cp and
then processes it. For each pruning point cp discovered,
VRNN-Filter applies VRC algorithm to get its visible re-
gion, i.e., finding the obstacles from To that can affect cp’s
visibility. Note that all pruned entries are preserved in
their corresponding refinement sets but not removed
permanently, as they will be used to verify candidates in
the next refinement step.

4.2.2 The Refinement Step
When the filter step finishes, the refinement step starts,
with the pseudo-code of Refinement for VRNN Algorithm
(VRNN-Refinement) depicted in Algorithm 4. In the first
place, VRNN-Refinement conducts self-filtering (lines 2-4),
that is, it prunes away the candidates that are visible to
each other and are closer to each other than to q. Then, the
algorithm enters the refinement step, where it verifies
whether each remaining candidate in Sc is a true result
(lines 7-18). First, it calls Round of Refinement Algorithm
(Refinement-Round), depicted in Algorithm 5, to elimi-
nate false candidates from Sc based on the contents of Sp
and Sn, without any extra node access. The remaining
points p in Sc need further refinement, with each associ-
ated with p.toVisit that records the nodes which might
enclose some not-yet visited points that may invalidate p.
Hence, nodes in p.toVisit are visited, with each access up-
dating the contents of Sp and Sn. Note that Sp and Sn are
reset to ∅ after each round of Refinement-Round (line 12)
to avoid duplicated checking. The refinement step con-
tinues until Sc = ∅.

Algorithm 4 Refinement for VRNN Algorithm (VRNN-Refinement)
 algorithm VRNN-Refinement (q, Sc, Sp, Sn, Sr)
 1: for each point p ∈ Sc do
 2: for each other point p′ ∈ Sc do
 3: if OVC (p′, Lp, p) ≠ IV and dist(p′, p) < dist(q, p) then
 4: Sc = Sc − {p}; goto 1
 5: if p is not eliminated from Sc then
 6: initialize p.toVisit = ∅
 7: if Sc ≠ ∅ then
 8: repeat
 9: Refinement-Round (q, Sc, Sp, Sn, Sr)
10: let N be the lowest level node of p.toVisit for p ∈ Sc
11: remove N from all p.toVisit and access N
12: Sp = Sn = ∅ // for the next round
13: if N is a leaf node then
14: Sp = {p′ | p′ ∈ N and p′ is visible to p}
15: else
16: Sn = {N′ | N′ ∈ N and N′ is visible to p}
17: else
18: return // terminate

Now we explain the details of Refinement-Round algo-

rithm. Specifically, it has three tasks, i.e., pruning false
positive, identifying nodes that might invalidate the re-
maining points in Sc, and returning final result objects.
First, points p in Sc satisfying any of following conditions

GAO ET AL.: VISIBLE REVERSE K-NEAREST NEIGHBOR QUERY PROCESSING IN SPATIAL DATABASES 9

are for sure false positives and can be pruned: (i) ∃ p′ ∈ Sp
such that p′ is visible to p and dist(p′, p) < dist(q, p) (lines
2-4), or (ii) ∃ N ∈ Sn such that N is all-visible to p and
minmaxdist(N, p) < dist(q, p) (lines 5-8). Note that min-
maxdist(N, p) is the upper bound of the distance between
p and its closest point in N. Thus, minmaxdist(N, p) < dist(q,
p) meaning that N contains at least one point that is closer
to p than to q. For example, in Figure 7, p2 ∈ Sc can be
safely discarded because N5 ∈ Sn is all-visible to it and
minmaxdist(N5, p2) < dist(q, p2). Second, ∀ p ∈ Sc can be
reported immediately as an actual VRNN of q when the
following two conditions are satisfied: (i) ∀ p′ ∈ Sp, p′ is
either invisible to p or dist(p′, p) > dist(q, p), and (ii) ∀ N ∈
Sn, it is all-visible/partially-visible to p and mindist(N, p) >
dist(q, p). In our example, p4 and p8 satisfy the above con-
ditions, and hence they are removed from Sc and reported
as the VRNNs of q immediately. The point p ∈ Sc that
cannot be pruned or reported as a real result must have
some nodes in Sn that contradict above conditions, and
we utilize a set p.toVisit to record all those nodes (lines 9-
11). Take p1 as an example. As p1.toVisit = {N2}, we access
N2 and find out that the enclosed point p3 is the VNN of p1

and thus p1 is invalidated.

Algorithm 5 Round of Refinement Algorithm (Refinement-Round)
 algorithm Refinement-Round (q, Sc, Sp, Sn, Sr)
 1: for each point p ∈ Sc do
 2: for each point p′ ∈ Sp do
 3: if OVC (p′, Lp, p) ≠ IV and dist(p′, p) < dist(q, p) then
 4: Sc = Sc − {p}; goto 1
 5: for each node N ∈ Sn do
 6: if OVC (N, Lp, p) = AV then
 7: if minmaxdist(N, p) < dist(q, p) then
 8: Sc = Sc − {p}; goto 1
 9: for each node N ∈ Sn do
10: if OVC (N, Lp, p) ≠ IV and mindist(N, p) < dist(q, p) then
11: add N to p.toVisit
12: if p.toVisit = ∅ then
13: Sc = Sc − {p}; Sr = Sr ∪ {p}

If there are multiple nodes in p.toVisit for each p re-

maining in Sc, we can access all of them to invalidate the
candidate objects. However, not all the accesses are nec-
essary. Hence, we adopt an incremental approach to ac-
cess the lowest level nodes first in order to achieve a better
pruning. In our example shown in Figure 7, the second
refinement round starts with Sc = {p1}, Sp = {p3, p7} (i.e.,
points enclosed in N2), Sn = ∅, and Sr = {p4, p8}. Point p1 is
eliminated as a false positive since p3 is visible to p1 and
dist(p3, p1) < dist(q, p1) holds, and then the VRNN algo-
rithm terminates.

Notice that although VRNN-Refinement and Refine-
ment-Round algorithms are similar to the TPL-
Refinement and TPL-Refinement-Round algorithms pro-
posed in [16], they integrate object visibility check during
the refinement process.

4.3 Discussion
In a two-dimensional space, like the existing SAA [14]
and TPL [16] methods for RNN queries, the proposed
VRNN algorithm does not require any pre-processing
and can return exact result. However, the VRNN algo-
rithm incurs a higher query cost as it considers the obsta-

cle influence on the visibility of objects and it has to trav-
erse not only the data set P but also the obstacle set O. In
this section, we present the time complexity of the VRNN
algorithm and prove its correctness.

The cost of R-tree traversal dominates the total over-
head of the VRNN algorithm. We first derive the upper
bound of the number of traversals on the R-trees Tp and To,
respectively.
Lemma 2. The VRNN algorithm traverses Tp at most once,

and To at most (|Sc| + 1) times, with Sc representing the
candidate set.

Proof. As shown in Algorithm 3, VRNN-Filter algorithm
only traverses Tp once to obtain a VRNN candidate set
Sc. It then uses half-plane property and visibility check to
prune false candidates and invokes the VRC algorithm
once for each candidate p ∈ Sc to find the obstacles affect-
ing its visibility (line 6 in Algorithm 3). Moreover,
VRNN-Filter also calls the VRC algorithm once to re-
trieve the obstacles that can affect the visibility of q
(line 2 in Algorithm 3). Consequently, the VRNN algo-
rithm traverses To at most (|Sc| + 1) times.
Let |Tp| and |To| be the tree size of Tp and To respec-

tively, and |Sc|, |Sp|, and |Sn| be the cardinality of Sc, Sp,
and Sn respectively. We have the following theorems.
Theorem 1. The time complexity of the VRNN algorithm is O

(log|Tp|×(|Sc|+1)log|To|+|Sc|2+|Sc|(|Sp|+|Sn|)).
Proof. The VRNN algorithm follows the filter-refinement

framework. In the filter step, it takes O (log|Tp| ×
(|Sc| + 1) log|To|) for obtaining candidate set Sc; in the
refinement step, it incurs O (|Sc|2 + |Sc| (|Sp| + |Sn|))
to eliminate all the false hits. Therefore, the total time
complexity of the VRNN algorithm is O (log|Tp| ×
(|Sc| + 1) log|To| + |Sc|2 + |Sc| (|Sp| + |Sn|)).

Theorem 2. The VRNN algorithm retrieves exactly the
VRNNs of a given query point q, i.e., the algorithm has no
false negatives and no false positives.

Proof. First, the VRNN algorithm only prunes away those
non-qualifying points or nodes in the filter step by us-
ing our proposed pruning strategy. Thus, no answer
points are missed (i.e., no false negatives). Second,
every candidate p ∈ Sc is verified in the refinement step
by comparing it with each data point retrieved during
the filter step and each node that might contain VNNs
of p, which ensures no false positives.

5 EXTENSIONS
This section discusses three interesting variants of VRNN
queries, namely VRkNN, δ-VRkNN, and CVRkNN queries.

5.1 The VRkNN Search
A VRkNN query retrieves all the points in a dataset
whose VkNN sets include q, as formalized in Definition 3.
Our solution to VRNN retrieval can be adapted to sup-
port VRkNN search. The detailed extensions are de-
scribed as follows. First, the pruning strategy (presented
in Section 4.1) can be extended to an arbitrary value of k.
Assume a VRkNN query and a data set P with n (≥ k) data

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 200X

points p1, p2, …, pn. Let D = {θ1, θ2, …, θk} be a subset of P.
If a point/node fully falls into 1

k
i=∩ HPθi (θi, q) and is all-

visible to each point in D, it must have k points (i.e., θ1, θ2,
…, θk) closer to it than q. Consequently, it can be safely
pruned away. On the other hand, if a point/node locates
inside 1

k
i=∩ HPθi (θi, q) and is partially-visible/invisible to

any subset of D, it can become or contain a VRkNN of q
and thus needs further examination.

Next, we explain how to extend the proposed algo-
rithms for VRkNN query processing. To solve a VRkNN
query, we also follow the filter-refinement framework. In
particular, we find a set Sc of VRkNN candidates that con-
tains all the actual answer points and then eliminate all
the false candidates in Sc. The VRNN-Filter algorithm can
be easily modified to support VRkNN retrieval, by inte-
grating the above-mentioned pruning strategy. Specifi-
cally, the filter step of VRkNN search first finds an initial
candidate set Sc which contains the k data points closest to
a given query point q and meanwhile visible to q. Then,
the algorithm proceeds to retrieve candidates as well as to
prune away all the non-qualifying data points and node
MBRs that satisfy the aforementioned pruning condition.
Data points and node MBRs discarded are kept in the
refinement point set Sp and the refinement node set Sn,
respectively. The filter phase finishes when all the nodes
that may include candidates have been visited.

Algorithm 6 k-Refinement-Round Algorithm (k-Refinement-Round)
 algorithm k-Refinement-Round (q, Sc, Sp, Sn, Sr)
 1: for each point p ∈ Sc do
 2: for each point p′ ∈ Sp do
 3: if OVC (p′, Lp, p) ≠ IV and dist(p′, p) < dist(q, p) then
 4: p.cnt = p.cnt + 1
 5: if p.cnt = k then
 6: Sc = Sc − {p}; goto 1
 7: for each node N ∈ Sn do
 8: if OVC (N, Lp, p) ≠ IV and mindist(N, p) < dist(q, p) then
 9: add N to p.toVisit
10: if p.toVisit = ∅ then
11: Sc = Sc − {p}; Sr = Sr {∪ p}

The VRNN-Refinement algorithm can be extended for

VRkNN retrieval as well. Similarly, the refinement step of
VRkNN search is also executed in rounds, which are
shown in Algorithm 6. Different from Refinement-Round,
a point p ∈ Sc can be pruned only if there are at least k
points visible to p within dist(p, q). Hence, we associate a
counter p.cnt (initially set to 0) with each point p during
the processing. Every time the algorithm finds a point p′
that satisfies the following two conditions: (i) p′ is visible
to p, and (ii) dist(p′, p) < dist(q, p), the p’s counter p.cnt is
increased by one. Eventually, p can be removed as a false
hit when p.cnt = k. The refinement phase terminates after
all the points in Sc have been eliminated or verified. We
omit the pseudo-codes of the filter and main refinement
algorithms for VRkNN search since they are very similar
as VRNN-Filter and VRNN-Refinement, presented in Al-
gorithm 3 and Algorithm 4, respectively.

5.2 VRkNN Queries with Constraints
In some real applications, users might enforce some con-
straints (e.g., distance, spatial region, etc.) on VRkNN
queries, and thus we introduce the VRkNN query with

maximum visible distance δ constraint (called δ-VRkNN
search) and the VRkNN query with constrained region CR
constraint (called CVRkNN search), respectively. Take the
application outdoor advertisement planning described in
Section 1 as an example. If it is assumed that customers
pay zero attention to the billboard that is located 50 meters
away, δ-VRkNN search with δ = 50 is more suitable, com-
pared with VRkNN search, as it takes the distance con-
straint into account. On the other hand, if P&G only tar-
gets for the customers located in certain area (e.g., the
customers within a shopping mall), CVRkNN query with
constrained region CR set to the specified shopping mall is
more suitable. In this section, we explain how to extend
the CVNN search algorithm to answer δ-VRkNN and/or
CVRkNN queries.

Given a data set P, an obstacle set O, a query point q, a
distance threshold δ, a constrained region CR, and an in-
teger k (≥ 1), (i) a δ-VRkNN query finds a set of points
from P, denoted by δ-VRkNN(q), such that ∀ p ∈ δ-
VRkNN(q), q ∈ VkNN(p), and dist(p, q) ≤ δ, i.e., δ-VRkNN(q)
= {p ∈ P | q ∈ VkNN(p) ∧ dist(p, q) ≤ δ}; and (ii) a CVRkNN
query returns a set of points from P, denoted by
CVRkNN(q), such that ∀ p ∈ CVRkNN(q), q ∈ VkNN(p),
and p ∩ CR ≠ ∅ (i.e., p is inside CR), formally, CVRkNN(q)
= {p ∈ P | q ∈ VkNN(p) ∧ p ∩ CR ≠ ∅}. It is important to
note that, in addition to the position of q and the distribu-
tions of data pints and obstacles, (i) the cardinality of δ-
VRkNN(q), i.e., |δ-VRkNN(q)|, is affected by the value of
δ; and (ii) the cardinality of CVRkNN(q), i.e.,
|CVRkNN(q)|, is dependent on the size and distribution
of CR. As an example, a δ-VRNN (k = 1) query issued at
point q is illustrated in Figure 8(a), where data set P = {p1,
p2, p3, p4}, obstacle set O = {o1, o2}, and its distance con-
straint δ is highlighted in the figure. The final result of
this query is empty, which is different from the result of
VRNN search on the same data and obstacle sets (as
shown in Figure 1(b)) due to the impact of δ.

p1

p2

p3

p4

q
o1

o2
obstacles

obstacles

δ

search region

p1

p2

p3

p4

q
o1

o2
obstacles

obstacles

constrained region

CR

(a) (b)

Fig. 8. Variations of VRNN queries with constraints. (a) δ-VRNN
search. (b) CVRNN search.

The proposed algorithms for VRNN search can be eas-
ily adjusted to support δ-VRNN and CVRNN queries, by
integrating constrained conditions (i.e., distance threshold
δ and constrained region CR) during the query processing.
Moreover, we develop following heuristics to facilitate
the search process. First, since the search region (SR) of δ-
VRNN retrieval is bounded by δ (e.g., the shaded area in
Figure 8(a) representing the SR of the δ-VRNN query is-
sued at q), (i) any obstacle that does not intersect SR can-

GAO ET AL.: VISIBLE REVERSE K-NEAREST NEIGHBOR QUERY PROCESSING IN SPATIAL DATABASES 11

not affect the visibility of objects evaluated currently, and
can be pruned away safely; and (ii) any point/node that
does not locate inside or cross SR can be directly excluded
from the further consideration, because it cannot
be/contain the final answer object. Second, as the final
result of CVRNN search must satisfy the specified region
constraint, (i) any obstacle that is outside CR can be dis-
carded, since it cannot impact the visibility of objects
evaluated currently; and (ii) any point/node that does not
intersect CR can be directly excluded from the further
examination, because it cannot become/contain the actual
answer object. In addition, algorithm can be extended to
support δ-VRkNN and CVRkNN queries, which is similar
to the extension for VRkNN search stated above.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency and effective-
ness of our proposed algorithms for VRNN query and its
variants through experiments on both real and synthetic
datasets. First, Section 6.1 describes the experimental set-
tings, and then Sections 6.2, 6.3, 6.4, and 6.5 report ex-
perimental results and our findings for VRNN, VRkNN,
δ-VRkNN, and CVRkNN queries, respectively. All the
algorithms were implemented in C++, and all the experi-
ments were conducted on a PC with a Pentium IV 3.0
GHz CPU and 2GB RAM, running Microsoft Windows
XP Professional Edition.

6.1 Experimental Setup
We deploy five real datasets7, which are summarized in
Table 3. Synthetic datasets are created following the uni-
form distribution and zipf distribution, with the cardinal-
ity varying from 0.1 × |LA| to 10 × |LA|. The coordinate
of each point in Uniform datasets is generated uniformly
along each dimension, and that of each point in Zipf data-
sets is generated according to zipf distribution with skew
coefficient α = 0.8. All the datasets are mapped to a [0,
10000] × [0, 10000] square. As VRNN search and its
variations involve a data set P and an obstacle set O, we
deploy five different dataset combinations, namely CR,
LL, NL, UL, and ZL, representing (P, O) = (Cities, Rivers),
(LB, LA), (NA, LA), (Uniform, LA), and (Zipf, LA), respec-
tively. Note that the data points in P are allowed to lie on
the boundaries of the obstacles but not in their interior,
and the obstacles in O are allowed to overlap each other.

All data and obstacle sets are indexed by R*-trees [2].
The disk page size is fixed to 1K bytes, such that the
maximum node capacity equals 50 entries for dimension-
ality 2, and the number of nodes/pages for LB, NA, LA,
Cities, and Rivers datasets equals 1178, 9145, 2629, 118,
and 432, respectively. Note that we choose a small page
size to simulate practical scenarios where the cardinalities
of the data and obstacle sets are much larger. The experi-
ments investigate the performance of the proposed algo-
rithms under a variety of parameters which are listed in
Table 4. In each experiment, we vary only one parameter
while the others are fixed at their default values, and run

7LB, NA, and LA are available at http://www.maproom.psu.edu/dcw;
and Cities and Rivers are available at http://www.rtreeportal.org.

200 queries with their average performance reported. The
query distribution follows the underlying dataset distri-
bution and the overall query cost is measured. Both the
I/O overhead (by charging 10ms per page fault, as in [16])
and CPU time contribute to the query cost. We assume
that the server maintains a buffer with LRU as the cache
replacement policy8. Unless specifically stated, the size of
buffer is 0, i.e., the I/O cost is determined by the number
of node/page accesses.

TABLE 3

DESCRIPTION OF REAL DATASETS USED IN EXPERIMENTS

Dataset Cardinality
LB
NA
LA
Cities
Rivers

58,945
470,759
131,461
5,922
21,645

Description
2D point in Long Beach
2D point in North America
2D MBRs of streets in Los Angeles
2D cities (as point) in Greece
2D MBRs of rivers in Greece

TABLE 4
PARAMETER RANGES AND DEFAULT VALUES

Parameter Range
k
|P|/|O|
buffer size (% of the tree size)

 (% of the space width)
CR (% of full space)

1, 2, 4, 8, 16
0.1, 0.2, 0.5, 1, 2, 5, 10
0, 10, 20, 30, 40, 50, 60
6, 12, 18, 24, 30
10, 20, 30, 40, 50

Default
1, 4
1
0
100
100

δ

6.2 Results on VRNN Queries
The first set of experiments verifies the performance of
the proposed VRNN algorithm for VRNN search. First,
we study the effect of the |P|/|O| ratio on the VRNN
algorithm using two dataset combinations (including UL
and ZL). Figure 9 plots the total query cost (in seconds) of
the VRNN algorithm as a function of |P|/|O|, fixing k =
1. In Figure 9, each result is broken into two components,
corresponding to the filter step and the refinement step,
respectively. The percentage inside the bar indicates the
ratio of cost incurred in the filter step to that of the overall
query cost. In addition, we show the percentage of I/O
time in the entire query cost, denoted by I/O%; the cardi-
nality of the candidate set, denoted as |Sc|; and the num-
ber of node accesses on the data R-tree Tp, denoted by
N(Tp). For example, as shown in Figure 9(a), when
|P|/|O| = 1, VRNN accesses 497 out of 2629 nodes of Tp;
its I/O cost contributes to 92% of overall query cost; and
the candidate set Sc has 8.3 objects on average. The total
query cost is around 37 second, while the filtering step
takes 92% of the time.

It is observed that the filter step actually dominates the
overall overhead (> 90%), especially when the |P|/|O|
ratio is small (e.g., 0.1, 0.2). This is because: (i) the filter
step of VRNN needs to traverse the obstacle R-tree To
(|Sc| + 1) times (according to Lemma 2), incurring ex-
pensive I/O cost and a large number of visible region

8Although we use LRU as the buffer replacement policy in our experi-
ments, other buffer replacement policies (e.g., FIFO, MRU, random, etc.)
can also be employed. The buffer replacement policy has a direct impact
on the I/O overhead as it affects the number of nodes/pages accessed
during the search processing. However, it will not change the total per-
formance trend. Furthermore, the LRU buffer has been adopted exten-
sively in the database literature (e.g., [8]).

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 200X

computation operations; (ii) VRNN reuses all the points
and nodes pruned from the filter step to perform candi-
date verification in the refinement step, and thus dupli-
cated accesses to the same points/nodes are avoided; and
(iii) most candidates in Sc are eliminated as false hits di-
rectly by other candidates in Sc or points/nodes main-
tained in the refinement set Sp or Sn, which does not cause
any data access. The remaining candidates can be vali-
dated by visiting a limited number of additional nodes.
This observation is also confirmed by the rest of experi-
ments. In addition, we observe that the cost of VRNN
demonstrates a stepwise behaviour. Specifically, it in-
creases slightly as |P|/|O| changes from 0.1 to 1, but
then ascends much faster as |P|/|O| grows further. The
reason behind is that, as the density of data set P grows,
the number of the candidates retrieved in the filter step
increase as well, which results in more traversals of To,
more visibility checks, and more candidate verifications.

I/O%
0

20

40

60

80

100

0.1 0.2 0.5 1 2 5 10
|P|/|O|

Q
ue

ry
 ti

m
e

(s
ec

)

VRNN-RefinementVRNN-Filter

99% 99%
98% 97%

95%

99%

96%

5.4
73

Filter step percentage

|Sc|
N(Tp)

93%
6

117

93%
7.8
229

93%
8.3
497

92%
8.9

3097

90%
10.8
6894

88%
11.4

12447

86%

0
50

100

150

200

250

Q
ue

ry
 ti

m
e

(s
ec

)

VRNN-RefinementVRNN-Filter

99% 99%
97% 96%

94%

98%

95%

I/O%

0.1 0.2 0.5 1 2 5 10
|P|/|O|

4.9
185

|Sc|
N(Tp)

92%
5

345

91%
6.1
873

90%
6.2

1505

89%
7.2

2987

88%
7.9

6733

85%
8.1

13514

83%

(a) (b)

Fig. 9. VRNN cost vs. |P|/|O| (k = 1, |O| = 131,461). (a) UL. (b) ZL.

0

10

20

30

40

0 10 20 30 40 50 60
Buffer size (% of the tree size)

Q
ue

ry
 ti

m
e

(s
ec

)

VRNN-RefinementVRNN-Filter

99%
99%

98%
97%

95%

98%

96%

I/O%
8.1
465

|Sc|
N(Tp)

92%
8.1
461

91%
8.1
452

88%
8.1
433

86%
8.1
407

83%
8.1
358

76%
8.1
70%

295

0
10
20
30
40
50
60
70

Q
ue

ry
 ti

m
e

(s
ec

)

VRNN-RefinementVRNN-Filter

98%
98%

97%
97%

94%

97%

96%

0 10 20 30 40 50 60
Buffer size (% of the tree size)

I/O%
6.2

1561
|Sc|

N(Tp)

92%
6.2

1553

90%
6.2

1542

88%
6.2

1519

88%
6.2

1461

87%
6.2

1413

83%
6.2

76%

1352

(a) (b)

Fig. 10. VRNN cost vs. buffer size (k = 1, |O| = 131,461). (a) UL
(|P|/|O| = 1). (b) ZL (|P|/|O| = 1).

Finally, we examine the performance of the VRNN al-
gorithm in the presence of an LRU buffer, by fixing k to 1
and varying the buffer size from 0% to 60% of the tree
size. To obtain stable statistics, we measure the average
cost of the last 100 queries, after the first 100 queries have
been performed for warming up the buffer. The results
under UL and ZL dataset combinations are depicted in
Figure 10. The overall query cost is reduced as buffer size
increases. In particular, as the buffer size enlarges, it is
observed that the VRNN-Filter cost drops, whereas the
VRNN-Refinement cost almost remains the same. This is
because the filter step of VRNN requires traversing the

obstacle R-tree To (|Sc| + 1) times. Consequently, it may
access the same nodes (e.g., the root node of To) multiple
times, and hence a buffer space can improve the search
performance by keeping the nodes locally available.

6.3 Results on VRkNN Queries
The second set of experiments evaluates the efficiency
and effectiveness of VRkNN query processing algorithm.
First, we inspect the impact of k value on the performance
of the VRkNN algorithm, using LL and NL dataset combi-
nations. Figure 11 illustrates the total query cost of the
VRkNN algorithm with respect to k which varies from 1
to 16. As expected, the overhead of VRkNN grows with k,
due to the significant increase in the cost of VRkNN-Filter.
Notice that the number of candidates retrieved during the
filter step increases almost linearly with k.

0.1

1

10

100

1000

1 2 4 8 16
k

Q
ue

ry
 ti

m
e

(s
ec

)

VRkNN-RefinementVRkNN-Filter

99% 99% 99% 99%
99%

I/O%
6.8
410

|Sc|
N(Tp)

95%
16
583

95%
33
615

95%
60
678

95%
106
763

95%

0.01
0.1

1

10

100

1000

Q
ue

ry
 ti

m
e

(s
ec

)

VRkNN-RefinementVRkNN-Filter

99% 99% 99% 99%
99%

1 2 4 8 16
k

I/O%
8

370
|Sc|

N(Tp)

97%
18.5
440

97%
39

455

97%
77
585

97%
145
772

97%

(a) (b)

Fig. 11. VRkNN cost vs. k (|O| = 131,461). (a) LL. (b) NL.

0.01
0.1

1

10

100

1000

Q
ue

ry
 ti

m
e

(s
ec

)

VRkNN-RefinementVRkNN-Filter

99% 99%
99%

99%
99%

99%

99%

I/O%

0.1 0.2 0.5 1 2 5 10
|P|/|O|

21
79

|Sc|
N(Tp)

94%
25
138

94%
33
295

94%
34
709

94%
35

4126

89%
37

9816

86%
38

18188

82%

0.1

1

10

100

1000
Q

ue
ry

 ti
m

e
(s

ec
)

VRkNN-RefinementVRkNN-Filter

99% 99%
99%

99%
97%

99%

98%

I/O%

0.1 0.2 0.5 1 2 5 10
|P|/|O|

20
257

|Sc|
N(Tp)

91%
22
544

90%
26

1330

89%
28

2561

88%
33

5409

85%
36

11553

79%
36

23922

66%

(a) (b)

Fig. 12. VRkNN cost vs. |P|/|O| (k = 4, |O| = 131,461). (a) UL. (b) ZL.

0.1

1

10

100

1000

Q
ue

ry
 ti

m
e

(s
ec

)

VRkNN-RefinementVRkNN-Filter

99% 99%
99% 98%

97%

99%
98%

0 10 20 30 40 50 60
Buffer size (% of the tree size)

I/O%
38
709

|Sc|
N(Tp)

87%
38
705

85%
38
688

80%
38
662

77%
38
630

70%
38
581

51%
38

42%

509

1

10

100

1000

Q
ue

ry
 ti

m
e

(s
ec

)

VRkNN-RefinementVRkNN-Filter

99% 99%
98% 98%

97%

98%
98%

0 10 20 30 40 50 60
Buffer size (% of the tree size)

I/O%
29

2569
|Sc|

N(Tp)

82%
29

2560

81%
29

2540

79%
29

2502

78%
29

2446

75%
29

2353

63%
29

47%

2245

(a) (b)

Fig. 13. VRkNN cost vs. buffer size (k = 4, |O| = 131,461). (a) UL
(|P|/|O| = 1). (b) ZL (|P|/|O| = 1).

GAO ET AL.: VISIBLE REVERSE K-NEAREST NEIGHBOR QUERY PROCESSING IN SPATIAL DATABASES 13

In the following experiments, we investigate the effect
of different parameters, including the |P|/|O| ratio and
buffer size, on the performance of the VRkNN algorithm,
with UL and ZL dataset combinations. In Figure 12, we
show the efficiency of the algorithm for VRkNN queries,
by fixing k = 4 and varying |P|/|O| between 0.1 and 10.
In Figure 13, we plot the cost of the VRkNN algorithm as
a function of the buffer size. As the observations are simi-
lar to those made from the VRNN retrieval, we save the
detailed explanation due to the space limitation.

6.4 Results on δ-VRkNN Queries
The third set of experiments explores the influence of the
maximal visible distance δ constraint on the efficiency of
the δ-VRkNN query processing algorithm. We fix k at 4
and change δ values from 6% to 30% of the side length of
the search space. Figure 14 shows the overall query cost
of the δ-VRkNN search algorithm with respect to δ for LL
and NL dataset combinations. Obviously, δ has a direct
impact on the performance of δ-VRkNN retrieval, since it
controls the size of the search region. In particular, the
cost of the algorithm increases gradually as δ grows. This
is because the number of candidates retrieved in the filter
step ascends with the growth of δ.

δ (% of the space width)

0.01
0.1

1

10

100

1000

Q
ue

ry
 ti

m
e

(s
ec

)

-VRkNN-Refinement-VRkNN-Filterδ δ

99% 99% 99% 99%
99%

6 12 18 24 30

I/O%
22
80

|Sc|
N(Tp)

96%
27

187

96%
29
281

96%
30

366

95%
30

445

95%

0.01
0.1

1

10

100

1000

Q
ue

ry
 ti

m
e

(s
ec

)

-VRkNN-Refinement-VRkNN-Filterδ δ

99% 99% 99% 99% 99%

δ (% of the space width)
6 12 18 24 30

I/O%
38
317

|Sc|
N(Tp)

96%
39

402

97%
39
442

97%
39

449

97%
39

519

97%

(a) (b)

Fig. 14. δ-VRkNN cost vs. δ (k = 4, |O| = 131,461). (a) LL. (b) NL.

0.00001
0.0001
0.001
0.01
0.1

1
10

100

Constrained region (% of full space)

Q
ue

ry
 ti

m
e

(s
ec

)

CVRkNN-RefinementCVRkNN-Filter

99% 99% 99% 99%
99%

10 20 30 40 50

I/O%
0.03

2
|Sc|

N(Tp)

97%
0.4
3

97%
1.3
6

97%
2.5
9

97%
4.6
14

97%

0.00001
0.0001
0.001
0.01
0.1

1
10

100

Q
ue

ry
 ti

m
e

(s
ec

)

CVRkNN-RefinementCVRkNN-Filter

99%
99% 99% 99%

99%

Constrained region (% of full space)
10 20 30 40 50

I/O%
0.07

2
|Sc|

N(Tp)

97%
0.7
4

97%
2.4
9

97%
4.8
17

97%
8.6
30

97%

(a) (b)

Fig. 15. CVRkNN cost vs. CR (k = 4, |O| = 131,461). (a) LL. (b) NL.

6.5 Results on CVRkNN Queries
The last set of experiments investigates the effect of the
constrained region CR size on the performance of
CVRkNN query processing algorithm. We deploy real
datasets, i.e., LL and NL dataset combinations, fix k to 4,
vary the size of CR from 10% to 50% of the whole data
space, and present all the experimental results in Figure

15. As expected, the cost of the algorithm increases with
the growth of CR. The reason behind is that, as con-
strained region grows, the size of search space enlarges
and the number of candidates obtained in the filter step
increases, which leads to more traversals of the obstacle
R-tree To, more visibility checks, and more candidate ex-
aminations.

7 CONCLUSIONS
In this paper, we identify and solve a novel type of re-
verse nearest neighbor queries, namely visible reverse near-
est neighbor (VRNN) search. Although both RNN search
and VNN search have been studied, there is no previous
work that considers both the visibility and the reversed
spatial proximity relationship between objects. On the
other hand, VRNN retrieval is useful in many decision
support applications involving spatial data and physical
obstacles. Consequently, we propose an efficient algo-
rithm for VRNN query processing, assuming that both
the data set P and the obstacle set O are indexed by R-
trees. We employ half-plane property and visibility check
to prune the search space, analyze the cost of the pro-
posed VRNN algorithm, and prove its correctness. In ad-
dition, we extend our techniques to tackle three interest-
ing VRNN query variations, including VRkNN, δ-VRkNN,
and CVRkNN queries. An extensive experimental evalua-
tion with both real and synthetic datasets has been con-
ducted which demonstrates the performance of our pro-
posed algorithms for handling VRNN search and its vari-
ants, under various experimental settings.

ACKNOWLEDGMENT
Wang-Chien Lee was supported in part by the US Na-
tional Science Foundation under Grant IIS-0534343 and
Grant CNS-0626709.

REFERENCES
[1] T. Asano, S.K. Ghosh, and T.C. Shermer, “Visibility in the

Plane,” Handbook of Computation Geometry, J.-R. Sack and J. Ur-
rutia, eds., Amsterdam: Elsevier, pp. 829-876, 2000.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
An Efficient and Robust Access Method for Points and Rectangles,”
Proc. SIGMOD conf., pp. 322-331, 1990.

[3] Y. Gao, B. Zheng, W.-C. Lee, and G. Chen, “Continuous Visible Nearest
Neighbor Queries,” Proc. Int’l Conf. Extending Database Technology,
pp. 144-155, 2009.

[4] A. Guttman, “R-trees: A Dynamic Index Structure for Spatial Search-
ing,” Proc. SIGMOD conf., pp. 47-57, 1984.

[5] M. Kofler, M. Gervautz, and M. Gruber, “R-trees for Organizing and
Visualizing 3D GIS Databases,” J. Visualization and Computer Animation,
vol. 11, no. 3, pp. 129-143, July 2000.

[6] F. Korn and S. Muthukrishnan, “Influence Sets based on Reverse Near-
est Neighbor Queries,” Proc. SIGMOD conf., pp. 201-212, 2000.

[7] F. Korn, S. Muthukrishnan, and D. Srivastava, “Reverse Nearest
Neighbor Aggregates over Data Streams,” Proc. Int’l Conf. Very
Large Data Bases, pp. 814-825, 2002.

[8] Ken C.K. Lee, B. Zheng, and W.-C. Lee, “Ranked Reverse Nearest
Neighbor Search,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 7, pp. 894-

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 200X

910, July 2008.
[9] K.-I. Lin, M. Nolen, and C. Yang, “Applying Bulk Insertion Techniques

for Dynamic Reverse Nearest Neighbor Problems,” Proc. Int’l Data-
base Eng. and Applications Symp., pp. 290-297, 2003.

[10] S. Nutanong, E. Tanin, and R. Zhang, “Visible Nearest
Neighbor Queries,” Proc. Int’l Conf. Database Systems for Ad-
vanced Applications, pp. 876-883, 2007.

[11] L. Shou, C. Chionh, Y. Ruan, Z. Huang, and K.L. Tan, “Walking
through a Very Large Virtual Environment in Real-Time,” Proc.
Int’l Conf. Very Large Data Bases, pp. 401-410, 2001.

[12] L. Shou, Z. Huang, K.L. Tan, “HDoV-tree: The Structure, The
Storage, The Speed,” Proc. Int’l Conf. Data Eng., pp. 557-568,
2003.

[13] A. Singh, H. Ferhatosmanoglu, and A. Tosun, “High Dimen-
sional Reverse Nearest Neighbor Queries,” Proc. Conf. Informa-
tion and Knowledge Management, pp. 91-98, 2003.

[14] I. Stanoi, D. Agrawal, and A.El Abbadi, “Reverse Nearest
Neighbor Queries for Dynamic Databases,” Proc. SIGMOD
Workshop Research Issues in Data Mining and Knowledge Discovery,
pp. 44-53, 2000.

[15] I. Stanoi, M. Riedewald, D. Agrawal, and A.El Abbadi, “Dis-
covery of Influence Sets in Frequently Updated Databases,”
Proc. Int’l Conf. Very Large Data Bases, pp. 99-108, 2001.

[16] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN Search in Arbi-
trary Dimensionality,” Proc. Int’l Conf. Very Large Data Bases, pp.
744-755, 2004.

[17] A.K.H. Tung, J. Hou, and J. Han, “Spatial Clustering in the
Presence of Obstacles,” Proc. Int’l Conf. Data Eng., pp. 359-367,
2001.

[18] C. Xia, W. Hsu, and M.-L. Lee, “ERkNN: Efficient Reverse k-
Nearest Neighbors Retrieval with Local kNN-Distance Estima-
tion,” Proc. Conf. Information and Knowledge Management, pp.
533-540, 2005.

[19] C. Yang and K.-I. Lin, “An Index Structure for Efficient Reverse
Nearest Neighbor Queries,” Proc. Int’l Conf. Data Eng., pp. 485-
492, 2001.

[20] J. Zhang, D. Papadias, K. Mouratidis, and M. Zhu, “Spatial
Queries in the Presence of Obstacles,” Proc. Int’l Conf. Extending
Database Technology, pp. 366-384, 2004.

Yunjun Gao received the Master degree in
computer science from Yunnan University,
China in 2005, and the PhD degree in com-
puter science from Zhejiang University, China
in 2008. He is currently a postdoctoral research
fellow in the School of Information Systems,
Singapore Management University, Singapore.
His research interests include spatial data-
bases, spatio-temporal databases, mobile and
pervasive computing, and geographic informa-

tion systems. He is a member of the ACM, ACM SIGMOD, and IEEE.

Baihua Zheng received the Bachelor degree in
computer science from Zhejiang University,
China in 1999, and the PhD degree in com-
puter science from the Hong Kong University of
Science and Technology, Hong Kong in 2003.
She is currently an assistant professor in the
School of Information Systems, Singapore
Management University, Singapore. Her re-
search interests include mobile and pervasive
computing and spatial databases. She is a

member of the ACM and the IEEE.

Gencai Chen is a professor in the College of
Computer Science, Zhejiang University, China.
He was a visiting scholar in the Department of
Computer Science, State University of New
York at Buffalo, USA, from 1987 to 1988, and
the winner of the special allowance, conferred
by the State Council of China in 1997. He is
currently a vice dean of the College of Com-
puter Science, a director of the Computer Ap-
plication Engineering Center, and a vice direc-

tor of the Software Research Institute, Zhejiang University. His re-
search interests include database systems, artificial intelligence, and
CSCW.

Wang-Chien Lee is an Associate Professor in
the Department of Computer Science and
Engineering, Pennsylvania State University,
USA. He received the BS degree from the
National Chiao Tung University (Taiwan), the
MS degree from the Indiana University (USA),
and the PhD degree from the Ohio State Uni-
versity (USA). Prior to joining Pennsylvania
State University, he was a principal member of
the technical staff at Verizon/GTE Laboratories,

Inc. He leads the Pervasive Data Access Research Group at Penn-
sylvania State University to pursue cross-area research in database
systems, pervasive/mobile computing, and networking. He is particu-
larly interested in developing data management techniques for sup-
porting complex queries in a wide spectrum of networking and mo-
bile environments. Meanwhile, he has worked on XML, security,
information integration/retrieval, and object-oriented databases. He
has published more than 160 technical papers on these topics. He
has been active in various IEEE/ACM conferences and has given
tutorials for many major conferences. He was the founding program
co-chair of MDM. He has served as a guest editor for several journal
special issues on mobile database-related topics. He has also
served as the TPC chairs or general chairs for a number of confer-
ences. He is a member of the IEEE and the ACM.

Ken C. K. Lee received the BA and MPhil de-
grees in computing from Hong Kong Polytech-
nic University, Hong Kong. He is currently a
PhD candidate in the Department of Computer
Science and Engineering, Pennsylvania State
University, USA. His research interests include
spatial database, mobile and pervasive com-
puting, and location-based services.

Qing Li is a professor in the Department of
Computer Science, City University of Hong
Kong where he joined as a faculty member
since September 1998. Before that, he has
taught at the Hong Kong Polytechnic University,
the Hong Kong University of Science and
Technology and the Australian National Uni-
versity (Canberra, Australia). He is a guest
professor of the University of Science and
Technology of China (Hefei, China), Zhejiang

University (Hangzhou, China); a visiting professor at the Institute of
Computing Technology (Knowledge Grid), Chinese Academy of
Science (Beijing, China); and an adjunct professor of the Hunan
University (Changsha, China). His research interests include object
modeling, multimedia databases, and web services. He is a senior
member of IEEE, a member of ACM SIGMOD and IEEE Technical
Committee on Data Engineering. He is the chairperson of the Hong
Kong Web Society and also served/is serving as an executive com-
mittee member of the IEEE-Hong Kong Computer Chapter and the
ACM Hong Kong Chapter. He serves as a councilor of the Database
Society of Chinese Computer Federation, a councilor of the Com-
puter Animation and Digital Entertainment Chapter of Chinese Com-
puter Imaging and Graphics Society, and is a Steering Committee
member of DASFAA, ICWL, and the international WISE Society.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2009

	Visible Reverse k-Nearest Neighbor Query Processing in Spatial Databases
	Yunjun GAO
	Baihua ZHENG
	Gencai CHEN
	Wang-Chien LEE
	Ken C. K. LEE
	See next page for additional authors
	Citation
	Author

	tmp.1400659284.pdf.wBiiY

