View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Knowledge at Singapore Management University

Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Information

Systems School of Information Systems

5-2006

Efficient querying and resource management using distributed
presence information in converged networks

Dipanjan CHAKRABORTY
IBM India Research Lab

Koustuv DASGUPTA
BM India Research Lab

Archan MISRA
Singapore Management University, archanm@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Software Engineering Commons

Citation

CHAKRABORTY, Dipanjan; DASGUPTA, Koustuv; and MISRA, Archan. Efficient querying and resource
management using distributed presence information in converged networks. (2006). 7th International
Conference on Mobile Data Management MDM 2006: May 10-12, Nara, Japan: Proceedings. 1-10.
Research Collection School Of Information Systems.

Available at: https://ink.library.smu.edu.sg/sis_research/685

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://core.ac.uk/display/13247927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Efficient Querying and Resource Management Using Distributed
Presence Information in Converged Networks

Dipanjan Chakraborty
IBM India Research Lab
cdipanjan@in.ibm.com

Abstract

Next-generation converged mnetworks shall deliver
many innovative services over the standardized SIP-
based IMS signaling infrastructure. Several such
services exploit the joint presence information of a
consumer, i.e. SIP entity requesting a service, and a
vendor, i.e. SIP resource providing a service. Presence
information is a collection of contextual attributes
(e.g. location, availability, reputation), some of which
change dynamically. Moreover, this collective presence
information is distributed across multiple presence
servers. While performing query matching based on
joint presence information, a server usually routes
each query to a locally available resource. However,
skews in the spatio-temporal distribution of queries
and resources may require queries to be routed to
alternate servers with available resources. We propose
a novel Resource-Aware Query Routing scheme, called
RAQR, where each server proactively establishes
gradients to suitable servers wvia a diffusion-based
algorithm. Gradients are set up whenever a server
anticipates scarcity of resources and withdrawn when
the resource crunch is mitigated. We compare RAQR
with alternative resource matching schemes and show
that it adapts to spatio-temporal variations in resource
availability, thereby leading to effective query matching
with minimal control overhead.

1 Introduction

Mobile service providers will shortly deploy the STP-
based [7] Intelligent IP Multimedia Subsystem (IMS)
[18] framework for next-generation services. Presence,
defined as the network’s capability to track the dynam-
ically varying values of various contextual attributes
of an individual, is a key feature of several emerging
context-aware network applications. Common exam-
ples of such presence-based services include proximity-

Koustuv Dasgupta
IBM India Research Lab
kdasgupta@in.ibm.com

Archan Misra
IBM T.J. Watson Research Center
archan@us.ibm.com

based notification (alerting a user when friends on his
buddy list are nearby) or availability-aware filtering
(e.g., routing a non-emergency call to voicemail when
the user is in a movie theater).

Presence-based applications typically leverage upon
contextual attributes such as location, availability,
schedule etc. Typical presence-based applications like
“RestaurantFinder” or “Buddy Finder” services, only
exploit the presence attributes of requesters or of
known end-points. Unlike the applications that con-
sider only mobile requesters and static vendors® (e.g.,
restaurants, ATMs), we focus on new applications that
target the nomadic vendor segment, and thus consider
the joint presence-based attributes of both requesters
and vendors. An example of such an application is
an on-demand, context-aware matching service which
enables a cellular service provider to effectively connect
a user requesting a service (“Find-A-Plumber”) to
the nearest and available mobile vendor offering the
service. We call the general class of such applications
as Live Resource Finder (LRF) applications.

Such LRF applications exhibit three important
properties: (1) ephemeral nature of presence
information (e.g., location and availability); (2)
spatio-temporal distribution of resources across
presence servers; (3) snapshot queries as opposed
to subscription—based queries (i.e., “Find me a
plumber now” rather than “Continually notify
me when a plumber is nearby”). In an IMS
infrastructure, for reasons of scale and performance
(many tier-1 cellular providers have several millions
of customers/resources), presence information will be
stored across a distributed set of presence servers.
Hence, queries for users satisfying predicates on
presence attributes must often be routed to multiple
servers. Novel mechanisms are hence needed to
efficiently query such a distributed repository.

In this paper, we first explain the query routing

IWe use the terms vendor and resource interchangeably
throughout the document

and reply semantics that LRF applications impose on
the distributed presence environment, and then de-
scribe a Resource Aware Query Routing scheme, called
RAQR?, for LRF applications. One key observation
from several LRF applications is that a query does not
merely match to an available resource (vendor), but
also consumes it (i.e., the vendor becomes unavailable
for other requesters for an appropriate time period).
Accordingly, in a distributed presence infrastructure,
the routing of a LRF query should factor in resource
consumption, and thus be tied to the spatio-temporal
distribution of awvailable resources. Standard publish-
subscribe systems [9, 17] handle subscription-based
queries and do not consider consumption of resources
in matching. RAQR enables servers facing a crunch
in local resources (vendors) to learn the identity of
alternative servers with spare resources in the network.
The identities of such alternative servers are estab-
lished via a diffusion-style [10] algorithm — whereby
a particular server’s resource requirements percolate
minimally through the network, until an appropriate
set of servers with the corresponding amount of spare
resources become available. The diffusion process
avoids the overheads of broadcasts (either for queries
or presence data), and increases the query success rate
with minimal control overhead.

2 SIP-based Presence and LRF Queries

SIP [7] has gained widespread acceptance in both
telecom and enterprise environments as the control
protocol for the creation, migration, modification and
termination of multimedia sessions among different
endpoints. End-points for SIP-based signaling are
typically identified by SIP URIs, which are similar to
HTTP URIs and are of the form sip:user@domain.

2.1 SIP Presence Architecture

SIP has recently been extended [13] as a unified sig-
naling substrate for services such as Instant-Messaging
and Presence. Presence fundamentally denotes the
ability of SIP end-points (user devices) to indicate their
up-to-date network status and associated attributes
(e.g., location, link bandwidth) to a designated Pres-
ence server, and the corresponding ability of other
SIP end-points to receive notification of such status
changes. SIP Presence can thus be viewed as a pub-
sub mechanism for dynamic network-related events.

Figure 1 establishes the fundamental message se-
quence in SIP for supporting presence-based applica-
tions. In SIP, the presentity (Bob in Figure 1) refers

2pronounced “raker”

SIP Domain
(xyz.com)

Bob’s Client
(bob@xyz.com)

Alice’s Client
(alice@xyz.com)

SUBSCRIBE

200 OK

NOTIFY

200 OK

PUBLISH

200 OK

NOTIFY

200 OK

Figure 1. Basic Event Publish/Subscribe for
SIP-based Presence

to the source of presence information. Similarly, the
subscriber (Alice in Figure 1) refers to the other end-
point interested in tracking the dynamic changes in
a presentity’s user status. A presentity transmits its
status to the intermediate SIP server via a PUBLISH
message, while the subscriber issues a SUBSCRIBE
message specifying the events on which it requests
notification. When Bob’s PUBLISH message satisfies
the predicate in Alice’s subscription, the Presence
server will use a NOTIFY message to inform Alice
of the updated state. The presence information is
published in an XML-based extensible format, and
can thus include an arbitrary number of presence
attributes. When the Presence servers are distributed
(for example, when different users PUBLISH to differ-
ent servers), additional intelligence is needed to match
published information to existing subscriptions.

2.2 LRF Application Overview

LRF applications match a consumer’s request for
a particular type of Live Resource (vendor) to a
nearby and available resource (vendor). As a detailed
description of LRF applications is not possible, we
limit our exposition to the features relevant to our
resource management problem. The main novelty in
LRF applications is the incorporation of the resource’s
current location and other contextual attributes in
the matching process, making the service relevant to
nomadic vendors such as plumbers, electricians or auto
mechanics, as captured through the following usage
scenario.

Alice, currently located at point X, issues an SMS
for “plumber” indicating her desire to locate a nearby
plumber. The telecom service provider uses localization
technology to track both her location, as well as the
location of cellphones of registered plumbers. Her

Query: | wanta Presence Server]
Plumber Location: South fxtension
Area: 5miles * 7miles

Presence Serve]
o/ Location: Greatey Kailash
Area: 5 miles * 7jnijga

Presence Server
Location: Hauz Khas
Downtown

Area: 10miles * 7yle§

Figure 2. LRF Query Support on Distributed
Presence Architecture

location is then matched with that of a nearby available
vendor (say George), and George’s number is returned
to Alice. Awailability may be expressed via either pro-
files (e.g., plumber George indicates that he’s available
from Tam-Tpm on weekdays) or via dynamic messages
(e.g., George sends an SMS indicating that he’s free to
take another job). Moreover, the LRF application also
collects user feedback to rank vendors, and can use this
ranking in the matching process.

Figure 2 outlines the architectural interaction of
an LRF application with the distributed Presence
infrastructure. We assume that each presence server
is responsible for a certain partition of the overall
geographic space. Hence, all vendors currently located
within the zone of a presence server dynamically
update it with their changing presence attributes. In
the figure, Hauz Khas, South Extension and Greater
Kailash refer to three popular residential areas lo-
cated in New Delhi, India. For the sample LRF
application, the presence attributes include a vendor’s
location, availability and the type of service offered
(e.g. plumber).

The LRF application runs in a distributed manner.
Each application instance is associated (logically) with
a specific presence server and tracks the available
resources (vendors) within the corresponding region.
Each customer requesting the matching service issues
a “query” for a vendor to the application instance
associated with his current location. This application
instance first tries to return a “locally available” vendor
from the local presence server—the matching process on
the local server may use well-known spatial matching
techniques (e.g., spatial databases [8]). This local
matching is, however, not the focus of this paper.
Instead, we focus on the case where the local presence

server is unable to provide any available resources,
implying that the query must be routed to alternative
presence servers.

3 Architectural Considerations for
Routing of LRF Queries

A routing architecture for LRF queries, invoked
whenever a request for a resource cannot be satisfied
locally, should exhibit the following characteristics:

e Handle snapshot nature of queries: Traditional
pub-sub systems, which set up data routing trees
for long-lived subscriptions, are ill-suited for the
‘snapshot’ queries issued by LRF applications.

e Utilize spatio-temporal distribution of resources: A
server’s interest in the presence data of another
server is load-dependent. Hence, server A is
interested in the available resources of server B
only during a resource crunch. Traditional pub-
sub systems are not equipped to handle such
spatio-temporal variations. A routing infrastruc-
ture for LRF applications should, however, utilize
the skews in resource availability to intelligently
forward queries.

o FExploit the application semantics of LRF queries:
LRF applications usually do not require stringent
guarantees—practically speaking, we do not need to
match to the “guaranteed closest” available ven-
dor. Rather, a “reasonably close” but “available”
vendor would usually suffice.

e FEnable Quality-of-Response (QoR) driven routing
to nearby servers: Since LRF applications aim to
match to vendors in the vicinity, the matching pro-
cess must factor in a Quality of Response (QoR)
metric associated with the available resources,
where QoR may be determined by a combina-
tion of attributes like the vendor’s location, his
availability and/or reputation. In this work, we
explain how such a QoR value is used in the query
routing/matching process, rather than focus on
the specifics of QoR computation.

o Awoid query flooding: A naive approach is to
simply route a query to the next “geographically”
closest presence server - i.e., the presence server
managing the region closest to the requester. Un-
fortunately, this approach ignores the consumption
of LRF queries. Approaches such as flooding or
expanding ring search, which ignore the spatio-
temporal distribution of resources, are less useful

Server C: \
i <State = 1
. CRUNCH> /

Server C:
<State =

SURPLUS> 3. RESERVE

R. Rate = r1)

. K
- -~ TN _WITHDRAW
TF\Rate= r)
N

~

//”\A“\

/ serverA:
1 <State = }
) SURPLUS> /

cANCEL 7
(R, Rate = rg)
7

GRARIENT-OFFER
R, RateDtfered = r1)

1. INTEREST
(R, askRate)
Server A:
<State =
CRUNCH=>

1. INTEREST
(R, askRate
HADIENT-OFFER

H, RateOffered = r2) P

Server B:
{ <State =)
\ SURPLUS> /

3. RESERVE

Server B: (R, Rate = r2)

<State =
SURPLUS>

Figure 3. Basic Steps and Messages in RAQR

and waste bandwidth (e.g., if the “closest” server
has no available plumbers).

e Awvoid presence data flooding: Alternatively, each
server may flood its presence data (the state of all
associated vendors) to all other (nearby or remote)
servers, thus effectively providing each server with
global (or semi-global) knowledge of the presence
state. This approach is not scalable as presence
documents are highly ephemeral. Moreover, this
approach requires complex resource-reservation
protocols to ensure consistency across distributed
queries (e.g., to ensure that the same plumber isn’t
surfaced to two requesters).

LRF applications thus impose some new con-
straints on previous load-aware resource discov-
ery approaches. For example, the Intentional
Naming System (INS) [14] describes a hierarchical
(attribute, value) based naming scheme where
state updates for individual resources are esen-
tially flooded over a resolver tree. To reduce the
flooding load in environments with high update
rates (as would be the case with presence data for
different vendor classes), INS proposes the use of
virtual namespaces to partition the set of servers
that need to maintain (weak) consistency. Such
namespace partitioning is adequate for queries
with equality predicates (e.g., ”find me a printer in
this room”), but not for LRF queries which may
have a “nearest neighbor” semantic defined over
the entire geographical space.

4 The RAQR Algorithm

Based on the above observations, we have designed
the Resource Aware Query Routing (RAQR) algorithm

for LRF applications. RAQR utilizes the spatio-
temporal distribution and consumption of resources, in
forwarding LRF queries to alternate presence servers.
It avoids query and presence information flooding, and
utilizes QoR metrics to select the right presence server
to match a query. The main feature of RAQR is the
on-demand formation of the gradients, that point to
servers having a surplus of resources. Gradients are
created for a particular server only when it is projected
to face a crunch in its local resources (relative to
the request arrival load) and are destroyed whenever
the crunch condition ceases to exist (either due to
an increase in the arrival rate of new vendors or a
reduction in the request arrival load). Note that the
individual vendors themselves are mobile, and thus
associate with distinct presence servers dynamically.
Since servers maintain presence information as soft-
state (with expiration times specified in the presence
document), the vendor’s information at the previous
presence server is automatically erased.

For creating gradients, RAQR employs a diffusion-
based technique where the originating server (the
one facing crunch) injects an INTEREST message
(informing it’s need for a certain resource), which is
propagated over the network. Nodes receiving the IN-
TEREST message respond directly to the originating
server with a GRADIENT-OFFER message, offering
their services, only if they have an available pool of
resources. An intermediate node relays an INTEREST
only if it is unable to completely satisfy the original
request rate—the parameters of this relayed message are
adjusted to reflect the residual demand. On receiving
the GRADIENT-OFFER responses, the originating
server uses the QoR values of the servers to determine
the best set of servers that can satisfy its request load
and then sets up direct gradients to these servers (us-
ing a RESERVE message). Of course, as the resource
levels (of available vendors) fluctuates, nodes that had
earlier offered their services may WITHDRAW their
offer, thereby requiring the originating server to issue
new INTEREST messages. Similarly, if the originating
server feels that the resource crunch is over, it may
issue CANCEL messages to servers on which it had
previously reserved resources.

Figure 3 shows the basic operations of RAQR.
At time t, server A is resource crunched, and sends
INTEREST messages (with askRate denoting the
additional resources required by A) to B and C. Since
B and C have a surplus of resources, they respond with
GRADIENT-OFFER messages (rates rl and r2)3.
Server A reserves the corresponding rates along these
gradients, and uses these to forward queries. At time

3For simplicity, assume that askRate = rl + r2.

t+At, server A has surplus while C faces a crunch.
In this case, C issues a WITHDRAW to A. At the
same time, server A sends a cancel to B as it no longer
requires these resources.

4.1 RAQR Design Details

RAQR assigns different states to different servers.
For ease of explanation, we focus on only one type of
vendor. Let IV; denote the number of available vendors
at server i (denoted by S;). The actual determination
of “crunch” or “surplus” states includes the use of both
N;, the current rate of change in N;, as well as lower
and upper thresholds 77, and Ty as follows:

state= CRUNCH

dN;
N, <Tp & i <0, then

dN;

state= SURPLUS
dt

it N; >Ty & >0, then
Tr, and Ty are threshold values below and above which
a server may declare itself in CRUNCH and SURPLUS
states respectively. For each resource type, each server
maintains two separate lists: suppliers-listing other
servers to which it has established gradients, and
dependents-listing other servers which have established
gradients to it.

4.1.1 Resource Distribution and Gradient
Setup

In RAQR, each presence server periodically performs a
health check (determined by a time period Tinonitor)
to determine any changes to its current state, and
then initiates the relevant associated actions. If S;
identifies itself in the CRUNCH state, it propagates
an INTEREST (resourcelD, askRate) to its known
neighbors. askRate is the rate at which the available
resources at S; are being consumed. In response to
such a request, other servers reply with GRADIENT-
OFFER messages, that include an average Quality-of-
Response (QoR) value of the supplier (or responding)
server (say ;) and the RateOffered offered by S;. After
waiting to collect enough such GRADIENT-OFFERs,
S; sorts the offer in the ascending order of QoR values
and sends out RESERVE (resourcelD, providedRate)
messages to the first n servers that cumulatively meet
the askRate. It also adds these servers to its suppliers
list. The RESERVE message essentially earmarks
resources for the requester and is needed due to the
consumptive nature of LRF queries—an absence of an
explicit RESERVE response allows a SURPLUS server
to offer its resources for subsequent requesters facing a
resource crunch.

A server S; on receiving an INTEREST message
takes actions depending on the state that it currently
is in. It simply relays the INTEREST message un-
changed to its one-hop neighbors if either:

1. S;.suppliers.size # 01i.e., if S; itself has a current
shortage of vendors; OR

2. N; < Ty, ie., if its available supplier pool isn’t
large enough; OR

dN; . e .
3. - < 0 ie. if it’s own pool of resources is

dwindling with time, indicating resource shortage.

S; replies back with a GRADIENT-OFFER with
RateOffered=askRate (i.e., indicating its ability to fully
support the deficit of S;) if either:

L. dzi\t[j () askRate > 0 ie., S;’s pool of
available vendors is increasing more rapidly than

the askRate; OR

N; . -
2. an—L—— > Tgep, i.e., S; does not anticipate
| =7 — askRate|

its resource pool running out until T'pep; time has
elapsed.

Here, Tgep is an algorithm parameter, indicating the
minimum acceptable time until complete exhaustion
of resources. Intuitively, Tgep is a large value within
which S; can expect the underlying rates of supply and
demand to change so that prediction of system state
beyond this time is unnecessary.

If S; cannot provide the entire askRate, but satisfy
only part of it, then it replies back with a GRADIENT-
OFFER with the maximum rate it can provide. Ad-
ditionally, it forwards the INTEREST message to it’s
nearby servers with a newAskRate=askRate - RateOf-
fered. Server S; on receiving a RESERVE message
from S; adds it to it’s dependents list. In this way,
the INTEREST message is diffused minimally through
the network, until it visits a set of servers who can
collectively satisfy the vendor deficit at the requester.
Note that the use of neighbor broadcast implies that S;
typically receives several GRADIENT-OFFERs, with
cumulative rates higher than its advertised need; the
use of the subsequent RESERVE message avoids over-
reservation of resources for .S;.

4.1.2 Gradient Cancellation

Temporal variations in resource availability and query
rates will change conditions, whereby CRUNCH servers
become SURPLUS servers, or vice versa. During
the periodic health check, if S; discovers that it is
in the CRUNCH state AND still has a set of depen-
dent servers, it sends out WITHDRAW (resourcelD,

RateOffered) to the respective servers and removes
them from the list. Similarly, a server discovering
finding itself in the SURPLUS state AND having
a set of suppliers sends out CANCEL (resourcelD,
RateOffered) message to the servers in the suppliers
list.

4.1.3 Choice of RAQR Parameters

The performance of RAQR will clearly depend on the
appropriate choice of Ty, and Tpy. Distinct values of
Ty, and Ty introduce hysteresis in RAQR’s behavior,
thus avoiding rapid oscillations between CRUNCH and
SURPLUS states. If Ty, is too low, a server will mark
itself as resource-constrained unnecessarily. RAQR’s
current implementation monitors the fluctuating re-
source levels at a vendor periodically (with time period
Tmonitor). Accordingly, T7, should be set to be a
relatively small multiple, s (for example, k = 5 or 6), of
the “smoothed” (average) resource depletion rate ‘g:\ﬁf
allowing a truly underloaded server enough time to set
up gradients to other servers in advance. Of course,
k K Tgepi, as we have implicitly assumed that the
demand and supply workloads for LRF applications
are not predictable beyond time-periods longer than
Tyept With acceptable accuracy. Thus, we assume that
an LRF application exhibits piecewise-constant query
load rates, with Ty.p; denoting the interval over which a
particular rate remains constant. Similarly, Ty should
be greater than 277, (to prevent oscillations), but
smaller than the “smoothed” number of vendors that
typically register with server S; (otherwise, it will never
be in the SURPLUS state). While RAQR parameters
should ideally be tuned adaptively at each server, we
plan to investigate the optimal tuning of parameters
in response to real-life workload fluctuations in later
work.

4.2 QoR-driven Query Propagation

LRF queries coming to servers from clients are first
satisfied by local pool of resources. Gradients are used
when the local resource pool is over. A server looks up
its list of suppliers and forwards the query to the server
promising the best average QoR, working its way down
the list until a match is found. While we currently
follow the policy of terminating at the first matched
reply, other variations (e.g., probing all (or a select set
of) servers in the suppliers list and sending back the
best reply obtained) are certainly possible. The query
fails if no available resources are obtained from a server
in the suppliers list.

Parameter Value
Number of presence servers 25
Number of queries per server | 20000
Total number of resources 500
Tr 10

Ty 20
Tiept 5T
Tmonitor 1T
Tdisseminate 1007

Table 1. Parameters for experimental setup.
All periods are expressed as a factor of 7',
where 7" corresponds to the length of a clock
tick in the simulation.

5 Experimental Results

To evaluate the performance of RAQR relative to
alternative dynamic resource discovery protocols, we
performed extensive simulation-based studies. For
the results reported here, an overlay network of 25
presence servers were connected to one another us-
ing GT-ITM [16], a well-known tool for generat-
ing representative internetwork topologies. The en-
tire service provider coverage area was represented
by a (25000x25000) grid, with each of the presence
servers managing an identically-sized partition of the
grid. The vendor population consists of 500 users,
whose movement is governed by the Random Waypoint
Mobility model[l]. Whenever a particular vendor
is matched to a user request, its availability status
changes to “unavailable” for the duration tse;yice-
At the end of the duration, the vendor is made
“available” at the presence server which originated the
query, i.e. in the region where the vendor provides
the requested service. Each resource moves at an
average speed of 1000D/T (D=unit distance, and
T=clock tick length in simulation) with a mean pause
time of 5000T. In our initial performance studies, we
assume that all responses have identical QoR values—in
subsequent work, we shall explore how surplus servers
may compactly advertise the QoR of their resource
pool, and how this may be used by a server facing
potential resource depletion.

Competitive protocols: We studied the following
additional representative protocols that perform query
propagation or resource (information) dissemination.
We summarize these protocols below:-

e Broadcast Query Propagation (BCast): If a re-
source is locally unavailable at server S;, a query

is broadcast to all presence servers in the network.
A server S; responds to the query with the best
available resource (if one is available). While
S; can potentially receive multiple responses, our
BCast implementation matches the query to the
first available resource returned by any server.

e Expanding Ring Search (ERS): Since network-level
broadcast can be expensive, ERS employs a query
propagation strategy where a locally failed query is
first forwarded to all the one~hop presence servers.
If none of the one—hop neighbors have available
resources, it is forwarded to the two—hop neighbors
and so on. As in broadcast, the original query is
matched to the earliest response from a server with
an available resource.

o Selective Resource Dissemination (1 Hop) (SRD-
1): In this scheme, each server S; periodically
disseminates information about its available re-
sources to its one—hop neighbors. Specifically, .S;
advertises its locally available resource count N;
with a periodicity Taisseminate- A neighboring
server S; updates its supplier list with the value
received. When S; has no local resources available
for a query, it forwards the query to all suppliers
in its one-hop neighborhood and matches to the
earliest response with an available resource. If
none of these one-hop suppliers have an available
resource, we consider it as a query miss.

o Selective Resource Dissemination (2 Hops) (SRD-
2): This strategy is similar to SRD-1, the only
difference being that a server periodically dissem-
inates its resource information to its one-hop,
as well as, two—hop neighbors. Intuitively, this
increases the pool of suppliers for each server, at
the cost of increased message overhead.

Evaluation Metrics: BCast and ERS result in
zero query misses whenever the network has at least
one available resource. However, for SRD-1, SRD-
2, and RAQR, a missed query occurs when there
are no available resources locally and with the list of
suppliers. Accordingly, query miss rate is an important
performance metric. Further, a resource crunched
server might forward a query to a supplier and get a
failed response (either because the resource(s) moved
to a different region or are currently unavailable).
We term this miss as a supplier miss and measure
the number of supplier misses for SRD-1, SRD-2 and
RAQR. Additionally, we measure the number of control
messages and query messages that are generated for
each protocol. While control messages are incurred by
the protocols that exchange resource information, i.e.,

[Control [
r [Query -

le+05

10000

Message Overhead
~:T:~\] |

—————_—_—
Al

NN

1000

DN
NN

QNN
NN
NN

2 A ;hnm

=
=}
%

7

100 Broadcast Expanding Ring s‘R]j-l SRD-2

Figure 4. Message Overhead of BCast, ERS,
SRD-1, SRD-2, and RAQR for \ = 10req/T.

1000 — --- SRD-2 |

=
=]
=]

Query Misses

400

200

0 ‘ \ ‘ \ ‘ \ ‘
0 1000 2000 3000 4000

Simulation Ticks

Figure 5. Query Misses of SRD-1, SRD-2, and
RAQR for A = 10req/T.

SRD-1, SRD-2, and RAQR, query messages represent
the overhead of routing requests to additional presence
servers. Finally, for each successful query, we measure
the QoR as the physical (geographic) distance between
the server that originates the query and the server
providing the resource; a lower QoR implies a better
(closer) match.

Table 1 shows the parameter settings that are
used by the different protocols in our experiments.
For the resources, we assume that tse;pice follows an
exponential distribution with a mean of 107"

Query Load Generation: To evaluate the perfor-
mance of the different protocols, we need to vary the
spatio— temporal distribution of LRF queries generated
in the network. Since the number of resources in
the network is fixed, some servers can be exhibiting a
CRUNCH due to a high rate of queries, while other

Supplier Misses

L | L | L L
0 1000 2000 3000 4000

Simulation Ticks

Figure 6. Supplier Misses of SRD-1, SRD-2,
and RAQR for A\ = 10req/T.

servers are concurrently in a SURPLUS state. To
capture this behavior, each server has an independent
LRF query generator. We divide the entire simulation
period into time intervals. During the interval Tj,
queries arrive at a server S; according to a Poisson
process, i.e. exponential inter-arrival time with mean
1/X; ;. Further, for different T)’s, the value of A;;
is randomly chosen from a normal distribution, with
mean X and variance o2. The resulting query distribu-
tion exhibits both temporal variations at a particular
server, as well as skews in the query rate (i.e. query
load) across different servers. Choosing appropriate
values for A and o2 allows us to control both the
average system query load and the load skew across
servers.

5.1 Results and Observations

We first choose A = 10 (req/T) and o2 = 10, and
compare the performance of the different protocols for
the resulting query load. Figure 4 shows the message
overhead of each protocol on a logarithmic scale. While
BCast is prohibitively expensive, the number of query
messages in ERS is about twice the total messages
exchanged by any of SRD-1, SRD-2 and RAQR. This
points to the need of proactively disseminating resource
information in such environments to better support
LRF queries. Figure 5 shows that RAQR achieves a
50% reduction in query misses when compared to SRD-
1 and SRD-2. At the same time, the total message
overhead of RAQR lies in between SRD-1 and SRD-2
— this points to the fact that RAQR does a significantly
better job of successfully matching LRF queries, while
avoiding the overheads incurred by BCast and ERS.

Figure 6 helps us better understand the improve-

QoR (Distance)

L L L
1000 2000 3000 4000

Simulation Ticks

Figure 7. Average QoR of BCast, ERS, SRD-1,
SRD-2, and RAQR for \ = 10req/T.

ment delivered by RAQR in terms of supplier misses.
We observe that SRD-1 and SRD-2 result in 6 times
as many supplier misses as RAQR. Clearly, RAQR is
better at continually tracking the available resource
levels at various relevant servers than SRD-1 or SRD-
2 (neither of which track the dynamic evolution of
resources). Finally, in Figure 7, we plot the average
QoR in terms of the geographic distance between the
query and the resource that is “discovered” by each
protocol. Once again, RAQR leads to better matches
(a QoR that is at least 50% lower than any of the
other protocols), thus demonstrating its suitability for
the vicinity-based matching semantics required in LRF.
The QoR of BCAST and ERS is much higher due to
interaction between the network topology and policy
of matching to the first server response—geographically
distant servers are often directly connected on the
overlay and have mutually shorter response latencies.

To understand the effect of query load on the
behavior of the protocols, we next study the perfor-
mance of SRD-1, SRD-2 and RAQR for increasing
query loads in the network. This is achieved by
varying A for each server to take values of 2,5,10,15
req/T 4 respectively. Figures 8 and Figure 9 show
the query misses and message overhead, respectively,
for the three protocols. Across all load levels, RAQR
continues to uniformly result in a much lower rate
of query misses, while incurring comparable message
overheads. RAQR thus appears to adapt very well
to spatio-temporal variations in both LRF query loads
and resource (vendor) distributions.

4Note that, there are 20 resources available on an average
with each server.

4000 — = SRD-1
L EZ2 SRD-2
RAQR

Query Misses
553
[=3
S
(=}
T

Z
i % / 2
0 Z /

A=2 A=5 A=10 A=15

Figure 8. Query Misses of SRD-1, SRD-2, and
RAQR for varying load conditions.

30000

ZAa Control
[Total Messages

JrRAQR
SRD-2

25000 [~

| sRD-1

20000 —

- |
g
2 L i
2
o [iy]
5, 15000 3 %
g r o & 153 7 B
= 2 & Z
10000 — @» z - I 7 _
< [=]
- @ @c | [
L g 2] 7 4
5000 — 2 Z —
[+ | %
2 2 nz . nyz
L ZIK: Zh Zh7 7 i
o [Z17Z| | Z1Z| Z
A=2 A=5 A=10 A=15

Figure 9. Message Overhead of SRD-1, SRD-
2, and RAQR for varying load conditions.

6 Related Work

There has been significant work in the area of
content/context-based pub-sub queries [9, 3, 11], that
focuses on delivering events from sources to interested
users. However, these approaches focus only on event
delivery (queries do not consume the resource) and
assume relatively long-lived subscriptions. In contrast,
LRF queries are essentially snapshot queries that have
different requirements in terms of application seman-
tics.

[9] presents a generic framework of an event-
brokering system for content-based pub-sub in
mobile environments, that covers both centralized
and distributed brokers. The paper also examines
the concept of “quenching” whereby the number
of in-network publish messages can be reduced by

performing partial matching at the brokers. For mobile
environments, where maintaining the right delivery
path is the major challenge problem, [4] proposes
the use of Content-Based addresses. Similarly, filter-
based routing has been proposed in [3, 6] for the
same objective. However, these approaches do not
consider the need for load-based query redirection and
QoR-~driven matching generated by LRF applications.

In unstructured P2P systems, [5] introduces the
concept of routing indices (which are “hints” about
the kind of information that neighbors hold) to forward
queries. [11] takes it a step further by using multi-level
Bloom filters to summarize the information/content
of nodes. However, these approaches do not provide
efficient means to satisfy “nearest” or vicinity-based
matching. [2, 12, 17] have presented work using
DHTs to form the routing substrate for SIP messages.
While interesting, these approaches focus on a different
problem—efficient partition of the SIP address space
among heterogeneous servers—and assume that the
destination URI of each query is known. In contrast,
we focus on the efficient resolution of vicinity-based
matching requests, where the target URI is unknown.

Our diffusion-based interest propagation approach
extends recent work (e.g., [10, 15]) on efficient data
dissemination protocols for sensor networks. For
example, [10] proposes to establish routes from sources
to queries (sinks) by diffusing the query (interest) and
subsequently reinforcing preferred paths. However,
unlike [10], which assumes that queries have a well
defined “zone of interest” within which an interest
is diffused, RAQR only minimally diffuses queries to
a neighborhood large enough to satisfy the current
resource crunch. Similarly, [15] creates a distributed
forwarding mesh (as opposed to a tree) from the sources
to the sink by including a cost metric in the initial
flooding of the interest, and having intermediate nodes
insert themselves into potential paths only as long as
the cumulative path cost does not exceed this metric.
In a similar fashion, RAQR also requires intermediate
nodes to modify the askRate, thus propagating a re-
source request only to the extent necessary. Unlike the
event notification scenarios addressed by [10, 15], LRF
applications actually consume resources—accordingly,
RAQR uses an elaborate RESERVE-CANCEL prim-
itive over the diffusion substrate to ensure that queries
do not overbook resources on nearby nodes.

7 Conclusions

The main novelty of RAQR is that it effectively
adapts to (a) the spatio-temporal distribution of mo-
bile resources, and (b) the load skew across presence

servers, to improve resource provisioning and query
efficiency for LRF applications. RAQR further enables
the use of a quality of response (QoR) metric to deter-
mine the best server(s) to which queries are forwarded,
thereby making the protocol sensitive to location and
other contextual parameters associated with individual
resources. Finally, unlike other resource discovery
protocols, control overhead in RAQR depends on the
resource distribution in the environment. Simulation
studies demonstrate RAQR’s promise as a technique
for supporting context-dependent and vicinity based
queries in a distributed presence infrastructure. In
the future, we plan to extend the QoR computation
to include other contextual attributes like reputation
(ranking) of the resources. We would also like to un-
derstand the principles behind the choice of parameters
in RAQR, based on resource distribution and their
consumption, and study RAQR’s sensitivity to these
parameters. Finally, we plan to implement RAQR on
a SIP—based testbed that supports dynamic selection,
evaluation and matchmaking in converged networks.

8 Acknowledgements

The authors would like to thank Amit Purohit for
his active participation in the design and implementa-
tion of the simulation framework, and Sumit Mittal for
his contributions to developing the ideas in the paper.

References

[1] C. Bettstetter and C. Wagner. The spatial node
distribution of the random waypoint mobility model.
In Workshop on Mobile Ad-Hoc Networks (WMAN),
March 2002.

[2] D.A. Bryan, B.B. Lowekamp, and C. Jennings.
SOSIMPLE: A serverless, standards-based P2P SIP
communication system. In International Workshop
on Advanced Architectures and Algorithms for Internet
Delivery and Applications, June 2005.

[3] F. Cao and J.P. Singh. Efficient event routing in
content-based publish-subscribe service networks. In
IEEE INFOCOM, March 2004.

[4] A. Carzinagi, MJ. Rutherford, and AL. Wolf. A
routing scheme for content-based networking. In IEFE
INFOCOM, 2004.

[5] A. Crespo and H. Garcia-Molina. Routing indices
for peer-to-peer systems. In 22nd IEEE International
Conference on Distributed Systems, 2002.

[6] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the opss wims. IEEFE Transactions on
Software Engineering, 2001.

[7] J. Rosenberg et al. SIP: Session initiation protocol.
RFC 3261, IETF, June 2002.

[8] R.H. Guting. An introduction to spatial database
systems. Very Large Data Bases. Springer Verlag,
October 1994.

[9] Y. Huang and H. Garcia-Molina. Publish/subscribe
in a mobile environment. Wireless Networks
Issue on Pervasive Computing and Communications,
10(6):643-652, November 2004.

[10] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heide-
mann, and F. Silva. Directed diffusion for wireless
sensor networking. ACM/IEEE Transactions on
Networking, 11(1):2-16, February 2002.

[11] G. Koloniari and E. Pitoura. Content-based
routing of path queries in peer-to-peer systems. In
9th International Conference on FExtending Database
Technology (EDBT), Greece, March 2004.

[12] S. Marti, P. Ganesan, and H. Garcia-Molina.
SPROUT: P2P routing with social networks. In First
International Workshop on Peer-to-Peer Computng
and Databases, March 2004.

[13] J. Rosenberg. A presence event package for the session
initiation protocol (SIP). In RF'C 8856, IETF, August
2004.

[14] E. Schwartz W. Adjie-Winoto and H. Balakrishnan.
The Design and Implementation of an Intentional
Naming System. In In Proceedings of the Symposium
on Operating Systems Principles, South Carolina,
USA, December 1999.

[15] F. Ye, G. Zhong, S. Lu, and L. Zhang. GRAdient
broadcast: A robust data delivery protocol for large
scale sensor networks. ACM Wireless Networks,
11(3):285-298, 2005.

[16] Ellen W. Zegura, K. Calvert, and S. Bhattacharjee.
How to model an internetwork. IEEE Infocom, San
Francisco, CA, March 1996.

[17) R. Zhang and Y. C. Hu. HYPER: A hybrid
approach to efficient content-based publish/subscribe.
In International Conference on Distributed Computing
Systems (ICDCS), pages 427-436, 2005.

[18] Wei Zhuang, Yung-Sze Gan, Qing Gao, K.J. Loh,
and K.C. Chua. Multi-domain policy architecture for
ip multimedia subsystem in umts. In Proceedings of
the IFIP TC6 / WG6.2 and WG6.7 Conference on
Network Control and Engineering for QoS, Security
and Mobility, volume 235, pages 27-38, 2002.

	Efficient querying and resource management using distributed presence information in converged networks
	Citation

	mdmpresence-v7.dvi

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

