
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

2-2010

Privacy-Preserving Similarity-Based Text Retrieval
Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Jialie SHEN
Singapore Management University, jlshen@smu.edu.sg

Ramayya Krishnan
Carnegie Mellon University

DOI: https://doi.org/10.1145/1667067.1667071

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
PANG, Hwee Hwa; SHEN, Jialie; and Krishnan, Ramayya. Privacy-Preserving Similarity-Based Text Retrieval. (2010). ACM
Transactions on Internet Technology. 10, (1),. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/220

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1667067.1667071
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


4

Privacy-Preserving Similarity-Based
Text Retrieval

HWEEHWA PANG and JIALIE SHEN
Singapore Management University
and
RAMAYYA KRISHNAN
Carnegie Mellon University

Users of online services are increasingly wary that their activities could disclose confidential 
information on their business or personal activities. It would be desirable for an online document 
service to perform text retrieval for users, while protecting the privacy of their activities. In this 
article, we introduce a privacy-preserving, similarity-based text retrieval scheme that (a) prevents 
the server from accurately reconstructing the term composition of queries and documents, and 
(b) anonymizes the search results from unauthorized observers. At the same time, our scheme 
preserves the relevance-ranking of the search server, and enables accounting of the number of 
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1. INTRODUCTION

Today’s text retrieval systems must have access to the plaintext corpus and
queries. To illustrate, Figure 1 shows a set of example documents, with the
corresponding term-document matrix1 representation that is typically used
to facilitate retrieval. In the matrix, the rows correspond to the keywords,
while the columns represent the documents. At runtime, each search query is
transformed into the same representation as the documents, in order to match
against the columns in the matrix. The nonzero cells indicate clearly what
terms appear in each document or query. In fact, from the matrix the system is
able to reconstruct the exact term frequencies in every user query and retrieved
document.

With the queries and retrieved documents in plain view of the text retrieval
system, users must trust it to not abuse the privilege. This arrangement is
not always desirable. Users are increasingly wary that their queries could
disclose personal or confidential information to the search server. Public search
engines have been reported to track user queries, in order to push targeted
advertisements [Hansell 2006]. In a potent demonstration of the privacy risk
posed by search histories, AOL recently released its Web log data, only to
withdraw it soon after when it was shown that detailed user profiles could
be constructed from the data [Barbaro and Zeller 2006]. User privacy concerns
have also been cited as a factor that hinders the adoption of personalized search
[Shen et al. 2007].

Consider the deployment scenario depicted in Figure 2. Suppose a content
provider like MicroPatent (the “owner”) maintains a patent and trademark
database that is deployed onto several online document servers. The paid sub-
scribers (the “user”) include patent researchers who search for information to
assess the value of potential companies to invest in, or to size up the competi-
tive landscape for new product development. These users would want to ensure
that their search activities are confidential, especially to their competitors.

Naturally, the administrator of an online document service would employ
a combination of security safeguards, such as firewalls and intrusion detec-
tion. Notwithstanding that, document servers that are situated in a seemingly
well-guarded network often can still be infiltrated through a multistep in-
trusion, in which each step paves the way for the next attack [Wang et al.
2006]. Indeed, the number of successful attacks on online services has mul-
tiplied over the past decade. The perpetrators include external hackers and,
worse still, insiders. The victims range from government and large companies
to e-business sites that we would expect to have been professionally admin-
istered and secured. This evidence suggests that it is very difficult to guar-
antee the security of all the document servers over extended periods of time.
In the event that a document server is compromised, the intruder would be
able to monitor users’ search queries as well as the content of the documents
retrieved.

1The formulation of the term-document matrix is explained in Section 2.2. As the matrix is sparse, 
it is usually stored as inverted term lists to conserve space [Zobel and Moffat 2006].
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Fig. 1. Sample corpus (adapted from Deerwester et al. [1990]).

There are a number of studies on privacy-preserving similarity-based text
retrieval in the literature. TrackMeNot2 attempts to bury the genuine user
queries among random “ghost” queries. Shen et al. [2007] examines user pri-
vacy issues in personalized search engines; however, the solutions offered in
the paper do not include any for securing the document server itself. Jiang et al.
[2008] describe a scheme for a user to compute similarity scores for all the doc-
uments on the server without it knowing what the query is; the computation
costs for the user and the server are proportional to the number of documents,
hence the scheme is not intended for search engines that need to support large
corpora. In addition, there are exact keyword-matching schemes for encrypted
data (e.g., Agrawal et al. [2004a], Damiani et al. [2003], Hacigumus et al. [2002],
Song et al. [2000]), which do not extend to similarity-based matching.

Contributions. In this article, we present the first scheme for a document
server to perform similarity-based text retrieval while protecting the privacy
of users’ search activities; in particular, we aim to safeguard the content (or

2http://mrl.nyu.edu/dhower/trackmenot.
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Fig. 2. Document retrieval model.

semantics) of the user queries and the retrieved documents. We target the
vector space model [Salton 1989] that returns, for each user query, the docu-
ments that are most similar to the query terms. In this model, each document
is represented as a vector in term-space (i.e., a column in the term-document
matrix in Figure 1), and queries are treated like documents. Moreover, rele-
vance ranking is determined by the distance of the document vectors from the
query vector. Thus, document retrieval entails finding documents that have the
shortest distances to the query vector.

Based on the system model in Figure 2, our scheme enables the docu-
ment server to process search queries with just a suppressed representation
of the queries and documents, without interfering with the relevance ranking of
the retrieval algorithm. The suppressed representation hides the semantics of
the queries from the document server, thus protecting user privacy. Even in the
event that the document server manages to acquire extra information through
collusion with other parties, our scheme is able to limit any potential privacy
leak by ensuring:

— low fidelity of reverse-engineered content. The original term composition
of a document/query, and hence its semantic content, cannot be accurately
deduced from its suppressed representation.

—high anonymity in search results. From the suppressed representation of a
document/query, it is not possible to accurately identify other similar docu-
ments. This prevents the document server from classifying the corpus around
compromised documents/queries whose plaintext and suppressed represen-
tations are leaked.

At the same time, our scheme preserves the usability of the text retrieval
system.

—The original similarity ranking is maintained. At the end of the retrieval
process, the user obtains the same result for her query as intended by the
original retrieval mechanism.

—Usage accounting. The number of documents that each user opens can be
accounted for. This is flexible enough to accommodate different usage models,
for example pay-per-use and fixed-price subscription.
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The rest of this article is organized as follows. The next section gives back-
ground on two conventional text retrieval models, including the vector space
model that enables similarity-based retrieval, while Section 3 reviews related
work. Section 4 presents our text retrieval scheme. The privacy safeguards
provided by the scheme are analyzed in Section 5. Following that, Section 6 de-
scribes our prototype implementation, and provides empirical evidence of the
effectiveness of our privacy safeguards. Finally, Section 7 concludes the article.

2. BACKGROUND ON TEXT RETRIEVAL

One of the fundamental problems in text retrieval is to determine the relevance
of a document to a given query. Over the last forty years, there have been
numerous studies on this problem. There are three classical text retrieval
models—Boolean, vector space, and probabilistic. The review in this section
covers the first two. The Boolean model underlies keyword-matching systems,
to which existing privacy-preserving methods are applicable. The vector space
model enables similarity-based retrieval, and is the target of our solution in
this article. As far as we know, there is no privacy-preserving scheme in the
literature for the probabilistic model, so we will skip that model.

2.1 Keyword Matching

The Boolean model for text retrieval by keyword matching is based on set theory
and Boolean algebra. Suppose q is a query, in the form of a Boolean expression
of keywords. Let qdnf be the disjunctive normal form of q, and qcc be a conjunct
in qdnf . The similarity between document d and query q is defined as:

Sq,d =
{

1 if ∃ qcc ∈ qdnf such that (∀ term t ∈ qcc, t ∈ d)

0 otherwise.

This similarity function produces a binary decision without any notion of
ranking. In other words, a document either matches the query or it does
not; there is no degree of relevance that differentiates two matching docu-
ments. The limitation hinders good retrieval performance when users are
not familiar with the exact terminology in the documents, and is especially
problematic with casual users or large/heterogeneous corpora. This drawback
of the Boolean model prompted the development of similarity-based retrieval
systems.

2.2 Similarity-Based Retrieval

As explained in Zobel and Moffat [2006], most text search engines rate the
similarity of each document to a query based on these heuristics:

—Terms that appear in many documents are given less weight;
—Terms that appear many times in a document are given more weight; and
—Documents that contain many terms are given less weight.

The heuristics are encapsulated in a similarity function, which uses some com-
position of the following statistical values:
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— fd,t, the number of times that term t appears in document d;
— fq,t, the number of times that term t appears in query q;
— ft, the number of documents that contain term t;
— N, the number of documents in the corpus.

In the vector space model, the score of a document d with respect to a query q,
Sq,d, is defined to be the cosine of the angle between the corresponding document
vector and query vector in multidimensional term space. A similarity function
that is found to work well in practice is:

Sq,d =
∑

t wd,t · wq,t

Wd · Wq
, (1)

where

—wq,t = fq,t × log N
ft

—Wq =
√∑

t w2
q,t

—wd,t = fd,t × log N
ft

—Wd =
√∑

t w2
d,t.

The example in Figure 1 follows this formulation, with each cell in the term-
document matrix set to wd,t/Wd.

Most modern search engines are based on the vector space model rather
than Boolean keyword matching, as the former allows result documents to be
ranked by their similarity to the query. We thus adopt the vector space model
in this article.

3. RELATED WORK

In this section, we focus on related work on privacy in text retrieval, data pri-
vacy, anonymous communication, and access control, which are most relevant
to our study.

3.1 Privacy in Text Retrieval

Klein et al first examined the problem of protecting the corpus in a text retrieval
system in Klein et al. [1989]. Their scheme compresses the documents through
Huffman encoding, so that they appear like random bit-strings to unauthorized
observers. However, the index—dictionary and concordance—that is used for
text searches is compressed but not encrypted. The challenge of compressing
the documents and index has received further attention, for example in Book-
stein et al. [1992], Long [2002], Zobel and Moffat [1995]. These compression
schemes do not provide the basis for the solution that we seek, because with-
out encryption the privacy safeguards cannot be enforced when the document
server itself becomes compromised by attackers.

TrackMeNot, a browser extension, protects user queries from public search
engines by hiding a user’s genuine search queries among randomly gener-
ated “ghost” queries. This is similar to k-anonymity protection (to be described 
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shortly), and is useful for masking individual user queries. If a user submits
multiple queries during a session, however, the correlation among the genuine
queries could differentiate them from the random ghost queries. This is espe-
cially so for paid document services like the patent search application described
in Section 1, where queries that do not lead to paid document downloads are
probably not interesting to the user and so can safely be filtered out. Yet, it
would be too expensive for the user to pay for documents retrieved by the ghost
queries. Finally, if employed widely, the overhead imposed by all the ghost
queries on the network infrastructure and search engines could significantly
degrade query response times.

Shen et al. [2007] suggested that user privacy may be protected by pushing
the search index and query processing to a trusted third party, or by legally
compelling the search engine to “forget” the user activities right after they are
served. However, the risk of privacy disclosure when the trusted third party or
search engine is infiltrated remains an open problem.

Jiang et al. [2008], introduced a scheme for the user to compute a similarity
score between a given query and each document on a server. To safeguard
the query, it is presented to the server as a vector of encrypted term weights.
The server then combines the query vector with the document vectors in turn
to produce a list of encrypted scores for the user. As this procedure has to
be carried out on every document on the server, it could be too expensive for
search engines that need to support large corpora. To achieve better scalability,
search engines must be able to find the most relevant documents to a query by
examining just a small subset of the corpora.

3.2 Data Privacy through Encryption

Cryptographic techniques for an untrusted server to perform keyword-
matching over encrypted data, without any knowledge of its plaintext, have
been proposed in Song et al. [2000], Kurosawa and Ogata [2004], Freedman
et al. [2005], Bethencourt et al. [2006], and Ostrovsky and Skeith [2007]. While
they can be used to implement keyword-matching retrieval, these techniques
do not apply to the vector space model of text retrieval because the similarity
score of a document cannot be computed from its ciphertext.

Privacy-preserving retrieval has also been studied in the context of
databases. For example, Agrawal et al. [2004a], Damiani et al. [2003], and
Hacigumus et al. [2002] described how the tables and indices in a relational
database can be encrypted to still allow the execution of SQL queries. The
techniques can be adapted to perform keyword matching for text documents,
but again are not applicable to a text retrieval system that needs to support
similarity-based retrieval.

Domingo-Ferrer et al. [2008] proposed a protocol for users to access col-
laborating users’ resources through private relationships in a social network.
The relationships and trust levels of the collaborating users are safeguarded
through homomorphic encryption techniques. In our work here, we employ
similar encryption techniques to safeguard the identity of the documents that
users retrieve.
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Besides data encryption, specialized secure storage schemes have been pro-
posed that provide additional privacy guarantees: Steganographic file systems
(e.g., Anderson et al. [1998], Pang et al. [2004]) allow a data owner to plausibly
deny the existence of protected data, while private information retrieval (e.g.,
Chor et al. [1995], Wang et al. [2007]) prevents the server from finding out
which object is being retrieved. These two types of storage schemes rely on
encryption to protect the data, so they too do not allow the server to compute
the similarity scores between the documents and the query.

3.3 Data Privacy through Hashing

Goh [2003] proposed a secure index scheme, called Z-IDX. A searcher with a
trapdoor for some given word can test its existence in the index in O(1) time.
Trapdoors are generated with a secret key, and are built on Bloom filters [Bloom
1970] and pseudo random functions. Without the secret key and legitimate
trapdoors, an adversary can deduce no information from the index. One of the
stated applications for Z-IDX is in keyword matching on encrypted documents.

Bawa et al. [2003] proposed to construct a privacy-preserving index (PPI) on a
set of documents from different providers. Each provider summarizes the terms
in its shared content through a bit vector such as a Bloom filter [Bloom 1970].
At runtime, the index server accepts a query and returns a shortlist of providers
that may contain matching documents. If the bit vector of a provider gives a
negative for the query terms, the provider is guaranteed to hold no matching
documents; otherwise, there is a possibility that matching documents can be
found with the provider. The searcher then queries the shortlisted providers
directly to request matching documents. The primary differences of PPI from
our work are (a) PPI does not protect the privacy of the user queries, (b) the
PPI scheme targets keyword matching, rather than similarity-based retrieval,
and (c) PPI affects the precision-recall effectiveness of the original retrieval
mechanism.

3.4 Data Privacy through Anonymity

In statistical databases, k-anonymity has been proposed as an alternative pri-
vacy measure to encryption. A database is k-anonymous if every record in it is
indistinguishable from at least k−1 other records with respect to the accessible
attributes [Samarati 2001; Sweeney 2002]. The problem of k-anonymization is
NP-hard [Meyerson and Williams 2004]. To tackle the computation complex-
ity, Agrawal et al. [2004b] provided approximation algorithms for generating
k-anonymous tables, while Zhong et al. [2005] developed a protocol for gener-
ating k-anonymous tables in distributed environments. Machanavajjhala et al.
[2006] demonstrated that k-anonymity still allows information leakage when
there is lack of diversity in sensitive attributes; to counter that, the �-Diversity
was proposed as an alternative privacy measure. However, Xiao and Tao [2006]
showed that an adversary can find out sensitive information with 100% confi-
dence even in Machanavajjhala’s scheme.

k-Anonymity has also been used in protecting user privacy in location-based
services [Gruteser and Grunwald 2003; Kalnis et al. 2007]. A common technique
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there is to artificially enlarge a user’s region of interest to envelop k − 1 other
users, so that the server is not able to pinpoint the user who issues a given
query. The technique could be adapted for Boolean text search, by padding a
user query with spurious terms so that the server is not able to identify the
exact terms that characterize the user’s intention. However, in the vector space
model, such a padded query would point to a different location in the term
space. Without precise knowledge of the document distribution in the term
space, the user has no basis for deciding how many more documents need to
be retrieved without missing any legitimate result documents for her genuine
query. Therefore, this technique cannot be applied to the vector space model.

3.5 Data Privacy through Noise Addition

Another technique for achieving data privacy in statistical databases is to in-
troduce noise to the data collection. By perturbing the data in a controlled
manner, it is possible to prevent accurate estimation of individual observations
while preserving certain statistical properties (e.g. mean, covariance, variance)
of the overall database (e.g., Kim [1986], Domingo-Ferrer et al. [2004]). How-
ever, it is not clear how this technique can be applied to a text corpus without
affecting the similarity scoring function.

A number of related techniques have also been studied in the context of
structured data in the information systems literature [Duncan et al. 2001;
Gopal et al. 2002; Menon and Sarkar 2007; Kadane et al. 2006]. However, the
applicability of these techniques to our text corpus and text retrieval setting
remains an open question.

3.6 Anonymous Communication

Mechanisms for anonymous communication are also relevant to our work. Such
mechanisms enable a user to submit queries to the document server without
being identified, and is complementary to our proposal here for safeguarding
the content of user queries and documents. Studies on anonymous communica-
tion abound, from mix-net [Chaum 1981], to Onion Routing [Goldschlag et al.
1999], to the recent Tor system [Dingledine et al. 2004].

3.7 Access Control

Access control concerns the enforcement of which user has what access rights
over any data or resource. There is a rich body of work on access control, from
model [Sandhu et al. 1996] to system design [Jajodia et al. 2001] to applica-
tions [Agrawal et al. 2002]. Access control is complementary to data privacy;
the latter provides protection in situations where the adversary manages to cir-
cumvent the access control mechanism and gain control of the system internals
or underlying storage.

4. TEXT RETRIEVAL SCHEME

The notion of user privacy for search engine was studied recently in Shen et al.
[2007], which defined four levels of privacy protection. Roughly, level 1 replaces
the user identity with a pseudo identity, but exposes the user information needs
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Table I. Notations

Symbol Definition

X = [xij ] m term by n document matrix (= U·�·VT)
U = [uil] Left singular matrix

� = diag(σi) Diagonal matrix of Eigenvalues
V = [v jl] Right singular matrix

r0 # of non-zero Eigenvalues in �

r1 # of factors kept by LSI
r2 # of factors left in plaintext
ET Commutative encryption function
EC Conventional encryption function, e.g. AES
kc Corpus encryption key
kr Index encryption key
ku User encryption key
kj Encryption key for document dj

kNN k Nearest Neighbors requested by the query
f Fan-out of the R-tree

(as represented by the query text and the result documents that are retrieved).
Level 2 masks the individual identities, so the server knows only the group
identity behind a search. Level 3 removes all identity information, while level
4 hides even the information needs.

The focus of our scheme is to safeguard the user queries and retrieved docu-
ments, so as to mask the user information needs from any adversary. A combi-
nation of our scheme with an anonymous communication protocol to protect the
user identities will attain level-4 privacy. Anonymous communication has been
studied extensively elsewhere (e.g. Chaum [1981], Goldschlag et al. [1999],
Dingledine et al. [2004]), and is beyond the scope of our work. In this sec-
tion, we first define our system model and threat scenarios, then introduce our
privacy-preserving retrieval scheme. The notations used are summarized in
Table I.

4.1 Problem Definition

Our objective is to design a scheme for a text retrieval system, built on the
vector space model, to perform similarity-based retrieval while safeguard-
ing the privacy of user activities, particularly the user queries and retrieved
documents.

Our scheme follows the interactions depicted in Figure 2.

—The owner of the corpus creates the inverted index [Zobel and Moffat 2006]
that is needed for query processing. Both the corpus and inverted index are
suppressed partially through cryptographic techniques before distribution
to the document servers (step 1). The keys for unlocking the index entries
and document contents are kept by the access manager (step 2). The owner
does not need to remain online for query processing.

—The document server accepts suppressed user queries (step 3), and locates 
the most relevant documents through the index. The suppressed index forces  
false positives into the search result, so as to mask the true user intention.
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Our scheme guarantees that there is no false negative; in other words, no
legitimate result document will be missed out.

—The user recovers the suppressed index data relating to the returned docu-
ments, which enables her to prune away the false positives. The remaining
documents are now ranked correctly according to their similarity scores.
The user then downloads the encrypted content of selected result documents
(step 4). There could be several document servers, each hosting a different
partition and/or replica of the index and the corpus.

—The user interacts with the access manager to unlock the content of the
selected documents (steps 5 and 6). A security mechanism is needed to en-
sure that the access manager cannot inspect the document contents after
unlocking them.

—The access manager tracks the number of documents that it unlocks for each
user, for accounting purposes.

The primary threat is that an adversary may gain control of the document
server, and collude with some users and even the access manager in order to
monitor what other users are searching for. Against such an adversary, our
scheme provides the following privacy protection:

—The adversary must not be able to deduce accurately the term composition,
and hence the semantic content, of the documents and queries. We quantify
this potential information leakage with the fidelity metric.

—The adversary must not be able to accurately identify other documents that
are similar to any given document or query. This prevents the adversary from
classifying the corpus around compromised documents/queries whose plain-
text and suppressed representations have been leaked. Here the protection
is achieved through anonymity.

Definition 1. As explained in Section 2.2, the term composition of any docu-
ment or query is expressed as a vector. Let X be a matrix in which the columns
correspond to the document and query vectors that we wish to protect. The

Frobenius norm of X, defined as ||X||F =
√∑r1

i=1 diag(XTX), is the Euclidean
length of all the document vectors in X.

Furthermore, let X̂ denote the corresponding document and query vec-
tors that the adversary is able to deduce. The difference between the docu-
ment/query vectors in X and X̂ is measured by ||X − X̂||F.

The fidelity of the estimated X̂ is 1 − ||X−X̂ ||F
||X ||F

.

A fidelity of 1 indicates that the adversary is able to reconstruct X perfectly,
a situation that we wish to prevent. A fidelity of 0 means that the adversary
has zero knowledge of X; while such an assurance might appear desirable from
a purely security standpoint, it severely cripples the retrieval function of the
document server at the same time. Intuitively, the less is known about the cor-
pus and query, the less accurately can the document server filter out irrelevant
documents from the search result. In practice, we need to balance between pre-
serving retrieval efficiency and limiting privacy disclosure, taking into account
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Fig. 3. Partially suppressed representation.

the likelihood of such disclosure (i.e., the probability of user-document server
collusion).

Definition 2. In a search result with an anonymity level of x, the genuine
top-k matching documents are mixed with (x − 1)k other entries; the adversary
is not able to tell the two apart.

Anonymity requires the search result to be padded with irrelevant docu-
ments, and is proportional to the cost imposed by our scheme. Therefore our
aim is to achieve low fidelity while staying within certain target anonymity
ranges. In addition to privacy protection, our scheme must meet usability re-
quirements:

(1) The final search results obtained by the user must be the same as those in-
tended by the original retrieval mechanism. This means that the document
entries, their similarity scores, as well as the precision/recall of the search
results are preserved.

(2) The number of documents that each user opens can be tracked.

4.2 Overview of Solution Approach

Our text retrieval scheme is designed for the vector space model. In this model,
each document is represented as a vector in multidimensional term-space as
illustrated in Figure 1. Let X = [xij] denote the m term by n document matrix
(m > n). The singular value decomposition (SVD) of X with rank r0 is defined
as: X = U ·� ·VT such that U = [uil] is the left singular matrix whose columns
contain orthogonal, unit-length vectors; � is a diagonal matrix of Eigenvalues
diag(σ1, . . . , σn) where σ1 > . . . > σr0 > σr0+1 = . . . = σn = 0; and V = [v jl] is the
right singular matrix whose columns contain orthogonal, unit-length vectors.
Moreover, xij = ∑r0

l 1 uil · σl · v jl. Figure 3 illustrates the SVD procedure.
With Latent 

=
Semantic Indexing (LSI) [Deerwester et al. 1990], X is approx-

imated by retaining only the r1 most significant Eigenvalues in �, along  with  
the corresponding columns in U and V. Typically, r1 � r0. If LSI is not applied, 
then r1 = r0.

The documents are represented by the columns in VT. Continuing the run-
ning example in Figure 1, the corresponding VT with r1 = 8 is given in Figure 4. 
Document retrieval entails finding the documents that are nearest neighbors 
of the query in the r1-factor space.
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Fig. 4. VT with r1 = 8 and r2 = 4 for the Sample Corpus.

To provide data privacy, only r2 (≤ r1) of the factors (rows) in VT are stored
in plaintext on the document server. The values in the remaining r1 − r2 rows
are encrypted, and can only be deciphered by authorized users. In general,
the encrypted rows could be the leading or trailing ones, or they could be
spread out. Moreover, all r1 columns of U and the r1 Eigenvalues in � are
encrypted. The encrypted U and �, along with the partially encrypted V,
constitute the suppressed index. In Figures 3 and 4, the r2 plaintext factors
in VT are in a light shade, while the encrypted factors are in a darker shade.
We observe that by itself the suppressed VT in Figure 4 bears little semblance
to, and thus reveals no useful information to, any adversary about the original
term-document X in Figure 1.

To submit a query, the user first obtains the decryption key for U and � from
the access manager. The query (column) vector q(r1) = (q1, . . . , q(r1)) is derived
as q(r1) = �−1 · UT · q. q(r2), comprising the r2 plaintext coordinates in q(r1), are
sent to the document server.

Next, the document server assembles an intermediate result that is a su-
perset of the result documents, using the r2 plaintext rows of VT as described
in Section 4.3. The user then deciphers the r1 − r2 encrypted coordinates of
the documents in the intermediate result, and with the additional coordinates
prunes down to the actual search result.

A lower r2 setting is expected to limit the document server to a poorer approx-
imation of X, thus reducing the fidelity of any reverse-engineered documents
in case the document server manages to obtain U and � by colluding with
some users. (We will examine this threat in detail in Section 5). In the running
example in Figure 4, the fidelity drops from 0.92 at r2 = 8 to 0.15 at r2 = 1.
At the same time, the intermediate results would include more false positives,
thus raising anonymity. The price is that the user would incur more processing
overheads in pruning false positives.

After identifying the result documents, the user may proceed to download
their contents. To meet the requirements of usage accounting and preserving
the privacy of documents retrieved by each user, we employ the cryptographic
equivalent of a twin-lock: The document contents are locked by the owner
before distribution. After downloading the target documents from the document
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server, the user applies her own lock on those documents, then sends them to
the access manager to remove the owner’s lock. This way, after the original lock
by the owner is removed, the documents are still protected by the user’s lock.
The access manager is thus able to track the number of documents that are
unlocked for each user, without peeking into their contents.

In addition to privacy, the user is likely to be concerned about the integrity of
the text retrieval process—that the query results generated by the document
server are correct, and have not been tampered with. Integrity of search results
has been addressed elsewhere (e.g., Pang and Mouratidis [2008]), and is beyond
the scope of this paper.

4.3 Query Processing

Given a user query, the document server should produce an answer that con-
tains the k most similar documents, according to the similarity function in
Formula (1). Since the denominator normalizes the query and document vec-
tors to unit length, every document/query can be treated as a point on the
surface of the unit hypersphere in r1-factor space, and the cosine similarity
between two points is inversely proportional to the Euclidean distance be-
tween them. Therefore the similarity-based retrieval is equivalent to finding
the k documents with the shortest Euclidean distance to the query in r1-factor
space.

Our query processing mechanism at the document server assembles a su-
perset of the search result in two steps.

(1) Initial search. Find the kNN(r2) in the r2-factor space defined by the plain-
text rows of VT. Compute the maximum distance dist between the kNN(r2)
documents and the query in the full r1-factor space.

(2) Expanded search. Retrieve all the documents that reside up to a distance3

of dist from the query in the reduced r2-factor space. These documents are
guaranteed to include kNN(r1), the actual result documents. kNN(r1) is likely
to differ from kNN(r2).

This search procedure is conducted in the reduced r1-factor space (produced
through truncated SVD), not in the original term space. Truncated SVD is a
common technique in text document indexing and retrieval. Previous studies
(e.g., Kolda and O’Leary [1998], He et al. [2004], Yan et al. [2008]) have reported
that the reduced factor space tends to bring together terms and documents
based on co-occurrence. Therefore expanding the search distance in step 2 has
the effect of pulling in terms and documents that have lower co-occurrence
with the query terms. This, together with the polysemy effect (where a word
has multiple meanings), introduce diversity into the search result and lower
its fidelity to the adversary, as shown in Section 6.

We now prove that the search procedure is correct. Let q(r1) = (q1, . . . , qr1 ) and
q(r2) = (q1, . . . , qr2 ) denote the full and suppressed query vectors. q(r1) = q(r2) +δq

3We focus on the Euclidean distance here, though our solution extends easily to the Lp or Minkowski 
metrics.
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where δq is in an orthogonal subspace from q(r2), such that
√|q(r2)|2 + |δq|2 =

|q(r1)|. Thus |δq|2 = |q(r1)|2 − ∑r2
l=1 q2

l .
Similarly, let d j(r1) = (d1 j, . . . , dr1 j) and d j(r2) = (d1 j, . . . , dr2 j) denote the full

and suppressed vectors for a document d j in kNN(r2). d j(r1) = d j(r2) + δd j where
δd j is orthogonal to d j(r2), and |δd j |2 = |d j(r1)|2 − ∑r2

l=1 d2
lj .

By definition, d j(r1) −q(r1) = d j(r2) + δd j −q(r2) − δq = (d j(r2) −q(r2))+ (δd j − δq).
δd j − δq is longest when δd j and δq are exactly in opposite directions. Thus,

∣∣d j(r1) − q(r1)
∣∣2 ≤ ∣∣d j(r2) − q(r2)

∣∣2 +
⎛
⎝

√√√√|d j(r1)|2 −
r2∑

l=1

d2
lj +

√√√√|q(r1)|2 −
r2∑

l=1

q2
l

⎞
⎠

2

.

The maximum distance between the kNN(r1) documents and the query in the
full r1-factor space is:

dist = max
j

[
|d j(r2) − q(r2)|2+

⎛
⎝

√√√√|d j(r1)|2 −
r2∑

l=1

d2
lj +

√√√√|q(r1)|2 −
r2∑

l=1

q2
l

⎞
⎠

2
⎤
⎥⎦

1
2

(2)

for all d j ∈ kNN(r2). By including the value of |q(r1)| in the query structure and
storing the |d j(r1)| values on the document server, it has enough information to
compute dist with just the plaintext rows of VT. The expanded result that is
returned to the user contains the document vectors, including their plaintext
and encrypted coordinates.

LEMMA 1. Any document d j that is not retrieved in the expanded search
cannot be in kNN(r1), the actual result.

PROOF. Given that d j is excluded from the expanded search for documents
that are up to dist from the query, |d j(r2) − q(r2)| > dist. It follows that |d j(r1) −
q(r1)| > dist.

Since the expanded search includes the kNN(r2) from the initial search, there
are already at least k documents that are within a distance of dist from the
query in the full r1-factor space. Therefore d j �∈ kNN(r1).

LEMMA 2. The proposed retrieval scheme correctly produces the k most rele-
vant documents to the query.

PROOF. Lemma 1 proves that all the k most relevant documents are
included in the expanded result. After decrypting the r1 − r2 encrypted
coordinates, the user can order the documents in the expanded result with all
the r1 coordinates. By definition, the k most relevant documents must be at
the top of the ordered list.

Figure 5 illustrates the query processing procedure. Suppose the corpus
contains document vectors d1 to d4 (and many others that are farther from the
query than those four). Moreover, r1 = 2, r2 = 1, and we need the two closest
documents to the query q. With only the x-coordinates, the initial search yields
2NNx = {d3, d4}. dist is then computed from the Euclidean distance between
d4 and q. The expanded result (demarcated by the dark outer circle with radius
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Fig. 5. Query processing.

dist) now contains the actual result 2NNxy = {d1, d2} (demarcated by the light 
inner circle). After decrypting the y-coordinates, the user can rank d1 to d4 and 
locate the top two matches correctly.

Theoretically, the document server could disregard the suppressed columns 
in V, and compute document similarity scores with V’s r2 remaining plaintext 
columns and q(r2), as in LSI. In practice, doing so would yield very poor retrieval 
effectiveness: (a) If LSI is employed, U, � and V would have been trimmed to 
the desired number of columns (typically only one or two hundreds [Dumais 
1994]). A further loss of the suppressed columns would leave too few columns to 
effectively retain the important associations in X, the term-document matrix.
(b) To simplify our presentation, we have shown that trailing columns are 
suppressed. In fact, the suppressed columns could well be the leading ones or 
spread out uniformly, as we will see in Section 6. Disregarding the suppressed 
columns would thus introduce too much error to the similarity ranking.4

4.4 Retrieval of Result Documents

Upon receiving the expanded result, the user interacts with the access manager 
to decipher the encrypted coordinates. With the complete document vectors, the
user can now rank the documents to derive kNN(r1). Following that, the user 
may proceed to click on the document links to download the content of those
kNN(r1) documents.

To safeguard the documents, a straightforward approach is to protect their 
contents using the twin-lock mechanism that we alluded to earlier. The twin-
lock is realized from a commutative encryption function5 ET(m, k) that encrypts 
a message m with a key k such that ET(ET(m, k1), k2) = ET(ET(m, k2), k1) [Bao  
et al. 2000]. The encrypted content of a document is paired with a randomly

4The impact of using too few factors on precision-recall performance is well documented, for exam-
ple in Dumais [1994, 1995].
5A well-known commutative encryption function is ElGamal [ElGamal 1984]. It involves two 
modulo exponentiations. We clocked its encryption and decryption operations in the Crypto++ 
library (http://www.cryptopp.com) at just 11.6 msec and 36.6 msec respectively, even with 1024-bit 
long modulus. These CPU overheads are acceptable, taken in the context of other system costs like 
query processing and network transmission. The use of encryption also does not increase the index 
size, thus posing no space overhead.
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generated, but unique document id to facilitate retrieval through an index
(as explained in Section 6.1). Thus, each document d j is stored in the form
〈idj, ET(d j, kc)〉 where kc is the encryption key for the corpus.

Referring to the text retrieval model in Figure 2, the user downloads the
result documents {〈id1, ET(d 1, kc)〉, . . .} in step 4. The encrypted content of
each document d j in the result is encrypted again with the user’s key ku

– ET(ET(d j, kc), ku) = ET(ET(d j, ku), kc) – and sent to the access manager in
step 5. The access manager decrypts the documents with kc, and the resulting
ET(d j, ku) are returned in step 6. The user then decrypts with ku to recover d j .

While this straightforward approach works, exchanging the encrypted doc-
ument contents in steps 5 and 6 would incur high transmission costs, es-
pecially if the documents are large. This can be mitigated by introducing
a layer of indirection: The owner encrypts each document d j with a ran-
domly generated document key kj , then locks kj with kc. Thus, d j is stored
as 〈idj, EC(d j, kj), ET(kj, kc)〉 where EC is a conventional encryption function
like AES [2001]. The user can now send the encrypted document keys—
ET(ET(kj, kc), ku)—in step 5, and in step 6 the access manager returns ET(kj, ku).
The user then decrypts with ku to extract kj , and decrypts EC(d j, kj) to recover
d j .

4.5 Detailed Indexing and Retrieval Protocols

The following indexing and retrieval protocols flesh out the proposed informa-
tion retrieval scheme.

4.5.1 Corpus Preparation. The corpus preparation that the owner per-
forms involves the following steps.

—Assign a randomly generated, but unique idj to each document d j . Lock d j

into the form 〈idj, EC(d j, kj), ET(kj, kc)〉, where kj is a randomly generated
encryption key that is unique for each document, and kc is the overall corpus
key.

—Apply Singular Value Decomposition (SVD) to decompose the original term-
document matrix X into a left singular matrix U, a diagonal matrix of eigen-
values �, and a right singular matrix V.

—U and � are encrypted with a random key kSVD.
—For each document or column vector d j in VT, create a triplet

〈d j(r2), EC(idj |δd j, Ij), ET(Ij, kr)〉 where Ij is a random index entry key, kr is
the overall index key, and | is the concatenation operator.

After corpus preparation, the locked documents, the encrypted U and �, and
the partially suppressed V are deposited on the document server. kSVD, the
corpus key kc and index key kr are kept by the access manager.

4.5.2 Document Retrieval Protocol. Consider steps 3 and 4 in Figure 2.
Since the document server works on only the r2 plaintext rows of VT, the query
result will include some “false positives.” Rather than returning the content of
all those documents directly, the document server returns their complete docu-
ment vectors (comprising plaintext and encrypted coordinates) first. Only after
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weeding out the false positives with the aid of the encrypted coordinates, does
the user contact the document server again to download the actual document
contents. Details are as follows.

The query result from the document server is a collection of entries of
the form 〈d j(r2), EC(idj |δd j, Ij), ET(Ij, kr)〉. Using the twin-lock mechanism de-
scribed in Section 4.4, the user sends the ET(ET(Ij, kr), ku)’s to the access man-
ager, which decrypts with kr and reverts with the ET(Ij, ku)’s. The user then
obtains Ij by decrypting with ku, recovers the plaintext idj and δd j , and com-
bines δd j with d j(r2) to get the complete d j(r1). After ranking the documents
with the complete d j(r1) and q(r1) vectors, the kNN(r1) result documents can now
be identified. Following that, the idj ’s of the result documents in kNN(r1) are
presented to the document server, for it to return the locked document contents
〈idj, ES(d j, kj), ET(kj, kc)〉 as explained in Section 4.4.

The interactions between the user, document server and access manager
during query processing are captured in the protocol in Figure 6. The protocol
requires two rounds of exchanges between the user and the document server.
This is advocated in Song et al. [2000] to prevent the document server from
statistically correlating the index and the documents.

In addition, the index key kr should be different from the corpus key kc. This
ensures that users cannot circumvent the access manager’s usage accounting,
by falsely presenting document encryption keys kj ’s as index entry keys Ij ’s.

4.6 Scalability Considerations

As shown in the beginning of this section, our proposed scheme entails an
SVD operation. A common concern is that SVD is computationally expensive,
and may not be practical for very large term-document matrices. To over-
come the problem, we could rely on more optimized SVD procedures [Fierro
and Berry 2002] and Monte-Carlo algorithms that approximate the SVD com-
putation [Drineas et al. 2006]. Specifically, we extract a sample Xm×p of the
term-document matrix Xm×n where p < n, derive the singular matrices from
the sample Xm×p = Um×r0 · �r0×r0 · VT

r0×p, then fold in the full matrix with
VT

r0×n = �−1
r0×r0

· UT
r0×m · Xm×n. We can now apply our scheme to VT

r0×n as de-
scribed earlier.

In this procedure, the rank r0 has to be large enough for Xm×n to be recon-
structed accurately from Um×r0 , �r0×r0 and Vr

T
0×n. By definition, r0 ≤ min(m, p), 

so we should set the number of sampled documents p large enough that r0 is 
limited only by m, the number of index terms in the corpus. In fact, p = m 
is sufficient, as long as documents are not repeated in the sample. This is so 
because we only need to be able to reconstruct X accurately for one r0 setting, 
which is a more relaxed requirement than in LSI where every truncation of 
the singular matrices must also minimize the reconstruction error. In the LSI 
case, the sample has to be representative of the entire term-document matrix 
Xm×n, thus necessitating the sample size p to be pegged to n.

Since our computation here is determined by m, and independent of the 
actual number of documents n, the SVD step is scalable to an arbitrarily large 
number of documents. In practice, many document collections contain around
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Fig. 6. Document retrieval protocol.

50,000 index terms, and r0 = 1500 is enough to reduce the reconstruction error
to negligible levels (as shown in the experiments in Section 6). The resources
needed for such an SVD operation are well within the capacity of a 64-bit
computing server.

Besides SVD computation, user computation and storage associated with the
U and � matrices may also affect the scalability of our solution. Suppose that
m = 50,000 and r1 = 200 (a sufficient setting according to experiment results
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in Dumais [1994] and Section 6.7). Representing each matrix element with a 
4-byte floating point, U and � occupy roughly 40 Mbytes and 800 bytes respec-
tively, without compression. We envisage that they will be installed as part of 
the client software, rather than being downloaded at runtime. To generate the 
reduced vector for a query q, we first derive UT · q; assuming that q is a long  
query consisting of 20 terms, this step requires 200 × 20 = 4,000 multiplication 
operations. Next, we compute q(r1) = �−1 · (UT · q) which incurs another 200 
multiplications. In all, generating q(r1) requires 4,200 multiplications, which 
can be completed in about 10 msec. As an optimization, we could compute and 
store �−1 · UT (instead of storing the two matrices separately), thus saving 800 
bytes of storage and 200 multiplications per query. The requisite storage and 
computation overheads can be supported easily on modern hardware.

5. ANALYSIS OF PRIVACY SAFEGUARDS

Having presented our text retrieval scheme, we now analyze the privacy pro-
tection that it offers. We first examine the normal scenario where the document 
server and the access manager act independently, followed by scenarios where 
the two might collude.

5.1 Scenario A: Independent Document Server and Access Manager

Excluding the initial request for kSV D to decrypt U and �, the protocol in 
Figure 6 involves two exchanges each with the document server and the ac-
cess manager. The exchanges with the latter are protected by the user key ku 
and hence are safe. The first exchange with the former involves suppressed 
representations of the query q(r2) and candidate result documents d j(r2). Being  
vectors within a synthetic factor space that is derived through singular value
decomposition, q(r2) and d j(r2) convey no useful meaning on their own, as il-
lustrated in Figure 4. The second exchange with the document server serves 
only to download encrypted documents. Therefore, the document server and the 
access manager, acting independently, are not able to compromise the privacy 
protection.

5.2 Scenario B: Document Server Acquires Some Past Queries

Suppose that the document server somehow gets hold of the plaintext and 
suppressed representation of some document, and poses it as a search query to 
the system. How precisely is the server able to identify other documents that 
have similar term compositions? This is quantified by the anonymity metric, 
defined in Section 4.1. We denote the plaintext and suppressed representation 
of the query as q and q(r2) respectively.

COROLLARY 1. The anonymity of a search result is the ratio of the number of 
documents in the expanded result over the number of documents requested.

Intuitively, an anonymity level of x indicates that the genuine top-k matching 
documents are mixed with (x − 1)k spurious result entries, on the average. The 
document server is not able to discern the genuine documents from the spurious
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Fig. 7. X̂ = U · � · VT
(r2) for the Sample Corpus, with r2 = 4.

entries in the search result. Only the user, after deciphering the suppressed
factors in the document vectors, can differentiate the two accurately.

Let Sc(a, b) denote a c-dimensional hypersphere with center a and radius
b. Sr2 (q(r2), max j |d j(r2) − q(r2)|) is the smallest hypersphere that envelops the
kNN(r2) documents d j from the initial search. Following the expanded search,
the hypersphere is enlarged to a radius of dist (as defined in Formula (2)). If
documents are uniformly distributed in the r2-factor space, the increase in the
number of documents is proportional to the volume increase of the hypersphere,
thus the anonymity of the result for query q(r2) is roughly ( dist

max j |d j(r2)−q (r2)| )
r2 . As

the uniform distribution assumption does not always hold in practice, however,
we will measure the anonymity level empirically in Section 6.

5.3 Scenario C: Document Server Colludes with Users

Next, suppose that the document server colludes with a user to get hold of
the decrypted left singular matrix U and Eigenvalues �. The document server
can estimate the corpus by computing X̂ = U · � · VT

(r2), and the query with
q̂ = U · � · q(r2). The accuracy of these estimates are quantified by the fidelity

metric, defined in Section 4.1. It can be shown that ||X||F =
√∑r1

i=1 σ 2
i , the

sum of the r1 highest Eigenvalues in �, and that ||X − X̂||F =
√∑r1

i=r2+1 σ 2
i .

Moreover, the fidelity can be calculated from the Eigenvalues in �:

fidelity = 1 −
√√√√∑r1

i=r2+1 σ 2
i∑r1

i=1 σ 2
i

.

Continuing our running example from Figures 1 and 4, we show in Figure 7
the term-document matrix X̂ that the adversary is able to deduce with only
the r2 = 4 plaintext factors. The fidelity of the estimated matrix is around
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0.56. Clearly, its document vectors contain many spurious terms, which add to
the uncertainty in the adversary’s deductions. In Section 6, we will study the
fidelity levels that our scheme achieves with real corpora.

An alternative metric for quantifying the information leakage here might
be derived from the notion of differential entropy in information theory, as
suggested in Shen et al. [2007]. It would be interesting future work to investi-
gate how entropy, which is defined for independent random variables, can be
extended to the entire term-document matrix or the text corpus in general.

5.4 Scenario D: Dictionary Attacks

With the left singular matrix U and Eigenvalues � from a colluding user, the
document server could also attempt a dictionary attack. There are two possible
cases: (a) to find a query q′ that has the exact term composition as the user
query q, i.e., q′ = q; and (b) to find a query q′ that contains one or more terms
in the user query q, i.e., q′ ⊆ q.

(a) To find q′ = q. Such an attack is straightforward with the Boolean model, as
the result set for a query can be constructed from the result sets for the compo-
nent terms. For example, the answer for “term1 AND term2” is the intersection
of the component answers. With the vector space model that we adopt in this
paper, however, a document that does not contain some of the search terms,
but has a high similarity score relative to the remaining search terms, can still
qualify for the query answer. To deduce the exact term composition of a user
query, the document server would thus have to test all the powersets of the
vocabulary terms, even discounting the possibility that the query may repeat
some terms. As many realistic corpora contain 50,000 search terms or more,
such an exhaustive enumeration is computationally feasible only for queries
with two or at most three search terms. Admittedly, this might still pose a con-
cern for Web search queries which are generally short. The countermeasure we
can think of is to inform users who are concerned about privacy to formulate
queries that are more specific and longer, and hence beyond the reach of brute
force attack.

(b) To find q′ ⊆ q. For longer queries like TREC topics,6 a more feasible attack
is to test whether a certain term in the vocabulary is included in a user query.
This can be done by computing the search result for every term, then checking
whether each term’s result is similar to the user’s query result. Specifically,
the adversary enumerates the single-term queries qi = {ti}, where ti is the i-th
entry in the vocabulary of m search terms. For each qi, the document server
generates the result set R(qi, k) containing the top k matching documents. Now
a user submits a query q, and gets a top-k result set R(q, k). The adversary
wants to find the probability that some suspected qi is a subset of q, given the
observed similarity between their respective result sets sim(R(qi, k), R(q, k)),
where sim(R(qi, k), R(q, k)) = 1 if R(qi, k) and R(q, k) are judged to be similar

6Text REtrieval Conference. http://trec.nist.gov/.
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and 0 otherwise. By Bayes rule,

P(qi ⊆ q|sim(R(qi, k), R(q, k)) = 1)

= P(sim(R(qi, k), R(q, k)) = 1|qi ⊆ q)P(qi ⊆ q) /[
P(sim(R(qi, k), R(q, k)) = 1|qi ⊆ q)P(qi ⊆ q) +
P(sim(R(qi, k), R(q, k)) = 1|qi � q)P(qi � q)

]
. (3)

In this equation, P(qi ⊆ q) can be estimated from the relative frequency of
term ti in the text corpus or historical queries, while P(qi � q) is roughly m−|q|

m .
P(sim(R(qi, k), R(q, k)) = 1|qi ⊆ q) is approximated through the following pro-
cedure: Treating R(qi, k) and R(q, k) as n-dimensional vectors with coordinate i
set to 1 if document di is in the result and 0 otherwise, we compute the cosine
similarity7 between R(qi, k) and R(q, k). Since both vectors contain only {0, 1}
values, the cosine similarity ranges between 0 when the result sets share no
common documents, and 1 when the two results are identical. We therefore use
the cosine similarity as an estimator for P(sim(R(qi, k), R(q, k)) = 1|qi ⊆ q). The
rationale is that, suppose we have a classifier for judging whether R(qi, k) and
R(q, k) are similar, we would expect it to have a higher probability of pronounc-
ing the result sets to be similar when the cosine similarity is nearer 1, and a
lower probability of a positive judgment when the cosine similarity is nearer 0.
Similarly, P(sim(R(qi, k), R(q, k)) = 1|qi � q) is estimated by the average cosine
similarity between R(q, k) and the results of nonquery terms.

As we will demonstrate empirically in Section 6.8, P(sim(R(qi, k), R(q, k)) =
1|qi ⊆ q) is not significantly higher than P(sim(R(qi, k), R(q, k)) = 1|qi � q).
Given the sheer magnitude of m (the number of vocabulary terms), we expect
P(qi ⊆ q) � P(qi � q). Therefore, the denominator in Equation (3) dwarfs the
numerator, implying a low certainty in any deduction on what search terms
might be in a user query. The exception is where there are a few disproportion-
ately frequent terms for which P(qi ⊆ q) �� P(qi � q). However, such terms are
likely to be discarded as stopwords (that have little discriminatory value for
retrieval purposes [Baeza-Yates and Neto 1999]) by the document server, and
they do not disclose specific information about the query and user intention in
any case.

The dictionary attack can be extended beyond single-term queries. In par-
ticular, an adversary could isolate a very small subset of interesting terms,
then enumerate q′ over the powerset of those terms to test for q′ ⊆ q. If the
user query q happens to contain only the isolated terms, the adversary would
find a q′ that produces an identical result as q. If q contains any term that is
outside of the isolated subset so that q′ � q, however, a similar analysis and
conclusion as for single-term queries apply.8 Therefore the attack is effective
only when the user queries are limited strictly to a small yet informative set of

7The cosine similarity between two n-dimensional vectors x and y is defined as x·y√|x|√|y| .
8Lengthening the probe query by one term will increase the number of possible q′ by a factor of m,
while reducing P(q′ ⊆ q) by a factor of |q|/m where |q| is the number of unique query terms. Since
P(q′ � q) = 1 − P(q′ ⊆ q), a longer q′ will cause the denominator to overwhelm the numerator in
Equation 3, and the probability of deducing the search terms to approach zero quickly.
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search terms, and it can be defeated easily once users add extra relevant terms 
to make their queries longer and more specific.

5.5 Scenario E: Document Server Colludes with the Access Manager

Finally, we consider the scenario where the access manager may collude with 
the document server. In addition to the left singular matrix U and Eigenvalues 
�, now the document server can also inspect the content of the documents that 
each user downloads. A user may mitigate this threat by mixing her genuine 
document downloads among spurious documents. Since the document keys 
that are sent to the access manager for unlocking are secured with the user 
key, the user is still able to unlock only the genuine result documents and thus 
avoid paying for the spurious documents. Therefore this technique achieves 
anonymity, at the expense of download overheads. Furthermore, the owner 
may set up several document servers, so that the user can gather her result 
documents across multiple locations. This increases the difficulty of collusion 
attacks, as the adversary would have to seize control of multiple document 
servers concurrently in order to track the documents downloaded by each user.

6. EXPERIMENTS

In the previous section, we have identified the privacy risks that ensue if the 
document server manages to obtain extra information by colluding with other 
users or the access manager. We have also shown how the fidelity and anonymity 
metrics are used to quantify those privacy risks. We now present an empirical 
study of these metrics with a prototype system that we implemented.

6.1 Description of Prototype

Our implementation first uses the Lucene search engine to build an index from 
the corpus. Next, we dump out Lucene’s index into a vocabulary of terms, along 
with an inverted list for each term. The inverted list enumerates the identity 
of each document that contains that term, together with the frequency of the 
term in that document. After pruning away those terms that appear in only 
one document, the term-document matrix X is constructed according to the 
formulation in Section 2.2. The document vectors are normalized, before using 
the SVD routine in matlab to generate the U, � and V matrices.

Since relevance ranking in the vector space model is determined by the 
distance of the document vectors from the query vector, query processing with 
the suppressed document and query representations involves finding the kNNs 
(k nearest neighbors), then all documents within a computed distance dist of the 
query in the r2-factor space. To carry out these retrieval operations efficiently, 
we construct an R-tree index [Guttman 1984] over the document vectors in V.

6.1.1 Apply Clustering on the Document Vectors. We apply a clustering 
algorithm on the document vectors in V, based on their positions in the r2-
dimensional term space. The intent is to minimize the extent of the tree nodes, 
by preventing outlier documents from stretching the nodes of the R-tree across 
empty regions of the factor space.
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Fig. 8. Clustering the document vectors.

To illustrate, suppose that the matrix V generated from SVD contains 20 doc-
ument vectors (d1 to d20), as plotted in Figure 8. The clustering algorithm
organizes them into 4 clusters (C1 to C4).

6.1.2 Partition the Large Clusters. The previous step is likely to produce
a wide range of cluster sizes. For example, C1 contains only one document,
whereas C4 holds 8 documents. We now split the clusters into partitions that
contain at most f documents each, where f is the fan-out factor of the R-tree.
(a) If a cluster contains f or fewer documents, it is treated as one partition.
(b) If a cluster contains more than f documents, it is space-partitioned recur-
sively till all the partitions have at most f documents each. The partitioning
strategy follows the KDB-tree [Robinson 1981]. Specifically, we section a large
partition along the first of the r2 plaintext factors into smaller partitions con-
taining equal number of documents, then the new partitions along the second
factor and so on, till the partitions are small enough.

Figure 9 shows how the clusters are partitioned for f = 2. (In practice, f is
typically set to 100 or higher.) Clusters C2, C3 and C4 are first sectioned along
the x-axis, followed by the y-axis, into 12 partitions that contain at most two
documents each.

6.1.3 Index the Partitions. Next, a Minimum Bounding Region (MBR) is
defined for each partition; this MBR is the smallest hyper-rectangle that en-
closes all the documents within the partition. The partitions are then bulk-
loaded [Berchtold et al. 1998] into the R-tree. The dimensionality of the R-tree
is the maximum number of factors r3 (r3 ≤ r2) that step 2 takes to carve all
the clusters into partitions that contain at most f documents. The MBRs for
the 12 partitions and the resulting R-tree are illustrated in Figures 10 and 11,
respectively.

Compared to loading the documents directly into the R-tree, our procedure
of pre-organizing the documents into partitions reduces the extent of the tree
nodes, as well as the overlap between nodes at the same level of the R-tree. The
procedure also provides a basis to set the R-tree’s dimensionality. The price
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Fig. 9. Clustering & partitioning.

Fig. 10. Defining partition MBR.

that we pay is the overhead of generating the partitions. This should not be a
big deterrent though, because the document servers re-generate their indices
periodically rather than update them on-the-fly as documents are added. More-
over, our experience shows that clustering and partitioning take only a small
fraction of the time consumed by SVD.

6.1.4 Retrieval through the Index. Suppose that the R-tree R constructed
above indexes the first r3 of the r2 plaintext factors in V. We need to apply the
procedure in Section 4.3 twice to generate the query result

—Phase 1: Locate the k documents that are nearest the query in the r3-
dimensional space, kNN(r3). Compute the maximum distance dist1 between
these kNN(r3) documents and the query in the r2-dimensional space.

—Phase 2: Locate all the documents that are up to a distance of dist1 from the
query in the r3-dimensional space, using the R-tree. Rank these documents
by their similarity to the query in the r2-dimensional space, then identify
kNN(r2). Compute the maximum distance dist2 between these kNN(r2) docu-
ments and the query in the r1-dimensional space.
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Fig. 11. An R-Tree for the running example.

—Phase 3: Retrieve all the documents that reside up to a distance of dist2
from the query in the r3-dimensional space, using the R-tree. From these
documents, prune away those that are beyond dist2 from the query in the r2-
dimensional space. The remaining documents will include kNN(r1), the actual
result documents.

The lemma in Section 4.3 can be extended easily to prove that this procedure is
guaranteed to produce a superset of the actual result documents. An efficient
algorithm for searching the R-tree is given in Hjaltason and Samet [1999].

6.2 Experiment Set-Up

Our text retrieval scheme achieves privacy protection by leaving a subset of the
document coordinates in plaintext, while encrypting the remaining coordinates.
Obviously, the achieved fidelity and anonymity levels depend on the mask% =
1 − r2/r1, the percentage of coordinates that are encrypted. For simplicity, in
Section 4 we have demonstrated that the plaintext coordinates are in the top
rows in the suppressed document matrix VT, that is, those that correspond to
the most significant Eigenvalues. Of course, there are other ways to select the
plaintext versus encrypted coordinates. We will evaluate the following masking
schemes.

—Prefix masking. Among the r1 rows retained after SVD (and LSI if applicable),
leave the r2 corresponding to the smallest Eigenvalues in plain and encrypt
the other rows.

—Suffix masking. Leave the rows in VT corresponding to the r2 largest Eigen-
values in plaintext, and encrypt the remaining coordinates.

—Spaced masking. Spread out the encrypted coordinates across the r1 rows in
equal intervals.

We use two corpora for our experiments. The first (WSJ) contains articles
published in the Wall Street Journal from July to September of 1990. The
second corpus (RCV1) is the training set of the Reuters Corpus Volume 1, as
defined in Lewis et al. [2004]. The characteristics of the resulting dataset are
summarized in Table II.
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Table II. Characteristics of the Datasets

Parameter WSJ RCV1

n: # of documents in the dataset 10,123 23,149
m: # of terms in the dataset 46,493 47,236
r1: Default # of coordinates kept by LSI 1,500 1,500
mask%: Ratio of r1 coordinates that are encrypted (= 1 − r2/r1) – –

The evaluation metrics for our experiments include the two basic measures
of retrieval effectiveness, precision and recall.

—precision = # of relevant documents in the search result
total # of documents in the search result ,

—recall = # of relevant documents in the search result
total # of relevant documents .

We also want to measure the privacy risk in circumstances where the docu-
ment server manages to acquire extra information by colluding with the access
manager or other users. As defined in Section 4.1, the privacy metrics are the
following.

—The fidelity of the approximated corpus and user queries that could be
reverse-engineered from the suppressed V(r2) and q(r2). Fidelity can be cal-
culated directly from the Eigenvalues of the term-document matrix X as
explained earlier.

—The anonymity accorded to the search results, which is derived by in turn
treating each document as a query and measuring the anonymity of the
query result, then averaging across all the documents in the corpus.

The efficiency of the query result—the fraction of useful data in the expanded 
result that is returned to the user—is inversely proportional to the anonymity 
metric. Moreover, all the other steps in the protocol in Figure 6 are pegged to 
the number and size of the documents that the user downloads. As such, we 
will focus the experiment results on the four metrics above.

6.3 Parameter Calibration

The first configuration parameter in our solution is r1, the number of retained 
Eigenvalues. Dumais [1995] showed that the precision-recall of Latent Seman-
tic Indexing (LSI) typically peaks in the range 200 < r1 < 350, and converges 
to the vector space model as r1 is raised further. However, a more recent study 
[Husbands et al. 2001] reported that while truncating the singular matrices 
(i.e., U, � and V) as done in LSI could improve retrieval effectiveness for a small 
homogeneous corpus, it is not suitable for large heterogeneous text collections. 
Another criticism is that LSI is designed for normally distributed data, but 
the term-document matrix (even if weighted) from a text corpus may not be 
normally distributed [Rosario 2000]. Since LSI is not the contribution of our 
article, we start our experiments with a high r1 of 1500 to approximate the 
vector space model as closely as our computing resources would allow. We will 
discuss the effect of lowering r1 in a later experiment.
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Fig. 12. Precision-Recall.

To confirm that our r1 setting behaves as expected, we carry out an exper-
iment with the TREC-2 and TREC-3 adhoc queries (topics 101 to 200) on the
WSJ corpus. The queries contain between two and 20 terms each, and provide
realistic term compositions for testing our solution. After eliminating those
topics for which there are less than 10 relevant documents, the precisions ob-
served at various standard recall levels are averaged. Our results, summarized
in Figure 12, are worse than those reported in the TREC proceedings [Dumais
1994, 1995]; that is primarily because we neither tuned our scoring function
nor supported phrases. Nevertheless, the experiment serves its purpose, in con-
firming that the r1 = 1500 setting produces almost identical precision-recall
performance as the vector space model.

6.4 Fidelity versus Anonymity

Figure 13 plots the fidelity levels for the three mask selections. Since Prefix
suppresses the coordinates that correspond to the most significant Eigenvalues,
it naturally leads to the lowest fidelity levels; indeed, by masking just 1% of
the coordinates, the fidelity is reduced to 0.44 for WSJ, and 0.65 for RCV1.
Suffix is the opposite of Prefix in suppressing the least significant coordinates.
Setting mask% to 1% only brings the fidelity down to around 0.95. However, by
raising mask%, even Suffix is able to limit the fidelity to very low levels. The
fidelity of Spaced is in between Prefix and Suffix by design. This indicates that
any suspected privacy risk resulting from a collusion between the document
server and the access manager can be managed very effectively with any of the
masking schemes.

Next, we examine the anonymity levels. The fidelity versus anonymity
curves, for result sizes of 20, 50 and 80 documents respectively, are shown
in Figures 14 and 15. The figures confirm that our scheme can concurrently
achieve low fidelity and high anonymity by simply raising mask%. However,
the performance overhead is proportional to the anonymity level, as the
false-positives that provide anonymity also need to be sent to and processed
by the user. Therefore, while we want to limit any privacy leaks in the event
of collusion, practically we should not allow the anonymity level to rise out of
control especially if the probability of collusion is low.
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Fig. 13. Fidelity.
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Fig. 14. WSJ: Fidelity versus anonymity.

Suppose we desire an anonymity target of 10, that is, every legitimate result 
document is mixed with 9 false-positives. Figure 14 shows that Prefix, Suffix 
and Spaced achieve that target at fidelity levels of around 0.7 for WSJ, while 
Figure 15 indicates fidelity levels between 0.6 and 0.7 for RCV1. Since all three 
masking schemes deliver similar fidelity versus anonymity protections, the 
choice can be determined by their relative ease of configuration, and runtime 
stability as we will examine next.

6.5 Configuration Granularity

After indexing the corpus, the data owner has to decide on the mask% for  
the suppressed representation to be used by the document server, without the 
benefit of examining the runtime search queries. We expect the setting to be 
guided by the target fidelity and anonymity levels, which can be computed from 
the corpus as explained in Section 6.2. Since the target anonymity level should 
not be too high on account of the concomitant overheads, it is desirable for the 
useful range of anonymity levels to be achieved over a wide spread of mask%. 
This allows the target fidelity-anonymity to be tuned more finely through the 
mask% setting at corpus preparation.
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Fig. 15. RCV1: Fidelity versus anonymity.
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Fig. 16. WSJ: Sensitivity to mask%.

Figures 16 and 17 plot the anonymity as a function of mask% for the two
corpora. Taking (1, 10] as the useful anonymity range, the mask% for WSJ is
<0.5%, ≤15%, and ≤30% for Prefix, Spaced and Suffix, respectively. In the case
of RCV1, the corresponding mask% is 1% for Prefix, ≤ 15% for Spaced, and ≤20%
for Suffix. This indicates that Prefix masking likely does not provide sufficient
configuration flexibility unlike Suffix and Spaced, especially for smaller corpora
with low term-document matrix ranks r0.

6.6 Runtime Stability

Document servers frequently allow users to request for different number of
result documents for their search queries. Therefore it is desirable for our text
retrieval scheme to be able to maintain roughly the same anonymity levels
across a wide range of result sizes, without having to tweak the mask%. The
reason is that the mask% setting affects the document vectors in V, and cannot
be altered dynamically after the initial configuration.

Figures 18 and 19 plot the anonymity level versus result size for WSJ and
RCV1. The experiment shows that all three mask selections are able to achieve
different anonymity ranges for query result sizes of 5 and beyond, by setting
mask% appropriately. If the search query retrieves only the top one or two
matching documents, however, the anonymity levels are consistently low. The
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Fig. 17. RCV1: Sensitivity to mask%.
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Fig. 18. WSJ: Sensitivity to search result size.

reason is that, with just one or two result documents, the search radius does 
not extend far during the expanded search (Section 4.3) to bring in enough of 
the neighboring documents. This is probably not a concern for desktop search 
applications, where the user expects to browse through several result docu-
ments. In contrast, applications running on mobile devices are likely to display 
at most a handful of result documents; to maintain the target anonymity level, 
the user device will need to request for a slightly larger result size (say, top-5), 
then trim the result locally to fit the display. Finally, we note again that the 
useful range of mask% for  Prefix is very restrictive.

6.7 Latent Semantic Indexing

Now we consider the situation where, instead of retrieving text with similar 
term compositions, the document server is configured to perform concept-based 
retrieval with latent semantic indexing (LSI) [Deerwester et al. 1990]. Follow-
ing the recommendation in Dumais [1995], we vary r1 within the range of [200, 
350]. Figure 20 plots the precision at various recall levels along with the 
fidelity measures, for the WSJ corpus. The results confirm that there is lit-tle 
threat that the document server could reconstruct the term composition of the 
documents or queries, even if it gets hold of the singular matrix U and 
Eigenvalues � through collusion.
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Fig. 19. RCV1: Sensitivity to search result size.
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Fig. 20. WSJ: Latent semantic indexing.

The issue of anonymity is more subtle here. In the vector space model, docu-
ments are ranked by the similarity of their term composition to the user query.
If the document server knows the plaintext of some documents, and those doc-
uments are ranked highly in the result of a search query whose plaintext is
hidden from the server, it can still deduce the query terms from the known doc-
uments. Thereafter, it is up to the observer at the document server to interpret
the user intention behind that query. To prevent that, it is necessary to induce
uncertainty by adding false matches into the search result, as performed by
our query processing algorithm and as measured by the anonymity metric.

With LSI, documents are ranked by their proximity to the query in the trun-
cated factor space. Ideally, terms and documents that relate to common concepts
form clusters in the factor space. In practice, many terms have multiple mean-
ings, and documents often describe more than one topic. This implies that any
known documents that rank highly in the result of a search query likely do not
share many common terms with it, so the observer at the document server is no
longer able to deduce the query terms. Instead, the observer has to hope that
the known documents describe the same concept(s) as the query; in other words,
the “interpretation” is taken away from the observer and embedded in LSI. This
“interpretation” is rather imprecise as indicated in Figure 20(a). For example,
LSI achieves a precision of 10% at 20% recall, which means that on average



4:34 • H. H. Pang et al.

there are 9 irrelevant documents for every relevant document in the search 
results. Consequently, the irrelevant entries in the search result naturally pro-
vide anonymity protection to the relevant documents; there is no need to inject 
further false positives into the search result as we do for the vector space model. 

Hence, we conclude that privacy of user queries is still maintained under LSI.

6.8 Dictionary Attack

In Section 5.4, we formulated the problem of dictionary attack. We now sub-
stantiate the analysis there by examining the similarity between the result 
sets of different queries. Using the WSJ corpus, we generate queries q with 
varying number of search terms, and measure the “qTerm” similarity (i.e., the 
cosine similarity between the result sets of q and qi , where qi is a query that 
comprises one of the terms in q). We also measure the “Rand” similarity (i.e., 
the cosine similarity between the result set of q and that of random queries, 
each of which is made up of one of the nonquery terms). The results for Suffix 
masking with 10% mask ratio are shown in Figure 21; each result point in the 
figure is averaged over 1000 queries.

Figure 21(a) lists the cosine similarities for queries comprising different 
number of search terms, with the top 20 matching documents in each query re-
sult. For each query size, we give the “qTerm” versus “Rand” similarities for the 
actual query results, as well as for the anonymized results. We observe that our 
solution significantly lowers the similarity between query results, especially for 
longer queries, as a consequence of the false matches that our solution intro-
duces into the expanded results to provide anonymity. More importantly, the 
gap between “qTerm” and “Rand” similarities, whether for the actual results 
or the anonymized results, is not wide enough for the query terms to dominate 
the nonquery terms in Equation (3), even for short queries containing only two 
search terms. This observation persists across different result sizes, as seen in 
Figure 21(b), which plots the similarity against result size with the query size 
fixed at 10 terms.

We have also experimented with Prefix and Spaced masking, and other 
masking ratios. The behaviors are similar to those observed in Figure 21. The 
experiment confirms our earlier analysis that the denominator in Equation (3) 
is much larger than the numerator, and that dictionary attacks do not yield 
high-confidence deductions about the search terms in a user query.

6.9 Discussion

The key observations from the experiment results are: (a) Our proposed text 
retrieval scheme enables the data owner to limit any privacy leaks in the event 
that the document server colludes with other parties to gain extra information, 
by setting the mask% appropriately at corpus preparation to achieve a wide 
range of target fidelity and anonymity levels. (b) Among the masking schemes, 
Suffix has the widest range of useful mask%’s, enabling it to work with even 
small corpora with as few as a hundred concept terms.

More generally, this article demonstrates that privacy-preserving, 
similarity-based text retrieval can be achieved by suppressing selected features
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Fig. 21. WSJ: Dictionary attack.

in the document/query representation. The suppressed representation forces
false positives into the search results that the document server generates in
order to provide anonymity for the user queries, without wrongly dropping
legitimate result documents. Since our proposed scheme is built on SVD, it
fits naturally with LSI for which the retrieval performance has been studied
extensively [Dumais 1994, 1995]. Where LSI is not desirable, setting r1 = r0
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would revert to the vector space model, and our scheme would still work. Our
technique could conceivably be adapted for alternatives to SVD, such as prob-
abilistic LSI [Hofmann 1999] and semidiscrete matrix decomposition [Kolda
and O’Leary 1998]; the challenge is to derive the corresponding anonymity and
fidelity formulae.

7. CONCLUSION

While the usage of text retrieval systems has undergone tremendous growth in
the past decade, development of security mechanisms to safeguard the privacy
of users of such systems has not kept pace. This article introduces a solution
that enables a document server to perform similarity-based text retrieval while
protecting user privacy. Based on the vector space model, the query and docu-
ment representation that the document server relies upon for query processing
discloses no information about the search queries. Even in the event that the
document server manages to acquire extra information through collusion with
other parties, our solution is still able to limit any privacy leaks. Moreover, the
privacy protection is achieved without altering the relevance ranking of the
original retrieval algorithm.

Our work can continue in several interesting directions. First, while many
practical search engines are built on the vector space model, they often em-
ploy complementary mechanisms to improve retrieval effectiveness. Notably,
many Web search engines exploit the metadata of documents and the hyper-
link structure between documents to boost the ranking of documents that are
likely to be authoritative (e.g., Brin and Page [1998], Kleinberg [1999]). We in-
tend to investigate how the metadata and hyperlinks can be protected, without
crippling the associated ranking functions. Second, there are alternative text
retrieval mechanisms to the vector space model, such as probabilistic relevance
[Robertson and Jones 1976; van Rijsbergen 1979; Fuhr 1992] and probabilis-
tic inference [van Rijsbergen 1986; Salton 1991]. Designing privacy protection
schemes for these models would be a challenging undertaking.
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