
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2003

XStamps: A multiversion timestamps concurrency
control protocol for XML data
Khin-Myo WIN

Wee-Keong NG

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

DOI: https://doi.org/10.1109/ICICS.2003.1292748

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
WIN, Khin-Myo; NG, Wee-Keong; and LIM, Ee Peng. XStamps: A multiversion timestamps concurrency control protocol for XML
data. (2003). 2003 International Conference on Information, Communications and Signal Processing and Pacific Rim Conference on
Multimedia 4th ICICS-PCM 2003, 15-18 December 2003, Singapore. 3, 1650-1654. Research Collection School Of Information
Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/921

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICICS.2003.1292748
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F921&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4072509

XStamps: A multiversion timestamps concurrency control protocol for XML

data

Conference Paper · January 2004

DOI: 10.1109/ICICS.2003.1292748 · Source: IEEE Xplore

CITATIONS

4

READS

204

4 authors, including:

Some of the authors of this publication are also working on these related projects:

ABECOS: Agent Based E-Commerce System View project

Job analytics View project

Wee Keong Ng

Nanyang Technological University

427 PUBLICATIONS 5,028 CITATIONS

SEE PROFILE

Ee-Peng Lim

Singapore Management University

448 PUBLICATIONS 9,087 CITATIONS

SEE PROFILE

All content following this page was uploaded by Wee Keong Ng on 13 April 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4072509_XStamps_A_multiversion_timestamps_concurrency_control_protocol_for_XML_data?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4072509_XStamps_A_multiversion_timestamps_concurrency_control_protocol_for_XML_data?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ABECOS-Agent-Based-E-Commerce-System?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Job-analytics?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wee_Keong_Ng?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wee_Keong_Ng?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanyang_Technological_University?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wee_Keong_Ng?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ee_Peng_Lim?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ee_Peng_Lim?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Singapore_Management_University?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ee_Peng_Lim?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wee_Keong_Ng?enrichId=rgreq-c99a66ce47a81a6cb6afccee77dafd9d-XXX&enrichSource=Y292ZXJQYWdlOzQwNzI1MDk7QVM6MTA1MDI5MDM3OTg1NzkzQDE0MDIwNTIyODI0MTc%3D&el=1_x_10&_esc=publicationCoverPdf

XStamps: A Multiversion Timestamps Concurrency Control Protocol for
XML Data ∗

Khin-Myo Win Wee-Keong Ng Qincai Liu Ee-Peng Lim
Nanyang Technological University

Nanyang Avenue, Singapore 639798, SINGAPORE
{p121902, awkng, 145935763, aseplim}@ntu.edu.sg

Abstract

With the tremendous growth of XML data over the Web, ef-
ficient management of such data becomes a new challenge
for database community. Several data management solutions,
proposed in recent years, extend the capability of traditional
database systems to meet the needs of XML data while alterna-
tive approaches introduce new generation databases, named na-
tive XML database management systems. Although traditional
databases have mature transaction management and concurrency
control techniques, there still need tailored techniques for native
XML databases in order to deal with distinct characteristics of
XML. In this paper, we propose XStamps, a multiversion times-
tamps concurrency control protocol for XML data, which is inte-
grated in NextDB, a native XML database management system.
XStamps is designed based on multiversion timestamps proto-
col, and additional features are added to enable flexible control
of the isolation level of transactions and allow such transactions
to commit early. Experimental results show that XStamps works
well with XML data and provides performance gain over other
concurrency protocols like Tree and Two-phase locking.

Keywords: Transaction Management for XML, Concurrency
Control Protocol, Native XML Data Management

1. Introduction
The volume of semistructured data over the Web has been
rapidly increasing, and XML becomes popular for representing
such data and emerges as a de facto standard for data exchange
among various applications. With the tremendous growth of
XML data, efficient management of such data becomes a new
challenge for database community. In order to deal with this
problem, several researchers proposed various alternatives in re-
cent years. Most solutions extend the capability of traditional
databases such as relational and object-oriented database sys-
tems to meet the needs of XML data. Although these systems
provides mature and robust data management features, they are
not ideal solutions for XML which has a characteristic of flex-
ible structure since they force all data to adhere with a prede-
fined rigid schema. Additional layer, in this case, is necessary

∗This work was supported in part by The Singapore Research and Edu-
cation Network (SingAREN) Broadband 21 Program under Project number
ICT/00/013/011.

to do mapping from XML data into their own data structure and
vice-versa. This transformation is time consuming and causes
performance degradation.

In order to overcome such deficiencies, new data models
which are specifically designed for storing XML data are pro-
posed in recent years. These systems are tailored to maintain
XML data in its native hierarchical structure in order to elimi-
nate data mapping and transformation processes [9]. It speeds
up query processing since XML queries can be directly manipu-
lated without converting to different query statements, like SQL.

For a database system, transaction management and concur-
rency control are some of key components that can affect the
performance of the system. Although traditional systems have
mature techniques for transaction management and concurrency
control, there still need tailored techniques for native XML
databases to deal with distinct characteristics of XML. Currently,
there is no standardized method to partly update XML docu-
ments due to the lack of efficient concurrency control protocols
that would ensure the correctness and efficiency of concurrent
operations. This situation motivates us to develop a transaction
management system with elegant concurrency control algorithm
for XML data.

In this paper, we propose XStamps, a concurrency control pro-
tocol for NextDB, a native XML database management system.
XStamps is designed based on multiversion timestamps proto-
col, and additional features are added to enable flexible control
of the isolation level of transactions and allow such transactions
to commit early.

This paper is organized as follows. Section 2 defines data
model and basic operations of XStamps, and Section 3 covers
the design of XStamps, and outlines the concurrency control al-
gorithm. The performance evaluation and throughput compar-
isons among XStamps, Tree and Two-phase locking protocols
are presented in Section 4, and Section 5 describes related work.
Section 6 concludes the paper with discussion on future work.

2. Data Model and Basic Operations
XStamps is a part of the transaction management system which
is integrated in NextDB [11, 12]. NextDB is specifically de-
signed for storing XML data, and its database components are
tailored to deal with distinct features and characteristics of XML.

VDEX
ICICS-PCM 200315-18 December 2003Singapore

0-7803-8185-8/03/$17.00 © 2003 IEEE

3B4.2

NextDB data model used in XStamps is a tree-like structured
model where all elements and values are stored as nodes linked
by references.

2.1 Data Model of XStamps
The storage model of NextDB focuses on the scenario that all
nodes from multiple XML documents are clustered according
to its paths, and collectively stored together in physical blocks
so that necessary space can be reduced and user queries can be
resolved with less I/O accesses while loading and scanning re-
quired data from physical storage [10, 11]. In NextDB, all el-
ement nodes and value nodes are stored in node repository and
value repository respectively, and path index and node groups
are embedded in the storage structure to support direct access to
the desired nodes. Schema tree and value index are also included
to deal with queries having regular path expressions and predi-
cate over values. The overall storage and index architecture of
NextDB is depicted in Fig. 1.

Schema
Tree

Path Index Node Group

Values

Paths

ReferencesReferences

Value Index
References

XML
Documents

Node
Repository

Value
Repository

Figure 1: The Storage and Index Architecture of NextDB

Generally, the data model in NextDB is specifically tailored
to maintain XML documents in its native tree-structured format.
Each node is assigned with a unique node ID, and stored in a
record together with ID of the document the node belongs to.
Parent-child relationship between each pair of nodes is preserved
so that the entire tree can be traversed back and forth.

2.2 Basic Operations of XStamps

A transaction is a set of basic operations that are applied to
database items. When we determine a set of basic operations
for XStamps, we consider the following design goals:

• Completeness - Any XML document that conforms to our
data model can be built by applying a sequence of basic
operations.

• Soundness - Applying a sequence of basic operations to a
valid XML document will result in another valid XML doc-
ument.

• Unambiguity - The effects of the basic operations and the
necessary parameters should be clearly defined in order to
support the manipulation of the data model.

• Efficiency - Any common and useful tasks can be expressed
efficiently as a sequence of basic operations.

Basically, only two operation, READ and WRITE, for XS-
tamps are insufficient to meet our design goals but we define
four basic operations: READ, UPDATE, INSERT and DELETE

abbreviated as R, U , I , and D respectively in order to provide
accuracy and flexibility. The first two operations do not change
the structure of the document but the last two do.

In XStamps, read and traverse operations are treated as the
same, and defined by read operation R. An important point is
that the effect of R is different from that of a formal read op-
eration. For a hierarchical structure, concurrency control algo-
rithms generally define an operation on a granule, i.e., the effect
of the operation is the entire granule, including all sub-granules.
In our case, we may not always read the entire sub-tree when
reading or traversing a node; thus, R operation performs only at
a particular node. The purpose of reading a node is either for
reading the content associated with it or for traversing forward
and backward.

U operation in XStamps is also slightly different from a for-
mal update operation. As mentioned, U updates the data, but not
the structure of the XML tree. In other words, U operation al-
ways performs over the leaf nodes in XML tree, which contains
values or contents. I operation appends a node to the XML tree
conforming to the definition of DTD. Iterated I can be used to
insert a branch or a group of nodes. The effect of D operation
is different from other because it deletes the entire branch rooted
by that node.

3. XStamps Protocol

The concept of maintaining multiple versions of data to increase
the degree of concurrency was introduced since 1970s, and it was
formalized and extended to be Multiversion Timestamps Order-
ing Protocol (MTOP) [6]. Under MTOP, each transaction is as-
signed a unique timestamp upon initiation, and multiple versions
of each database item X , one for each time the X has been writ-
ten, are maintained. Each version V of X has a read-timestamp
RTS(V), that is the greatest timestamp among transactions
which read that version, and a write-timestamp WTS(V), that
is the greatest timestamp among transactions which write that
version. An attempt to read a data item X is always successful
if there exists a version V ′ with WTS(V ′) < TS(T) and no
other version V ′′ with WTS(V ′) < WTS(V ′′) < TS(T). An
attempt to write a data item X is successful if the version V of X

with WTS(V) maximal, subject to WTS(V) < TS(T), also
has RTS(V) ≤ TS(T); otherwise T is aborted and restarted
with a new timestamp [6].

The XStamps protocol is designed based on MTOP by adding
new features. The reason for choosing MTOP is that it has sev-
eral advantages; it provides high effective concurrency levels,
deadlock-free operation (no or limited blocking) and efficient
operation unless there is a conflict. In addition, timestamps-
based protocols perform better in a low conflict environment be-
cause the number of rollbacks is less when the degree of conflicts
is low. Unlike timestamps-based protocols which require trans-
actions to commit in timestamps order, the XStamps is designed
to make use of its new features that allow transactions to commit
early.

3.1 Features of the XStamps Protocol
There are two features that make XStamps distinct from tradi-
tional timestamps protocols. The first feature is the classifica-
tion of transactions. Upon initiation, a transaction is classified
to be either a read or write transaction. The criterion is that it
is a write transaction if a transaction contains at least one action
that belongs to {I ,U ,D}, otherwise, it is a read. Read transac-
tions operate on the read version of data while write transactions
operate on the write version.

The second feature is the creation of two parameters: safety
coefficient (SCO) and safety threshold (STH). In XStamps, a
safety coefficient is assigned to each database item (node in
XML) and a safety threshold is assigned to each transaction upon
initiation. SCO indicates the certainty of how sure the latest
write transaction is able to successfully complete without roll-
back, and STH indicates the strictness of the transaction. For
the environment where a transaction needs the most up-to-date
and absolutely correct data, STH should be a very high value,
while it can be a lower value for the environment where return-
ing of slightly old data is not matter or the correctness of data
is not important (it does not mean the high chance of getting the
incorrect data). The advantage is obvious that it allows early
transaction commit and more flexible control.

With the introduction of SCO and STH parameters, an issue
arose here is that how to decide a good SCO value. We consider
SCO as a function of a composite variable F , where F is a
composition of factors carrying different weights. Factors are the
system state information that determines whether an action can
be physically unrealizable or not based on system information.
Some of such information includes:

• Number of write operations in a write transaction.

• Total number of transactions in the database.

• Contention level that is decided by the:

– size of database;

– length of transaction in terms of number of operations;

– average number of write operations in each transac-
tion

With this set of factors, an efficient estimation algorithm can
be designed to estimate the next state of the system based on
current situation. Certainly, designing the algorithm for estimat-
ing a good SCO value is not simple and straightforward since it
involves thorough investigation against several factors. Instead,
we set SCO to the lowest value permitted before the current
write transaction is committed, and reset it to maximum value
when it completes successfully. In addition, a highest STH

value is set to all transactions as default in order to provide ac-
cessing to the most updated data.

3.2 Data Access Rules in XStamps

We define the following access rules to guarantee the serializ-
ability of transactions and achieve a high degree of concurrency.

Transaction Classification Rule. Upon entry to the transac-
tion management system, a transaction is classified as either a
read or a write transaction. A transaction is a write transaction if
and only if it contains at least one non-read operation.

Data Node Access Rule. We define the following algorithm to
guarantee the data accesses.

1. If a transaction T issues a read request
R(N) on node N,

a)TS(T) >= WTS(N)
i) If Safety Coefficient of N is

greater than or equal to the
safety threshold of T,
ie. SCO(N) >= STH(T), and N is
not marked as deleted, R(N) is
granted and RTS(N) is set to
TS(T) if TS(T) > RTS(T).
If SCO(N) >= STH(T) but N is
marked as deleted, operation
is cancelled, transaction
continues.

ii) If SCO(N) < STH(T), transaction
needs to wait until
SCO(N) >= STH(T).

b)TS(T) < WTS(N)
i) If SCO(N) >= STH(T) and N is

marked as deleted, if old write
timestamp when it is marked
WTS’(N) <= TS(T), grant R(N).
If SCO(N) >= STH(T) and N is marked
as inserted, R(N) is cancelled and
transaction continues.

ii) Find a latest version N’ of N with
no version N’’ fall in between N and
N’ that has TS(T) >= WTS(N’) and
repeat R(N) on this version. If N’
can not be found, rollback.

2. If a transaction T issues a write
request I(N), D(N) or U(N),

a)TS(T) >= WTS(N) and TS(T) >= RTS(N)
i) If request is U(N)

Create a new node N’ based on N
with the updated value, set RTS(N’)
to 0 and WTS(N’) to TS(T), update
SCO(N’).

ii) If request is I(N), construct a new
node N’ and set RTS(N’), WTS(N’),
SCO(N’) accordingly, insert a new
mark to N’ and append N’ as a child
of N.

iii) If request is D(N), mark node N as
deleted if N does not have any mark,
set WTS(T) TS(T) and update SCO(N).
Wait otherwise until mark disappears.

b)TS(T) >= RTS(N) but TS(T) < WTS(N)
i) If SCO(N) >= STH(T)

Cancel the operation and transaction
continues.

ii) If SCO(N) < STH(T), wait until
SCO(N) >= STH(T) or occurrence of
other case.

c)TS(T) < RTS(N)
Rollback transaction.

As all accesses start from root and proceed in a top-down fash-
ion, we can easily derive from the access rules that the most up-
dated version of a node N always have the greatest read and
write timestamps among the subtree rooted by this node. To
access a lower level node, the request must fulfill all the require-
ments to all nodes along the path to avoid inconsistency. For
instance, it is impossible to access a version of node that has
been written by a future transaction.

4. Evaluation

We implement the transaction management system for NextDB
with two main components: Transaction Manager (TM) and Re-
source Manager (RM). TM makes assuring to execute all trans-
actions correctly in order while RM manages recently uploaded
data for preventing direct accesses to the database. Under TM,
we implement XStamps protocol, Tree protocol, and Two-phase
locking protocol (2PL) to compare their performances. To make
the evaluation efficient, we develop a transaction generator to
generate various types of operations and transactions. The high
level system architecture of transaction management system is
shown in Fig. 2.

Data
Resource

Manager

Transaction

Manager

Transaction

Generator

Figure 2: The Architecture of Transaction Management System.

4.1 Experimental Model

The system was developed using J2SDK 1.4.1 and evaluated on
MS Windows 2000 Professional operating system which is run-
ning over IBM compatible PC with 2.4 GHz CPU and 256MB
memory. The data set Shakespeare’s Plays1 which contains
327K elements in 37 XML documents (total 7.6MB in size) is
used in the experiment. Various types of read and write trans-
actions to the data are arbitrarily generated based on following
parameters:

• Number of transactions - To control the maximum number
of transactions that will be executed simultaneously.

• Average number of operations - To specify number of oper-
ations, in average, per transaction. Read transactions have
50% more chances to have more number of operations than
average.

• Percentage of write transactions - To specify approximate
percentage of write transactions in the system.

• Simulated maximum I/O time - To simulate the time each
operation takes to be executed.

1http://www.ibiblio.org/bosak/xml/eg/

4.2 Experimental Results
Fig. 3 shows the throughput comparisons among XStamps, Tree
and Two-phase locking protocols based on evaluation. We set
simulated I/O time to 10ms in all graphs. The Write% curve
indicates the percentage of write operations (ranging from 0 to
1) in a transaction. Since the result of Tree protocol is almost
identical to 2PL, we hide its curve.

The figure indicates that three protocols perform differently
at different contention levels. The 2PL and Tree protocols out-
perform XStamps at very high contention levels, while XStamps
reveals definite gain when the degree of contention is relatively
low. In addition, XStamps demonstrates its strength in the situ-
ation when the average number of operations between 50% and
60% of transactions are write operations regardless of the num-
ber of transactions in the system. The phenomenon is due to
higher rollback rate in a high contention environment; XStamps
allows higher concurrency in all situations.

In a lower contention situation, at some point, all protocols
yield unexpected low throughput as the set of transactions gen-
erated contains more DELETE operations which perform over
very high level of hierarchy. This may cause later transactions to
become invalid and thus aborted.

5. Related Work
The consistency issues in hierarchical database systems, and
Tree protocols were introduced in [7] since 1980. Based on that,
many variants were introduced; some of them includes dynamic
tree-locking protocol [3] and dynamic directed acyclic graph
policy [2] which is a generalized and extended protocol of [13].
With the emergence of XML, XML-specific lock-based proto-
cols such as strict two-phase locking based solution [4], lock-
ing on directed acyclic graphs with DGLOCK [8] and XPath-
based locking approach [5] are introduced in recent years. How-
ever, there has been relatively little attention to concurrency con-
trol policy based on timestamps. Although the extension of
timestamps and multiversion timestamps protocols to hierarchi-
cal databases are introduced in [1], the extension does not quite
fit to XML scenario. XStamps considers the operation semantics
in XML and offers a more flexible concurrency control mecha-
nism. Our experimental results have shown substantial improve-
ments in the level of concurrency.

6. Conclusion
This paper proposes a new protocol for XML data, named XS-
tamps, that is designed based on traditional multiversion times-
tamps concurrency control protocol. XStamps classifies the
transactions into read and write categories, and creates read and
write versions of data implicitly. XStamps also distinguishes the
write operation to the database and handles them with differ-
ent methods. Additional parameters, SCO and STH , are intro-
duced in XStamps to enable flexible control of the isolation level
of transactions and allow transactions to commit early depending
on requirements.

The evaluation results show that XStamps works well with
XML data and provides performance gain over Tree and 2PL
protocols in a low conflict environment. In future, we plan to
do more rigorous testing and looking more fine-grained concur-
rency control protocols for XML data. In addition, we will im-
prove XStamps by introducing an efficient algorithm for generat-
ing dynamic SCO values for transactions, enhancing the ability
of data version creation and maintenance, and integrating with
recovery features to be an efficient transaction and recovery sys-
tem for NextDB.

References

[1] M. Carrey. Granularity Hierarchies in Concurrency Control. Jour-
nal of Association for Computing Machinery, 83(3):156–165,
1983.

[2] V. Chaudhri. Transaction Synchronization in Knowledge Bases:
Concepts, Realization and Quantitative Evaluation. Phd thesis,
University of Toronto, 1995.

[3] A. Croker and D. Maier. A Dynamic Tree-Locking Protocol. In
Proc. Int. Conf. on Data Engineering, pages 49–56, Los Angeles,
USA, Feb. 1986.

[4] S. Helmer, C. Kanne, and G. Moerkotte. Anatomy of a Native
XML Base Management System. Technical report, University of
Mannheim, 2001.

[5] C. E. Hye and K. Tatsunori. XPath-based Concurrency Control
for XML Data. In Proc. on 14th Data Engineering Workshop,
Japan, 2003.

[6] D. P. Reed. Naming and Synchronization in a Decentralized Com-
puter System, Sept. 1978.

[7] A. Silberschatz and Z. Kedem. Consistency in Hierarchical
Database Systems. Journal of Association for Computing Ma-
chinery, 27(1):72–80, Jan. 1980.

[8] G. Torsten, B. Klemens, and S. Hans-Jorg. XMLTM: Efficient
Transaction Management for XML Documents. In Proc. 11th Int.
Conf. on Information and Knowledge Management, VA, USA,
2002.

[9] K. M. Win, W. K. Ng, and E. P. Lim. An Architectural Frame-
work for Native XML Data Management. In Proc. Int. Conf. on
Cyberworlds, Singapore, Dec. 2003.

[10] K. M. Win, W. K. Ng, and E. P. Lim. ENAXS: Efficient Native
XML Storage System. In LNCS 2642: Proc. 5th APWeb Confer-
ence, X’ian, China, pages 59–70, Springer Verlag, Apr. 2003.

[11] K. M. Win, W. K. Ng, and E. P. Lim. NextDB: A Native Database
Management System for XML Data (submitted for publication).
2003.

[12] K. M. Win, E. Rosasillfiani, W. K. Ng, and E. P. Lim. A Visual
Interface for Native XML Database. In DEXA Workshop, Prague,
Czech Republic, Sept. 2003.

[13] M. Yannakakis. A Theory of Safe Locking Policies in Database
Systems. Journal of Association for Computing Machinery,
29(3):718–740, 1982.

0

2

4

6

8

10

12

14

16

50 50 50 50 50 20 20 20 20 20 10 10 10 10 10

Avg # of Operations

Th
ro

ug
hp

ut
 (t

ra
ns

/s
ec

)

Write%
XStamps
2PL

0

2

4

6

8

10

12

14

16

50 50 50 50 50 20 20 20 20 20 10 10 10 10 10

Avg # of Operations

Th
ro

ug
hp

ut
 (t

ra
ns

/s
ec

)

Write%
XStamps
2PL

0

2

4

6

8

10

12

14

16

50 50 50 50 50 20 20 20 20 20 10 10 10 10 10

Avg # of Operations

Th
ro

ug
hp

ut
 (t

ra
ns

/s
ec

)

Write%
XStamps
2PL

0

2

4

6

8

10

12

14

16

50 50 50 50 50 20 20 20 20 20 10 10 10 10 10

Avg # of Operations

Th
ro

ug
hp

ut
 (t

ra
ns

/s
ec

)

Write%
XStamps
2PL

Figure 3: Throughput Comparison for 10, 50, 100 and 200
Transactions.

View publication statsView publication stats

https://www.researchgate.net/publication/4072509

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2003

	XStamps: A multiversion timestamps concurrency control protocol for XML data
	Khin-Myo WIN
	Wee-Keong NG
	Ee Peng LIM
	Citation

