Continuous Visible Nearest Neighbor Query Processing in Spatial Databases

Yunjun GAO
Zhejiang University
Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg
Gencai CHEN
Zhejiang University
Qing LI
City University of Hong Kong
Xiaofa GUO
Zhejiang University
DOI: https://doi.org/10.1007/s00778-010-0200-z

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific Computing Commons

Citation

GAO, Yunjun; ZHENG, Baihua; CHEN, Gencai; LI, Qing; and GUO, Xiaofa. Continuous Visible Nearest Neighbor Query Processing in Spatial Databases. (2011). VLDB Journal. 20, (3), 371-396. Research Collection School Of Information Systems. Available at: https://ink.library.smu.edu.sg/sis_research/1406

Continuous visible nearest neighbor query processing in spatial databases

Yunjun Gao • Baihua Zheng • Gencai Chen • Qing Li • Xiaofa Guo

Abstract

In this paper, we identify and solve a new type of spatial queries, called continuous visible nearest neighbor (CVNN) search. Given a data set P, an obstacle set O, and a query line segment q in a two-dimensional space, a CVNN query returns a set of $\langle p, R\rangle$ tuples such that $p \in P$ is the nearest neighbor to every point r along the interval $R \subseteq q$ as well as p is visible to r. Note that p may be NULL, meaning that all points in P are invisible to all points in R due to the obstruction of some obstacles in O. In contrast to existing continuous nearest neighbor query, CVNN retrieval considers the impact of obstacles on visibility between objects, which is ignored by most of spatial queries. We formulate the problem, analyze its unique characteristics, and develop efficient algorithms for exact CVNN query processing. Our methods (i) utilize conventional data-partitioning indices (e.g., R-trees, etc.) on both P and O, (ii) tackle the CVNN search by performing a single query for the entire query line segment, and (iii) only access the data points and obstacles relevant to the final query result by employing a suite of effective pruning heuristics. In addition, several interesting variations of CVNN queries have been introduced and they can be supported by our techniques, which further demonstrates the flexibility of the proposed algorithms. A comprehensive experimental evaluation using both real and

[^0]synthetic datasets has been conducted to verify the effectiveness of our proposed pruning heuristics, and the performance of our proposed algorithms.

Keywords Query processing • Nearest neighbor • Visible • Spatial database • Algorithm

1 Introduction

The continuous nearest neighbor (CNN) search, an important operator in spatial databases, has been well-studied [13]. Given a set of points P and a query line segment q, a CNN query retrieves the nearest neighbor (NN) of every point on q. The result of CNN retrieval, denoted by $C N N(q)$, contains a set of $\langle p, R\rangle$ tuples, such that $p \in P$ is the NN of each point r along the interval $R \subseteq q$, i.e., $\forall r \in R$, $\forall p^{\prime} \in P-\{p\}$, $\operatorname{dist}(p, r) \leq \operatorname{dist}\left(p^{\prime}, r\right)^{1}$. An example is shown in Figure 1(a), where data set $P=\{a, b, c, d, f, g, h\}$ and query line segment $q=[s, e] . C N N(q)=\left\{\left\langle a,\left[s, s_{1}\right]\right\rangle\right.$, $\left.\left\langle g,\left[s_{1}, s_{2}\right]\right\rangle,\left\langle h,\left[s_{2}, s_{3}\right]\right\rangle,\left\langle d,\left[s_{3}, e\right]\right\rangle\right\}$, indicating that point a is the NN for any point along the interval $\left[s, s_{1}\right]$, point g is the NN for any point along the interval $\left[s_{1}, s_{2}\right]$, and so on. Points s_{1}, s_{2}, s_{3} on q are called split points, as the NN object changes at those points.

Conventional CNN search does not take obstacles into consideration. However, many physical obstacles (e.g., buildings, blindages, and hills, etc.) exist in the real world, and their existence may affect the visibility/distance between objects and hence the result of spatial queries such as range query, NN search, and spatial join, etc. Furthermore, in some applications, users might be only interested in the objects that are visible or reachable to them.

Recently, the impact of obstacles has been studied in various spatial queries. Example queries include (i) visible

[^1]

Fig. 1 Example of CNN and CVNN queries
k nearest neighbor (VkNN) retrieval [4,5], which returns the $k(\geq 1)$ closest objects that are visible to a specified query point; (ii) visible reverse k-nearest neighbor search [6, 7], which retrieves the points in a data set P that have a given query point as one of their k visible nearest neighbors (VNNs), considering the blocks of obstacles in an obstacle set O; (iii) obstructed nearest neighbor (ONN) query [8,9], which finds the k points in a dataset that have the smallest obstructed distances ${ }^{2}$ to a predefined query point; (iv) continuous obstructed nearest neighbor retrieval [10], which retrieves the ONN for every point along a specified query line segment according to the obstructed distance; and (v) spatial clustering in the presence of obstacles [11-16], which divides a set of two-dimensional data points into homogeneous groups (i.e., clusters) by taking the influence of obstacles into consideration. Nevertheless, most of the existing work only takes into account fixed query points instead of moving query trajectories that contain continuous query point locations. On the other hand, with the growing popularity of smart mobile devices and rapid advance of wireless technologies, more and more users issue queries even when they are moving. Consequently, the traditional snapshot query might not satisfy the real requirements from mobile users, and continuous query processing over a moving trajectory is required.

Based on these observations, in this paper, we investigate continuous ${ }^{3}$ visible nearest neighbor (CVNN) search that finds the VNN of every point along a query line segment. To be more specific, given a data set P, an obstacle set O, and a query line segment q, a CVNN query retrieves the VNN for each point on q. It aims at finding a set of $\langle p, R\rangle$ tuples, where $p \in P$ is the VNN for any point in the interval $R \subseteq q$. It is important to note that p may be empty, meaning that all points in P are invisible to any point on R due to the obstruction of obstacles in O. Consider, for example, Figure 1(b), in which $P=\{a, b, c, d, f, g, h\}, O=\left\{o_{1}, o_{2}, o_{3}\right\}$ (denoted by shaded rectangles ${ }^{4}$), and $q=[s, e]$. The CVNN query returns

[^2]$\left\{\left\langle a,\left[s, s_{1}\right]\right\rangle,\left\langle g,\left[s_{1}, s_{2}\right]\right\rangle,\left\langle c,\left[s_{2}, s_{3}\right]\right\rangle,\left\langle d,\left[s_{3}, e\right]\right\rangle\right\}$, which indicates that point a is the VNN for any point along interval $\left[s, s_{1}\right]$, point g is the VNN for any point along interval [s_{1}, s_{2}], and so forth. Notice that point h is the NN for each point on interval $\left[s_{2}, s_{3}\right]$ in the conventional CNN retrieval as shown in Figure 1(a), whereas it is not the VNN for any point on $\left[s_{2}, s_{3}\right]$ in the CVNN search because of obstacle o_{3}.

In addition to the CVNN query introduced above, it has several interesting variations, including (i) continuous visible k nearest neighbor ($\mathrm{CV} k \mathrm{NN}$) search, which retrieves the k VNNs for every point on a given query line segment;
(ii) trajectory $\mathrm{V} k \mathrm{NN}(\mathrm{TV} k \mathrm{NN})$ search, which returns the k VNNs of every point along an arbitrary trajectory consisting of multiple line segments; (iii) CV k NN query with visible distance threshold $\delta(\delta-\mathrm{CV} k \mathrm{NN})$ which, for each point p on a specified query line segment, finds the k nearest neighbors that are visible to p and meanwhile have their distances to p bounded by a given threshold δ; and (iv) constrained CVkNN (CCV $k \mathrm{NN}$) search, which retrieves the k VNNs in the restricted area (defined by the spatial region constraints) for each point along a specified query line segment.

CVNN search and all these potential variants constitute a suite of interesting and practical problems from both the research point of view and application point of view. In this paper, we focus on CVNN retrieval because it not only introduces some new challenges but is also useful in many applications, such as decision support and location-based commerce. Two example applications are listed as follows.

Placement of traffic surveillance cameras. Suppose that Land Transport Authority (LTA) of Singapore wants to install traffic surveillance cameras to monitor accident-prone roads/streets ${ }^{5}$. Obviously, each location loc along the monitoring roads/streets should be visible to at least one camera c. In addition, the distance between location $l o c$ and its monitoring camera c is expected to be as small as possible in order to improve the video quality. By taking both visibility and distance into consideration, CVNN query can locate the best locations out of a given set of potential camera installation points for cameras to cover any point along the monitoring region ${ }^{6}$.

Tourist recommendation. A CV k NN query can find out the k closest visible scenes (e.g., temple, stele, pagoda, etc.) for each (sub) route along a given tourist traveling route, defined by a starting point s and an ending point e. Different from conventional CNN retrieval, CVNN search considers all the physical obstacles such as buildings and mountains. Hence, the query result provides more accurate information

[^3]in terms of visibility. It is worth noting that, in this case, the purpose of CVNN query differs from that of route query which finds suitable routes that pass through part/all scenes included in a specified scene set, e.g., optimal sequenced route query $[17,18]$ and trip planning query [19].

Motivated by the significance of CVNN queries and the lack of efficient search algorithms, in this paper, we propose an efficient algorithm for processing CVNN retrieval and its variants. Our method (i) utilizes traditional data-partitioning indices (e.g., R-trees [20,21]) on both the data set and the obstacle set, (ii) tackles exact CVNN search by performing a single index traversal, and (iii) enables a suite of effective pruning heuristics to only access the data points and obstacles relevant to the final query result. Moreover, the proposed CVNN search algorithm is general and can be easily extended to support different variations of CVNN queries, including CV $k \mathrm{NN}$ search, TV $k \mathrm{NN}$ search, $\delta-\mathrm{CV} k \mathrm{NN}$ search, and CCV $k N N$ search. In summary, this paper has made fivefold contributions which are listed as follows:

- We formalize CVNN retrieval, a novel addition to the family of spatial queries, and reveal its unique characteristics. To the best of our knowledge, this paper is the first attempt on this problem.
- We propose a series of pruning heuristics on the data set and the obstacle set respectively to effectively prune those objects that do not contribute to the final query result and improve the search performance accordingly.
- We develop an efficient CVNN search algorithm, analyze its cost, and prove its correctness.
- We introduce several interesting variants of CVNN queries, and extend our techniques to handle them efficiently.
- We conduct extensive experiments using both real and synthetic datasets to demonstrate the effectiveness of our proposed pruning heuristics, and the performance of our proposed algorithms.
A preliminary report of this study appeared in [22]. We extend that work in this paper by (i) studying two new CVNN query variants, i.e., TV $k \mathrm{NN}$ search and $\mathrm{CCV} k \mathrm{NN}$ search; (ii) evaluating the effectiveness of different pruning heuristics; and (iii) conducting a more comprehensive performance evaluation. Furthermore, we significantly improve the review of related work to make this paper self-contained.

The rest of the paper is organized as follows. Section 2 surveys related work. Section 3 formulates the problem and reveals its characteristics. Section 4 discusses the pruning heuristics on the data set P and the obstacle set O, respectively. Section 5 proposes efficient CVNN query processing algorithms, assuming that P and O are indexed by two separate R-trees and a unified R-tree, respectively. Section 6 extends our solution to deal with various variants of CVNN queries. Section 7 presents the performance study and reports our findings. Finally, Section 8 concludes the paper with some directions for future work.

2 Related work

In this section, we review the existing work related to CVNN queries, namely, NN search using R-trees, CNN retrieval, and visibility queries.

2.1 Algorithms for NN search on R-trees

R-tree [21] and its variants (e.g., R^{*}-tree [20], etc.) are the most well-received spatial indexes due to their simplicity and efficiency. Figure 2 shows a data set $P=\{a, b, \cdots, j\}$ in a 2 D space, and the corresponding R -tree assuming a capacity of three entries per node. Note that, in Figure 2(b), the number in each entry refers to the mindist between the query point p and the corresponding Minimum Bounding Rectangle (MBR) of the entry. As a leaf entry refers to a point p^{\prime} in P, its mindist to p is the actual distance from p^{\prime} to p. These numbers are not stored in R-tree previously, but computed on-the-fly during query processing.

Fig. 2 Example of an R-tree and a NN query

An NN query finds the object in a dataset P that is the closest to a given query point p. Existing NN search algorithms traverse the R-tree on P in a branch-and-bound manner, and use some distance metrics, including mindist (p, N), $\operatorname{maxdist}(p, N)$, and minmaxdist (p, N), to prune the search space. Here, p is a query point and N is an R-tree node which corresponds to an MBR together with all the points $\operatorname{covered}$. The mindist (p, N) and maxdist (p, N) provide the lower and upper bounds of the distances from p to any point in the subtree of N. The minmaxdist (p, N) defines an upper bound of the distance between p and its NN in N, that is, there is at least one point located inside N whose distance to p does not exceed minmaxdist (p, N). Figure 2(a) illustrates these pruning metrics between p and nodes N_{1}, N_{2}.

Existing algorithms for NN retrieval follow either depthfirst (DF) or best-first (BF) traversal paradigm. DF algorithms $[23,24]$ start from the root, and visit recursively the node with the smallest mindist to a given query point until the leaf level where a potential NN is found. Take an NN query issued at the point p shown in Figure 2(a) as an example, DF accesses Root first, followed by N_{2}, and then N_{6}, where the first NN candidate, i.e., point i, is discovered. Subsequently, the algorithm conducts backtracking operations. In particular, during backtracking to the upper levels, DF only visits those entries with minimum distances to p smaller than the distance between p and the NN candidate already retrieved. Continuing the above example, after finding i, DF backtracks to the root level (without visiting N_{5} as $\operatorname{mindist}\left(p, N_{5}\right)>\operatorname{mindist}(p, i)$), where the NN candidate (i.e., i) is confirmed to be the actual NN of p. As demonstrated in [25], the DF algorithm is suboptimal, i.e., it accesses more nodes than necessary.

BF algorithms [26,27] achieve the optimal I/O performance by visiting only the nodes necessary for obtaining the NN. Towards this, BF maintains a priority queue (in this paper we use a heap H) with the entries visited so far, sorted in ascending order of their mindist to a specified query point p. Initially, BF inserts all the entries of the root into H (together with their mindist), e.g., in Figure 2, $H=\left\{\left(N_{2}, \sqrt{5}\right)\right.$, $\left.\left(N_{1}, \sqrt{9}\right)\right\}$. Then, at each step, BF visits the node in H with the minimal mindist. Continuing the running example, BF de-heaps the top N_{2} of H, retrieves its content, and en-heaps all the entries, after which $H=\left\{\left(N_{6}, \sqrt{5}\right),\left(N_{1}, \sqrt{9}\right),\left(N_{5}\right.\right.$, $\sqrt{45})\}$. Similarly, the next node accessed is a leaf entry N_{6}, in which the data points are inserted into $H(=\{(i, \sqrt{5})$, $\left.\left.\left(N_{1}, \sqrt{9}\right),(j, \sqrt{17}),(h, \sqrt{32}),\left(N_{5}, \sqrt{45}\right)\right\}\right)$. Point i, the top of H, is taken as the current NN. At this time, the algorithm terminates with i as the final query result, because the next entry in H (i.e., N_{1}) is farther from p than i. Both DF and BF can be easily extended to retrieve $k(>1)$ nearest neighbors. Furthermore, BF is incremental, i.e., it returns the NNs in ascending order of their distances to the query point; and thus, k does not have to be known in advance.

In addition, different variants of NN queries have been investigated as well. Ferhatosmanoglu et al. [28] discuss constrained NN search that discovers the $\mathrm{NN}(\mathrm{s})$ in a restricted area of the data space. Papadias et al. $[29,30]$ explore aggregate NN (and group NN) queries where, given a data set P and a query set Q, the goal is to retrieve the point(s) in P with the smallest aggregate (e.g., sum, max, min, etc.) distance(s) to all the points in Q. Zhang et al. [31] introduce all NN retrieval, which finds for each point $p_{1} \in D_{1}$ its NN $p_{2} \in D_{2}$, with D_{1} and D_{2} representing two specified datasets. Deng et al. [32] consider surface k-NN search, in which the distance is calculated from the shortest path along a terrain surface. Hu et al. [33] study the range NN query that returns the $\mathrm{NN}(\mathrm{s})$ for every point in a range.

2.2 CNN queries

The CNN search has received considerable attention since it was first introduced by Sistla et al. [34] in the context of spatial-temporal databases. In that pioneering work, modeling methods and query languages for the expression of CNN queries are presented, but not the processing algorithms. The first algorithm for CNN query processing, based on periodical sampling technique, is proposed in [1]. Due to the natural disadvantage of sampling, its performance highly depends on the number and positions of sampling points, and the accuracy cannot be guaranteed. Therefore, the sampling based approach is not considered in this paper as it cannot tackle exact CVNN retrieval, the focus of this paper.

In order to conduct exact CNN search, two algorithms using R-trees are proposed in [2,3]. The first algorithm is based on the concept of time-parameterized (TP) queries, which treats a query line segment as the moving trajectory of a query point [2]. Hence, the nearest object to the moving query point is valid only for a limited duration, and a new TP query is issued to retrieve the next nearest object once the valid time of the current nearest object expires, i.e., when a split point is reached. Although the TP approach avoids the drawbacks of sampling, it needs to issue m TP queries with m being the number of answer objects ${ }^{7}$. In order to improve the performance, the second algorithm [3] finds all answer objects for the whole query line segment in a single round.

Since the algorithm proposed in this paper shares the same principle as CNN search proposed in [3], we illustrate the basic idea of CNN search using a running example. As shown in Figure 3, a CNN query is issued at line segment $q=[S, E]$, the straight line connecting S and E, with the data points depicted in Figure 2 forming a sample dataset P. The basic idea is to evaluate the data points in P according to the best-first order, i.e., those closer to q are evaluated earlier. For each evaluated point $p \in P$, it finds out the set of points along q that are covered by p, i.e., being closest to p, prunes away the points that will not cover any point along q, and fines tune the covering relationship during the traversal.

Initially, the result list is set to $\{\langle\emptyset,[S, E]\rangle\}$ which indicates that the whole query line segment is not covered by any point, and the pruning metric $S L_{M A X D}$ that maintains the maximal distance between any point along q and its current NN object is set to ∞. Thereafter, the traversal of P starts. When point i, the first point accessed, is evaluated, it covers the whole query line segment. Consequently, the result list is updated to $\{\langle i,[S, E]\rangle\}$, and $S L_{M A X D}$ is changed to $\operatorname{dist}(i, E)$, as depicted in Figure 3(a). Next, e is evaluated. As it is closer to E than its current NN (i.e., i), the result list is updated to $\left\{\left\langle i,\left[S, s_{1}\right]\right\rangle,\left\langle e,\left[s_{1}, E\right]\right\rangle\right\}$ and $S L_{M A X D}$ is decreased to the distance between s_{1} and e, i.e., $\operatorname{dist}\left(s_{1}, e\right)$

[^4]

Fig. 3 Example of CNN algorithm
as shown in Figure 3(b). Thereafter, j is evaluated. Since its minimal distance to q exceeds $S L_{M A X D}$, it will not invalidate the current covering relationship of any answer object and hence can be discarded safely. Here, the algorithm terminates because all the unexamined entries are guaranteed to have their minimal distances to q larger than $S L_{M A X D}$.

Based on the existing CNN search algorithms, a naive approach for answering CVNN query, namely Baseline, can be developed. The basic idea is to invoke CNN retrieval continuously to retrieve the NN objects, second NN objects, and so on until those visible to the specified query line segment q are found. Specifically, it first employs CNN search to locate the NN objects for q and then validates the visibility of answer objects. In case an answer object o is not visible (either completely or partially) to the line segment q^{\prime} it covers, a new C2NN query has to be issued to find the next NN (i.e., 2nd NN) objects to q^{\prime}. If the new object is visible to q^{\prime}, the search is completed. Otherwise, a new C3NN query has to be issued to retrieve the third NN object to q^{\prime}. The routine proceeds until all the VNNs to q are identified. Given the fact that existing C $k \mathrm{NN}$ search returns $k \mathrm{NN}$ objects in a whole but not the k-th NN object, a $\mathrm{C}(k+1) \mathrm{NN}$ query actually repeats all the efforts spent on a $\mathrm{C} k \mathrm{NN}$ query. In order to support incremental CNN retrieval, Baseline preserves all the entries (data points and nodes) pruned away during CNN retrieval in an array ary to enable reuse and snapshots the min-heap $h p$ when CNN search is completed. It inserts back the entries in ary into $h p$ as an initial min-heap for the new CNN search. In other words, the Baseline guarantees a CVNN query can be answered via multiple CNN queries with one dataset traversal. However, it is still not efficient. First, it does not utilize visibility based pruning heuristics to discard those unqualified entries during the search. Second, it needs to conduct CNN search multiple times, resulting in high CPU overhead. Given the result list $\cup_{i}\left\langle o_{i}, q_{i}\right\rangle$ to a CVNN query, we assume the answer object o_{i} is actually the n_{i}-th NN object to any point along q_{i}. Baseline in total has to invoke $M A X_{i}\left(n_{i}\right)$ CNN queries. If we further improve the performance by starting the $\mathrm{C} k_{1} \mathrm{NN}$ query with $k_{1}>1$ and then increasing the value of k_{1} by r instead of 1 thereafter, the number of CNN queries performed could be
reduced to $\left(M A X_{i}\left(n_{i}\right)-k_{1}\right) / r+1$. Nevertheless, how to select the values of k_{1} and r is challenging.

In addition, some variations of CNN search have been proposed in the literature. Iwerks et al. [35] study continuous windowing algorithm to answer $\mathrm{C} k \mathrm{NN}$ retrieval via less expensive range queries. However, the algorithm is only sub-optimal when the location updates of moving objects are frequent or the k value is large. In view of this, Li et al. [36] develop a beach-line algorithm, which monitors only the k th NN to maintain the $\mathrm{C} k \mathrm{NN}$ query result, instead of monitoring all k NNs.

Recently, the CNN monitoring problem that monitors the answer objects to a CNN query for a given duration, has been studied. Different monitoring algorithms (e.g., CPM [37], SEA-CNN [38], and YPK-CNN [39]) have been proposed, based on the concept of monitoring region. Here, the monitoring region corresponding to a query q refers to an area inside which the movement of objects might affect the query result, and hence those objects that are always outside the region could be safely discarded. Other versions of CNN monitoring include (i) CNN monitoring in the road network [40,41], where the distance between any two objects is defined as the length of their shortest path; and (ii) CNN monitoring in the distributed environment [42, 43], where the optimization target is to reduce the communication cost between the central query processor and the data objects. More recently, Zheng et al. [44] investigate CNN retrieval in wireless data broadcast systems, where mobile clients answer their own CNN queries by listening to the wireless broadcast channel. In addition, CNN retrieval in spatial network databases has been studied in [45-47].

All the aforementioned work on CNN search and its variants do not consider obstacles that exist in many real-life scenarios. Consequently, existing algorithms for them cannot be applied to handle CVNN retrieval efficiently.

2.3 Visibility queries

Although visibility computation algorithms have been wellstudied in the area of computer graphics and computational geometry [48], there are only a few works on visibility queries in the database community [49-51]. The existing methods utilize various indexing structures (e.g., LoD-R-tree [49], HDoV-tree [51], etc.) to deal with visibility queries in visualization systems. Since these specialized access methods are designed only for the purpose of visualization without maintaining any distance information, they are not capable of supporting efficient CVNN query processing.

Recently, Nutanong et al. [4,5] introduce visible nearest neighbor (VNN) search to find the NN that is visible to a specified query point. An example of VNN query issued at s_{4} is depicted in Figure 1(b). The answer point is d. Although point h is closer to s_{4} than d, it is blocked by obstacle
o_{3} and hence is excluded from the final query result. A VNN query algorithm, based on the fact that a farther object cannot affect the visibility of a nearer object, is proposed in [4, 5]. The basic idea is to perform NN search and check its visibility condition in an incremental manner. Nevertheless, the algorithm is only for a fixed query point, but not a line segment which contains multiple query points.

In our earlier work [6,7], we have investigated visible reverse nearest neighbor (VRNN) search where, given a data set P, an obstacle set O, and a query point q, the goal is to retrieve the points in P that have q as their VNN. We propose an efficient algorithm for VRNN query processing, assuming that both P and O are indexed by R-trees. Our solution follows a filter-refinement framework, and requires no pre-processing. Specifically, a set of candidate objects (i.e., a superset of the final query result) is found in the filter step, and gets refined in the subsequent refinement step, with these two steps integrated into a single R-tree traversal. As the size of the candidate objects has a direct impact on the search efficiency, we employ half-plane properties (as [52]) and visibility check to prune the search space.

Based on the visibility query, we can employ a brute force based algorithm (BFA) to answer CVNN search. It first invokes visibility test to evaluate each and every data point p in a given data set P, and then examines whether p is closer to any point along the query line segment q than its current NN object if p is visible either partially or completely to q. Obviously, BFA suffers from the blind and exhaustive scanning as it does not utilize any pruning technique and has to scan the entire dataset in sequence. The experimental results to be reported in Section 7 will further demonstrate its poor performance. Note that, although BFA could be improved via pre-computing object visibility, we leave the investigation of the improved BFA to our future work due to the limitation of space.

3 Preliminaries

In this section, we first present problem definitions for CVNN search, and then reveal some unique characteristics that can facilitate the development of efficient CVNN query processing algorithms. Table 1 summarizes the symbols used in the rest of this paper.

3.1 Problem definitions

Given a set of data points $P=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$, a set of obstacles $O=\left\{o_{1}, o_{2}, \cdots, o_{m}\right\}$, and a query line segment $q=[s, e]$ in a two-dimensional (2D) space, visibility between two points p, p^{\prime} is defined in Definition 1, based on which we formulate VNN and CVNN queries in Definition 3 and Definition 4, respectively.

Table 1 Symbols and descriptions

Notation	Description
P	A set of data points p in a two-dimensional space
O	A set of obstacles o in a two-dimensional space
T_{p}	The R-tree on P
T_{o}	The R-tree on O
q	A query line segment with $q=[s, e]$
R	An interval of q with $R=[R . l, R . r](\subseteq q)$
$R L$	The result list of a CVNN query
L_{o}	The linked list storing obstacles
$\perp\left(p, p^{\prime}\right)$	The perpendicular bisector of the line segment $\left[p, p^{\prime}\right]$
R_{C}	Constrained region

Definition 1 Visibility. Given $p, p^{\prime} \in P, p$ and p^{\prime} are visible to each other iff there is no any obstacle o in O such that the straight line connecting p and p^{\prime}, denoted by $\left[p, p^{\prime}\right]$, crosses o, i.e., $\forall o \in O, o \cap\left[p, p^{\prime}\right]=\emptyset$.

Definition 2 Visible region. Given $p \in P$ and q, the visible region of p over q, denoted by $V R_{p}$, is defined as the set of intervals $R \subseteq q$ such that p is visible to all points in R.

Definition 3 Visible nearest neighbor [4]. Given $p^{\prime} \in P$ and $p \notin P, p^{\prime}$ is the visible nearest neighbor (VNN) of p iff: (i) p^{\prime} is visible to p; and (ii) $\forall p^{\prime \prime} \in P-\left\{p^{\prime}\right\}$, if $p^{\prime \prime}$ is visible to $p, \operatorname{dist}\left(p^{\prime \prime}, p\right) \geq \operatorname{dist}\left(p^{\prime}, p\right)$.

Definition 4 Continuous visible nearest neighbor query. Given P, O, and q, a continuous visible nearest neighbor (CVNN) query returns a result list $R L$ that contains a set of $\left\langle p_{i}, R_{i}\right\rangle(i \in[1, t])$ tuples such that (i) $\forall i, j \in[1, t](i \neq j)$, $R_{i} \cap R_{j}=\emptyset^{8}$; (ii) $\cup_{i=1}^{t} R_{i}=q$; and (iii) $\forall\left\langle p_{i}, R_{i}\right\rangle \in R L$, if $p_{i} \neq \emptyset, p_{i}$ is the VNN of any point along R_{i}.

Definition 5 Dominance. Given $p \in P$ and R, p dominates R iff $\forall p^{\prime} \in P-\{p\}$ and any point r along R (i.e., $\forall r \in R$), $\operatorname{dist}(p, r) \leq \operatorname{dist}\left(p^{\prime}, r\right)$.

Definition 6 Dominated region. Given $p \in P$ and q, the dominated region of p over q, denoted by $D R_{p}$, is defined as the set of intervals $R \subseteq q$ that are dominated by p.

To illustrate the concept of dominance, Figure 4(a) depicts an example, in which $P=\{a, b\}$ and $R=[s, e]$ (i.e., $q)$. As $\operatorname{dist}(b, s)>\operatorname{dist}(a, s)$ and $\operatorname{dist}(b, e)>\operatorname{dist}(a, e)$, it is certain that a is closer to any point along q, compared with b. Hence, point a dominates q.

Suppose an interval $R=[R . l, R . r]$ is dominated by a point p, we define the $\operatorname{circle} \operatorname{cir}(R . l, p)(\operatorname{cir}(R . r, p))$ that centers at R.l (R.r) and has $\operatorname{dist}(p, R . l)(\operatorname{dist}(p, R . r))$ as the radius as the vicinity circle of R.l (R.r), denoted by $V C($ R.l) $)(V C(R . r))$. Any other point p^{\prime} that can violate p 's dominance over R must be within either $V C(R . l)$ or $V C(R . r)$, as to be demonstrated in Lemma 1. Back to the

[^5]above example. Assume a new point c is added into P, and it violates a 's dominance on $q(=[s, e])$ since c is inside e 's vicinity circle, i.e., $V C(e)$ centered at e with $\operatorname{dist}(a, e)$ as radius. The appearance of point c actually partitions the interval q into two sub-intervals $R_{1}\left(=\left[s, s_{1}\right]\right)$ and $R_{2}(=$ $\left[s_{1}, e\right]$), with a dominating R_{1} and c dominating R_{2} respectively, as shown in Figure 4(b). Point s_{1} is defined as the split point, i.e., the point on the interval where the VNN changes.

Fig. 4 Updating result list

3.2 Problem characteristics

According to Definition 4, we understand that CVNN search takes into account both the proximity and visibility between the data points and the query line segment. Thus, we develop Lemma 1 and Lemma 2 to facilitate the proximity checking and visibility checking, respectively. Then, Lemma 3 summarizes the condition that a VNN object must satisfy.
Lemma 1 Assume point p dominates an interval $R=[R . l$, R.r]. A new point p^{\prime} violates p 's dominance over R iff p^{\prime} is within $V C(R . l)$ or $V C(R . r)$, i.e., $p^{\prime} \in V C(R . l) \cup V C(R . r)$.

Proof We first proof sufficiency. If p^{\prime} is within $V C(R . l)$, $\operatorname{dist}\left(p^{\prime}, R . l\right)<\operatorname{dist}(p, R . l)$ and hence p^{\prime} violates the dominance of p over R. Similarly, if p^{\prime} is inside $V C(R . r), \operatorname{dist}\left(p^{\prime}\right.$, R.r) $<\operatorname{dist}(p, R . r)$ and thus p^{\prime} violates p 's dominance on R. We now prove necessity. If p^{\prime} violates the dominance of p over R, it means there is at least one point $p^{\prime \prime}$ along R such that $\operatorname{dist}\left(p^{\prime \prime}, p\right)>\operatorname{dist}\left(p^{\prime \prime}, p^{\prime}\right)$. In other words, $p^{\prime} \in$ $\operatorname{cir}\left(p^{\prime \prime}, p\right)$, i.e., point p^{\prime} must be within the vicinity circle that centers at $p^{\prime \prime}$ and has $\operatorname{dist}\left(p^{\prime \prime}, p\right)$ as the radius. However, according to the geometric knowledge, $\operatorname{cir}\left(p^{\prime \prime}, p\right) \subseteq$ $V C(R . l) \cup V C($ R.r $)$. Therefore, $p^{\prime} \in \operatorname{cir}\left(p^{\prime \prime}, p\right)$ indicates $p^{\prime} \in V C(R . l) \cup V C(R . r)$. The proof completes.

Lemma 2 Given an interval $R=[R . l, R . r]$ and a new data point p, p will not be the VNN of any point along R if p is invisible to every point in R.

Proof The proof is obvious because the data point p that is the VNN of R (i.e., p is the VNN of every point along R) must be visible to each point in R.

Lemma 3 Point p must be the VNN of any point along interval $R=V R_{p} \cap D R_{p}$.

Proof According to Definition 2, $V R_{p}$ is the visible region of p, meaning that p is visible to any point in $V R_{p}$. According to Definition 6, $D R_{p}$ is the dominated region of p, indicating that p dominates $D R_{p}$, that is, p is the NN to every point in $D R_{p}$. Consequently, p must be the VNN of any point along interval $R\left(=V R_{p} \cap D R_{p}\right)$ by Definition 3 .

Lemma 1 suggests an incremental query processing approach, which aims at reporting the result of CVNN retrieval issued at a given query line segment $q=[s, e]$ with a single dataset traversal. Initially, result list $R L$ is set to $\{\langle\emptyset,[s, e]\rangle\}$, meaning that currently the VNNs of all the points in $[s, e]$ are unknown. Thereafter, we evaluate the impact of a new point p on $R L$ by checking whether p is located inside the vicinity circle of $R_{i} . l$ or $R_{i} . r$ with respect to a tuple $\left\langle p_{i}, R_{i}\right\rangle \in R L$. If p violates the dominance of an answer object p_{i} on the interval R_{i}, the $R L$ is updated. The evaluation continues until all the points in the dataset P are examined.

Figure 4 depicts a running example with dataset $P=$ $\{a, b, c, d, f\}$, obstacle set $O=\left\{o_{1}, o_{2}\right\}^{9}$, and query line segment $q=[s, e]$. Here, points in P are processed in alphabetic order. At the beginning, $R L$ is set to $\{\langle\emptyset,[s, e]\rangle\}$. As a is the first point encountered and its view is not blocked by any obstacle in O, it becomes the current VNN of each point in q, i.e., $R L=\{\langle a,[s, e]\rangle\}$. Second, point b is evaluated. We only need to check whether b falls into $V C(s)$ or $V C(e)$ (i.e., whether b is closer to s or e than its current $\mathrm{VNN})$. The fact that b is outside both vicinity circles guarantees that b does not dominate any point along $[s, e]$ and thus b is discarded.

Next, point c is checked. Since c is inside $V C(e)$ and it is visible to every point in $[s, e]$, a split point s_{1} is created. It is the intersection between the query line segment (i.e., $[s, e]$) and the perpendicular bisector of the line segment $[a, c]$ (i.e., $\perp(a, c)$), indicating that points to the left of s_{1} are closer to a while points to the right of s_{1} are closer to c. Consequently, $R L$ is updated to $\left\{\left\langle a,\left[s, s_{1}\right]\right\rangle,\left\langle c,\left[s_{1}, e\right]\right\rangle\right\}$. Figure 4(b) depicts the case after the processing of point c. Then, point d is evaluated and gets pruned because it is not visible to any point along q, although d violates c 's dominance on $\left[s_{1}, e\right]$ (see Figure4(b)). Finally, point f is examined. It does not contribute to the CVNN query result as its visible region $V R_{f}\left(=\left[s_{0}, s_{2}\right]\right)$ and dominated region $D R_{f}\left(=\left[s_{3}, e\right]\right)$ are disjoint. After the processing of f, as shown in Figure 4(c),

[^6]the final query result $R L=\left\{\left\langle a,\left[s, s_{1}\right]\right\rangle,\left\langle c,\left[s_{1}, e\right]\right\rangle\right\}$ is retrieved and the CVNN search is terminated.

In addition, we observe two important properties, namely, VNN discontinuity and invisible interval, which are unique to the CVNN query.

Property 1 VNN discontinuity. A data point p may be the VNN to multiple intervals that are not adjacent.

For instance, Figure 5(a) depicts a situation where data points a, b have been processed, and the corresponding $R L$ $=\left\{\left\langle b,\left[s, s_{1}\right]\right\rangle,\left\langle a,\left[s_{1}, s_{2}\right]\right\rangle,\left\langle\emptyset,\left[s_{2}, s_{3}\right]\right\rangle,\left\langle b,\left[s_{3}, e\right]\right\rangle\right\}$. Point b is the VNN for all the points along intervals $\left[s, s_{1}\right]$ and $\left[s_{3}, e\right]$ that are not adjacent. This property implies that a binary search heuristic, which is used in conventional CNN search to retrieve the dominated region for a specified point, cannot be applied to CVNN retrieval.

Fig. 5 Illustration of problem properties

Property 2 Invisible interval. The result list RL of a CVNN query may have $k(\geq 1)$ invisible intervals $\langle\emptyset, R\rangle$, where no point in a given dataset is visible to any point in R.

Continuing the running example, Figure 5(b) illustrates the situation after the processing of point c, in which $R L=$ $\left\{\left\langle b,\left[s, s_{1}\right]\right\rangle,\left\langle a,\left[s_{1}, s_{2}\right]\right\rangle,\left\langle\emptyset,\left[s_{2}, s_{3}\right]\right\rangle,\left\langle c,\left[s_{3}, s_{4}\right]\right\rangle,\left\langle b,\left[s_{4}, e\right]\right\rangle\right\}$. In this case, $\left[s_{2}, s_{3}\right]$ is an invisible interval.

4 Pruning heuristics

We adopt branch-and-bound techniques to process CVNN queries. In order to prune the search space, a series of pruning heuristics are developed. In this section, we explain the detailed pruning heuristics for data set P and obstacle set O, respectively.

4.1 Pruning on data set

Heuristic 1 Suppose the current result list $R L=\cup_{1 \leq i \leq t}$ $\left\langle p_{i}, R_{i}\right\rangle$, with $R_{i}=\left[R_{i} . l, R_{i} \cdot r\right]$. Given an intermediate node entry E and a query line segment q, the subtree of E may contain some answer points only if mindist $(E, q)<\mathrm{RL}_{\text {MAXD }}$, where mindist (E, q) denotes the minimum distance from the $M B R$ of E to q, and $\mathrm{RL}_{\mathrm{MAXD}}=M A X_{1 \leq i \leq t}\left(\operatorname{dist}\left(p_{i}, R_{i} . l\right)\right.$, $\left.\operatorname{dist}\left(p_{i}, R_{i} . r\right)\right)$.

Figure 6(a) shows a data set $P=\{a, b, c\}$, an obstacle set $O=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$, a query line segment $q=[s, e]$, and current $R L=\left\{\left\langle b,\left[s, s_{1}\right]\right\rangle,\left\langle a,\left[s_{1}, s_{2}\right]\right\rangle,\left\langle c,\left[s_{2}, e\right]\right\rangle\right\}$. Rectangle E represents the MBR of an intermediate (i.e., a non-leaf) node. As mindist $(E, q)>\mathrm{RL}_{\text {MAXD }}=\operatorname{dist}(c, e), E$ does not contain any point that dominates some interval of q, and hence the search space covered by E can be safely pruned. Note that the calculation of mindist between a rectangle (i.e., $\operatorname{MBR}) E$ and a line segment q, i.e., $\operatorname{mindist}(E, q)$, is presented in [3].

Fig. 6 Pruning techniques
Heuristic 1 can serve as the initial pruning criteria since its computational overhead is very small. However, an entry E with mindist $(E, q)<\mathrm{RL}_{\text {MAXD }}$ does not necessarily contain any answer object, which means that the pruning condition can be improved further. To verify this, consider Figure 6(b), which is similar to Figure 6(a) except that $\mathrm{RL}_{\text {MAXD }}$ is larger. Notice that although E cannot be pruned by Heuristic 1 as $\operatorname{mindist}(E, q)\left(=\operatorname{mindist}\left(E, s_{1}\right)\right)$ $<\mathrm{RL}_{\text {MAXD }}, E$ does not contain any qualified data point that dominates a certain interval of q. Consequently, Heuristic 2 is devised to prune away such entries.

Heuristic 2 Given an intermediate node entry E and a query line segment q, the subtree of E may contain answer points only if there is at least one interval R in $R L$ such that some points on R are dominated by E.

Heuristic 2 gives a stronger pruning criterion, but it incurs higher CPU cost compared with Heuristic 1, because it requires the calculation of the minimal distance from E to each interval included in the current $R L$. Therefore, it is applied only for the entries that cannot be pruned away by Heuristic 1 . Nevertheless, the access to entries satisfying both Heuristic 1 and Heuristic 2 is not always necessary. Take Figure 6(c) as an example. E satisfies Heuristic 1 and Heuristic 2, but it can be pruned away because it is invisible
to $\left[s_{2}, e\right]$ due to the obstruction of obstacle o_{4}. Heuristic 3 enables this pruning.

Heuristic 3 Given an intermediate node entry E and a query line segment q, the subtree of E needs to be accessed if there is an interval R in $R L$ such that (i) $\exists R^{\prime} \subseteq R, R^{\prime}$ is completely dominated by E; and (ii) E is visible to any point along R^{\prime}.

By taking the visibility into consideration, Heuristic 3 further eliminates unqualified entries, whereas it also incurs higher CPU overhead. Thus, it is utilized only for the entries that cannot be pruned by both Heuristic 1 and Heuristic 2.

Fig. 7 Sequence of entry accesses

In addition, the entry access order plays an important role as well. As an example, consider Figure 7, in which point a has been processed, but not entries E_{1} and E_{2}. The current $R L=\left\{\left\langle a,\left[s, s_{2}\right]\right\rangle,\left\langle\emptyset,\left[s_{2}, e\right]\right\rangle\right\}$, and $\mathrm{RL}_{\text {MAXD }}=\infty$. Since both E_{1} and E_{2} cannot be pruned by Heuristic 1, Heuristic 2, and Heuristic 3, they are accessed. Suppose that E_{1} is visited first, then data points b, c in its subtree are processed. $R L$ is updated to $\left\{\left\langle a,\left[s, s_{1}\right]\right\rangle,\left\langle b,\left[s_{1}, e\right]\right\rangle\right\}$, as shown in Figure 7(a). Thereafter, E_{2} can be pruned away from further exploration by Heuristic 1 . On the other hand, if E_{2} is accessed first, $R L=\left\{\left\langle a,\left[s, s_{2}\right]\right\rangle,\left\langle d,\left[s_{2}, e\right]\right\rangle\right\}$ and E_{1} has to be visited (see Figure 7(b)). To minimize the number of node accesses, we propose the following visiting order heuristic, which is based on the intuition that entries closer to the query line segment are more likely to contain qualifying data points.

Heuristic 4 Entries E are accessed in a best-first fashion according to the ascending order of their mindist to the query line segment q.

4.2 Pruning on obstacle set

A line segment q in a 2D space can divide the data space into two half-planes, as defined in Definition 7.

Definition 7 Half-plane. Given a query line segment q in a two-dimensional space, the data space is partitioned by q into two half-planes: $H P_{q}^{\perp}$ that is above q, and $H P_{q}^{\top}$ that is below q.

Observe that if a data point p lies in plane $H P_{q}^{\top}\left(H P_{q}^{\perp}\right)$, i.e., $p \in H P_{q}^{\top}\left(p \in H P_{q}^{\perp}\right)$, only those obstacles that overlap the half-plane $H P_{q}^{\top}\left(H P_{q}^{\perp}\right)$ could affect p 's visibility with respect to q. For instance, as shown in Figure 8, the obstacles affecting the visibility of point a include o_{1} and o_{3}; and the obstacles affecting c 's visibility contain o_{2} and o_{3}. Based on this observation, we propose the obstacle distribution heuristic below.

Fig. 8 Pruning with obstacle distribution

Heuristic 5 Given a data point p and a query line segment q, an obstacle o that may affect the visibility of p with respect to q must overlap the half-plane partitioned by q that contains p, denoted as $H P_{p}(q)$.

Heuristic 6 Given a data point p and a query line segment $q=[s, e]$, the obstacles may affect the visibility of p with respect to q if they overlap the triangle formed by p and q, denoted as $\triangle p s e$.

(a) The $o_{1} \cdot A_{l}$ and $o_{1} \cdot A_{r}$

(b) The $p \cdot A_{l}$ and $p \cdot A_{r}$

Fig. 9 Pruning with angular domain

Given a data point p and a query line segment $q=[s, e]$, Heuristic 6 indicates that any obstacle o with $o \cap \triangle p s e=\emptyset$ can be discarded because it has zero impact on p 's visibility with respect to q. Therefore, we can reduce significantly the number of obstacles that need evaluations by applying Heuristic 6.

Next, we explain how to determine whether an obstacle shares some common area with $\triangle p s e$. Our method is as follows. For a new obstacle o, we compute in counterclockwise direction its minimum (maximum) angle, denoted by $o . A_{s}\left(o . A_{e}\right)$, between a specified query line segment q and the line segments connecting the starting (ending) point $s(e)$ of q and the vertexes of o. For instance, an example is depicted in Figure 9(a), where $o_{1} \cdot A_{s}=\angle$ cse and $o_{1} \cdot A_{e}$ $=\angle s e b$. When processing a candidate data point p, we first calculate in counter-clockwise direction its minimum (maximum) angle, denoted by $p . A_{s}\left(p . A_{e}\right)$, formed by the query
line segment q and the line segment connecting p and the starting (ending) point $s(e)$ of q. Thereafter, any obstacle o that satisfies $o . A_{s}>p . A_{s}$ or $o . A_{e}<p . A_{e}$ does not need to be processed since it cannot intersect or locate inside $\triangle p s e$. Consider, for example, Figure 9(b), in which $p . A_{s}=\angle p s e$ and $p . A_{e}=\angle$ sep ; and hence, obstacle o_{2}, but not obstacles o_{1} and o_{3}, affects p 's visibility with respect to q.

Heuristic 7 Given a data point p and a query line segment q, any obstacle o may affect the visibility of p with respect to q only if mindist $(o, q)<\operatorname{mindist}(p, q)$.

Clearly, Heuristic 7 is correct. According to Heuristic 6, all the obstacles that can affect the visibility of a data point p with respect to a given line segment $q=[s, e]$ must overlap the triangle formed by p and $[s, e]$, i.e., $\triangle p s e$. On the other hand, the minimal distance between any point p^{\prime} located inside $\triangle p s e$ and q (i.e., $\operatorname{mindist}\left(p^{\prime}, q\right)$) is smaller than or equal to mindist (p, q). Consequently, if the obstacle o satisfies mindist $(o, q)>\operatorname{mindist}(p, q)$, it must be located outside $\triangle p s e$ and thus it does not affect p 's visibility.

It is worth noting that our proposed pruning heuristics only target at a two-dimensional space, and they do not necessarily hold in three or higher dimensional spaces. Although it is challenging and interesting to develop effective pruning heuristics for CVNN search in a high-dimensional space, we leave it to our future work due to the focus of this work and the space limitation.

5 CVNN query processing

In this section, we present an efficient algorithm for CVNN search, assuming that the data set P and the obstacle set O are indexed by two separate R-trees. The basic idea is to traverse points in P according to ascending order of their mindist to a given query line segment $q=[s, e]$ (as implied Heuristic 4). For each data point $p \in P$ visited, we need to check whether p will update the current result list $R L$ that is initialized to $\{\langle\emptyset,[s, e]\rangle\}$. To be more specific, we need to evaluate whether p violates the dominance of any existing answer object p_{i} on an interval R_{i} (either partially or completely), with $\left\langle p_{i}, R_{i}\right\rangle \in R L$.

In the following, we first present three sub-tasks involved in this evaluation: (i) how to find out all the obstacles that may affect the visibility of p, (ii) how to identify the visible region of p (i.e., $V R_{p}$) on q in the presence of obstacles, and (iii) how to evaluate p 's impact on the current $R L$ and how to do the update, in Sections 5.1, 5.2, and 5.3, respectively. Then, we propose the complete CVNN search algorithm in Section 5.4, together with the analysis of its time complexity and the proof of its correctness. Finally, we discuss how to adjust the search algorithm to tackle the CVNN query when dataset P and obstacle set O are indexed by one unified Rtree in Section 5.5.

5.1 Obstacle retrieval

In order to derive the visible region of point $p \in P$, we have to get all the obstacles in O that may affect p 's visibility on q. The solution, namely Get Obstacle Algorithm (GetObs), is presented in Algorithm 1. The main idea is to scan the obstacle set O based on ascending order of the distances between the obstacles and the query segment q. According to Heuristic 7, only obstacles $o \in O$ with mindist $(o, q) \leq$ mindist (p, q) need to be evaluated, and thus the traversal on O can be safely terminated once the accessed obstacle has its distance to q larger than a specified search distance r, which is set to $\operatorname{mindist}(p, q)$ with p is the data point currently under evaluation. The result obstacles are stored in a linked list L_{o}.

```
Algorithm 1 Get Obstacle (GetObs)
Input: an obstacle R-tree \(T_{o}\); a min-heap \(H_{o}\); a search distance \(r\);
    a query line segment \(q\); a linked list \(L_{o}\) storing obstacles
    while \(H_{o}\) is not empty do
        de-heap the top entry \(e\) of \(H_{o}\)
        if mindist \((e, q)>r\) then \(\quad / /\) use Heuristic 7
            return \(L_{o}\)
        else if \(e\) is an obstacle then
            add \(e\) to \(L_{o}\)
        else \(/ / e\) is an intermediate node
            for each child entry \(e_{i} \in e\) from \(T_{o}\) do
                insert \(e_{i}\) into \(H_{o}\)
```

In addition, we would like to highlight that since points in P are examined in ascending order of their distances to q, GetObs, for a point $p \in P$, does not need to start from scratch. Suppose $p_{2} \in P$ is examined right after $p_{1} \in P$. As mindist $\left(p_{1}, q\right) \leq \operatorname{mindist}\left(p_{2}, q\right)$, all the obstacles that might affect p_{1} 's visibility, denoted as $\operatorname{GetObs}\left(p_{1}\right)$, also have the possibility to affect p_{2} 's visibility. Assume the obstacle list L_{o} returned by GetObs $\left(p_{1}\right)$ is locally available, GetObs corresponding to p_{2} only needs to retrieve those obstacles having distances to q between mindist $\left(p_{1}, q\right)$ and mindist $\left(p_{2}, q\right)$. In general, GetObs corresponding to a data point $p_{i+1} \in P$ that is examined right after data point $p_{i} \in P$ only needs to find out all the obstacles having their distances to q falling inside the range $\left[\operatorname{mindist}\left(p_{i}, q\right)\right.$, mindist $\left.\left(p_{i+1}, q\right)\right]$. Hence, GetObs is an incremental process, and it can find obstacles, for all the data points in P, via one traversal of O.

As an example, Figure 10 illustrates the incremental process of GetObs algorithm. In particular, GetObs is first invoked to obtain the obstacle o_{1} that may influence the visibility of point a, maintained in L_{o} (i.e., $L_{o}=\left\{o_{1}\right\}$). Then, GetObs is called again for data point b. Since all the obstacles in current L_{o} might affect b 's visibility on q, GetObs only needs to find out all the obstacles other than those in L_{o} (i.e., o_{2} and o_{3}), after which L_{o} is updated to $\left\{o_{1}, o_{2}, o_{3}\right\}$. If there is a new data point (e.g., c) visited after b, all the obstacles in L_{o} can be reused, and the search on O can be
continued to get the rest of the obstacles (e.g., o_{4}) that may affect its visibility.

Fig. 10 Incremental access of obstacles

5.2 Visible region computation

Once all the obstacles that might affect the visibility of point $p \in P$ are retrieved via GetObs and maintained by L_{o}, we can identify the invisible region of p over q that is blocked by obstacle $o \in L_{o}$, denoted as $I R_{p, o}$. Then, p 's visible region $V R_{p}$ on q can be easily derived based on $V R_{p}=$ $q-\cup_{o \in L_{o}} I R_{p, o}$.

```
Algorithm 2 Visible Region Computation (VRC)
    Input: a data point \(p\); a query line segment \(q=[s, e]\); a linked list \(L_{o}\)
    that maintains obstacles
    Output: \(p\) 's visible region \(V R_{p}\) over \(q\)
        \(V R_{p}=q\)
        for each obstacle \(o \in L_{o}\) do
        if \(o \cap H P_{p}(q) \neq \emptyset\) and \(o \cap \triangle p s e \neq \emptyset\) then // Heuristics 5, 6
            \(I R_{p, o}=\operatorname{IRC}(q, p, o)\)
            for each region \([l, r] \in I R_{p, o}\) do
            \(V R_{p}=V R_{p}-[l, r]\)
    return \(V R_{p}\)
```

Based on this basic idea, Algorithm 2 depicts the pseudocode of the Visible Region Computation Algorithm (VRC). It takes as input a data point p, a query line segment $q=[s, e]$, and a linked list L_{o} that maintains all the obstacles affecting the visibility of p on q, and outputs p 's visible region $V R_{p}$ over q. VRC utilizes Heuristic 5 and Heuristic 6, and only evaluates those obstacles $o \in L_{o}$ which share some common area with the half-plane $H P_{p}(q)$ and meanwhile overlap with the triangle $\triangle p s e$, to form the visible region for a given data point p. The function $\operatorname{IRC}(q, p, o)$ invoked in line 4 of Algorithm 2 is to return the regions inside q that are invisible to p due to the obstruction of obstacle o.

We illustrate Algorithm 2 using the example shown in Figure 11, where the obstacles affecting the visibility of p are maintained in $L_{o}=\left\{o_{1}, o_{2}, o_{3}\right\}$. VRC initializes $V R_{p}$ to $q=[s, e]$ and recursively evaluates each obstacle in L_{o}. Specifically, it first examines obstacle $o_{1} \in L_{o}$ and gets p 's invisible region on q blocked by o_{1}, i.e., $I R_{p, o_{1}}=\left[s_{1}, s_{3}\right]$. Consequently, $V R_{p}$ is updated to $q-I R_{p, o_{1}}=\left\{\left[s, s_{1}\right]\right.$, $\left.\left[s_{3}, e\right]\right\}$. Next, VRC checks obstacle $o_{2} \in L_{o}$ and obtains
p 's invisible region over q obstructed by o_{2}, i.e., $I R_{p, o_{2}}=$ [$\left.s_{2}, s_{4}\right]$, after which $V R_{p}$ is updated to $\left\{\left[s, s_{1}\right],\left[s_{4}, e\right]\right\}$. Finally, obstacle o_{3} is evaluated. Since p 's invisible region along q blocked by o_{3}, i.e., $I R_{p, o_{3}}$, is $\left[s_{5}, s_{6}\right], V R_{p}$ is updated to $\left\{\left[s, s_{1}\right],\left[s_{4}, s_{5}\right],\left[s_{6}, e\right]\right\}$. VRC outputs $\left\{\left[s, s_{1}\right],\left[s_{4}\right.\right.$, $\left.\left.s_{5}\right],\left[s_{6}, e\right]\right\}$ as the final p 's visible region on q to terminate the visible region computation for point p.

Fig. 11 Example of VRC algorithm

5.3 Result list update

For a data point $p \in P$ that is currently under evaluation, once its visible region on q (i.e., $V R_{p}$) is formed via VRC, we need to evaluate the impact of p on the current result list RL. Towards this, a Result List Update Algorithm (RLU) is developed to incrementally update $R L$ for a CVNN query upon the evaluation of p. It takes the current result list $R L=$ $\cup_{i=1}^{t}\left\langle p_{i}, R_{i}\right\rangle$, point p, and p 's visible region $V R_{p}$ as input, and outputs the updated result list.

As depicted in Algorithm 3, it performs the update via scanning every tuple $\left\langle p_{i}, R_{i}\right\rangle$ in $R L$. If p is visible to R_{i} either partially or completely (i.e., $R_{i} \cap V R_{p} \neq \emptyset$), RLU first derives the intersection $R_{\text {int }}\left(=R_{i} \cap V R_{p}\right)$ and difference $R_{\text {dif }}$ ($=R_{i}-R_{\text {int }}$) between R_{i} and $V R_{p}$. Thereafter, if the VNN of R_{i} is empty (i.e., $p_{i}=\emptyset$), $\left\langle p, R_{\text {int }}\right\rangle$ and $\left\langle\emptyset, R_{\text {dif }}\right\rangle$ (if $R_{\text {dif }} \neq \emptyset$) are inserted into a temporary result list $T R L$. Otherwise (i.e., $p_{i} \neq \emptyset$), RLU inserts $\left\langle p_{i}, R_{d i f}\right\rangle$ into $T R L$ if $R_{\text {dif }} \neq \emptyset$; and then, the algorithm invokes RS-CVNN algorithm to determine whether p_{i} can be partially/completely replaced by p over region $R_{\text {int }}$. On the other hand, p may be invisible to R_{i} (i.e., $R_{i} \cap V R_{p}=\emptyset$) and hence p has a zero impact on region R_{i}. RLU inserts $\left\langle p_{i}, R_{i}\right\rangle$ into $T R L$. After all the tuples in $R L$ are evaluated, it outputs $T R L$ as the updated result list. It is important to note that whenever a new tuple $\left\langle p^{\prime}, R^{\prime}\right\rangle$ is inserted into $T R L$, it might be merged with an existing region $R^{\prime \prime}$ in $T R L$ if R^{\prime} and $R^{\prime \prime}$ are continuous and they share the same VNN, with the merge operation represented by Merge().

The RS-CVNN algorithm is used to check whether $R_{\text {int }}$'s current VNN p_{i} is still valid upon the existence of p, and replace p_{i} with p either partially or fully if necessary. The pseudo-code is described in Algorithm 4. Note that the region $R_{\text {int }}=[l, r]\left(\subseteq V R_{p}\right)$ is certainly visible to p, and

```
Algorithm 3 Result List Update (RLU)
    Input: a result list \(R L\); a data point \(p ; p\) 's visible region \(V R_{p}\)
    Output: the updated result list
    \(T R L=\{\langle\emptyset,[s, e]\rangle\}\)
    for each tuple \(\left\langle p_{i}, R_{i}\right\rangle \in R L\) do
        if \(R_{i} \cap V R_{p} \neq \emptyset\) then
            \(R_{i n t}=R_{i} \cap V R_{p}\) and \(R_{d i f}=R_{i}-R_{i n t}\)
            if \(p_{i}=\emptyset\) then
                    insert \(\left\langle p, R_{\text {int }}\right\rangle\) into \(T R L\), insert \(\left\langle\emptyset, R_{d i f}\right\rangle\) into \(T R L\)
                    if \(R_{\text {dif }} \neq \emptyset\), and Merge() if necessary
            else
                    add \(\left\langle p_{i}, R_{d i f}\right\rangle\) to \(T R L\) if \(R_{d i f} \neq \emptyset\) and Merge()
                    if necessary
                    RS-CVNN \(\left(T R L,\left\langle p_{i}, R_{\text {int }}\right\rangle, p\right) \quad / /\) see Algorithm 4
        else
            add \(\left\langle p_{i}, R_{i}\right\rangle\) to \(T R L\) and Merge() if necessary
    return \(T R L\)
```

hence we only need to examine the dominance relationship according to Lemma 1. RS-CVNN distinguishes four cases: (i) If p does not dominate any interval over $R_{\text {int }}$, i.e., $p \notin$ $V C(l) \cup V C(r)$, the original tuple $\left\langle p_{i}, R_{\text {int }}\right\rangle$ remains valid and is added to $T R L$ (line 2). (ii) If p dominates entire $R_{\text {int }}$, the algorithm replaces p_{i} with p and inserts $\left\langle p, R_{\text {int }}\right\rangle$ into $T R L$ (lines 3-4). (iii) If p is only within the vicinity circle of l, i.e., p dominates partial interval on $R_{\text {int }}$, the algorithm calculates the intersection s_{1} between the region $R_{\text {int }}$ and the perpendicular bisector of the line segment $\left[p_{i}, p\right]$ (i.e., $\perp\left(p_{i}, p\right)$), and inserts $\left\langle p,\left[l, s_{1}\right]\right\rangle$ and $\left\langle p_{i},\left[s_{1}, r\right]\right\rangle$ into $T R L$ (lines 5-7). (iv) Similar to case (iii), if p is only inside the vicinity circle of r, the algorithm derives the intersection s_{2} between $R_{\text {int }}$ and $\perp\left(p_{i}, p\right)$, and adds $\left\langle p_{i},\left[l, s_{2}\right]\right\rangle$ and $\left\langle p,\left[s_{2}, r\right]\right\rangle$ to $T R L$ (lines 8-10).

```
Algorithm 4 Region Split for CVNN (RS-CVNN)
    Input: a temporary result list \(T R L\); a tuple \(\left\langle p_{i}, R_{\text {int }}\right\rangle \in R L\)
    with region \(R_{\text {int }}=[l, r]\); a data point \(p\)
    \({ }^{*} V C\left(p^{\prime}\right)\) denotes the vicinity circle of \(p^{\prime}\), centered at \(p^{\prime}\) with
    \(\operatorname{dist}\left(p, p^{\prime}\right)\) as radius */
    if \(p \notin V C(l)\) and \(p \notin V C(r)\) then
        insert \(\left\langle p_{i}, R_{\text {int }}\right\rangle\) into \(T R L\)
    else if \(p \in V C(l)\) and \(p \in V C(r)\) then
        insert \(\left\langle p, R_{\text {int }}\right\rangle\) into \(T R L\)
    else if \(p \in V C(l)\) then
        \(s_{1}=R_{\text {int }} \cap \perp\left(p_{i}, p\right)\)
        insert both \(\left\langle p,\left[l, s_{1}\right]\right\rangle\) and \(\left\langle p_{i},\left[s_{1}, r\right]\right\rangle\) into \(T R L\)
        else \(\quad / / p \in V C(r)\)
        \(s_{2}=R_{\text {int }} \cap \perp\left(p_{i}, p\right)\)
        insert both \(\left\langle p_{i},\left[l, s_{2}\right]\right\rangle\) and \(\left\langle p,\left[s_{2}, r\right]\right\rangle\) into \(T R L\)
```

Figure 12 depicts an example with $P=\{a, b, c\}, O=$ $\left\{o_{1}, o_{2}, o_{3}\right\}$ and $q=[s, e]$. Suppose point a has been processed and current $R L=\left\{\left\langle a,\left[s, s_{2}\right]\right\rangle,\left\langle\emptyset,\left[s_{2}, e\right]\right\rangle\right\}$. Now we invoke RLU to evaluate a new point b, with $V R_{b}=\left\{\left[s, s_{3}\right]\right\}$. RLU recursively checks each region in $R L$. First, $\left[s, s_{2}\right]$ is evaluated. As it overlaps with $V R_{b}$, RLU derives $R_{\text {int }}$ (=
$\left.\left[s, s_{2}\right] \cap\left[s, s_{3}\right]=\left[s, s_{2}\right]\right)$ and $R_{d i f}\left(=\left[s, s_{2}\right]-\left[s, s_{2}\right]=\emptyset\right)$, and calls RS-CVNN to examine whether a, the current VNN of $R_{\text {int }}$, can be partially/completely replaced by b. Since b is within the vicinity circle of s, RS-CVNN computes the intersection s_{1} between $\left[s, s_{2}\right]$ and $\perp(a, b)$, i.e., the perpendicular bisector of the line segment $[a, b]$, and adds $\left\langle b,\left[s, s_{1}\right]\right\rangle$ and $\left\langle a,\left[s_{1}, s_{2}\right]\right\rangle$ to $T R L$. Next, RLU examines the second region in $R L$ (i.e., $\left[s_{2}, e\right]$) and discovers it also overlaps with $V R_{b}$. Consequently, both $R_{\text {int }}\left(=\left[s_{2}, e\right] \cap\left[s, s_{3}\right]=\left[s_{2}, s_{3}\right]\right)$ and $R_{d i f}\left(=\left[s_{2}, e\right]-\left[s_{2}, s_{3}\right]=\left[s_{3}, e\right]\right)$ are calculated. As the current VNN of $\left[s_{2}, e\right]$ is \emptyset, RLU adds $\left\langle b,\left[s_{2}, s_{3}\right]\right\rangle$ and $\left\langle\emptyset,\left[s_{3}, e\right]\right\rangle$ to $T R L$. Finally, it returns $T R L=\left\{\left\langle b,\left[s, s_{1}\right]\right\rangle\right.$, $\left.\left\langle a,\left[s_{1}, s_{2}\right]\right\rangle,\left\langle b,\left[s_{2}, s_{3}\right]\right\rangle,\left\langle\emptyset,\left[s_{3}, e\right]\right\rangle\right\}$ as the updated result list $R L$.

Fig. 12 Example of RLU algorithm

5.4 The complete CVNN search algorithm

Having explained GetObs, VRC, and RLU algorithms, we are ready to present the complete CVNN query processing algorithm, namely CVNN Search Algorithm (CVNN), whose pseudo-code is shown in Algorithm 5. CVNN takes as input an R-tree T_{p} on data set P, an R-tree T_{o} on obstacle set O, and a query line segment q, and outputs the final result list $R L$ of a CVNN query. It follows the best-first traversal paradigm, as suggested by Heuristic 4.

In order to enable the best-first traversal, the algorithm maintains two heaps H_{p} and H_{o} to store the data and obstacle entries visited so far respectively, sorted by ascending order of their minimal distances (i.e., mindist) to q. First of all, CVNN enheaps the root nodes of T_{p} and T_{o} to H_{p} and H_{o}, respectively (line 2). Thereafter, it continuously deheaps the head entry e out of H_{p} for examination until H_{p} becomes empty (lines 3-14). Each examination involves two tasks. First, CVNN checks whether the early termination condition is satisfied, i.e., mindist $(e, q) \geq \mathrm{RL}_{\text {MAXD }}$ (line 5). If yes, the algorithm terminates because the remaining entries in H_{p} can not contain any answer point according to Heuristic 1 . Second, the entry e is evaluated. If e is a data point, CVNN invokes GetObs algorithm to obtain all the obstacles that may affect the visibility of e, calls VRC algorithm to derive e 's visible region $V R_{e}$ over q, and utilizes the RLU algorithm to update the current result list $R L$ (lines 7-10). Otherwise, e must refer to an intermediate node (i.e., a nonleaf entry). CVNN visits its subtree only if it may contain any

Fig. 13 Illustration of a CVNN query processing
qualifying data point via Heuristic 2 and Heuristic 3 (lines 11-14). The advantage of CVNN algorithm over exhaustive scan is that the access to some unnecessary nodes, i.e., those certainly not containing any qualified object, is eliminated.

```
Algorithm 5 CVNN Search (CVNN)
    Input: a data R-tree \(T_{p}\); an obstacle R-tree \(T_{o}\); a query line segment
    \(q=[s, e]\)
    Output: the result list \(R L\) of a CVNN query
    /* \(T_{p}\).root denotes the root node of \(T_{p} ; T_{o}\).root represents the root
    node of \(T_{o}\) */
    \(R L=\{\langle\emptyset,[s, e]\rangle\}, \operatorname{RL}_{\text {MAXD }}=\infty\), and \(L_{o}=\emptyset\)
    \(H_{p}=\left\{T_{p} \cdot\right.\) root \(\}, H_{o}=\left\{T_{o}\right.\). root \(\}\)
    while \(H_{p} \neq \emptyset\) do
        de-heap the top entry \(e\) of \(H_{p}\)
        if mindist \((e, q) \geq \mathrm{RL}_{\text {MAXD }}\) then \(\quad / /\) use Heuristic 1
            break
        else if \(e\) is a data point then
            GetObs( \(T_{o}, H_{o}\), mindist \(\left.(e, q), q, L_{o}\right) \quad / /\) See Algorithm 1
            \(V R_{e}=\operatorname{VRC}\left(e, q, L_{o}\right) \quad / /\) See Algorithm 2
            \(R L=\operatorname{RLU}\left(R L, e, V R_{e}\right) \quad / /\) See Algorithm 3
        else
            for each child entry \(e_{i} \in e\) do
                        if \(e_{i}\) dominates a subinterval of any region in \(R L\) and
                    it is visible to \(q\) then // use Heuristics 2 and 3
                        insert \(e_{i}\) into \(H_{p}\)
    return \(R L\)
```

Consider the example depicted in Figure 13, where $P=$ $\{a, b, c, d\}, O=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$, and $q=[s, e]$. Initially, the result list $R L$ is set to $\{\langle\emptyset,[s, e]\rangle\}$. When the first data point a (that is the closest to q without considering obstacles) is visited, CVNN invokes GetObs to obtain all the obstacles that may affect the visibility of a (i.e., o_{1} and o_{2}). Then, it uses VRC to get $V R_{a}=\left\{\left[s, s_{a_{1}}\right],\left[s_{a_{2}}, s_{a_{3}}\right]\right\}$, i.e., the a 's visible regions over q. Next, RLU is called to update the current $R L$ to $\left\{\left\langle a,\left[s, s_{a_{1}}\right]\right\rangle,\left\langle\emptyset,\left[s_{a_{1}}, s_{a_{2}}\right]\right\rangle,\left\langle a,\left[s_{a_{2}}, s_{a_{3}}\right]\right\rangle\right.$, $\left.\left\langle\emptyset,\left[s_{a_{3}}, e\right]\right\rangle\right\}$, as shown in Figure 13(a). The second point examined is b. Since b dominates $\left[s, s_{a_{1}}\right]$ and $\left[s_{a_{1}}, s_{a_{2}}\right]$, the corresponding VNNs are replaced by b with $R L=\{\langle b,[s$, $\left.\left.\left.s_{a_{2}}\right]\right\rangle,\left\langle a,\left[s_{a_{2}}, s_{a_{3}}\right]\right\rangle,\left\langle\emptyset,\left[s_{a_{3}}, e\right]\right\rangle\right\}$, as shown in Figure 13(b). Subsequently, CVNN evaluates the third point c and updates $R L$ to $\left\{\left\langle b,\left[s, s_{a_{2}}\right]\right\rangle,\left\langle a,\left[s_{a_{2}}, s_{c_{2}}\right]\right\rangle,\left\langle c,\left[s_{c_{2}}, e\right]\right\rangle\right\}$, which is illustrated in Figure 13(c). Finally, when the last point d is encountered, d is pruned directly as mindist $(d, q)>\mathrm{RL}_{\text {MAXD }}$
$(=\operatorname{dist}(c, e))$. Here, the algorithm terminates with the final query result $R L=\left\{\left\langle b,\left[s, s_{a_{2}}\right]\right\rangle,\left\langle a,\left[s_{a_{2}}, s_{c_{2}}\right]\right\rangle,\left\langle c,\left[s_{c_{2}}, e\right]\right\rangle\right\}$, as shown in Figure 13(d).

Next, we reveal some characteristics of the CVNN algorithm, analyze its time complexity, and prove its correctness.

Lemma 4 Every data point in a data set P will be examined during the CVNN search, unless one of its ancestor nodes has been pruned.

Proof The proof is obvious since all data points in P that are not pruned by Heuristics 1 to 4 (proposed in Section 4.1) are inserted into the heap and examined.

Lemma 5 Only obstacles that may impact the visibility of the current data point processed are maintained in L_{o}.

Proof The proof is straightforward because the CVNN algorithm employs the GetObs algorithm to find incrementally all the obstacles that might affect the visibility of the data point processed currently, and enables heuristics 5 to 7 (presented in Section 4.2) to prune away all the non-qualifying obstacles that cannot contribute to the final query result.

Lemma 6 The CVNN algorithm traverses the data R-tree T_{p} and the obstacle R-tree T_{o} at most once.

Proof As shown in Algorithm 5, the CVNN algorithm traverses T_{p} once based on the best-first manner to evaluate every data point in P that cannot be pruned. In addition, it only traverses T_{o} once. Although the GetObs algorithm is invoked every time a new data point $p \in P$ is evaluated, it utilizes the obstacles preserved in the current L_{o} and traverses the T_{o} in an incremental fashion.

Let $|O|$ be cardinality of the obstacle set $O,|P|$ be the cardinality of the data set $P,|\operatorname{IRC}|$ be the time complexity of the IRC function called by VRC, $\left|I R_{p, o}\right|$ be the maximum number of regions in $I R_{p, o}$ (used in VRC), and $|R L|$ be the maximum cardinality, in terms of number of tuples, of a result list $R L$. The time complexity of CVNN algorithm is presented in Theorem 1, while its correctness is proved in Theorem 2.

Theorem 1 The time complexity of the CVNN algorithm is $O\left(|P| \cdot \log |P| \cdot\left(|O| \cdot \log |O|+|O| \cdot\left(|\operatorname{RC}|+\left|I R_{p, o}\right|\right)+|R L|\right)\right)$.

Proof As mentioned before, CVNN actually invokes GetObs, VRC, and RLU to evaluate each point, and hence its time complexity is attributed to by that of GetObs, VRC, and RLU. First, all the obstacles in O have to be accessed in the worst case, and thus the time complexity of the GetObs algorithm is $O(|O| \cdot \log |O|)$. Next, VRC is to obtain the visible region of the point processed currently over q by considering each obstacle preserved in L_{o}. Consequently, its time complexity is $O\left(|O| \cdot\left(|\mathrm{IRC}|+\left|I R_{p, o}\right|\right)\right)$. Third, RLU has to check every tuple in $R L$, and the RS-CVNN invoked by RLU can be completed in $O(1)$ time. Consequently, the time complexity of RLU is $O(|R L|)$. Given the fact that CVNN needs to evaluate all the points in P in the worst case and it takes $O(\log |P|)$ to locate a point in P, the overall time complexity of the CVNN algorithm is $O(|P| \cdot \log |P| \cdot(|O| \cdot \log |O|+|O| \cdot(|\operatorname{RRC}|+$ $\left.\left.\left.\left|I R_{p, o}\right|\right)+|R L|\right)\right)$.

Theorem 2 The CVNN algorithm retrieves exactly the VNN of every point along a given query line segment, i.e., the algorithm has no false misses and no false hits.

Proof First, no answer points are missed (i.e., no false negatives) because only unqualified data points in P are pruned away safely according to Heuristics 1 through 4. Second, the impact of each qualified data point in P on the current result list $R L$ is evaluated, which ensures no false positives (i.e., no false hits).

5.5 CVNN query processing on one R-tree

Our previously presented CVNN search algorithm assumes that dataset P and obstacle set O are indexed by two separate R -trees. In what follows, we explain how to extend it to support CVNN search on a single R-tree that indexes both data points and obstacles.

The detailed extensions are listed as follows: (i) It requires only one heap H to store candidate entries (containing data points, obstacles, and non-leaf nodes), sorted in ascending order of their minimum distances to a given query line segment q. (ii) When processing the top entry e removed from H, it distinguishes three cases. (1) e is an obstacle. It adds e to a linked list L_{o}, which maintains all the obstacles that may affect the visibility of the data points processed so far with respect to q. (2) e is a data point p. It computes the visible region of e over q, and updates the current result list $R L$ if necessary. According to the Heuristic 7, any obstacle o that may impact the visibility of e on q must satisfy the condition: mindist $(o, q)<\operatorname{mindist}(e, q)$. Therefore, all the obstacles that might affect the dominance of p must have been visited before p. Note that, there is no need to invoke the GetObs algorithm to get all the obstacles that may affect e 's visibility, since both data points and obstacles are indexed by one unified R-tree. (3) e is a non-leaf node, indicating that it may contain data points and/or obstacles. The
subtrees of e that may contain answer points or obstacles that might affect the visibility of some answer points are retrieved. Note that all the heuristics proposed in Section 4 can still be applied for pruning unnecessary node accesses significantly.

6 Variations of CVNN queries

In this section, we study several interesting CVNN variants, and present how the proposed CVNN algorithm can be adapted accordingly. In particular, four variants are defined, including (i) continuous visible $k \mathrm{NN}(\mathrm{CV} k \mathrm{NN})$ search, (ii) trajectory VNN (TVNN) retrieval, (iii) CVNN query with visible distance threshold δ (δ-CVNN), and (iv) constrained CVNN (CCVNN) search. It is important to note that due to the space limitation and the similarity of the algorithm extensions, we only explain the extension of the algorithm to support CVkNN retrieval in detail.

6.1 CVkNN search

Given a data set P, an obstacle set O, and a query line segment $q=[s, e], \mathrm{CV} k \mathrm{NN}$ search is to retrieve k VNNs for every point on q. The result list $R L$ of a CV k NN query contains a set of $\langle S, R\rangle$ tuples, where S is the set of VNNs for all the points along the region/interval $R \subseteq q$. Different from conventional k NN retrieval, the answer set S might not exist (i.e., $S=\emptyset$) or it might not hold k answer points (i.e., $|S|<k$), due to the existence of obstacles. The proposed algorithms for CVNN queries can be easily extended to support CVkNN search. The detailed extensions are described as follows.

First, the VNN query defined in Definition 3 is replaced by a general $\mathrm{V} k N N$ query, stated in Definition 8. Accordingly, the CV $k \mathrm{NN}$ query is defined in Definition 9.

Definition 8 Visible k nearest neighbors [4]. Given a query point $q^{\prime}, p \in P$ is one of the visible k nearest neighbors (VkNNs) of q^{\prime} iff: (i) p is visible to q^{\prime}; and (ii) there are at most $(k-1)$ data points $p^{\prime} \in P-\{p\}$ such that p^{\prime} is visible to q^{\prime} and meanwhile has its distance to q^{\prime} smaller than that from p to q^{\prime}, i.e., $\mid\left\{p^{\prime} \in P-\{p\} \mid p^{\prime}\right.$ is visible to $\left.q^{\prime} \wedge \operatorname{dist}\left(p, q^{\prime}\right)>\operatorname{dist}\left(p^{\prime}, q^{\prime}\right)\right\} \mid<k$.
Definition 9 Continuous visible k nearest neighbor query. Given P, O, and q, a continuous visible k nearest neighbor (CVkNN) query returns a result list $R L$ that contains a set of $\left\langle S_{i}, R_{i}\right\rangle(i \in[1, t])$ tuples such that (i) $\forall i, j \in[1, t](i \neq j)$, $R_{i} \cap R_{j}=\emptyset^{10}$; (ii) $\cup_{i=1}^{t} R_{i}=q$; (iii) $\forall i \in[1, t],\left|S_{i}\right| \leq k$; and (iv) $\forall\left\langle S_{i}, R_{i}\right\rangle \in R L$, if $S_{i} \neq \emptyset, S_{i}$ is the set of $\mathrm{V} k \mathrm{NNs}$ of all points along R_{i}.

[^7]Second, Heuristic 1 requires updating. $\mathrm{RL}_{\text {MAXD }}$ is replaced with $M A X_{1 \leq i \leq|R L|}$ (maximumdist $\left(S_{i}, R_{i} . l\right)$, maxi mumdist ($\left.S_{i}, R_{i} \cdot r\right)$), where $|R L|$ denotes the number of regions in the current result list $R L$, and set S_{i} maintains the set of $\mathrm{V} k \mathrm{NNs}$ retrieved so far for its corresponding region R_{i}. The detailed proof is presented in Lemma 7.

Lemma 7 Assume the set S contains the VkNN objects identified so far for the region R. A new point $p \in P$ updates S iff $\operatorname{dist}(p, R . l)<$ maximumdist $(S, R . l)$ orland dist $(p, R . r)<$ maximumdist $(S, R . r)$, with maximumdist (S, r) defined as follows:
maximumdist $(S, r)= \begin{cases}M A X_{\forall p_{i} \in S} \operatorname{dist}\left(p_{i}, r\right) & \text { if }|S|=k \\ \infty & \text { if }|S|<k\end{cases}$
Proof When $|S|<k$, p will be included in S based on Definition 8. Now we would like to prove the case when $|S|=k$. First, we proof sufficiency. Without loss of generality, we assume $\operatorname{dist}(p, R . l)<$ maximumdist $(S, R . l)$ and $\exists p_{i} \in S$ such that $\operatorname{dist}(p, R . l)<\operatorname{dist}\left(p_{i}\right.$, R.l). According to Lemma 1 (proposed in Section 3.2), it is guaranteed that p violates the dominance of p_{i} over R. Given the fact that $\mid S-$ $\left\{p_{i}\right\} \mid=(k-1)$ and Definition $8, p_{i}$ is no longer one of the $\mathrm{V} k \mathrm{NNs}$ of $R . l$, and S needs to update. Next, we proof necessity. Suppose p updates R by replacing $p_{i} \in S$. Hence, there is at least one point $r \in R$ such that $\operatorname{dist}\left(r, p_{i}\right)>\operatorname{dist}(r, p)$. As demonstrated in Lemma 1, p must be within the vicinity circle $\operatorname{cir}\left(r, p_{i}\right)$ and thus the union of $\operatorname{cir}\left(R . l, p_{i}\right)$ and $\operatorname{cir}\left(R . r, p_{i}\right)$. In other words, $\operatorname{dist}(p, R . l)<\operatorname{dist}\left(p_{i}, R . l\right) \leq$ maximumdist $(S, R . l)$ or/and $\operatorname{dist}(p, R . r)<\operatorname{dist}\left(p_{i}, R . r\right)$ \leq maximumdist $(S, R . r)$. The proof completes.

Fig. 14 Illustration of updating $R L$ for a CV2NN query

The evaluation of data points is similar to that for CVNN search. Specifically, the evaluation of each data point $p \in P$ involves three steps. First, all the obstacles affecting p 's visibility are obtained. Second, p 's visible region $V R_{p}$ over q is derived. Third, the current result list $R L$ is updated if necessary, which is more complex than that under CVNN (i.e., $k=1$) retrieval. We use an example depicted in Figure 14 to illustrate the update operation. Suppose a CV2NN ($k=2$) query is issued with data set $P=\{a, b, c\}$, obstacle set $O=\left\{o_{1}, o_{2}, o_{3}\right\}$, and query line segment $q=[s, e]$.

We assume points a, b have been processed, and currently $R L=\left\{\left\langle\{b\},\left[s, s_{1}\right]\right\rangle,\left\langle\{a, b\},\left[s_{1}, s_{2}\right]\right\rangle,\left\langle\{a\},\left[s_{2}, s_{3}\right]\right\rangle\right.$, $\left.\left\langle\{a, b\},\left[s_{3}, e\right]\right\rangle\right\}$, as shown in Figure 14(a). Notice that the number of the current VNN(s) for intervals [s, s_{1}] and $\left[s_{2}, s_{3}\right]$ is only one due to the obstruction of obstacles. Now the evaluation of a new data point c starts, and assume that we have got its visible region $V R_{c}=\left\{\left[s, s_{c}\right]\right\}$ on q.

To simplify our discussion, we only focus on the evaluation of c based on a specified interval R, but the same process can be applied to other intervals in $R L$. First, according to the visibility, c partitions the interval R into two regions $R_{\text {int }}$ and $R_{d i f}$, with $R_{\text {int }}=R \cap V R_{c}$ and $R_{d i f}=$ $R-R_{\text {int }}$. Point c might change the result corresponding to $R_{\text {int }}$, but definitely not $R_{\text {dif }}$. Consequently, the evaluation can be safely terminated if $R_{\text {int }}=\emptyset$, meaning that any point on the interval R is invisible to c. Now suppose $R_{\text {int }}=[l, r] \neq \emptyset$, and its corresponding answer point set is S. If $|S|<k, c$ becomes an answer point for every point on $R_{\text {int }}$. As an example, consider the evaluation of c over region $R\left(=\left[s_{2}, s_{3}\right]\right) \subseteq q(=[s, e])$. Since $R \cap V R_{c}=\left[s_{2}, s_{c}\right]$, the tuple $\left\langle\{a\},\left[s_{2}, s_{3}\right]\right\rangle$ is changed to $\left\langle\{a, c\},\left[s_{2}, s_{c}\right]\right\rangle$ and $\left\langle\{a\},\left[s_{c}, s_{3}\right]\right\rangle$. If $|S|=k$, We have to check whether (i) maximumdist $(S, l)>\operatorname{dist}(c, l)$ and/or (ii) maximumdist $(S$, $r)>\operatorname{dist}(c, r)$ hold. If neither condition is satisfied, c is discarded as it cannot be an answer point to any point along R. Otherwise, the interval $R_{\text {int }}$ needs to be split, which is tackled by the RS-CV k NN algorithm presented in Algorithm 6.

RS-CVkNN evaluates the impact of a new data point p on an interval $R_{\text {int }} \subseteq R$. It takes as inputs a temporary result list $T R L$, a region $R_{\text {int }}=[l, r]$, a result set S that keeps k answer points for $R_{\text {int }}$ identified so far, and a new data point p, and returns the updated $T R L$. RS-CV k NN distinguishes two cases: (i) p is not an answer point of any point along $R_{\text {int }}$, i.e., $\operatorname{dist}(p, l)>$ maximumdist (S, l) and $\operatorname{dist}(p, r)>$ maximumdist (S, r). In this case, p certainly will not change S and $\left\langle S, R_{\text {int }}\right\rangle$ remains valid (lines 1-2). (ii) p is an answer point of some points on $R_{i n t}$, i.e., $\operatorname{dist}(p, l) \leq$ maximumdist (S, l) and/or $\operatorname{dist}(p, r) \leq$ maximumdist (S, r). In this case, the algorithm performs the following tasks. First, for every point $p_{i} \in S$, the intersection between $R_{\text {int }}$ and $\perp\left(p_{i}, p\right)$ is computed and inserted into a temporary set $S_{s p}$ (lines 4$6)$. Then, it finds the point $s p(\neq l)$ in $S_{s p}$ that is the closest to the starting point of $R_{\text {int }}$ (i.e., l) (line 7). If $s p$ does not exist, the tuple $\left\langle S, R_{\text {int }}\right\rangle$ remains valid and is added to $T R L$ (lines 8-9). Otherwise, RS-CV k NN locates point $p^{\prime} \in S$ that generates $s p$, i.e., $s p=R_{\text {int }} \cap \perp\left(p^{\prime}, p\right)$, and point $p^{\prime \prime} \in S$ that has the maximal distance to l, i.e., $\operatorname{dist}\left(p^{\prime \prime}, l\right)=$ maximumdist (S, l) (line 11). If p is closer to l than $p^{\prime \prime}$, the algorithm first swaps the values of p and $p^{\prime \prime}$, and then RS$\mathrm{CV} k \mathrm{NN}$ is invoked recursively to check the validity of S on region $[l, r]$ upon the existence of p (lines 12-14). Here, note that set S is changed as $p^{\prime \prime} \in S$ changes its value, and the evaluated point p is updated as well. Otherwise, $p^{\prime \prime}$ is
still closer to l than p. The algorithm maintains the tuple $\langle S,[l, s p]\rangle$ in $T R L$ and calls RS-CV $k \mathrm{NN}$ again to examine the validity of $S-\left\{p^{\prime}\right\} \cup\{p\}$ on region $[s p, r]$ upon the existence of p^{\prime} (lines 15-17). Finally, the new result list $T R L$ is returned to complete the algorithm.

```
Algorithm 6 Region Split for CVkNN (RS-CV \(k N N\) )
Input: a temporary result list \(T R L\); a region \(R_{\text {int }}=[l, r]\); a set \(S\)
    of the current \(\mathrm{V} k \mathrm{NNs}\) for each point along \(R_{\text {int }} ;\) a data point \(p\)
    Output: the updated \(T R L\)
    if \(\operatorname{dist}(p, l)>\) maximumdist \((S, l)\) and \(\operatorname{dist}(p, r)>\) maximumdist
        \((S, r)\) then \(\quad / / p\) does not dominate \(R_{\text {int }}\)
            insert \(\left\langle S, R_{\text {int }}\right\rangle\) into \(T R L\)
        else \(/ / p\) dominates \(R_{\text {int }}\) partially/completely
            for each point \(p_{i} \in S\) do
                    \(s p_{i}=R_{\text {int }} \cap \perp\left(p_{i}, p\right)\)
                    add \(s p_{i}\) to set \(S_{s p}\)
        let \(s p(\neq l)\) be the point in \(S_{s p}\) that is the closest to \(l\)
        if \(s p\) does not exist then
            insert \(\left\langle S, R_{\text {int }}\right\rangle\) into \(T R L\)
        else
            let \(p^{\prime}\) be the point in \(S\) such that \(s p=R_{\text {int }} \cap \perp\)
            \(\left(p^{\prime}, p\right)\), and \(p^{\prime \prime}\) be the point in \(S\) satisfying \(\operatorname{dist}\left(p^{\prime \prime}, l\right)=\)
            maximumdist \((S, l)\)
            if \(\operatorname{dist}(p, l)<\operatorname{dist}\left(p^{\prime \prime}, l\right)\) then
                        \(\operatorname{swap}\left(p, p^{\prime \prime}\right)\)
                            \(\operatorname{RS}-\operatorname{CV} k \operatorname{NN}(T R L,[l, r], S, p) \quad / / p=p^{\prime \prime}\)
            else
                    insert \(\langle S,[l, s p]\rangle\) into \(T R L\)
                    \(\operatorname{RS}-\mathrm{CV} k \mathrm{NN}\left(T R L,[s p, r], S-\left\{p^{\prime}\right\} \cup\{p\}, p^{\prime}\right)\)
        return \(T R L\)
```

Back to the running example shown in Figure 14. Consider the evaluation of c over region $\left[s_{1}, s_{2}\right] \subseteq q(=[s, e])$, whose corresponding answer point set S is $\{a, b\}$. Point c is fully visible to $\left[s_{1}, s_{2}\right]$, and $\operatorname{dist}\left(c, s_{1}\right)<$ maximumdist $(S$, $\left.s_{1}\right)\left(=\operatorname{dist}\left(b, s_{1}\right)\right)$ and $\operatorname{dist}\left(c, s_{2}\right)<\operatorname{maximumdist}\left(S, s_{2}\right)$ ($=\operatorname{dist}\left(a, s_{2}\right)$). Therefore, RS-CV k NN is employed to find the split points along $\left[s_{1}, s_{2}\right]$. At the first recursion, the intersection A between q and $\perp(b, c)$ as well as the intersection C between q and $\perp(a, c)$ are derived. Thus, $S_{s p}=$ $\{A, C\}$, and $s p$ be point A as it is closer to s_{1}. Accordingly, we locate b as p^{\prime} whose bisector contributes to the generation of A and b as $p^{\prime \prime}$ with the maximal distance to s_{1}. Since $\operatorname{dist}\left(c, s_{1}\right)<\operatorname{dist}\left(b, s_{1}\right)$, the algorithm understands the c will replace b to become V2NN objects to s_{1}, together with a. Thereafter, RS-CV k NN $\left(T R L,\left[s_{1}, s_{2}\right],\{a, c\}, b\right)$ is called again to evaluate the impact of b on $\left[s_{1}, s_{2}\right]$ with $S=\{a, c\}$.

Again, $S_{s p}=\{A, B\}$ is formed first with A contributed by $\perp(b, c)$ and B contributed by $\perp(a, b)$, as illustrated in Figure 14(b). Given $S_{s p}$, the one closest to s_{1}, i.e., A, is located, and p^{\prime} and $p^{\prime \prime}$ are both set to c. As c is closer to s_{1} than b does, $S=\{a, c\}$ remains valid for $\left[s_{1}, A\right]$, and $\left\langle\{a, c\},\left[s_{1}, A\right]\right\rangle$ is inserted into $T R L$. Next, RS-CVkNN ($T R L,\left[A, s_{2}\right],\{a, b\}, c$) is invoked with the query line segment shrink to $\left[A, s_{2}\right]$. The algorithm proceeds in the same
manner until all the split points along the interval $\left[s_{1}, s_{2}\right]$ are found, after which $T R L$ is updated to $\left\{\left\langle\{a, c\},\left[s_{1}, A\right]\right\rangle\right.$, $\left.\langle\{a, b\},[A, C]\rangle,\left\langle\{b, c\},\left[C, s_{2}\right]\right\rangle\right\}$. Table 2 lists the executive processes of RS-CV k NN.

It is worth mentioning that k has a direct impact on the size of the result list $R L$. In particular, the greater the k is, the larger the number of regions contained in $R L$ is, and the higher the cost incurred by $\mathrm{CV} k \mathrm{NN}$ algorithm is.

6.2 Trajectory VNN search

The above CVNN search is on a single query line segment. However, in real applications, users may want to retrieve the VNN of every point along a specified trajectory that consists of several consecutive line segments. For example, a wildlife observer in Yellow Stone National Park may issue a query to find the closest observation point where he/she is most likely to see wolves along his/her hiking trail. Motivated by this, we introduce trajectory VNN (TVNN) search, which retrieves the VNN of every point along a given query trajectory, and the proposed CVNN algorithm can be adapted to handle TVNN retrieval as well.

An intuitive solution to the TVNN query, namely Simple Processing Algorithm (SP), is to invoke the CVNN algorithm for each line segment q_{i} included in the trajectory q (i.e., $\forall q_{i} \subseteq q$), to find the VNN of every point along q_{i}; and then merge the results if necessary. Although this approach is straightforward, it is inefficient in terms of I/O cost, which will be demonstrated by our experimental results to be presented in Section 7.4. This is because, given a query trajectory q that contains $|q|$ line segments (i.e., $q=\cup_{1 \leq i \leq|q|} q_{i}$), SP needs to traverse the data R-tree T_{p} and the obstacle Rtree $T_{o}|q|$ times, resulting in extremely high I/O overhead, especially when $|q|$ is large. In the sequel, we explain how to extend the CVNN algorithm to tackle the TVNN query by traversing T_{p} and T_{o} only once.

Fig. 15 Distance metrics of TVNN search
First, instead of decomposing the trajectory into multiple line segments, we consider it as one unit. The minimal distance between an entry E (representing a data point or an obstacle or a node MBR) and a specified query trajectory q is defined as the minimum distance among all the shortest distances from E to each line segment $q_{i} \subseteq q$, i.e.,

Table 2 The trace of RS-CV $k N N$ algorithm

\# Recursion	$S_{s p}$	$s p$	p^{\prime}	$p^{\prime \prime}$	Operation	TRL
First recursion	$\{A, C\}$	A	b	b	$\begin{aligned} & \operatorname{swap}(c, b) \\ & \operatorname{RS}-\mathrm{CV} k \operatorname{NN}\left(T R L,\left[s_{1}, s_{2}\right],\{a, c\}, b\right) \end{aligned}$	\emptyset
Second recursion	$\{A, B\}$	A	c	c	insert $\left\langle\{a, c\},\left[s_{1}, A\right]\right\rangle$ into $T R L$, RS-CV $k N N\left(T R L,\left[A, s_{2}\right],\{a, b\}, c\right)$	$\left\{\left\langle\{a, c\},\left[s_{1}, A\right]\right\rangle\right\}$
Third recursion	$\{A, C\}$	C	a	b	insert $\langle\{a, b\},[A, C]\rangle$ into $T R L$, RS-CV $k \mathrm{NN}\left(T R L,\left[C, s_{2}\right],\{b, c\}, a\right)$	$\left\{\left\langle\{a, c\},\left[s_{1}, A\right]\right\rangle,\langle\{a, b\},[A, C]\rangle\right\}$
Fourth recursion	$\{B, C\}$	-	-	c	insert $\left\langle\{b, c\},\left[C, s_{2}\right]\right\rangle$ into $T R L$,	$\left\{\left\langle\{a, c\},\left[s_{1}, A\right]\right\rangle,\langle\{a, b\},[A, C]\rangle,\left\langle\{b, c\},\left[C, s_{2}\right]\right\rangle\right\}$

minimummindist $(E, q)=M I N_{1 \leq i \leq|q|}\left(\operatorname{mindist}\left(E, q_{i}\right)\right)$. In Figure 15, for example, minimummindist $(p, q)=\operatorname{MIN}($ $\operatorname{mindist}(p,[s, u])$, mindist $(p,[u, v])$, mindist $(p,[v, e]))=$ $\operatorname{MIN}(\operatorname{dist}(p, u), \operatorname{dist}(p, x), \operatorname{dist}(p, v))=\operatorname{dist}(p, x)$.

Second, given a query line segment q_{i} of a query trajectory q, the obstacles o that might affect the visibility of point p over q_{i} must have their minimal distances to q_{i} bounded by $\operatorname{mindist}\left(p, q_{i}\right)$. As we need to retrieve all the obstacles that might affect p 's visibility on any point along q, the retrieval distance r requested by GetObs algorithm should be set to the maximum distance of all the minimal distances from p to every line segment $q_{i} \subseteq q$, i.e., maximummindist (p, q) $=M A X_{i \in[1,|q|]}\left(\operatorname{mindist}\left(E, q_{i}\right)\right)$. For example, as shown in Figure 15, maximummindist $(p, q)=M A X(\operatorname{mindist}(p,[s$, $u]), \operatorname{mindist}(p,[u, v]), \operatorname{mindist}(p,[v, e]))=\operatorname{dist}(p, u)$, and the shaded area covers all the obstacles affecting p 's visibility over q.

Third, the pruning heuristics proposed for CVNN search are still applicable, but based on the above minimummindist and maximummindist metrics.

Compared with SP, this approach processes a TVNN search via a single traversal of the R-trees no matter how many line segments the specified query trajectory contains, and thus, it has lower I/O cost. Compared with SP, however, the method has higher CPU overhead because it incurs more distance computation, visibility check, and result list update, which will also be demonstrated by our experimental results to be presented in Section 7.4.

Fig. 16 Example of a TVNN query
Figure 16 shows an example, where a data set $P=$ $\{a, b, c, d, f\}$, an obstacle set $O=\left\{o_{1}, o_{2}, o_{3}, o_{4}, o_{5}\right\}$, and a query trajectory $q=[s, e]$ consisting of 3 line segments, i.e., $q_{1}=[s, u], q_{2}=[u, v]$, and $q_{3}=[v, e]$. As depicted in

Figure 16, the final result of a TVNN query is $\left\{\left\langle a,\left[s, s_{1}\right]\right\rangle\right.$, $\left.\left\langle b,\left[s_{1}, u\right]\right\rangle,\left\langle c,\left[u, s_{2}\right]\right\rangle,\left\langle d,\left[s_{2}, s_{3}\right]\right\rangle,\left\langle f,\left[s_{3}, e\right]\right\rangle\right\}$, after processing points b, c, d, a, f (in this order).

Note that the complexity of TVNN retrieval, compared to the CVNN query, is higher due to the fact that the number of split points and the number of obstacles which need to be considered increase with the number of query line segments.

6.3 CVNN query with distance threshold δ

In real life, users might want to enforce distance constraints on CVNN queries. Take the application placement of traffic surveillance cameras described in Section 1 as an example. As different cameras have various crop factors, a camera has a limited imaging area. Suppose cameras installed can only monitor the objects located within 10 meters, CVNN search with distance threshold 10 is more suitable, compared with conventional CVNN retrieval. In view of this, we introduce δ-CVNN search, a CVNN retrieval with maximum visible distance δ constraint. Given a data set P, an obstacle set O, a query line segment q, and a distance threshold δ, a δ CVNN query returns the VNN of every point along q with its distance to q bounded by δ.

A straightforward approach to answer δ-CVNN query is to first perform CVNN search, and then filter out those answer objects whose distances to the corresponding intervals on a specified query line segment q exceed δ. Nevertheless, this method is not very efficient since the distance constraint δ is applied at a very late stage. Another solution is to retrieve all the objects with their distances to q not exceeding δ and then conduct CVNN retrieval. However, it needs to build a new R-tree on these objects. In fact, the proposed algorithms for CVNN search can be easily adjusted to support δ-CVNN retrieval, by integrating distance threshold δ during the query processing. Moreover, in addition to all the Heuristics presented in Section 4 that are still applicable, we also develop two new pruning heuristics to fully utilize the distance constraint δ in order to further improve the search performance.

Search early termination. As the tree built on the data set P is traversed in a best-first manner, the algorithm can be safely terminated once an entry E (data point or node

MBR) with mindist to q larger than δ is encountered. This is because, when the top entry E has its mindist to q exceeding δ, it is guaranteed that all the unexamined data points have their distances to q greater than δ and thus will be excluded from the final query result.

Fig. 17 Search range of δ-CVNN
Search range shrinking. The search space of δ-CVNN retrieval is limited by δ. As an example, the shadowed area in Figure 17 represents the search space of a δ-CVNN query with $q=[s, e]$ and δ being the distance threshold. Consequently, any entry (involving data point, obstacle, and node MBR) that is outside the search space can be directly excluded from the further examination, since it cannot contribute to the final query result.

Fig. 18 Example of a δ-CVNN query
As shown in Figure 18, an example δ-CVNN query is issued at $q=[s, e]$, with $P=\{a, b, c, d\}$ and $O=\left\{o_{1}, o_{2}, o_{3}\right.$, $\left.o_{4}\right\}$. The δ-CVNN search outputs $\left\{\left\langle b,\left[s, s_{1}\right]\right\rangle,\left\langle a,\left[s_{1}, s_{2}\right]\right\rangle\right.$, $\left.\left\langle c,\left[s_{2}, s_{3}\right]\right\rangle,\left\langle\emptyset,\left[s_{3}, e\right]\right\rangle\right\}$, which is different from the output $\left\{\left\langle b,\left[s, s_{1}\right]\right\rangle,\left\langle a,\left[s_{1}, s_{2}\right]\right\rangle,\left\langle c,\left[s_{2}, e\right]\right\rangle\right\}$ of a CVNN query issued at q. Take the interval $\left[s_{3}, e\right]$ as an example, its VNN c is an answer object to CVNN query but not δ-CVNN as its distance to its dominance region $\left[s_{3}, e\right]$ exceeds threshold δ.

6.4 Constrained CVNN search

Our previously proposed CVNN search and its variants (including CV $k \mathrm{NN}$, TVNN, and δ-CVNN queries) aim at finding, from the entire data space, the VNN for each point along a given query line segment (or a query trajectory) q. However, in some real applications, users might be only interested in the objects within a specified spatial region. Take the application tourist recommendation presented in Section 1 as an example. Suppose a photographer wants to take photography of scenes in the sunset. As only objects within a limited range of distances from the camera will be reproduced clearly, the photographer may be only interested in
the nearby visible scenes within a certain distance to his planed traveling route. Motivated by this, we introduce a CVNN query with a spatial region constraint, namely constrained CVNN (CCVNN) search. Given a data set P, an obstacle set O, a query line segment q, and a constrained region R_{c}, a CCVNN query retrieves, for every point along q, the VNN among all the objects located inside R_{c}. Actually, this type of queries is to apply conventional (i.e., unconstrained) CVNN retrieval in a specified spatial region and thus the final result of CCVNN search must satisfy the given region constraints.

Fig. 19 Illustration of mindist $\left(E, q, R_{c}\right)$
Since the users are only interested in the objects/points located inside a specified spatial region, a simple method for answering CCVNN search is to first find out all the data points that are within the given spatial region, denoted as $P_{R_{c}}=\left\{p \in P \wedge p \in R_{c}\right\}$, and then perform a CVNN query based on $P_{R_{c}}$ and the obstacle set O. However, this approach requires to construct an R-tree on $P_{R_{c}}$ during the query processing dynamically. Alternatively, we extend the proposed CVNN algorithm to handle CCVNN retrieval, by integrating the examination of regional constraint conditions during the search. In the following, we highlight two main differences between CVNN search and CCVNN search.

First, conventional (i.e. unconstrained) CVNN search traverses the dataset P in a best-first fashion as long as the entry E (data point or node MBR) has mindist (E, q) bounded by the current $\mathrm{RL}_{\text {MAXD }}$. Nevertheless, CCVNN retrieval only visits those entries E that overlap with R_{c} according to ascending order of mindist $\left(E, q, R_{c}\right)$. Here, mindist $\left(E, q, R_{c}\right)$ $=\operatorname{mindist}\left(E \cap R_{c}, q\right)$. As illustrated in Figure 19, mindist $\left(N_{1}\right.$, $\left.q, R_{c}\right)=l_{1}, \operatorname{mindist}\left(N_{2}, q, R_{c}\right)=\infty, \operatorname{mindist}\left(N_{3}, q, R_{c}\right)=$ mindist $\left(N_{3}, q\right)=l_{3}$, and mindist $\left(N_{4}, q, R_{c}\right)=\operatorname{mindist}\left(R_{c}\right.$, $q)=l_{2}$. In addition, CCVNN search can terminate the search when the heap H_{p} becomes empty or $\operatorname{mindist}\left(E, q, R_{c}\right)$ of the top entry E in a heap H_{p} that contains unvisited node entries is larger than the current $\mathrm{RL}_{\text {MAXD }}$. Furthermore, Heuristics 1 to 4 (presented in Section 4.1) are also applicable except that, for each intermediate node entry E, mindist (E, q) is replaced with mindist $\left(E, q, R_{c}\right)$.

Second, the search range for the obstacles that might affect the visibility of some candidate answer points is restricted by the region bounded by R_{c} and the query line seg-
ment q. According to the relative locations between q and R_{c}, there are four possible situations, as depicted in Figure 20 .

Fig. 20 Relative positions of a query line segment $q=[s, e]$ and a constrained region R_{c}

Specifically, (i) q and R_{c} are disjoint, as shown in Figure 20(a). CCVNN retrieval only needs to access those obstacles located inside the quadrilateral $A s e C$. (ii) One of the endpoints of q falls into R_{c}, as illustrated in Figure 20(b). CCVNN search only needs to visit those obstacles located within the quadrilateral $A B e C$. (iii) q intersects R_{c}, as depicted in Figure 20(c). CCVNN query only needs to scan those obstacles located inside the pentagon $A s B e C$. (iv) q falls into R_{c} completely, as shown in Figure 20(d). CCVNN search only needs to access those obstacles located inside R_{c}. Consequently, when the GetObs algorithm is invoked to retrieve the obstacles affecting the visibility of a data point $p \in P$ processed currently, only the obstacles located inside the restricted search range require examination. In addition, Heuristics 5 to 7 can still be applied for obstacle pruning.

Fig. 21 Example of a CCVNN query
Consider the CCVNN query depicted in Figure 21 with $P=\{a, b, c, d, f, g, h, i, j\}, O=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}, q=$ [$s, e]$, and R_{c} set to the shaded rectangle. The final query re-
sult list $R L=\left\{\left\langle f,\left[s, s_{1}\right]\right\rangle,\left\langle a,\left[s_{1}, s_{2}\right]\right\rangle,\left\langle f,\left[s_{2}, s_{3}\right]\right\rangle,\left\langle a,\left[s_{3}\right.\right.\right.$, $\left.\left.\left.s_{4}\right]\right\rangle,\left\langle\emptyset,\left[s_{4}, e\right]\right\rangle\right\}$. Notice that although points g, h, i and j are closer to q than points a and f, they are excluded from the $R L$ as they are outside R_{c}.

It is worth mentioning that the constrained region R_{c} has a significant impact on the algorithm performance, as demonstrated by our experimental results (to be presented in Section 7.6). Specifically, if a specified query line segment q is far away from R_{c}, more obstacles might affect the visibility of a data point inside R_{c} over q, which leads to more obstacle retrieval, visibility examination, and result list updating.

7 Performance evaluation

In this section, we evaluate the performance of the proposed pruning heuristics and CVNN search algorithm for CVNN query and its variants via extensive experiments. All the algorithms were implemented in $\mathrm{C}++$ and the experiments were conducted on a Pentium IV 3.0 GHz PC with 2GB RAM, running Microsoft Windows XP Professional Edition. The detailed experimental setup is presented in Section 7.1. Five sets of experiments are conducted. The first set evaluates the effectiveness of the heuristics proposed, as reported in Section 7.2. The second set verifies the efficiency and effectiveness of CVNN algorithm in supporting CVkNN search with $k \geq 1$, presented in Section 7.3. The third, fourth, and fifth sets of experiments are to evaluate the flexibility of CVNN algorithm in supporting TV $k \mathrm{NN}, \delta$ $\operatorname{CV} k \mathrm{NN}$, and CCV $k \mathrm{NN}$ queries, different variants of CVNN queries, in Section 7.4, Section 7.5, and Section 7.6, respectively.

Table 3 Statistics of the real datasets used

Dataset	Size	Format	Description
$L C A$	62,556	2D points	locations in California
$C G R$	5,922	2D points	cities and villages in Greece
$S L A$	131,461	2D MBRs	streets in Los Angeles
$R G R$	24,650	2D MBRs	rivers in Greece

7.1 Experimental setup

Our experiments are based on both real datasets and synthetic datasets, with the search space fixed at a $[0,10000] \times$ [0,10000$]$ square. Four real datasets are deployed, namely $\boldsymbol{L C A}, \boldsymbol{C G R}, \boldsymbol{S L A}$, and $\boldsymbol{R} \boldsymbol{G} \boldsymbol{R}^{11}$, as summarized in Table 3. Specifically, $L C A$ and $C G R$ contain two-dimensional (2D) points, representing 62, 556 locations in California and 5, 922

[^8]Table 4 Parameter ranges and default values

Parameter	Range
query length q_{l} (\% of space side)	$5,10, \mathbf{1 5}, 20,25$
k	$1,3, \mathbf{5}, 7,9$
$\|P\| /\|O\|$	$0.1,0.2,0.5, \mathbf{1}, 2,5,10$
buffer size (\% of the tree size)	$1,2,4,8, \mathbf{1 0 1 6} 16,32,64$
number of trajectory segments $\|q\|$	$2,4,6,8,10$
$\delta(\%$ of space side	$5,10,15,20,25$
R_{c} (\% of space side)	$10,20,30,40,50,60,70$

cities and villages in Greece, respectively; $S L A$ and $R G R$ include 2D rectangles, representing 131, 461 MBRs of streets in Los Angeles and 24, 650 MBRs of rivers in Greece, respectively. All the datasets are normalized in order to fit the search range. Synthetic datasets are generated based on uniform distribution and zipf distribution respectively, with the cardinality varying from $0.1 \times|S L A|$ to $10 \times|S L A|$. The coordinate of each point in Uniform datasets is generated uniformly along each dimension, and that of each point in Zipf datasets is generated according to zipf distribution with skew coefficient $\alpha=0.8$. We assume a point's coordinates on both dimensions are mutually independent.

Since CVNN query and its variants involve a data set P and an obstacle set O, we deploy four different combinations of the datasets, namely $\boldsymbol{C R}, \boldsymbol{L S}, \boldsymbol{U S}$, and $\boldsymbol{Z S}$, representing $(P, O)=(C G R, R G R),(L C A, S L A)$, (Uniform, SLA), and (Zipf, SLA), respectively. Both $C R$ and $L S$ utilize real datasets with $|P|<|O|$. On the other hand, $U S$ and $Z S$ employ synthetic datasets, and we can adjust the relative size of P and O to simulate different cases. Consequently, we will explicitly specify the ratio of $|P| /|O|$ for $U S$ and $Z S$ in the following evaluations. Note that the data points in P are allowed to lie on the boundaries of the obstacles, but not in their interior.

All data and obstacle sets are indexed by R*-trees [20], with a page size of 4 K bytes. We employ an LRU memory buffer whose default size is set to 10% of the tree size. Table 4 lists all the parameters that are considered in the experiments, with numbers in bold representing default settings. In each experiment, only one parameter is changed in order to evaluate its impact on the performance, while all the other parameters are fixed at their defaults. We run 200 queries for each experiment, and the average performance is reported.

We consider I/O cost, CPU time, and total query cost as the main performance metric. Here, I/O cost refers to the number of pages/nodes accessed, and the query cost is the summation of the I/O time and CPU time where the I/O time is computed by charging 10 ms for each page access [52]. Given a query length q_{l}, each query line segment is generated by (i) selecting a random point in the data space as the starting point of the query line segment, and (ii) selecting randomly an orientation (angle with the x-axis) from
the range $[0,2 \pi)$, with its length controlled by the specified query length q_{l}. The line segments included into a predefined query trajectory for TV $k \mathrm{NN}$ search are generated in the same manner. However, we fix the trajectory length to 15% of the search space side, and assume all the line segments contained in the query trajectory share the same length in order to simplify the simulation.

7.2 Effectiveness of pruning heuristics

The first set of experiments aims at evaluating the effectiveness of the proposed pruning heuristics. As presented in Section 4, Heuristic 2 and Heuristic 3 prune away unnecessary node entries of the R-tree T_{p} on the dataset P, and thus we employ the number of data objects pruned as the performance metric. Similarly, Heuristic 5, Heuristic 6, and Heuristic 7 are developed to discard the obstacles that will certainly not affect the visibility of any potential answer object, and hence the percentage of obstacles pruned (account for the entire obstacle set O) is measured as the performance metric. Moreover, we measure the CPU time (in seconds) for the corresponding heuristic(s) to demonstrate their CPU cost. It is noticed that Heuristic 1 provides the early termination condition and Heuristic 4 specifies the best-first traversal fashion. Compared with other heuristics proposed, these two heuristics play a less significant role in pruning away data points or obstacles, and therefore their effectiveness is ignored from the evaluation. In addition, we illustrate the efficiency of Heuristic 5 and Heuristic 6 together because they are applied in the VRC algorithm simultaneously to prune unqualified obstacles (see line 3 of Algorithm 2).

First, we vary the query length q_{l} of q from 5% to 25% of the side length of the search space, with k fixed at 5 . The results are shown in Figures 22 for $C R$ and $L S$, respectively. Evidently, each heuristic evaluated prunes away a large number of non-qualifying data objects or obstacles, which validates its usefulness. Take Heuristic 2 for $C R$ combination as an example. It saves the detailed examination of 1,030 out of 5,922 objects when $q_{l}=15 \%$. Compared with Heuristic 3 , Heuristic 2 has a more powerful pruning capability and a lower CPU overhead in most cases. This is because Heuristic 3 is more strict, i.e., it is only applied to those objects that cannot be pruned by Heuristic 2 via taking visibility into account. Similarly, for the pruning of the obstacles, Heuristics 5 and 6 are more effective than Heuristic 7, but incur a higher CPU cost since their implementation requires more computational overhead. Figure 23 and Figure 24 plot the pruning efficiency of different heuristics with respect to k and $|P| /|O|$ respectively, using dataset combinations $C R$ and $L S$. The diagrams confirm the observations and corresponding explanations of Figure 22.

All the above experimental results are the average performance of multiple queries. In order to demonstrate the

Fig. 22 Pruning efficiency of heuristics versus $q_{l}(k=5)$

(a) $C R$

(b) $C R$

(c) $L S$

(d) $L S$

Fig. 23 Pruning efficiency of heuristics versus $k\left(q_{l}=15 \%\right)$

(c) $Z S$

(d) $Z S$

Fig. 24 Pruning efficiency of heuristics versus $|P| /|O|\left(q_{l}=15 \%, k=5\right)$
pruning efficiency of heuristics on individual queries, Figure 25 shows the results on random 20 sample queries (i.e., 10% of each query workload) for different dataset combinations, by fixing q_{l} and k to their default values (i.e., 15% and 5 , respectively). It is observed that although heuristics perform differently as queries change, their overall effectiveness is significant. In other words, all the evaluated heuristics are important because each heuristic is applied multiple times, and prunes unnecessary data objects or obstacles significantly, especially for Heuristics 2, 5, and 6.

7.3 Results on CV k NN queries

The second set of experiments evaluates the performance of CVNN algorithm in answering CVkNN queries. As CVNN search shares some similarities with CNN and VNN queries that have been well-studied, we implement two simple solutions extended from existing CNN and VNN search algorithms, i.e., Baseline and BFA, which are presented in Section 2.2 and Section 2.3 respectively. In our experiments, both k_{1} and r of Baseline are set to $2 k(10 k)$. We study the influence of various parameters, including (i) query length q_{l}, (ii) the number of VNNs required k, (iii) the ratio of dataset cardinality $|P|$ to obstacle set cardinality $|O|$ (i.e., $|P| /|O|$), and (iv) buffer size. As explained in Section 5, P and O can
be indexed either by two separate R-trees, denoted as 2 T , or by a single R-tree, denoted as 1T. Note that Baseline and BFA can only support 2 T case but not 1T scenario.

Effect of query length q_{l}. First, we investigate the impact of q_{l} on the efficiency of the algorithms, based on the dataset combinations $C R$ and $L S$ with k set to 5 . The results are depicted in Figure 26. The first observation is that CVNN is several orders of magnitude faster than Baseline and BFA in all cases. The reason behind is that, as mentioned in Section 2, Baseline needs to invoke $\mathrm{C} k \mathrm{NN}$ search multiple times and BFA requires scanning the entire dataset (in sequence) without any pruning. For presentation clarity, we skip Baseline and BFA in the remaining experimental results as CVNN consistently outperforms them. The second observation is that although CV $k \mathrm{NN}-2 \mathrm{~T}$ and $\mathrm{CV} k \mathrm{NN}-1 \mathrm{~T}$ share a similar performance trend, CVkNN-1T performs better. This is because when data points and obstacles are indexed by one R-tree, only one traversal of the unified R-tree is required. Data points and obstacles that are close to each other could be found in the same leaf node of the R-tree. Hence, using a single R-tree to index P and O is one potential approach to further boost up the performance. It is also noticed that the cost of $\mathrm{CV} k \mathrm{NN}$ queries increases with q_{l}. The reason behind is that, as the query length becomes longer, both the number of data points processed and the number of the split-

Fig. 25 Pruning heuristic application efficiency of individual queries ($q_{l}=15 \%, k=5$)

Fig. $26 \mathrm{CV} k$ NN search performance versus $q_{l}(k=5)$

(c) $L S$

(d) $L S$

Fig. $27 \mathrm{CV} k$ NN search performance versus $k\left(q_{l}=15 \%\right)$
ting regions in the specified query line segment increase, resulting in more distance computation, visibility examination, and result list updating. In addition, we find that the query cost on $L S$ exceeds significantly that on $C R$. This is because $L S$ contains far more data points than $C R$ (i.e., in $C R,|P|=5,922$, while in $L S,|P|=62,556$.).

Effect of k. Next, we explore the impact of k and Figure 27 illustrates the performance of the CVNN algorithm under different k values with q_{l} fixed at 15%. Similar to what observed from previous experiment, CV $k \mathrm{NN}-1 \mathrm{~T}$ is better than $\mathrm{CV} k \mathrm{NN}-2 \mathrm{~T}$, and they share the similar performance trend. On the other hand, the value of k affects the performance. Moreover, it has a more significant impact on $C R$ than on $L S$. This is caused by the different nature of the datasets. In $C R,|P| /|O| \approx 0.25$ while that in $L S$ is around 0.5 . In other words, the visibility of an object from $C R$ on average is affected by more obstacles, compared against the object from $L S$. Hence, the dominance region of an answer object from $C R$ is smaller, compared with that of an answer object from $L S$. As k grows, the efficiency of the CVNN algorithm for $C R$ suffers from a more significant deterioration.

Effect of $|P| /|O|$. Then, we evaluate the performance of CVNN algorithm under different $|P| /|O|$ settings, with result plotted in Figure 28. As expected, CV $k \mathrm{NN}-1 \mathrm{~T}$ outperforms $\mathrm{CV} k \mathrm{NN}-2 \mathrm{~T}$ and they share the similar performance trend.

Consequently, we only present the performance of CVkNN2 T and ignore the performance of $\mathrm{CV} k \mathrm{NN}-1 \mathrm{~T}$ in the subsequent experiments. We also observe that as $|P| /|O|$ increases from 0.1 to 10 , the cost of $\mathrm{CV} k \mathrm{NN}$ queries first drops and then increases. This is because initially, the density of dataset P increases with the growth of $|P| /|O|$, which implies a smaller search range for the answer points and obstacles. Therefore, the performance improves. However, as $|P| /|O|$ further grows, the interval dominated by each data point becomes shorter, and the result list contains more answer points. The gain from the reduced search range cannot pay off the cost of frequent result list update operation, and thus the performance deteriorates. Notice that the performance of CVNN achieves the best performance when P and O share similar cardinalities (e.g., $|P| /|O|=0.5$ or 1 in Figure 28).

Effect of buffer size. As mentioned in Section 7.1, all the above experiments are conducted with an LRU buffer that is set to 10% of the tree size. The fourth experiment examines the performance of CVNN with various LRU buffer sizes, by fixing $q_{l}=15 \%$ and $k=5$. We use the first 100 queries to warm up the buffer, and the average cost of the last 100 queries is reported in Figure 29. Obviously, as the buffer size increases, the I/O cost drops gradually, whereas the CPU cost remains almost the same.

Fig. $28 \mathrm{CV} k \mathrm{NN}$ search performance versus $|P| /|O|\left(q_{l}=15 \%, k=5\right)$

Fig. $29 \mathrm{CV} k \mathrm{NN}$ search performance versus buffer size $\left(q_{l}=15 \%, k=5\right.$)

7.4 Results on TV $k \mathrm{NN}$ queries.

The third set of experiments evaluates the performance of CVNN algorithm in answering TV k NN queries. Here, the SP algorithm presented in Section 6.2 is taken as a baseline approach. We investigate the influence of two factors: k and the number of trajectory segments $|q|$. The trajectory length is set to 15% of the search space side length, and it consists of several connective line segments with equivalent length. Again, we consider the case where P and O are indexed by two separate R-trees and the case where P and O are indexed by one unified R-tree, denoted as TV $k \mathrm{NN}-2 \mathrm{~T}$ (2 T for short), TV $k \mathrm{NN}-1 \mathrm{~T}$ (1T for short), and SP-2T (S2T for short), respectively.

(a) $L S$

(b) $L S$

Fig. $30 \mathrm{TV} k \mathrm{NN}$ search performance versus $k(|q|=3)$

First, we fix $|q|$ to 3 and vary k between 1 and 9 to study the effect of k on the efficiency of the algorithms, using the $L S$ dataset combination. The experimental results are depicted in Figure 30. It is observed that the I/O cost of TV $k \mathrm{NN}$ outperforms significantly that of SP, but with a longer CPU time. The reason behind is that, as mentioned in Section 6.2, SP needs to traverse the data set and the obstacle set multiple times, resulting in numerous redundant node accesses; while TVkNN requires spending higher CPU time
to implement pruning heuristics to avoid unnecessary node accesses. The second observation is that TV k NN-2T and TV $k \mathrm{NN}-1 \mathrm{~T}$ share the similar performance trend, whereas $\mathrm{TV} k \mathrm{NN}-1 \mathrm{~T}$ performs better. As mentioned earlier, the advantage of TVkNN-1T can be explained by the fact that data points and obstacles located close to each other are very likely stored in the same page. Therefore, the access to the data points and that to the obstacles may share the node traversals when P and O are indexed by a single R-tree. In addition, the cost of TV $k \mathrm{NN}$ search increases as k grows, because a higher k value incurs a larger search space, more distance computation, and more result list maintenance cost.

Fig. $31 \mathrm{TV} k \mathrm{NN}$ search performance versus $|q|(k=5)$

Then, we explore the impact of $|q|$ on the performance of CVNN algorithm, with the result shown in Figure 31. As expected, TV $k \mathrm{NN}-1 \mathrm{~T}$ outperforms TV $k \mathrm{NN}-2 \mathrm{~T}$ and the cost of the algorithm increases with the growth of $|q|$.

7.5 Results on $\delta-\mathrm{CV} k \mathrm{NN}$ queries

The fourth set of experiments evaluates the performance of CVNN algorithm in answering $\delta-\mathrm{CV} k \mathrm{NN}$ queries. We vary the δ value from 5% to 25% of the search space side length, with q_{l} set to 15% and k fixed at 5 . The experimental results
are shown in Figure 32. Here, $\delta-\mathrm{CV} k \mathrm{NN}-2 \mathrm{~T}$ (2T for short) represents the case where dataset P and obstacle set O are indexed by two different R-trees, and $\delta-\mathrm{CV} k \mathrm{NN}-1 \mathrm{~T}$ (1 T for short) denotes the case where P and O are indexed by a single R-tree.

Fig. 32δ-CV k NN search performance versus $\delta\left(q_{l}=15 \%, k=5\right)$

It is observed that $\delta-\mathrm{CV} k \mathrm{NN}-1 \mathrm{~T}$ outperforms $\delta-\mathrm{CV} k \mathrm{NN}-$ 2 T , although their performance trend is similar. However, compared with the performance difference demonstrated in previous sets of experiments, the performance difference between δ-CV $k \mathrm{NN}-1 \mathrm{~T}$ and $\delta-\mathrm{CV} k \mathrm{NN}-2 \mathrm{~T}$ narrows down. The reason behind is that the search spaces for both data points and obstacles are bounded by δ, and thus the saving benefited from traversing one unified R-tree is less significant. On the other hand, as δ value grows, the cost of $\delta-\mathrm{CV} k \mathrm{NN}$ retrieval increases, which is consistent with our expectation and confirms that δ has a direct impact on the performance.

7.6 Results on $\mathrm{CCV} k \mathrm{NN}$ queries

The last set of experiments evaluates the performance of CVNN algorithm in answering CCV $k \mathrm{NN}$ queries. We fix q_{l} and k to their default values (i.e., 15% and 5 respectively), and vary the constrained region R_{c} from 10% to 70% of the search space side length (i.e., from 1% to 49% of the search space area). Figure 33 plots the experimental results for the dataset combination $L S$, in which CCV $k \mathrm{NN}-2 \mathrm{~T}$ (2T for short) represents the case where dataset P and obstacle set O are indexed by two separate R-trees, and CCV $k \mathrm{NN}-1 \mathrm{~T}$ (1T for short) denotes the case where P and O are indexed by one unified R-tree.

Again, $\mathrm{CCV} k \mathrm{NN}-1 \mathrm{~T}$ demonstrates a better performance, while its performance trend is similar to that of CCV $k \mathrm{NN}$ 2T. It is observed that initially, the cost of CCV $k \mathrm{NN}$ search increases slightly with R_{c}, but thereafter it drops gradually as R_{c} further grows. The reason behind is that, when R_{c} is small (e.g., $10 \%, 20 \%$), it is very likely that the answer objects to a traditional CVNN query are not located inside R_{c}, and hence nearly every data point within R_{c} has to be evaluated. If the query line segment q is far away from the constrained region R_{c}, more obstacles may affect the visibility of a data point inside R_{c} over q, resulting in a higher
obstacle retrieval cost and a higher visible region formation cost. Consequently, as R_{c} increases, more data points need to be evaluated with a higher search cost and a higher I/O overhead. However, as R_{c} reaches a certain size (e.g., 60%, 70%), it is very likely that data points located close to q are inside R_{c}, and thus the search space that has to be traversed for retrieving the answer objects is reduced, which leads to a significant improvement of the search performance.

Fig. $33 \operatorname{CCV} k$ NN search performance versus $R_{c}\left(q_{l}=15 \%, k=5\right)$

8 Conclusions

This paper identifies and solves a new type of spatial queries, namely continuous visible nearest neighbor (CVNN) search. CVNN retrieval is not only interesting from a research point of view, but also useful in many practical applications (involving spatial data and obstacles) such as decision support, mixed-reality games, and location-based commerce. We carry out a systematic study of CVNN queries. First, we provide a formal definition of the problem and reveal its unique characteristics. Second, we present a suite of effective pruning heuristics and develop an efficient CVNN algorithm to tackle the problem. Next, we extend CVNN algorithm to handle several CVNN query variants, including $\mathrm{CV} k \mathrm{NN}, \mathrm{TV} k \mathrm{NN}, \delta-\mathrm{CV} k \mathrm{NN}$, and CCV $k \mathrm{NN}$ queries. Finally, we conduct extensive experiments to evaluate the effectiveness of the proposed pruning heuristics and the performance of the proposed algorithms.

In the future, we intend to explore the application of the proposed methodology to other forms of spatial queries (e.g., all nearest neighbor search, etc.) in the presence of obstacles. Another interesting direction for future work is to investigate visibility queries for moving objects and moving obstacles. Finally, it would be particularly interesting to develop analytical models for estimating the query cost of CVNN search and its variants, because such models will not only facilitate query optimization, but may also reveal new problem characteristics that could lead to even better algorithms.

References

1. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: SSTD, pp. 79-96 (2001)
2. Tao, Y., Papadias, D.: Time parameterized queries in spatiotemporal databases. In: SIGMOD, pp. 334-345 (2002)
3. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB, pp. 287-298 (2002)
4. Nutanong, S., Tanin, E., Zhang, R.: Visible nearest neighbor queries. In: DASFAA, pp. 876-883 (2007)
5. Nutanong, S., Tanin, E., Zhang, R.: Incremental evaluation of visible nearest neighbor queries. IEEE Transactions on Knowledge and Data Engineering (to appear)
6. Gao, Y., Zheng, B., Chen, G., Lee, W.C., Lee, K.C.K., Li, Q.: Visible reverse k-nearest neighbor queries. In: ICDE, pp. 1203-1206 (2009)
7. Gao, Y., Zheng, B., Chen, G., Lee, W.C., Lee, K.C.K., Li, Q.: Visible reverse k-nearest neighbor query processing in spatial databases. IEEE Transactions on Knowledge and Data Engineering 21(9), 1314-1327 (2009)
8. Xia, C., Hsu, D., Tung, A.K.H.: A fast filter for obstructed nearest neighbor queries. In: BNCOD, pp. 203-215 (2004)
9. Zhang, J., Papadias, D., Mouratidis, K., Zhu, M.: Spatial queries in the presence of obstacles. In: EDBT, pp. 366-384 (2004)
10. Gao, Y., Zheng, B.: Continuous obstructed nearest neighbor queries in spatial databases. In: SIGMOD, pp. 577-590 (2009)
11. Estivill-Castro, V., Lee, I.: Autoclust+: Automatic clustering of point-data sets in the presence of obstacles. In: TSDM, pp. 133146 (2000)
12. Park, S.H., Lee, J.H., Kim, D.H.: Spatial clustering based on moving distance in the presence of obstacles. In: DASFAA, pp. 10241027 (2007)
13. Tung, A.K.H., Hou, J., Han, J.: Spatial clustering in the presence of obstacles. In: ICDE, pp. 359-367 (2001)
14. Wang, X., Hamilto, H.J.: Clustering spatial data in the presence of obstacles. International Journal on Artificial Intelligence Tools 14(1-2), 177-198 (2005)
15. Wang, X., Rostoker, C., Hamilton, H.J.: Density-based spatial clustering in the presence of obstacles and facilitators. In: PKDD, pp. 446-458 (2004)
16. Zaiane, O.R., Lee, C.H.: Clustering spatial data in the presence of obstacles: A density-based approach. In: IDEAS, pp. 214-223 (2002)
17. Sharifzadeh, M., Kolahdouzan, M., Shahabi, C.: The optimal sequenced route query. The VLDB Journal 17(4), 765-787 (2008)
18. Sharifzadeh, M., Shahabi, C.: Processing optimal sequenced route queries using voronoi diagrams. GeoInformatica 12(4), 411-433 (2008)
19. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.H.: On trip planning queries in spatial databases. In: SSTD, pp. 273-290 (2005)
20. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*tree: An efficient and robust access method for points and rectangles. In: SIGMOD, pp. 322-331 (1990)
21. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD, pp. 47-54 (1984)
22. Gao, Y., Zheng, B., Lee, W.C., Chen, G.: Continuous visible nearest neighbor queries. In: EDBT, pp. 144-155 (2009)
23. Cheung, K.L., Fu, A.W.C.: Enhanced nearest neighbour search on the R-tree. SIGMOD Record 27(3), 16-21 (1998)
24. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD, pp. 71-79 (1995)
25. Papadopoulos, A., Manolopoulos, Y.: Performance of nearest neighbor queries in R-trees. In: ICDT, pp. 394-408 (1997)
26. Henrich, A.: A distance-scan algorithm for spatial access structures. In: GIS, pp. 136-143 (1994)
27. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Transactions on Database Systems 24(2), 265318 (1999)
28. Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., Abbadi, A.: Constrained nearest neighbor queries. In: SSTD, pp. 257-278 (2001)
29. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, pp. 301-312 (2004)
30. Papadias, D., Tao, Y., Mouratidis, K., Hui, K.: Aggregate nearest neighbor queries in spatial databases. ACM Transactions on Database Systems 30(2), 529-576 (2005)
31. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearestneighbors queries in spatial databases. In: SSDBM, pp. 297-306 (2004)
32. Deng, K., Zhou, X., Shen, H., Xu, K., Lin, X.: Surface k-NN query processing. In: ICDE, p. 78 (2006)
33. Hu, H., Lee, D.L.: Range nearest-neighbor query. IEEE Transactions on Knowledge and Data Engineering 18(1), 78-91 (2006)
34. Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and querying moving objects. In: ICDE, pp. 422-432 (1997)
35. Iwerks, G.S., Samet, H., Smith, K.: Continuous k-nearest neighbor queries for continuously moving points with updates. In: VLDB, pp. 512-523 (2003)
36. Li, Y., Yang, J., Han, J.: Continuous k-nearest neighbor search for moving objects. In: SSDBM, pp. 123-126 (2004)
37. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An efficient method for continuous nearest neighbor monitoring. In: SIGMOD, pp. 634-645 (2005)
38. Xiong, X., Mokbel, M.F., Aref, W.G.: SEA-CNN: Scalable processing of continuous k-nearest neighbor queries in spatiotemporal databases. In: ICDE, pp. 643-654 (2005)
39. Yu, X., Pu, K., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: ICDE, pp. 631-642 (2005)
40. Liu, F., Hua, K.A., Do, T.T.: A P2P technique for continuous k -nearest-neighbor query in road networks. In: DEXA, pp. 264-276 (2007)
41. Mouratidis, K., Yiu, M., Papadias, D., Mamoulis, N.: Continuous nearest neighbor monitoring in road networks. In: VLDB, pp. 4354 (2006)
42. Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y.: A thresholdbased algorithm for continuous monitoring of k nearest neighbors. IEEE Transactions on Knowledge and Data Engineering 17(11), 1451-1464 (2005)
43. Wu, W., Guo, W., Tan, K.L.: Distributed processing of moving k -nearest-neighbor query on moving objects. In: ICDE, pp. 11161125 (2007)
44. Zheng, B., Lee, W.C., Lee, D.L.: On searching continuous k nearest neighbors in wireless data broadcast systems. IEEE Transactions on Mobile Computing 6(7), 748-761 (2007)
45. Feng, J., Watanabe, T.: A fast method for continuous nearest target objects query on road network. In: VSMM, pp. 182-191 (2002)
46. Kolahdouzan, M.R., Shahabi, C.: Alternative solutions for continuous k nearest neighbor queries in spatial network databases. GeoInformatica 9(4), 321-341 (2005)
47. Cho, H.J., Chung, C.W.: An efficient and scalable approach to CNN queries in a road network. In: VLDB, pp. 865-876 (2005)
48. Asano, T., Ghosh, S.K., Shermer, T.C.: Visibility in the plane. In: Handbook of Computation Geometry. Elsevier (2000)
49. Kofler, M., Gervautz, M., Gruber, M.: R-trees for organizing and visualizing 3D GIS databases. Journal of Visualization and Computer Animation 11(3), 129-143 (2000)
50. Shou, L., Chionh, C., Ruan, Y., Huang, Z., Tan, K.L.: Walking through a very large virtual environment in real-time. In: VLDB, pp. 401-410 (2001)
51. Shou, L., Huang, Z., Tan, K.L.: HDoV-tree: The structure, the storage, the speed. In: ICDE, pp. 557-568 (2003)
52. Tao, Y., Papadias, D., Lian, X., Xiao, X.: Multidimensional reverse k NN search. The VLDB Journal 16(3), 293-316 (2007)

[^0]: Yunjun Gao (Corresponding author) • Gencai Chen • Xiaofa Guo
 College of Computer Science
 Zhejiang University, Hangzhou, China
 E-mail: \{gaoyj, chengc, guoxf\}@zju.edu.cn
 Baihua Zheng
 School of Information Systems
 Singapore Management University, Singapore, Singapore
 E-mail: bhzheng@smu.edu.sg
 Qing Li
 Department of Computer Science
 City University of Hong Kong, Hong Kong, China
 E-mail: itqli@cityu.edu.hk

[^1]: ${ }^{1}$ Without loss of generality, $\operatorname{dist}\left(p_{i}, p_{j}\right)$ denotes the Euclidean distance between two data points p_{i} and p_{j}.

[^2]: ${ }^{2}$ The obstructed distance between any two data points in a data set is defined as the length of the shortest path that connects them without crossing any obstacle from a set of obstacles.
 ${ }^{3}$ Here, "continuous" denotes "continuously in spatial" instead of "continuously in time".
 ${ }^{4}$ Although an obstacle can be in any shape (e.g., triangle, pentagon, etc.), we assume it is a rectangle in this paper.

[^3]: ${ }^{5}$ We assume the monitoring roads/streets can be approximated by line segments.
 ${ }^{6}$ Note that although the placement of traffic surveillance cameras could be decided during offline planning process, efficient CVNN query processing algorithm is still preferred, given the fact that the number of monitoring regions considered and the number of traffic surveillance camera placement decision might be huge.

[^4]: ${ }^{7}$ For the rest of this paper, we refer to the data objects/points in the final query result as answer objects/points.

[^5]: ${ }^{8}$ If R_{i} and R_{j} are adjacent, i.e., $|i-j|=1, R_{i} \cap R_{j} \neq \emptyset$.

[^6]: ${ }^{9}$ To simplify the discussion, we use line segments, but not rectangles, to represent obstacles in the rest of this paper, while our methods can be used with rectangles that are sets of line segments.

[^7]: ${ }^{10}$ As with Definition 4, if R_{i} and R_{j} are adjacent, i.e., $|i-j|=1$, $R_{i} \cap R_{j} \neq \emptyset$.

[^8]: ${ }^{11} L C A, C G R, S L A$, and $R G R$ datasets are available in the R-tree Portal (http://www.rtreeportal.org).

