
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2006

CAPS: Energy-Efficient Processing of Continuous
Aggregate Queries in Sensor Networks
Wen HU
University of New South Wales

Archan MISRA
Singapore Management University, archanm@smu.edu.sg

Rajiv SHOREY
IBM India Research Laboratory

DOI: https://doi.org/10.1109/PERCOM.2006.14

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
HU, Wen; MISRA, Archan; and SHOREY, Rajiv. CAPS: Energy-Efficient Processing of Continuous Aggregate Queries in Sensor
Networks. (2006). 2006 IEEE International Conference on Pervasive Computing and Communications 4th PerCom: March 13-17, Pisa,
Italy: Proceedings. 190-199. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/686

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/PERCOM.2006.14
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

CAPS: Energy-Efficient Processing of Continuous Aggregate Queries in Sensor
Networks

Wen Hu
University of New South Wales
National ICT Australia Limited

wenh@cse.unsw.edu.au

Archan Misra
IBM T J Watson Research Center,
Next-Gen Web Infrastructure Dept.

archan@us.ibm.com

Rajeev Shorey
IBM India Research Laboratory

rajeev.shorey@gm.com

Abstract

In this paper, we design and evaluate an energy efficient
data retrieval architecture for continuous aggregate queries
in wireless sensor networks. We show how the modification
of precision in one sensor affects the sample-reporting fre-
quency of other sensors, and how the precisions of a group
of sensors may be collectively modified to achieve the target
Quality of Information (QoI) with higher energy-efficiency.
The proposed Collective Adaptive Precision Setting (CAPS)
architecture is then extended to exploit the observed tempo-
ral correlation among successive sensor samples for even
greater energy efficiency. Detailed simulations with syn-
thetic and real data traces demonstrate how the combi-
nation of weak consistency semantics and temporal corre-
lation can dramatically lower the energy consumption in
practical sensor environments.

1 Introduction

Energy-efficient operation of the sensor infrastructure is
critical in many pervasive or context-sensitive environments
where such battery-powered sensors provide the required
knowledge of the environmental state. A promising ap-
proach for drastically reducing the communication and/or
sensing overhead centers on exploiting an application’s ac-
ceptable tolerance of imprecise and inaccurate data. Such
tolerance is expressed in terms of a Quality of Information
(QoI) metric, and is especially useful for applications issu-
ing aggregation queries (such as min, max, sum, mean,
etc.) over a set of sensors. The QoI bounds may be either
deterministic(e.g., [1]) or statistical (e.g., [2, 3]).

In this paper, we present a novel architecture, called

Collective Adaptive Precision Setting (CAPS), for energy-
efficient support of continuous aggregate queries in a sen-
sor network. In the CAPS framework, the sink is able to
always ensure, over the entire query lifetime, that the ag-
gregate value computed by it (and reported to the applica-
tion) does not diverge from the true reading by more than
a specified “tolerance”. The key is to have the sink com-
municate a precision range or interval to an individual sen-
sor, with the idea that a sensor need not report its sam-
ples back to the sink as long as they fall within this spec-
ified range. This bounded-divergence approach transforms
the conventional sink-initiated, polling-based model of data
collection to a more energy-efficient source-initiated, event-
driven framework. This idea of using a precision range was
first introduced in [1], and subsequently extended in [4,5].
However, all prior work addresses only the instantaneous
query model, where applications issue synchronous, snap-
shot queries.

Our focus is on the continuous queries, which is a bet-
ter fit for many long-running pervasive environment moni-
toring applications. This introduces several new interesting
features and challenges. First, the application’s QoI require-
ment is usually be expressed as a tolerance on the aggregate
statistic (e.g., “I want the minimum temperature within a
range of ±5 units”), which a sink must decompose into indi-
vidual precision intervals for each sensor. Second, the sink
must continually ensure conformance to the aggregate QoI
bound, even as the values reported by individual sensors, or
even the set of sensors itself, changes over the lifetime of
the query. Finally, in many operating environments, there is
a significant temporal correlation across the successive sam-
ples reported by an individual sensor (a fact demonstrated
and exploited in [2] for snapshot queries). For example,
an outdoor thermal sensor usually reports increasing read-
ings during the morning, and gradually decreasing readings

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

as the afternoon progresses. The architecture should exploit
such expected or predictable variations to further reduce the
communication overhead.

To make our examples more concrete and practically rel-
evant, consider one specific distributed energy resource ap-
plications for smart indoor environments, that adaptively
adjust the operation of power-hungry equipment, such as air
conditioners. Assume that thermal sensors in a room gen-
erate temperature samples once every T = 60 seconds. A
smart controller that automatically activates or shuts off air-
conditioners would want to monitor the Maximum (max)
and Minimum (min) temperature in a room/building, every
T secs, with a specified precision range R = 1◦, i.e., the
application is satisfied as long as the sink reports within ±1
Celsius of the true MIN and MAX values computed by the
sensors.

There are three key contributions of our work as follows:

First, we first demonstrate how R, the composite preci-
sion bound specified by an application, may be decomposed
into individual precision ranges (for each individual sen-
sor) for certain representative aggregation functions. Un-
like prior work, the precision range for a sensor cannot be
determined in isolation, since an adjustment of the precision
range for sensor A may necessitate a change in the precision
setting for another sensor B (to maintain the QoI), which in-
directly affects the reporting frequency of both nodes.

Second, we extend the range adjustment technique to ac-
commodate sensor heterogeneity, in terms of either variable
sensor-to-sink communication overhead, or individual re-
source constraints. This allows more-constrained sensors to
have larger precision ranges (permit greater divergence) and
lower reporting frequency.

Third, we additional demonstrate how predictive algo-
rithms may be used in tandem at the sink and source nodes
to exploit temporal correlation among successive samples,
and significantly reduce the reporting overhead. To our
knowledge, this combination of temporal correlation with
collective weak consistency metrics has not been explored
before.

The rest of this paper is organized as follows. Section
2 discusses prior work in this area. In Section 3, we intro-
duce the notion of collective range adjustment for continu-
ous aggregate queries, and then express and solve the en-
ergy efficiency objective as a non-linear optimization prob-
lem. Section 4 describes the CAPS architecture (without
temporal prediction) and the resulting adaptive algorithms.
Section 4.2 then describes how simple linear prediction al-
gorithms can provide even better performance. Section 5
evaluates and studies CAPS via both extensive simulations
and empirical sensor data collected from an operational
Motes-based sensor testbed. Finally, Section 6 concludes
the paper.

2 Related work

Recent work on data management in sensor networks
has focused primarily on techniques for either in-network
aggregation of sensor data or exploitation of the spatio-
temporal correlation among sensor data samples. For ro-
bust aggregation of data in sensor networks, [6] presented
architecture called TAG, where a routing tree centered at the
sink is developed during the query dissemination phase. [7]
extended this model to provide fault-tolerance using a di-
rected acyclic graph that effectively routes the individual
or aggregate data samples across multiple paths toward the
sink. However, these protocols do not exploit the fact that
applications tolerate slightly inaccurate data.

Most relevant to our work is the work in [1], which
studied the optimal trade-off between sink-initiated fetch-
ing from individual data sources and the source-initiated re-
fresh of data (based on precision bounds). The resulting
algorithm considered the costs of data retrieval and query
dissemination to each candidate data source, and then pre-
sented a technique by which the central sink would de-
cide on an efficient combination of these approaches (across
multiple nodes) to satisfy the QoI of an “aggregate” query.
However, since [1] focuses on snapshot queries, there is no
attempt to adjust the precision ranges of individual nodes
collectively to ensure conformance to the QoI. In [1], if the
QoI of a new snapshot query could not be satisfied by the
existing precision ranges, the sink would simply poll an ap-
propriate subset of nodes. The CAPS approach of collec-
tive precision setting is, however, the first to ensure con-
tinual adherence to the QoI bounds The idea of adjusting
the precision range adaptively based on the observed ratio
of sink-initiated fetching and source-initiated refreshes was
first reported for generic Web-based data sources in [4].
More recently, [5] applied the adaptive precision approach
specifically to the sensor network setting, considering in de-
tail the various operational modes of individual sensors and
their impact on the overall energy consumption. However,
both [4] and [5] focus on the adaptation of the precision
range of an individual sensor, and do not consider the case
of aggregate, long-lived queries.

For exploiting the potential temporal correlation among
successive data samples of a single sensor, we shall use a
generic closed control loop architecture that predicts the
expected value of future data samples. The use of closed-
loop control for tracking time-varying parameters of a sen-
sor network has been reported in some earlier work. For ex-
ample, [3] uses a predictive controller to adjust the number
of activated nodes in a sensor network with a time-varying
node population. Recently, [8] proposes a predictive stor-
age architecture for sensor networks. However, it neither
introduces a detailed predictive algorithm, nor does it eval-
uate the architecture.

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

Table 1. Mathematical Notations
Symbol Definition
si Sensor i
S A set of sensors {1, 2, ... n}
ei,j An edge between sensor si and sj

E A set of edges
R Application QoI requirement
T Monitoring time serial {1, 2, ... m}
tj Time j
vj

i The reading of sensor i at time j

rj
i The interval of sensor i at time j

Hj
i Upper bound on si’s reading at tj

Lj
i Lower bound on si’s reading at tj

Hopj
i Hop-count from si to the sink at tj

Cuj
i The update cost of sensor i at time j.

3 The Collective Range Adjustment Problem
and Solution

In this section, we first present the generic problem of
collective range adjustment for aggregate queries. We then
express how energy-efficient processing of such an aggre-
gate query may be formulated as an optimization problem,
and subsequently present a necessary and sufficient condi-
tion for achieving optimality. This insight will allow us to
develop the functional blocks of the CAPS architecture in
Section 4.

Let us first introduce the necessary mathematical nota-
tion, all of which are collectively listed in Table 1. We as-
sume that the application issues an aggregation query with
its QoI specified by a precision range R–this implies that the
aggregate value computed at the sink at any instant should
be accurate to within ±R. In other words, the applica-
tion is assured that, if the value reported by the sink is V ,
the true value of the aggregate state (which would require
each sensor to report each sample to the sink) lies within
[V − R, V + R]. The sensor network itself is modeled as
undirected graph G =< S, E >, where S is a set of sen-
sors, and E is a set of edges. There is an edge (ei,j) between
sensors si and sj if their distance is less than the transmis-
sion range Γ.

Further, we assume a common sensing period T , with
each sensor generating a new data sample every T time
units. Accordingly, we index time to be integer-valued, with
t = j referring to the jth sample. The CAPS architecture
assumes that the sink communicates (mostly implicitly) the
precision interval (Lj

i , H
j
i) to sensor si, indicating that the

sensor needs to report its sample value vj
i at time j only if

it lies outside this specified range. Accordingly, at all in-
stants, each sensor is associated with a precision interval

defined by the relation 2 ∗ rj
i = Hj

i − Lj
i . In practice (we

initially consider the simple case without temporal predic-
tion), the range (Lj

i , H
j
i) is not communicated by the sink

at each sampling period, but is instead set by the sink at
the instants when a sensor reports a new sample to the sink
(i.e., when its value lies outside the last specified interval).
Accordingly, when a sensor reports a sampled value to the
sink at time j, it receives either a new value rj

i (for im-
plicitly computing Lj

i and Hj
i based on its present reported

value vj
i) or an explicit specification of {Lj

i , H
j
i }. This im-

plies that si guarantees that vk
i ≥ Lj

i and vk
i ≤ Hj

i when
k > j; otherwise, it will send an updated value to the sink.
When the new bound is implicitly communicated through
the interval rj

i , a sensor calculates Lj
i and Hj

i as follows:

Lj
i = vj

i − rj
i (1)

Hj
i = vj

i + rj
i (2)

To accommodate the heterogeneity in the sensor nodes or
the network topology, let Cuj

i denote the update cost (com-
munication overhead) incurred if indeed si has to report its
sample value at time j to the sink. Similarly, Cqj

i denotes
the cost (to the sink) of having to issue a polling request to
sensor si at time j; this request modifies the range rj

i , and
in turn, may cause si to report its data sample back to the
sink (since it no longer lies in the new interval (Lj

i , H
j
i).

3.1 Assumptions on Sensor Network Operation

For our optimization model, we make the following sim-
plifying assumptions on the behavior of the sensor network.
First, sensors (except for the sink) use a fixed transmission
power.

Second, the sensing frequency is high enough to capture
any temporal correlation in the usually slowly-varying un-
derlying environmental state of interest [9].

Third, we ignore the cost of polling from the sink to an
individual sensor. In other words, we assume that Cqj

i = 0
∀i, j. This simplifying assumption is acceptable in real
wireless operating environments where the sink and the sen-
sors can use different transmission powers. While the sink
can use the maximum permitted transmission power (e.g.,
level 0X99 in mica motes [10]) since it is typically not
energy-constrained, the sensors use the minimum transmis-
sion power level (e.g. the level 0X00 in mica motes) to con-
serve energy. Accordingly, while all downlink traffic (from
sink to sensors) is one-hop,the sink itself is potentially mul-
tiple hops away from the sensors (for uplink traffic). In ad-
dition, in environments where a broadcast-based diffusion
algorithm [11] is used to set-up and maintain the network
routing topology, new rj

i values may be piggybacked on the
existing network control packets with minimal additional
overhead.

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

3.2 The Optimization Formulation for Candidate
Aggregate Queries

Our primary objective is to reduce the total communica-
tion energy consumption in the sensor network, while en-
suring conformance to the application’s QoI bound. Ac-
cordingly, we can express our objective P1 for the case of
sum and mean queries as:

minimize
∑
j∈T

∑
i∈S

Cuj
i ∗ Ii,j , (3)

where Ii,j is an indicator function taking on the value 1 only
if the sensor si actually reports it value to the sink at time j.
Note that this minimization implicitly assumes that Cqj

i =
0, i.e., we ignore the transmission cost on the downlink.

The update cost Cuj
i itself is a function of the multi-hop

transmission cost from sensor si to the sink, and, in a net-
work with identical transmission power, should be a linear
function of Hopj

i , the length of the uplink path from si to
the sink1.(We maintain the time index j in the hop count,
even if the sensor network is itself static, to accommodate
the possibility that the actual uplink path may be dynamic.)
Now, since objective P1 involves an infinite summation over
time, we simplify the formulation to replace the time axis
by the average reporting rate of a sensor. Accordingly, our
optimization problem can be rewritten as P2:

minimize
∑
i∈S

Ĉu
j

i (ri, Hi), (4)

where Ĉu
j

i (r
j
i , Hopj

i) denotes the expected average report-
ing cost (until the ris are again modified) and explicitly in-
dicates its dependence on both the path length and the spec-
ified precision interval. At any point, Ĉui and ri should
intuitively be inversely related: at any instant of time j, if
the interval rj

i is wider, the probability of having the sam-
pled value of the sensor lie outside the permitted range is
smaller. We will discuss the precise relationship between
Ĉui and ri for a simple scenario in Section 3.3.

Of course, the minimization problem P2 is subject to ad-
ditional constraints on the ris–these constraints ensure that
the resulting computed statistic always satisfies the appli-
cation’s QoI requirement (R). This is precisely the heart
of the collective adaptation problem. We now define the
additional constraints for our four representative aggregate
operators, min, max, mean and sum.

For sum and mean aggregation functions, the con-
straints can be expressed as Equation (5) and (6) respec-

1The generic formulation of Cuj
i can reflect other forms of sensor het-

erogeneity, besides topological distance to the sink. For example, if we
want to reduce the update burden on sensor nodes nearing battery exhaus-
tion, we can make Cuj

i an inverse function of the residual battery energy
of the node. We do not explore such alternatives further in this paper.

tively, with count(S) indicating the number of sensors in
the reporting set. ∑

i∈S

rj
i ≤ 2R,∀tj (5)

∑
i∈S rj

i

count(S)
≤ 2R,∀tj (6)

For the case of min and max aggregation queries, the
objective function cannot be expressed in the form of Equa-
tion 4, since the update rate also depends on the evolution
of the sensor values. To begin with, the constraints for min
and max aggregation functions are slightly more involved
and are expressed via Equations (7) and (8) respectively.
The proofs of these constraints, and the derivation of similar
constraints for other commonplace aggregation functions is
available in [1].

min
i∈S

(Hj
i) − min

i∈S
(Lj

i) ≤ 2R,∀tj (7)

max
i∈S

(Hj
i) − max

i∈S
(Lj

i) ≤ 2R,∀tj (8)

To see why Equation 4 does not hold in these cases, con-
sider the case of a min query, when a sensor si that reports
a new minimum value vi. Since this is reported back to
the application as a new minimum, the sink now guaran-
tees that the true minimum will subsequently lie between
[vi − R, vi + R]. Since sensor si must have its Hi =
vi + R, to ensure that Equation 7 is satisfied, the sink can
modify the reporting range for other sensors to [vi − R,∞],
even if their hop count has not changed. Accordingly, unlike
sum or mean queries, the range for a sensor is not inde-
pendent of the actual sensor values. Consequently, the ob-
jective function for min and max queries may be expressed
(at each instant a new value is generated) in the form P3:

minimize max Ĉui(Li, Hi), i ∈ S, (9)

subject to the constraints of Equation 7 and 8 respectively.

3.3 Optimization Under Random Walk Model

To solve the optimization problem P2, expressed by
Equation 4, we need to define the explicit relationship be-
tween Ĉu and ri. In general, this will clearly depend on
the actual evolution of the successive data samples at the
sensor. In the absence of any knowledge of temporal corre-
lation among a sensor’s samples, we can model the varia-
tion of the sensor’s sampled values as a random walk [12],
i.e., as the evolution of a time series that adds uncorrelated
zero-mean noise to the previous sample, centered at the last
reported sample vj

i . For such a model, it is well known
that the expected hitting time to a boundary ri, i.e., the time
till the sampled value first deviates from the mean by more

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

than ±ri is ∝ 1
r2

i
. We thus have Ĉui ≈ Hopi

(ri)2
(except for a

proportionality constant), resulting in the following simpli-
fication of the optimization function P2:

minimize
∑
i∈S

Hopi

(ri)2
. (10)

For the case of the sum aggregation query, Equation 10
is to be minimized subject to the additional constraints:

∑
i∈S

ri ≤ R, (11)

ri > 0, i ∈ S. (12)

Lemma 1 For the sum and mean aggregation queries, the
objective function (10) is minimized when:

r1 : ... : rn =
Hop1

(r1)2
: ... :

Hopn

(rn)2
. (13)

(For the mean aggregation query, the constraint of Equa-
tion 11 is replaced by a nearly identical constraint, with
only a different scaling factor count(S)).

For compactness, the proof of this property is provided
in the Appendix. Based on Equation 13, we can easily
compute the optimal allocation of ri among the set of con-
stituent sensors, given an application’s QoI bound R.

For aggregation query min, the sink needs to monitor the
bounds of those sensors (set η) whose reading are minimum
(Vmin) only. To conform to the application QoI requirement
R, the sink must set the bounds of the sensors in set η with
the necessary stringency, while the other sensors can have
looser bounds.

Lemma 2 For the min aggregation query, the objective
function (9) is solved by setting:

Hi =
{

Vmin + R if i ∈ η
∞ otherwise

and,

Li = Vmin − R,∀i (14)

Aggregation query max is symmetric to min.

4 Architecture Description

We describe base CAPS architecture, as well as the en-
hanced one that incorporates temporal prediction, and the
related algorithms in this section.

4.1 Basic Architecture Overview

Figure 1 shows the architecture of CAPS (ignoring, for
now, the role of temporal prediction). The CAPS middle-
ware takes the application’s QoI requirement (R) as exter-
nal input. Based on these inputs, the Bounds Setting Com-
ponent (BSC) computes and informs each individual sen-
sor of its precision range. At time j, sensor i transfers a
new value vj

i to the sink when vj
i > Hj−1

i or vj
i < Lj−1

i .
These updates are processed in the Aggregate Value Eval-
uator (AVE). The AVE simply returns the new aggregation
result to the application if it continues to satisfy applica-
tion’s QoI requirement; otherwise, it informs the BSC of
the most recent updated sensor values. The BSC then cal-
culates and distribute a new set of bounds to the sensors,
using the underlying sensor routing infrastructure.

bounds
messages

Sensor Network Query Center

bounds setting
center

(r
1
, r

2
… r

n
)

Aggregation
Value Evaluator

(QoI) Queries (QoI) Answers

bounds r
i
updates

value update statistics

V
1

[L1, H1]
V

2
[L2, H2]

V
n

[Ln, Hn]

Sensors

…

value vi update
message

Figure 1. The basic architecture of CAPS

4.1.1 Aggregation Functions SUM and AVG

Based on the optimum conditional equation (13), we de-
sign our CAPS algorithm for aggregation functions SUM
as Algorithm 1. Initially, the bounds are set statically (all
the sensors have the same bounds R). Once the initial net-
work topology has been learned via the first round sens-
ing value updates, function set adaptive bounds assigns
different bounds for different hop-counts, which are then
broadcast by the sink. Sensors reporting back to CAPS with
a data sample also indicate their current bound. CAPS con-
tinually normalizes the bounds that it broadcasts at subse-
quent time instants to adapt to topology changes without
knowing the exact network topology. A topology change
(such as a new sensor coming on line, or a sensor moving
closer or farther from the sink) is implicitly detected when-
ever the cumulative bounds

∑
i∈ set ri reported back devi-

ates from the application’s QoI requirement. If the network
topology changes, function reset bounds re-normalizes

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

Algorithm 1 Algorithm of CAPS (aggregation function
SUM)
1: procedure CALCULATE BOUNDS(state, R)
2: if state = first round then � network topology is unknown
3: set static bounds(R);
4: return;
5: else if state = second round then
6: set adaptive bounds(R);
7: return;
8: end if
9: if network topology has changed then

10: reset bounds(sum of bounds/R);
11: end if
12: end procedure

13: procedure set adaptive bounds(R)
14: total bounds ← max hops ∗ R;
15: for i ← 1, max hops do
16: ratioi ← pow(i, 0.33333); � normalized bound ratio of

each hop
17: total ratio ← total ratio + ratioi;
18: end for
19: for i ← 1, max hops do
20: boundi ← total bounds ∗ ratioi/total ratio;
21: end for
22: end procedure

23: procedure reset bounds(ratio)
24: for i ← 1, max hops do
25: boundi ← boundi/ratio;
26: end for
27: end procedure

the sum of bounds, and thus ensures continued adherence
to the QoI (without knowing how many sensors are located
at various hop counts from the sink). The algorithm for ag-
gregation function AVG is similar to SUM except that the
result aggregation bound needs to be divided by the number
of the sensors.

4.1.2 Aggregation Functions MIN and MAX

Based on Property 2, we design our CAPS algorithm for ag-
gregation function min as Algorithm 2. Aggregation func-
tion MAX is symmetric to MIN.

4.2 Architecture with Temporal Prediction

The basic architecture described in Section 4.1 fails to
exploit the predictable temporal variation among successive
sensor node samples. To illustrate this, consider a sum ag-
gregation query issued on two sensors s1 and s2 with the
QoI requirement R = 5. Now, let the sensors determinis-
tically evolve such that s1’s value decreases by 2 and s2’s
value decreases by 1 at each sample. Suppose, at time t = 0,
both sensors report identical values of v0

i = 100, i = 1, 2.
Moreover, let Hop1=8 and Hop2 = 1, so that the optimum
ranges computed by the random-walk model (Equation 13)

Algorithm 2 Algorithm of CAPS (aggregation function
MIN)
1: procedure CALCULATE BOUNDS(state, R)
2: if state = first round then � network topology is unknown
3: set static bounds(R);
4: return;
5: end if
6: m l b ← calculate min lower bound();
7: if m l b has changed then
8: reset bounds(R, m l b);
9: end if

10: end procedure

11: procedure reset bounds(R, min lower bound)
12: for i ← 1, max hops do
13: if lower boundi = min lower bound then � sensor i has

minimum lower bound
14: boundi ← R;
15: else
16: upper boundi ← MAX;
17: lower boundi ← min lower bound;
18: end if
19: end for
20: end procedure

are given by r1 = 6.7 and r2 = 3.3. It is clear that the tem-
poral evaluation of the two sensors evolves as { v1

1 = 102,
v1
2 = 99}, {v2

1 = 104, v2
2 = 98}, {v3

1 = 106, v3
2 = 97},

. . .. In this case, it is easy to see that s1 generates a proactive
update at time j = 5 (as 108 > 106.7), while s2 generates
an update at j = 4. Thus, both s1 and s2 generate updates at
more or less similar rates, although their update costs Cui

are vastly different.
The problem really lies in the inability of the basic

bound-adjustment algorithm to factor in the different tem-
poral rates or patterns exhibited by the samples of different
sensors. If the sink could have predicted, say from past be-
havior, this deterministic evolution, then it can proactively
set (without any communication with the sensor) the range
on each sensor as: {L1

1 = 98.7, H1
1 = 105.3, L1

2 = 97.33,
H1

2 = 100.33}, {L2
1 = 100.7, H2

1 = 107.3, L2
2 = 96.33,

H2
2 = 99.33}, {L3

1 = 102.7, H3
1 = 109.3, L3

2 = 95.33,
H3

2 = 98.33}, . . ., thus bounding the query response to
{196, 206} at time j = 1, {197, 207} at j = 2, and
{198, 208} at j = 3.

While no sensor will evolve completely deterministi-
cally, smart temporal prediction algorithms at the sink
should thus be able to significantly lower the need for proac-
tive updates, by dynamically adjusting the expected range of
values (Lj

i , H
j
i) for each sensor. For our simplified operat-

ing model, where Cqi = 0, we can simply assume that the
sink transmits new precision ranges at each instant. How-
ever, in practice, Cqi will not be exactly zero; addition-
ally, communicating new precision intervals at each sam-
pling period may lead to unacceptable latency or network
congestion on the downlink. We can avoid this overhead
by noting that the sensor can independently infer the exact

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

ranges computed at the sink, by simply running an identi-
cal copy of the sink’s predictor algorithm locally. This may
be implemented by either the sink transmitting the predic-
tor module to the sensor (which loads it dynamically into
its OS), or if the predictor structure is pre-determined (e.g.,
a 3rd-order AR predictor), by simply transmitting the com-
puted coefficients.

Figure 2. CAPS Architecture with Temporal
Prediction

The temporal predictor-enhanced CAPS architecture is
shown in Figure 2. It is identical to Figure 1, except for a)
an additional TemporalPredictor component in the sink that
operates on the past data samples to generate new {Lj

i , H
j
i }

values in tandem with the BSC, and b) a similar component
at the sensor. In general, the architecture can accommodate
any predictor (e.g., least-squares, Kalman, etc.). However,
a predictor must not be overly-complicated, to ensure that
the additional computational and storage (since past sam-
ples must be stored while needed) overhead on the sensor
does not prove prohibitive. For our initial investigations,
we choose a simple linear least-squares (AR) predictor.
This is also justified by the observation [9] that samples of
many microclimate data exhibit linear correlation under suf-
ficiently high sampling rates. Accordingly, Figure 3 shows
the internal operation of the Temporal Predictor at a sensor.
A sufficiently long history of the true past samples is used
to continually adjust the predictor coefficients (using linear
least-squares regression), which are then used to predict the
next sample value v̂j+1

i , and then adjust the range (Lj
i , H

j
i)

(using Lj+1
i = v̂j+1

i − ri and Hj+1
i = v̂j+1

i + ri). Note
that the multi-step linear predictor uses the past predicted
values v̂j

i , rather than the true samples vj
i (except when vj

i

falls outside [Lj
i , H

j
i]) to ensure consistency with the sink

(which usually does not receive the intermediate samples
vj

i).

Figure 3. Internal structure of Temporal Pre-
dictor

5 Evaluation

We now present simulation and experimental results on
the performance of CAPS. In particular, we are interested
in the degree to which CAPS can reduce the communica-
tion energy in sensor networks, and how this performance
is affected by changes to the network topology, sink place-
ment, choice of aggregation function and data generation
models. For a comprehensive comparison, we focus on the
communication energy consumption under three different
techniques for satisfying the QoI requirements of aggregate
queries:

• BASE: This models the case where each sensor is re-
quired to update the sink with every data sample. Con-
ceptually, this captures the case where the application
specifies a QoI range of R = 0 and provides a baseline
for comparing the performance of queries with non-
zero tolerance bounds.

• STATIC: Here, the aggregate QoI bound is identically
split across all the sensors in the constituent set, ig-
noring the variation in their individual communication
costs. Thus, given an application QoI R, each sensor’s
range is set to R for min, max and mean queries, and
to R/count(S) for the sum query.

• CAPS: We shall compare the performance of both ba-
sic CAPS, as well as CAPS with temporal predictors.

For the simulation results using synthetic data, we built a
custom simulator, using the number of transmissions to in-
directly measure the transmission energy overhead (since
all sensor nodes use a fixed transmit power).

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

5.1 Data Generation Models and Topology

We shall study the performance of all three schemes for
both synthetic and real data data traces. For synthetic data,
we shall consider data generated according to the random
walk model, with each individual sensor assigned an initial
data value from a zero-mean binomial distribution. The real
data traces are based on data collected over a period of three
hours from Mica-2 light sensors deployed in our lab. The
sampling period for all our studies is set to T = 30 seconds.
Except for Figure 6 and 7, all the other performance results
are based on synthetic data.

The performance of the three different algorithms on
synthetic data is based on random network topologies gen-
erated from a uniform node distribution. We perform stud-
ies for networks comprising N= {100, 200, 300} nodes. For
studies with real data, we use an 8-hop linear network, re-
flecting the alignment of 8 motes along a lab corridor.

5.2 Importance on Non-zero Tolerance on Energy
Consumption

Figure 4 shows the network energy consumption with
different application QoI requirements (R) for the base
CAPS algorithm (without temporal prediction). In stud-
ies based on synthetic data generated according to a ran-
dom walk model, the impact of an application’s QoI is best
represented by the normalized precision bound, defined as
the ratio of R to the step-size s by which a sensor’s value
varies. Clearly, the frequency with which an individual sen-
sor violates it specified value ri will be directly related to
the normalized bound. Accordingly, Figure 4 plots the to-
tal communication energy overhead (for the mean aggrega-
tion query) for base CAPS as a function of this normalized
bound for random networks of three different sizes. The ex-
periments show that there is a sharp initial drop in the total
energy consumption. By recalling that a normalized bound
equal to 0 implies the BASE model, we see that CAPS with
a normalized bound of 2 can reduce the energy consumption
by ∼ 90% over the BASE approach. This validates our hy-
pothesis that even reasonably tight (but non-zero) tolerance
bounds in aggregate queries can provide very significant op-
erational savings in sensor networks.

5.3 Performance Benefits of CAPS Without Tem-
poral Prediction

Figure 5 shows the ratio of the network energy consump-
tion between the STATIC and CAPS approaches for dif-
ferent normalized precision bounds, again for the case of
synthetic data generated from a random walk model over a
zero-mean binomial distribution. A ratio larger than 1 re-
flects the potential for energy savings via CAPS over the

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Normalized Bound

No
rm

ali
ze

d
En

er
gy

 C
on

su
m

pt
ion

Energy Consumption Vs. Bounds (Caps)

100 sensors
200 sensors
300 sensors

Figure 4. Network Energy Consumption Vs.
QoI (normalized R) for mean query

STATIC approach. We can see that CAPS can reduce net-
work energy consumption by around∼ 10% when the nor-
malized bounds are reasonable large (e.g. 6), regardless
of network size. However, when the normalized bounds
are too large, then CAPS actually results in higher energy
overhead. This can be explained by realizing that at such
high values, each individual sensor has a very large pre-
cision range ri and is thus unlikely to ever generate data
outside its range, especially when the range is identically
distributed for all sensors. Indeed, for cases when the appli-
cation tolerance is very loose, CAPS may actually impose
tighter bounds on sensors close to the sink, causing them to
occasionally generate updates (while STATIC never gener-
ates an update)! However, for such large bounds, the com-
munication energy overhead (not the normalized ratio) for
both CAPS and STATIC is anyway very low, so the relative
performance gains are of much lesser interest.

2 4 6 8 10 12 14 16 18
0.95

1

1.05

1.1

1.15

Normalized Bound

En
er

gy
 C

on
su

m
pt

ion
 R

at
io

Enerey Consumption Ratio between Static and Caps (Different QoI bounds)

100 sensors
200 sensors
300 sensors

Figure 5. Relative Energy Overhead of STATIC
and CAPS Vs. QoI (normalized R)

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

Figure 6 shows the network energy consumption ratio
between STATIC and CAPS with different application QoI
requirements (R) (not normalized bounds) in an 8-hop lin-
ear network with real light intensity data. It shows that the
behavior of CAPS is reasonably consistent across synthetic
and real data. In particular, CAPS provides energy sav-
ings in the realistic portion of the curve, where the precision
range is neither too small nor infeasibly large.

1 1.5 2 2.5
0.95

1

1.05

1.1

1.15

1.2

1.25

Bound (R)

En
er

gy
 C

on
su

m
pt

io
n

Ra
tio

Energy Consumption Ratio between Static and Caps (Different QoI bounds)

8 sensors

Figure 6. Relative Energy Overhead of STATIC
and CAPS Vs. R (with Real Motes Data)

We also studied the relative performance of STATIC and
CAPS for different locations of the sink. A change of the
location of the sink influences the hop count of different
sensor nodes to the sink, and thus influences the precision
ranges computed by CAPS. Our studies show that the en-
ergy savings achieved by CAP do vary by ∼ 10% based on
the sink location (for example, for the 300 node network,
the energy savings varied from a min of 4% to a max of
16%).

5.4 Impact of Temporal Prediction on CAPS Per-
formance

Figure 7 shows the network energy consumption ratio
between basic CAPS and CAPS enhanced with a temporal
predictor for the mean aggregation query. The performance
results are derived from the real data traces obtained over
the 8-node network in our lab. For the temporal predictor,
we implemented a 5th order linear (AR) predictor of the
form:

v̂j = a1v̂
j−1 +a2v̂

j−2 +a3v̂
j−3 +a4v̂

j−4 +a5v̂
j−5 (15)

where the coefficients (ai) of the predictor are continuously
updated based on a linear regression over the most recent
50 data samples. We believe that this predictor is effi-
cient in terms of both computational and storage overhead,

and can be easily implemented even on existing resource-
constrained sensor node platforms.

The figure demonstrates the power of the temporal pre-
diction approach, as it can reduce the network energy con-
sumption by as much as a factor of 5 (when the QoI bound
(R) is 1.5). In other words, combining predictive filtering
with adaptive precision range adjustment can provider an
order of magnitude increase in the operational lifetime
in practical sensor network environments. As expected,
when the QoI bound R is too small (e.g. 1), sensors need
to transfer data back to the sink at almost each time unit
even in the presence of prediction, thus providing relatively
smaller savings in communication energy. Similarly, at the
other extreme, for applications with very loose QoI bounds,
the total number of transmissions needed becomes small,
even without prediction. Clearly, in such cases, the ben-
efit of predictive algorithms is comparatively smaller. Of
course, larger precision bounds imply progressively less ac-
curacy in the state reported by the sink to the application.
The experiments confirm our initial hypothesis that real sen-
sor data exhibits significant temporal correlation, that needs
to be effectively exploited.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
1

1.5

2

2.5

3

3.5

4

4.5

5

Bound (R)

En
er

gy
 C

on
su

m
pt

ion
 R

at
io

Energy Consumption Ratio between Caps and Caps with Prediction (Different QoI bounds)

8 sensors

Figure 7. The network energy consumption
ratio between CAPS, without and with tempo-
ral prediction Vs. QoI (R)

6 Conclusions and Future Work

In this paper, we proposed, implemented and evalu-
ated an energy efficient data retrieval architecture (called
CAPS) for continuous aggregate queries in wireless sen-
sor networks. We demonstrated how an application’s QoI
bound may be collectively decomposed into individual sen-
sor precision ranges, while accommodating the variation in
the sensor update costs. More importantly, the CAPS ar-
chitecture is extended to include temporal predictors that

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

further exploit the correlation among successive data sam-
ples. Simulation studies with simulated and synthetic data
demonstrate that, while CAPS can reduce the energy over-
head by 10 − 20%, a combination of temporal prediction
and weak consistency can dramatically reduce the opera-
tional energy consumption (e.g., by a factor of 5).

Having validated CAPS by extensive simulations, we are
now working to implement the CAPS algorithms on the
Motes platform. For future work, we shall investigate how
the features of CAPS may be integrated into in-network data
processing architectures.

To make CAPS scalable to future sensor networks that
might have thousands of sensors, it is desirable to have hier-
archical network model instead of flat network model [13].
We are planning to investigate how to distribute the bounds
to clusters/micro-servers while meeting application’s QoI
requirement.

References

[1] C. Olston and J. Widom, “Offering a precision-performance
tradeoff for aggregation queries over replicated data,” in Pro-
ceedings of VLDB. Margan Kaufmann Publishers Inc.,
2000, pp. 144–155.

[2] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong, “Model driven data acquisition in sensor net-
works,” in Proceedings of VLDB. Margan Kaufmann Pub-
lishers Inc., 2004, pp. 144–155.

[3] I. Hwang, Q. Han, and A. Misra, “Mastaq: A middleware ar-
chitecture for sensor applications with statistical quality con-
straints,” in Proceedings of PERCOMW. IEEE Computer
Society, 2005, pp. 390–395.

[4] C. Olston, B. T. Loo, and J. Widom, “Adaptive precision set-
ting for cached approximate values,” in Proceedings of SIG-
MOD. ACM Press, 2001, pp. 355–366.

[5] Q. Han, S. Mehrotra, and N. Venkatasubramanian, “Energy
efficient data collection in distributed sensor environments,”
in Proceedings of ICDCS. IEEE Computer Society, 2004,
pp. 590–597.

[6] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,”
ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp.
131–146, 2002.

[7] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate
aggregation techniques for sensor databases,” in Proceedings
of ICDE. IEEE Computer Society, 2004, p. 449.

[8] P. Desnoyers, D. Ganesan, H. Li, M. Li, and P. Shenoy,
“Presto: A predictive storage architecture for sensor net-
works,” in Proceedings of HotOS X, 2005.

[9] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wim-
brow, and D. Estrin, “Lightweight temporal compression in
microclimate data,” in Proceedings of EmNetS-I, 2004.

[10] “Crossbow technology, inc. http://www.xbow.com.”

[11] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,
and F. Silva, “Directed diffusion for wireless sensor net-
working,” IEEE/ACM Transactions on Networking (TON),
vol. 11, no. 1, pp. 2–16, 2003.

[12] R. Graham, D. Knuth, and O. Patashnik, Concrete mathemat-
ics: a foundation for computer science. Addison-Welsley
Longman Publishing Co., Inc., 1989.

[13] W. Hu, N. Bulusu, and S. Jha, “A communication paradigm
for hybrid sensor/actuator networks,” in Proceedings of the
IEEE PIMRC, Barcelona, Spain, Sept. 2004, pp. 201– 205.

Appendix: The Optimal Condition of Objective Function
(10)
We prove that the objective function (10) reaches optimum when
equation (13) is satisfied in this appendix.

Firstly, we prove that the objective function (10) reaches opti-
mum when ∑

i∈S

rj
i = 2R,∀j (16)

We prove it by contradiction. At any specific time j, assumed
there exists a positive value Δ, such that the objective function
(10) reaches optimum value (α) when

∑
i∈S

ri = 2R − Δ. If Δ
is added to any ri (e.g. r1), we can get a new value (β) from the
objective function (10) where α − β = Hopi

(r1)2
− Hopi

(r1+Δ)2
.

It is easy to get α − β > 0 since Δ is a positive number.
Therefore, α is not the optimal value of the objective function (10).
Secondly, let us rewrite equation (16) as (17).

rj
2 = 2R −

i�=2∑
i∈S

rj
i , ∀j (17)

Then, we can get equation (18) when we substitute rj
2 with 2R −∑i�=2

i∈S
rj

i in equation (10).

minimize
∑
j∈T

Hopj
1

(rj
1)

2
+

Hopj
2

(2R − ∑i�=2

i∈S
rj

i)
2

+ ...+
Hopj

n

(rj
n)2

(18)

Let us take partial derivative of equation (18) with respect to rj
1,

and equal it to 0:

∂

∂rj
1

(
Hopj

1

(rj
1)

2
) +

∂

∂rj
1

(
Hopj

2

(2R − ∑i�=2

i∈S
rj

i)
2
) = 0

⇒ −2Hopj
1

(rj
1)

3
+

2Hopj
2

(2R − ∑i�=2

i∈S
rj

i)
3

= 0

⇒ rj
1 : rj

2 =
Hopj

1

(rj
1)

2
:

Hopj
2

(rj
2)

2

(19)

Similarly, we can prove that the objective function (10) reaches
partial optimum when:

rj
1 : rj

3 =
Hopj

1

(rj
1)

2
:

Hopj
3

(rj
3)

2
, ..., rj

1 : rj
n =

Hopj
1

(rj
1)

2
:

Hopj
n

(rj
n)2

(20)

Therefore, equation (10) reaches optimum when equation (13) is
satisfied.

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

View publication statsView publication stats

https://www.researchgate.net/publication/221037287

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2006

	CAPS: Energy-Efficient Processing of Continuous Aggregate Queries in Sensor Networks
	Wen HU
	Archan MISRA
	Rajiv SHOREY
	Citation

	untitled

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

