
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

10-2004

Dynamic Access Control for Multi-Privileged
Group Communications
Di MA
Institute for Infocomm Research

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Yongdong WU
Institute for Infocomm Research

Tieyan LI
Institute for Infocomm Research

DOI: https://doi.org/10.1007/978-3-540-30191-2_39

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
MA, Di; DENG, Robert H.; WU, Yongdong; and LI, Tieyan. Dynamic Access Control for Multi-Privileged Group Communications.
(2004). Information and Communications Security: 6th International Conference, ICICS 2004, Malaga, Spain, October 27-29: Proceedings.
3269, 508-519. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/561

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F561&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F561&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F561&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-540-30191-2_39
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F561&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F561&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Dynamic Access Control for Multi-Privileged
Group Communications

Di Ma1, Robert H. Deng2, Yongdong Wu1, Tieyan Li1

1Institute for Infocomm Research
21 Heng Mui Keng Terrace, Singapore 119613
{madi,wydong,litieyan}@i2r.a-star.edu.sg

2School of Information Systems
Singapore Management University

469 Bukit Timah Road, Singapore 259756
{robertdeng}@smu.edu.sg

Abstract. Recently, there is an increase in the number of group commu-
nication applications which support multiple service groups of different
access privileges. Traditional access control schemes for group applica-
tions assume that all the group members have the same access privi-
lege and mostly focus on how to reduce rekeying messages upon user
joining and leaving. Relatively little research effort has been spent to
address security issues for group communications supporting multiple
access privileges. In this paper, we propose a dynamic access control
scheme for group communications which support multiple service groups
with different access privileges. Our scheme allows dynamic formation
of service groups and maintains forward/backward security when users
switch service groups.

1 Introduction

With the rapid progress in technologies underlying multicast networking, group
communication applications such as video conferencing, live sports, concerts
broadcasting, are gaining popularity. For the purpose of security or billing, many
access control schemes [1] - [9] have been proposed to prohibit unauthorized ac-
cess to group communications. With the development of scalable video coding
which enables users with different preferences, privileges or capabilities to ac-
cess different parts of a video stream, group communication applications begin to
support multiple service groups with different access privileges. As traditional ac-
cess control schemes are designed to tackle security problems in single-privileged
group communications, they cannot be applied to address new security issues,
such as privilege change and dynamic service group formation, encountered in
multi-privileged group communications. In this paper, we propose a dynamic
access control scheme for group communications supporting multi-privileged ser-
vice groups. Our scheme allows dynamic formation of service groups and main-
tains forward/backward security when users switch service groups.

1.1 Single Privileged Access Control

Traditional access control for group communications treats all the users in a
multicast group with exactly the same access privilege. A group key used to
encrypt communication traffic is established and shared by all the group mem-
bers. The group key or the content encryption key (CEK) is established either
by a centralized server or by combining contributory parts from all the group
members. Schemes involving a centralized key server are called centralized key
management schemes and the centralized key server is called key distribution
center (KDC). To securely and efficiently distribute a group key to all the le-
gal participants, a set of key encryption keys (KEKs) are created to encrypt
the group key and other control data. A major concern in centralized key man-
agement schemes is how to update the keys (both CEK and KEKs) efficiently
to accommodate membership changes upon user join/leave while preserve the
forward/backward security.

Several schemes [1] - [6] used a tree-based approach to manage keys as well as
to reduce communication, computation and storage cost on maintaining keying
and rekeying materials. Wong et al. [5] performed an extensive theoretical and
experimental analysis on various types of key graphs and concluded that the
most efficient key graph for group key management is a d-degree tree. A typical
2-degree tree for key management is shown in Figure 1. The leaf nodes of the
key tree are associated with private keys of the group members. The root of the
key tree is the group key or the CEK which is used to encrypt and decrypt data
traffic for the group. The intermediate nodes are associated with a set of KEKs
which are used to encrypt the CEK and other KEKs to provide secure update of
the CEK among all the legal group members. Thus each group member possesses
a private key (which is the shared secret between the KDC and the user), the
CEK and a set of KEKs along the path from the leaf node associated with it
to the root of the key tree. The total number of keys stored by the KDC is
approximately (dn − 1)/(d − 1) and the total number of keys stored by each
member is logd n + 1. The tree-based key management scheme can update keys
using d logd n messages.

Private user key

KEKs

CEK

level 0

level 1

level w

Fig. 1. A typical key management tree for a single service group.

To further reduce the number of rekey message transmissions, in [2], each
key is identified by a revision field. When a user joins, it is positioned by the
KDC into a new leaf node. The KDC increases the revision of all the keys to be
transmitted to the new participant by passing all the keys through a one-way
function. The KDC also informs all the existing participants about the use of
the new keys. The existing participants will notice the revision change visible
in ordinary data packets, and thus pass their keys through the same one-way
function. Therefore, there is no need to transmit additional messages when a
user joins.

1.2 Static Multi-Privileged Access Control

A number of works [10]-[15] relating to static multi-privileged access control
have been proposed. Almost all of them assume that information items as well
as users are classified into a certain type of hierarchy and there is a relationship
between the encryption key assigned to a node and those assigned to its children.
They do not address the dynamic membership problem which is critical in group
communications.

Recently scalable video coding has gained increasing acceptance due to its
flexibility and good adaptability to network bandwidth and end-user capability.
Scalable access control schemes are required to protect the communication data
as well as to preserve the scalable features of multimedia streams. There are a
couple of recently reported schemes [16]-[17] that were specifically designed for
scalable multimedia applications.

Scalable access control is usually achieved through scalable encryption. Un-
like encryption of non-scalable streams where a unique key is used through out
the entire communication process, scalable encryption encrypts each scalable
unit in a frame using a separate unit encryption key. A scalable unit is a segment
of the stream data and associated with a certain service level, one-dimensional
or multi-dimensional. In [16], an MPEG-4 FGS video frame, supporting T PSNR
service levels and M bitrate service levels, is divided into T ×M different two-
dimension units. In [17], a single tile JPEG2000 frame can support 4-dimensional
scalability innately: resolution, quality, component and precinct. If a JPEG2000
frame has NR resolution levels, NL quality layers, NC components and NP

precincts in each resolution, there will be NR × NL × NC × NP scalable units
and the same number of unit encryption keys are needed to encrypt them.

The example MPEG-4 FGS stream in [16] can provide about T ×M access
levels which allow the formation of T ×M service groups. Let the term “service
group” denote the group of participants who have exactly the same access priv-
ilege. Different service groups will have different number of unit encryption keys
to decrypt the authorized units. A service group with a full access privilege will
possess all the T ×M keys. A service group with access to all the PSNR levels
with the lowest bitrate level will possess T keys.

A major difference between [16] and [17] is that [17] uses a tree-based key
management scheme to generate the scalable unit keys and manage the unit keys
much more efficiently while [16] generates the unit keys independently and does

not care how to reduce the communication cost to manage and transmit these
keys. In [17], the key server only needs to send one key, the resolution 0 key,
to the service group which has an access privilege to resolution 0 of a RLCP
ordered JPEG2000 stream. The group members then use this resolution key to
generate NL ×NC ×NP unit encryption keys.

Like all the classical hierarchical access control schemes in [10]-[15], these two
scalable access control schemes both work in static scenarios where the dynamic
features of realtime group communication are not addressed.

1.3 Dynamic Multi-Privileged Access Control

We identify in this paper two new places where security should be addressed in
the studies of group communication applications which support multi-privileged
service groups. One is privilege change and the other is dynamic service group
formation.

It is very natural for a user to change access privilege by switching from
one service group to another. For example, during a live concert broadcasting, a
user subscribing to both video and audio may want to switch to the audio only
service group as he just want to enjoy the music; a user subscribing to a high
quality service group may want to change to a low quality service group simply
because his favorite singer has finished her performance.

As stated in the previous section, group communication applications with
multi-dimension scalable video allow the formations of many service groups. For
example, a motion JPEG2000 stream, if each frame has 6 resolutions, 5 quality
layers, 3 components and 16(4 × 4) precincts in each resolution, theoretically
speaking, allows the formation of 6 × 5 × 3 × 16 = 1440 service groups. Some
considerations should be taken into account when one designs an access control
scheme capable of handling a lot of service groups. Firstly, it is not wise to design
an access control scheme which takes into account all the service groups in ad-
vance. As handling each service group consumes certain resources, a full-fledged
scheme is definitely complex and might be too expensive for an application which
only has a small number of participants. Secondly, it is not flexible to fix the
service groups in advance either. By fixing the number of service groups in ad-
vance, the scheme weakens the scalability of the stream. Last but not least, not
all of the service groups will have subscribers. Both the full-fledged scheme and
the fixed scheme waste resources on handling service groups which have no sub-
scribers. Thus an ideal scheme should support dynamic service group formation
so that it can handle the basic set of service groups at the beginning while at
the same time it can be extended easily to a full-fledged scheme when necessary.

While writing this paper, a hierarchical access control scheme that supports
dynamic user privilege relocation was presented in [18]. The scheme integrates
the multicast key tree structure with the hierarchical access control structure
to form an integrated key graph to maintain all the keying materials for all the
members. It uses 3 steps to construct the key management graph. Firstly, it
constructs a subtree for each service group with leaves as group members. Then
it constructs a subtree for each data group with leaves as service groups which

have access to this data group. Finally it combines the subtrees of service groups
and the subtrees of data groups together to form an integrated key graph. The
scheme supports dynamic privilege change when a participant switches from
one service group to another. However, the scheme is more suitable for group
communications where the number of service groups is fixed and the data stream
is scalable in one-dimension. The scheme is not flexible for dynamic service group
formation and decomposition, and is cumbersome in handling a lot of service
groups.

1.4 Our Scheme

In this paper, we propose a dynamic access control scheme for group communi-
cations which supports multiple dynamic service groups. This scheme extends
the traditional multicast key management tree to a key management graph to
accommodate dynamic groups and uses two fields version and revision to elim-
inate or reduce the rekey messages upon a user join, leave or switch operation.
The rest of the paper is organized as follows. Section 2 introduces the scheme
as well as several examples to illustrate our rekeying algorithm. Section 3 gives
the security analysis of the scheme in terms of forward and backward security.
Section 4 presents the performance of the scheme in terms of storage overhead
and rekeying overhead. Finally, conclusion is drawn in Section 5.

2 Dynamic Access Control Scheme

2.1 The Key Management Graph

The key management graph supporting multi-privileged service groups is shown
in Figure 2. Each service group forms a subtree whose leaf nodes are the par-
ticipants in this group and whose root is associated with an access key (AK)
set. An AK set is a subset of the CEK set. The CEK set consists of all the
unit encryption keys of a scalable stream. An AK set is possessed by a service
group and represents an access privilege. Unlike the traditional multicast key
management tree shown in Figure 1 where the root of the group tree is a single
CEK, here the root of each subtree is associated with an AK set. We call the
KEK right below the root node of the subtree as the service root key (SRK).

Let ΩC={ck0, ck1,. . . ,ckN−1} denote the set of CEKs which contains N
separate unit encryption keys. Suppose that there are I service groups, Si, i =
1, 2, . . . , I. Participants in the same service group have exactly the same access
privilege. Each service group Si is associated with an AK set Ωi, Ωi ⊆ ΩC . Let
srki denote the SRK of Si. Each participant in Si possesses a private key, a set
of KEKs from the key represented by the immediate node above the leaf node
to srki and an AK set Ωi.

Let Si → Sj denote a switch from Si to Sj . We use the service group S0 to
denote a virtual group which has no access privilege, that is Ω0 = φ where φ
denotes null. With this notation, a general switch can be defined as follows. A

Private keys

KEKs

AK set

CEK setS0 Si Sj Sm

ui uj

srki srkj

ki11

kj20 kj21

kj11

ki20 ki21

ui+1 um

ki10

Fig. 2. Key management graph supporting multiple service groups.

join can be viewed as a user switching service groups from S0 to Si, S0 → Si; a
dynamic group formation is a user switch S0 → Si when there is no participant
in Si; a leave can be viewed as a user switches service groups from Si to S0,
Si → S0; and a dynamic group decomposition is a user switch Si → S0 when
there is no more participant left in Si.

The KEKs in each service group are organized in a balanced d-degree tree
as in a traditional multicast session [1] - [6]. The CEKs are arranged in a flat
manner.

2.2 Identification of a Key

As in [2] every CEK and KEK in our scheme is addressed through a key selector,
consisting of a unique key ID, a version field and a revision field. The key
ID uniquely identifies a key and remains unchanged even if the secret keying
material changes. The version and revision fields reflect the change of the secret
keying material. Unlike [2] where only the revision field is used to eliminate
the need for sending rekey messages, our scheme uses both fields for the same
purpose.

The revision is increased whenever the key is passed through a one-way
function. When a participant notices the increment of the revision of a key in
his possession he will update the key through the same one-way function. The
version field is increased whenever a new keying secret is sent out by the KDC
and the key is passed through a keyed one-way function. When a participant,
after receiving the new keying secret in advance, notices the increment of the
version of a key in his possession he will update the key through the same keyed
one-way function.

2.3 Rekeying Algorithm

A rekeying operation is executed when a general switch happens to provide
forward security so that the new joining user is unable to decrypt the previous
communication data correctly in the new joining group, as well as to provide

backward security so that the leaving user is no longer able to decrypt the
future communication data correctly in the departed group. Let the switch be
Si → Sj , the rekeying algorithm consists of 4 steps in a sequence:

1. Update of the KEKs in Si from the departed user to srki.
The KDC generates new KEKs along the path from the departed user to
srki in the subtree of Si. Suppose the subtree of Si is a full-loaded balanced
tree with wi in depth. This will result in up to dwi− 1 rekey messages being
sent out.

2. Update of the unit encryption keys in Ωi ∩Ωj .
Let |Ω| denote the number of elements in the key set Ω. To update |Ωi∩Ωj |
unit encryption keys, firstly the KDC generates a secret cks. Then the KDC
updates the keys in Ωi ∩Ωj through a keyed one-way function so that k′ =
Hcks(k) (where k ∈ Ωi∩Ωj and k′ denotes the updated version of key k) and
increases the version fields of those new keys. Then for any service group Sl

including Si that Ωl ∩ (Ωi ∩Ωj) 6= φ, the KDC sends out the rekey message
{cks}srkl

. After obtaining cks, the affected users will know the key change
when the data packet indicating the increase of the version numbers first
arrives, and compute the new keys using the same keyed one-way function
Hcks(·). Suppose there are u such service groups, this step results in u rekey
messages being sent out.

3. Update of the KEKs in Sj from the new joining user to srkj .
The KDC chooses a leaf position on the subtree of Sj to position the joining
user. The subtree can be either partially-loaded or fully-loaded. If the subtree
is partially-loaded as shown in Figure 3(a) where there is an intermediate
node which has j children and j < d, the KDC updates all the existing
KEKs along the path from the new leaf to srkj by generating the new keys
from the old keys using a one-way function so that k′ = H(k) and increases
the revision field of all the updated keys. All the new KEKs are encrypted
by using the new joining user’s private key and sent out to the new joining
user. No rekey messages are necessary for delivering the new KEKs to the
exiting users as they will know about the key change when the data packet
indicating the increase of the revision numbers first arrives, and compute
the new keys using the same one-way function H(·) by themselves.
If the subtree is fully-loaded as shown in Figure 3(b), a leaf node is chosen
and split to accommodate the new joining user. The KDC need generate a
new KEK for these two leaf nodes. This step results in two rekey messages
being sent out, one for sending all the updated existing KEKs and the new
KEK to the new joining user, and the other is for sending the new KEK to
the split user.

4. Update of the unit encryption keys in Ωi ∩Ωj .
Update of the unit encryption keys in Ωi ∩ Ωj follows a similar way as in
Step 3 through a one-way function H(·) and the increase of the revision field.
All the affected users will update these keys by themselves when they notice
the increase of the revision numbers through regular data packets. No rekey
message is sent out in this Step.

u1 u2 uj u1 u2 uj uj+1

(a)

u1 u2
ud

ud

u2
u1

ud+1

new KEK

(b)

Fig. 3. User joins (a) a partially-loaded tree (b) a fully-loaded tree

The 4-Step rekeying algorithm stated above can be simplified for the following
special situations:

– In the case when a new user joins an existing group Si (S0 → Si), because
there is no KEK in S0 and Ω0 ∩Ωi = φ, the key update process only needs
to do Step 3 and Step 4.

– In the case when a new user forms a new group Sk (S0 → Sk), because there
is no KEK in both S0 and Sk and Ω0 ∩ Ωk = φ , the key update process
only needs to do Step 4.

– In the case when a user leaves a group Si which has more than one participant
(Si → S0), because there is no KEK in S0 and Ω0 ∩Ωi = φ, the key update
process only needs to do Step 1 and Step 4.

– In the case when the last user leaves a group Sk (Sk → S0) and the group Sk

decomposes, because there is no KEK in both S0 and Sk and Ω0 ∩Ωi = φ,
the key update process only needs do Step 4.

– In the case when a user switch from group Si to a lower privilege group Sj

(Si → Sj) such that Ωi ⊃ Ωj , because Ωi ∩Ωj = φ, the key update process
only needs to do Step 1 to Step 3.

– In the case when a user switch from group Si to a higher privilege group Sj

(Si → Sj) that Ωi ⊂ Ωj , because Ωi ∩Ωj = φ, the key update process only
needs do Step 1, Step 3 and Step 4.

We use two examples to illustrate this rekey algorithm for new group for-
mation and service group switch. Examples given are for multimedia delivery,
but the technique is potentially useful in other scenarios as well. Suppose there

is a scalable video with 2 resolution levels and 3 quality layers. In each frame
there are total 6 scalable units arranged in RL (resolution-layer) order. Let
ΩC = {ck00, ck01, ck02, ck10, ck11, ck12} be the CEK set for this scalable video
stream. The key ckij allows a user to access a scalable unit of resolution i and
quality layer j. Keys ckij (i = 0, · · · , r, j = 0, · · · , l) allow a user to access the
video stream at resolution r with l quality layers. In the initial stage, there are
two service groups Si and Sj formed as shown in Figure 2 and all the subtrees
are binary. Let the group Si have a privilege to access the video stream at res-
olution 0 with full quality, we have Ωi = {ck00, ck01, ck02}. Let the group Sj

have a privilege to access only the lowest quality video stream, quality 0, thus
we have Ωj = {ck00, ck10}.

Formation of a new service group. User um joins with a privilege to access the
video stream at resolution 0 with middle quality. The KDC forms a new service
group Sm such that Ωm = {ck00, ck01}. Only Step 4 in the rekey algorithm is
necessary to complete the key update. The KDC updates ck00 and ck01 through a
one-way function and increases the revision fields of them. Participants in Si and
Sj will update ck00, ck01 accordingly when they see the data packet indicating
the increase of the revision numbers. The rekey message size in this example is
0.

Switch service groups. Suppose that a user ui switches from Si to Sj , the
KDC splits the leaf node of uj to accommodate ui. After ui leaves, ui+1 moves
up and occupies the node which was previously associated with ki21. Let kpi

denote the private key of user ui. Firstly, the KDC generates ki′11 and srk′i and
distributes them through the rekey messages {ki′11}kpi+1 , {ki′11}ki20 , {srk′i}ki10

and {srk′i}ki′11 . Secondly, the KDC generates a secret cks and updates ck01,ck02

(Ωi ∩ Ωj = {ck01, ck02}) through a keyed one-way function so that ck′01 =
Hcks(ck01) and ck′02 = Hcks(ck02). The KDC increases the version field of ck01,
ck02 and distributes the secret cks through rekey messages {cks}srki , {cks}srkm .
Thirdly, the KDC updates KEKs kj21, kj11, srkj through a one-way function
H(·) and increases their revision field. All the existing participants possessing
these keys update them accordingly. Then the KDC generates a new KEK kj31
for uj and ui. It distributes kj31 to uj through the rekey message {kj31}kpj and
to ui through the rekey message {kj31, kj′21, kj′11, srkj}kpi . Finally, the KDC
updates ck10 (Ωi ∩ Ωj = {ck10}) through a one-way function and increases its
revision field. The rekey message size in this example is 8.

3 Security Analysis

Backward Security Step 1 and Step 2 provide backward security for traffic
data protected by Ωi ∩Ωj . Step 1 updates the set of KEKs previously possessed
by ui. This update prevents ui from decrypting cks successfully in Step 2. This
results ui being unable to get the updated version of Ωi ∩ Ωj and achieves
backward security for traffic data protected by Ωi ∩Ωj .

Forward Security Step 3 and Step 4 provide forward security in Sj and for
traffic data protected by Ωi ∩ Ωj . Step 3 updates the set of KEKs in Sj which
will be possessed by ui. This update prevents ui from decrypting successfully
the previous data traffic in Sj which may contain unit encryption keys belonging
to Ωj . Step 4 further updates keys in Ωi ∩Ωj so that forward security for traffic
data protected by Ωi ∩Ωj is achieved.

4 Performance Analysis

Storage Overhead We analyze the storage overhead in terms of the number
of keys stored in both the KDC and each participant.

Similar to [18] and other key management schemes [1]-[5], the key tree in-
vestigated in this work is maintained as balanced as possible by positioning the
joining users on the shortest branches. We use ld(n) to denote the length of the
branches and kd(n) to denote the number of keys on the key tree when the key
tree has degree d and accommodates n users.

As the tree is maintained as balanced as possible, ld(n) is either L or L + 1,
where L = blogd nc. Particularly, the number of users who are on the branches
with length L is dL−dn−dL

d−1 e and the number of users who are on branches with

length L + 1 is n− dL + dn−dL

d−1 e. Thus the total number of keys on this key tree
is given by

kd(n) = n +
dL − 1
d− 1

+ dn− dL

d− 1
e. (1)

The KDC stores ΩC , all the KEKs and private keys in all the subtrees.
Except the key information, the KDC also stores privilege information which
tells how to map between the AK sets and the service groups. This kind of
privilege information can be stated explicitly by associating a service group
with a privilege table or indirectly by linking keys with service groups in real
implementation. Let n(Si) denote the number of participants in Si. The number
of keys stored in the KDC is then

KKDC =
I∑

i=1

kd(n(Si)) + |ΩC | =
I∑

i=1

kd(n(Si)) + N. (2)

Let |Ω| denote the number of keys in a key set Ω. A user in Si stores |Ωi|
CEKs, ld(n(Si)) − 1 KEKs and its private key. Therefore, the users’ storage
overhead is

Ku∈Si = ld(n(Si)) + |Ωi|. (3)

If we assume each service group contains the same number of users, denoted
by n(Si) = n0, thus n = I · n0. Using (2), the KDC’s storage overhead is
calculated as

KKDC = I · kd(n0)) + N. (4)

Using (3), a user’s storage overhead is given by

Ku∈Si
= ld(n0) + |Ωi|. (5)

As N is usually fixed throughout the communication process and |Ωi| is fixed
for Si, we evaluate the storage overhead in the KDC side asymptotically as the
number of group members goes up. From (1) we know that limn→∞ kd(n) =

d
d−1n. Therefore, from (4) and (5) we have

KKDC ∼ O(
d

d− 1
I · n0) or O(

d

d− 1
n). (6)

Ku∈Si
∼ O(logd n0). (7)

From (6) we see that the storage overhead in the KDC is linear to the total
number of participants in the communication process. It is reasonable that a
relatively powerful machine is chosen as the KDC. From (7) we know the storage
overhead in each participant is logarithmic to the number of participants in the
same service group.

Rekey Overhead According to the rekeying algorithm stated in Section 2.3,
with similar assumptions stated in Section 4, the number of rekey messages sent
out by the KDC is bounded by

MKDC ≤ dwi − 1 + u + 2 = d · ld(n(Si)) + u + 1. (8)

which includes up to dwi − 1 messages generated in Step 1, u messages
generated in Step 2 and up to 2 messages in Step 3. The equality holds when
both the subtrees of Si and Sj are full-loaded so that both logd(n(Si)) and
logd(n(Sj)) are integers. As u ≤ I and in average I changes less frequently than
n(Si), it is reasonable for us to evaluate (8) in the condition of increasing n(Si)
only. Thus when n0 →∞, we can see that

MKDC ∼ O(d · logd(n(Si))). (9)

This shows that the number of rekey messages is logarithmic to the size of
the service group Si which the user switches from and not related to the size of
the service group Sj which the user switches to. The number of rekey messages
can be reduced in those special cases listed in Section 2.3.

5 Conclusion

This paper presented a dynamic access control scheme for group communications
with multi-privileged service groups. The proposed scheme uses a key manage-
ment graph extended from traditional management tree to maintain and manage
keys. Each key is associated with a version field and a revision field. Both fields
are used to eliminate or reduce the number of rekeying messages. The proposed

scheme allows users to join/leave group communications and switch access levels.
It scales well when new service group forms and achieves forward and backward
security when users roam among service groups. The storage overhead required
by this scheme in the KDC side is linear to the total number of participants in
the communication process. The storage overheard for each participant is log-
arithmic to the number of participants in the same service group. The number
rekeying messages is logarithmic to the number of participants in the service
group from which the user switches.

References

1. D.M. Wallner, E.J. Harder, and R.C. Agee, “Key management for multicast: issues
and architectures,” Internet Draft Report, Sept. 1998, Filename:draft-wallner-key-
arch-01.txt.

2. M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The VersaKey
framework: versatile group key management,” IEEE Journal on selected areas in
communications, vol. 17, no. 9, pp. 1614-1631, Sep. 1999.

3. R. Canetti, J. Garay, G. Itkis, D. Miccianancio, M. Naor, and B. Pinkas, “Multi-
cast security: a taxonomy and some efficient constructions,” in Proc. IEEE INFO-
COMM’99, vol. 2, pp. 708-716, March 1999.

4. M.J. Moyer, J.R. Rao, and P. Rohatgi, “A survey of security issues in multicast
communications,” IEEE Network, vol.13, no. 6, pp. 12-23, Nov.-Dec. 1999.

5. C. Wong, M. Gouda, and S. Lam, “Secure group communications using key
graphs,” IEEE/ACM Trans. on Networking, vol. 8, pp. 16-30, Feb. 2000.

6. W. Trappe, J. Song, R. Poovendran, and K.J.R. Liu, “Key districution for secure
multimedia multicasts via data embedding,” Proc. IEEE ICASSP’01, pp. 1449-
1452, May 2001.

7. S. Mittra, “Iolus: a framework for scalable secure multicasting,” in Proc. ACM
SIGCOMM’97, 1997, pp. 277-288.

8. A. Perrig, D. Song, and D. Tygar, “ELK, a new protocol for efficient large-group
key distribution,” in Proc. IEEE Synmposium on Security and Privacy, 2001, pp.
247-262.

9. S. Banerjee and B. Bhattacharjee, “Scalable secure group communication over IP
multicast,” JSAC Special Issue on Network Support for Group Communication,
vol. 20, no. 8, pp/ 1511-1527, Oct. 2002.

10. S.G. Akl and P.D. Taylor, “Cryptographic solution to a problem of access control
in a hierarchy,” ACM Transactions on Computer Systems, 1(3), pp. 239-248, 1983.

11. S.J. MacKinnon, P.D. Taylor, H. Meijer and S.G. Akl, “An optimal algorithm for
assigning cryptographic keys to access control in a hierarchy,” IEEE Transactions
on Computers, C-34(9), pp. 797-802, 1985.

12. R. S. Sandhu, “Cryptographic implementation of a tree hierarchy for access con-
trol,” Information Processing Letters, 27(2), pp. 95-98, 1988.

13. G.C. Chick and S.E. Tavares, “Flexible access control with master keys,” In G.
Brassard, editor, Advances in Cryptology: Proceedings of Crypto’89, LNCS 435,
pp. 316-322, Springer-Verlag, 1990.

14. L. Harn and H.Y. Lin, “A cryptographic key generation scheme for multi-level data
security,” Journal of Computer and Security, 9(6), pp. 539-546, 1990.

15. K. Ohta, T. Okamoto and K. Koyama, “Membership authentication for hierarchi-
cal multigroup using the extended Fiat-Shamir scheme,” In I. B. Damgard, edi-
tor, Advances in Cryptology: Proceedings of Eurpcrypt’90, LNCS 473, pp. 316-322,
Springer-Verlag, 1991.

16. C. Yuan, B. Zhu, M. Su, X. Wang, S. Li and Y. Zhong, “Layered access control
for MPEG-4 FGS video,” IEEE Int. Conf. Image Processing 2003, Sep. 2003

17. Robert H. Deng, Yongdong Wu, Di Ma, “Securing JPEG2000 Code-Streams,”
International Workshop on Advanced Developments in Software and Systems Se-
curity, Dec. 2003

18. Yan Sun, K. J. Ray Liu, “Scalable hierarchical access control in secure group
communications,” Proc. IEEE INFOCOMM’04, 2004.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2004

	Dynamic Access Control for Multi-Privileged Group Communications
	Di MA
	Robert H. DENG
	Yongdong WU
	Tieyan LI
	Citation

	tmp.1546936097.pdf.EDTUa

