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Abstract

Power consumption on mobile phones is a painful obsta-
cle towards adoption of continuous sensing driven appli-
cations, e.g., continuously inferring individual’s locomotive
activities (such as ‘sit’, ‘stand’ or ‘walk’) using the embed-
ded accelerometer sensor. To reduce the energy overhead
of such continuous activity sensing, we first investigate how
the choice of accelerometer sampling frequency & classi-
fication features affects, separately for each activity, the
“energy overhead” vs. “classification accuracy” tradeoff.
We find that such tradeoff is activity specific. Based on this
finding, we introduce an activity-sensitive strategy (dubbed
“A3R” – Adaptive Accelerometer-based Activity Recogni-
tion) for continuous activity recognition, where the choice
of both the accelerometer sampling frequency and the clas-
sification features are adapted in real-time, as an individual
performs daily lifestyle-based activities. We evaluate the
performance of A3R using longitudinal, multi-day observa-
tions of continuous activity traces. We also implement A3R
for the Android platform and carry out evaluation of energy
savings. We show that our strategy can achieve an energy
savings of 50% under ideal conditions. For users running
the A3R application on their Android phones, we achieve
an overall energy savings of 20-25%.

1 Introduction
Accelerometers are one of the most common sensors on

smartphones, and have been widely used in the mobile sens-
ing literature to ascertain an individual’s locomotive or pos-
tural behavior (e.g., sitting, standing, cycling or climbing
steps). The vast majority of literature on accelerometer-
driven activity sensing focuses on either a) the use of pro-
gressively more sophisticated features [16] or b) the use of

∗V. Subbaraju and A. Misra’s research is supported by the Singa-
pore National Research Foundation under its International Research Cen-
ter@Singapore Funding initiative and administered by the IDM Program
Office.

multiple body-worn accelerometer sensors [4, 13], for im-
proved activity recognition accuracy. As prior studies (e.g.,
[6, 9]) have demonstrated that continuous activity recogni-
tion (applying on-board data processing over accelerometer
and other sensor data streams) can rapidly drain the power
on mobile devices, it is important to reduce the energy over-
heads of continuous mobile sensing [8, 12, 14].

Accordingly, our work addresses the problem of de-
veloping an energy-efficient, continuous approach for
accelerometer-based recognition of locomotive and postural
activities, using a mobile device-embedded accelerometer
sensor. Specifically, we focus on two independent param-
eters of the accelerometer-based activity recognition pro-
cess: a) the sensor sampling frequency and b) the set and
classes of features used in activity classification. Investi-
gations (e.g., [5]) have established that these two parame-
ters jointly influence a tradeoff between two important and
mutually-conflicting objectives: 1) increase classification
accuracy: Increase in sampling frequency and a richer set
of features both result in improved activity classification ac-
curacy; 2) reduce energy overheads: Conversely, reducing
the sampling frequency, duty cycle and/or the set of features
help to lower the energy overhead.

To reduce the energy overheads of accelerometer-based
activity recognition, we first study the combined influence
of these two parameters on the recognition accuracy, sepa-
rately for each distinct activity. We find that different activ-
ities indeed differ in how their classification accuracy varies
with changes to the sampling frequency and the set of clas-
sification features used. We also study how the recognition-
related energy overhead on commercial smartphones varies
with these two parameters. Taken together, these stud-
ies help establish that the most judicious combination of
(sampling frequency, classification feature) used for activity
recognition is different for each distinct activity. This obser-
vation marks an important point of departure from earlier
work, which has largely focused on adapting either the sen-
sor selection (among multiple sensors) or the sensing duty
cycle [14] in an activity-oblivious fashion.
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Based on our observation, we develop an adaptive ac-
celerometer activity recognition (A3R) approach for con-
tinuous activity recognition. The central idea behind A3R
is to continually track the current/ongoing activity of the
user, and then dynamically adjust the two parameters (sam-
pling frequency, classification features) to a choice that is
‘optimal’ for this activity. A3R exploits the fact that an
individual’s daily lifestyle typically consists of a sequence
of moderately-long lasting activities, and that many (but
not all) of these commonplace activities (such as sitting
or standing) can be classified quite accurately, without re-
quiring sophisticated features or high sampling rates. It
is worth stating that A3R is designed for monitoring the
salient daily lifestyle activities and is not intended for cap-
turing ephemeral gestures or transient, jerky movements.

We also address the question of how much energy sav-
ings A3R can achieve in practice, as users engage in their
normal daily lifestyle, leading to individualized variations
in the frequency and relative duration of the different activ-
ities. We collect and analyze longitudinal data traces about
the variation in smartphone-based accelerometer readings
of multiple subjects, under naturalistic and daily lifestyle-
driven usage of the phone, to help quantify the energy
savings that may be achieved by A3R. We also utilize an
Android-based implementation of A3R to perform in-situ
studies and empirically establish that A3R is able to miti-
gate the energy burden of continuous activity recognition.
User Studies and Datasets: To validate, and quantify the
performance impact of the A3R approach, we utilize two
different user-generated datasets (detailed further in Sec-
tions 3.2 and Section 5):

• Short Training Data, Annotated with Ground Truth: To
research the energy vs. accuracy tradeoffs for different
activities, we had 4 users each engage in a pre-defined
sequence of specified activities for relatively short du-
rations (5 mins per activity), providing us a ground-
truth annotated, multi-person dataset.
• Long Natural-Lifestyle Data, without Ground Truth:

To understand the A3R under naturalistic lifestyle-
driven activity sequences, we employed two different
data sets. The first data set continuously captured the
accelerometer data from the phones of 6 users, over a
period of 6-8 weeks. We use this to evaluate A3R’s
energy savings potential in emulated settings. In an-
other study, we monitored the battery drainage profile
for 2 users engaged in their everyday lifestyle activi-
ties while A3R was running on their Android phones,
helping us to observe whether A3R makes any mean-
ingful difference in smartphone operational lifetime,
given their regular usage patterns.

The rest of the paper is organized as follows. Sec-
tion 2 presents related work on accelerometer-based activ-

ity recognition. Section 3 then studies the impact of vary-
ing the sensor sampling frequency and the choice of classi-
fication features on the per-activity classification accuracy
and the smartphone energy consumption. Section 4 then
presents the A3R approach, while Section 5 then presents
our dataset-driven empirical results. Finally, Section 6 con-
cludes the paper.

2 Related & Background Work

Early research on the use of individual or multiple
body-mounted accelerometers for locomotive activity sens-
ing focused on understanding the various factors affecting
the recognition accuracy–e.g., [3] demonstrated that dif-
ferent activities exhibited differing levels of classification
accuracy, depending on the on-body placement of the ac-
celerometers. The impact of sampling rate on classifica-
tion accuracy & power was studied for the eWatch plat-
form in [6], where the mean of the signal was used as the
classification feature. For the platform-specific accelerom-
eters studied, they observed no differential impact on bat-
tery lifetime between the use of time vs. frequency do-
main features. This turns out to be not the case for our
Android phones. [6] also described multiple selective sam-
pling strategies based on a Markovian model of transitions
between different activities. Similarly, [5] also studied the
impact of sampling rate (& signal resolution) on classifi-
cation accuracy, whereas [1] studied the classification ac-
curacy based on multiple body-worn accelerometers, as a
function of a more complex set of both time & frequency
domain features (such as mean, energy and entropy). [13]
showed how classification accuracy could be improved by
using meta-level classifiers, such as feature boosting and
MDTs. Most of these results do not directly apply to a com-
mercial smartphone device (for example, a phone’s back-
ground energy consumption is significantly higher than a
custom-built sensor). More recently, the use of a secondary
sensing ‘co-processor’ has been shown [10][7]) to provide
highly energy-efficient activity recognition on mobile de-
vices; such hardware-based optimizations are complemen-
tary to our focus on optimizing the computational logic of
activity sensing.

More recently, adaptive online techniques have been pro-
posed to reduce the energy overheads specifically associ-
ated with personal mobile devices. One possible approach
is smart duty-cycling. The EEEMS hierarchical frame-
work [14] for smartphones turns on more power-expensive
sensors (such as GPS) only when less energy-hungry sen-
sors (such as accelerometer) detect a significant event. Sim-
ilarly, [14] also duty-cycles the accelerometer (at approx.
50%) to reduce its energy overhead. The Kobe toolkit [2]
focuses on balancing the accuracy and energy cost of activ-
ity classification algorithms on mobile devices, by dynam-



ically adjusting the pipeline of sampling frequency, feature
extraction and machine learning components. The runtime
adaptation, however, focuses principally on adjusting where
the computation is executed (device. vs. cloud), in response
to system changes (such as changes in phone battery levels
or foreground processing load). In contrast, A3R focuses
on selecting a profile much more dynamically, based on the
changes in the user’s activity; A3R may be an add-on to the
Kobe framework. Similarly, the SociableSense system [11]
applies reinforcement learning techniques to adjust the duty
cycle of multiple sensors and uses a multi-criteria decision
theory to distribute the computational tasks between a mo-
bile device and the cloud. SociableSense makes a binary
decision (‘should I sense or not’?), based on information in
prior sensing cycles; in particular, it adapts the accelerom-
eter duty cycle based on whether the sensor has detected a
movement or not – only two states, while A3R’s adaptive
choices are based on a set of specific locomotive activities.

3 Characterizing the Classification Accuracy
vs. Energy Consumption Tradeoff

Prior work on accelerometer-based classification has
principally focused on identifying the key features that en-
able the most accurate identification of different locomo-
tive/postural states. Table 1 lists some of the commonly-
used features, which can be broadly classified into two cate-
gories (Ftime and Ffreq). More detailed accelerometer fea-
tures can be referred to [15].

• Time-domain Features (Ftime): These features are
computed directly on the appropriate frames (e.g.,
5sec, 10sec) of accelerometer streams; examples in-
clude the variance/mean of the frame as well as two-
axis correlations.
• Frequency-domain Features (Ffreq): Here, features

such as entropy & energy are computed over frequency
domain coefficients, which are first obtained by using
FFT (or alternatives, such as wavelets) on each frame.

In either case, it is important to observe that the features are
currently applied in an activity-independent fashion–i.e.,
the same set of features are used across all locomotive/pos-
tural states of the individual. Our fundamental hypothesis
is that such an activity-independent use of features may not
be the optimal–more specifically, different activities may
be classified, with no or little loss in classification accu-
racy, by using different combinations of the 〈accelerometer
sampling frequency, classification features〉 tuple. The ad-
vantage is that the use of a lower sampling frequency, or
the computation of a smaller set of features, should impose
a lower sensing & computational energy overhead, respec-
tively. To verify this hypothesis, we next report on the en-
ergy overheads and the classification accuracy for different

Table 1: Selected features used for activity recognition

Time Mean (x̄, ȳ, z̄), Magnitude (
√

x2 + y2 + z2),
Domain Variance {var(x), var(y), var(z)},

Covariance {cov(x, y), cov(y, z), cov(x, z)},

Frequency Energy (
∑N

j=1(m
2
j )

N
), mj is FFT component

Domain Entropy (−
∑n

j=1(pj ∗ log(pj)), pj is FFT histogram

combinations of sampling frequency (SF ) and classifica-
tion feature (CF ), i.e., the 〈SF,CF 〉 tuples.

3.1 The Energy Overhead

While we expect the classification accuracy to be
activity-dependent, the energy overhead should be activity-
independent. Accordingly, we first study the dependency
of the energy overhead on the combination of sampling fre-
quency and the types of features computed–i.e., the tuple
〈SF,CF 〉, on commercially available smartphones. Instead
of trying out every possible combination of the individual
features listed in Table 1, we simply consider the choice of
using (i) all time-domain features, (ii) all frequency-domain
features or (iii) all the time+frequency domain features.
This is driven by our empirical observation that the major
difference in energy consumption arises from a choice of
using none vs. any of the domain-specific features; the ex-
clusion or inclusion of a specific frequency (or time) domain
feature has only a marginal effect.

Fig. 1 plot the energy consumption (in Joules) over a 2-
hour period, for different 〈SF,CF 〉 combinations, for our
representative phone: the Samsung Galaxy S2, which sup-
ports sampling frequencies up to 100 Hz. Note that Android
APIs only permit the sampling frequency to be adjusted
between 4 discrete values ([5Hz, 16Hz, 50Hz, 100Hz] for
our device. To obtain the readings, we powered off the net-
work interfaces and the display, and used the PowerTutor
utility to measure the energy consumption.1 We can easily
make the following observations:
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Figure 1: Energy consumption for the Samsung Galaxy S2
at different 〈SF,CF 〉 combinations

1) The total energy overhead in continuous activity recog-
nition clearly increases with sampling frequency.

1Although not plotted here due to space limitations, we observed simi-
lar trends on the HTC Nexus 1, which supports sampling only up to 25Hz.



2) The increase in energy-overhead is non-linear. More im-
portantly, the additional energy overhead incurred by in-
cluding frequency-domain features is not constant, but
in fact, a non-linear, logarithmic function of the sam-
pling frequency. This is due to the O(nlogn) computa-
tional complexity (where n is the number of samples for
a given frame) of the required FFT operation.

The figure effectively illustrated the possibility of smart
and non-intuitive tradeoffs between sampling frequency and
features–for example, it is less expensive to utilize purely
time-domain features at 50Hz vs. using a combination of
time+ frequency domain features at 16Hz.

3.2 The Classification Accuracy

We now investigate the impact that different combina-
tions in the (SF ,CF ) domain have on the accuracy of activ-
ity recognition. We study 10 specific activities (i.e., stand,
slowWalk, sitRelax, sit, normalWalk, escalatorUp, escala-
torDown, elevatorUp, elevatorDown, downStairs). To per-
form this study, we had a total of 4 subjects perform each
of the activities for a period of 5 minutes, resulting in a
per-subject experimentation duration of 50 minutes for 10
activities. The features of all the individual activities are
then provided (on a per-individual basis) as input to a clas-
sifier (we used the J48 adaptive decision tree classifier in
the Weka toolkit) to build a classification model that is cus-
tomized to each test subject.

The classification accuracy is then gauged by running a
10-fold cross validation on the data, at different sampling
frequencies and for different feature combinations. Note
that the classifier training was performed at the ‘maximum’
sampling frequency of 100 Hz, while the validation ex-
periments utilized the appropriately varying sampling fre-
quency. We have verified that performing the classifica-
tion/learning at the same sampling frequency as the ac-
tual test frequency has only minimal effect on the observed
classification accuracy. Accordingly, for on-phone deploy-
ments, as the training phase may be considered to be a one-
time, offline activity, we present results where the model
employed the most aggressive sampling frequency. The fol-
lowing three plots (Fig. 2, 3, 4) illustrate key observations.

Figure 2: Accuracy at different 〈SF,CF 〉 combinations

Fig. 2 plots the classification accuracy, averaged across
all 10 activities & all 4 users, as a function of the combina-
tion of 4 types of sampling frequency and 3 types of feature
choice–i.e., (4×3=) 12 different 〈SF,CF 〉 tuples. We ob-
serve, as expected, that (a) higher sampling frequency usu-
ally (but not always) results in better accuracy, and (b) using
the combination of time and frequency domain features pro-
vides higher accuracy than using each feature type in isola-
tion. However, such an observation applies in aggregation
across all activities. Therefore, we next study the sensitivity
of classification accuracy to different choices of 〈SF,CF 〉
for each individual activity.

Fig. 3 and Fig. 4 show the average accuracy for some
selected activities. Fig. 3 considers only time-domain fea-
tures, whereas Fig. 4 considers both time and frequency do-
main features. We can see that the sensitivity of classifi-
cation accuracy to different choices of 〈SF,CF 〉 is clearly
activity-dependent. For example, ‘sit’ can be classified cor-
rectly at 95%+ accuracy even with SF = 5Hz and the use
of only Ftime features, whereas the activity of ‘stairs’ and
‘escalators’ benefits from using both Ftime+Ffreq features
and a higher SF = 100 Hz.

Figure 3: Activity-dependent accuracy using Ftime

Figure 4: Activity-dependent accuracy using Ftime+Ffreq

For all 10 activities, Table 2 shows all suitable combina-
tion of 〈SF,CF 〉, and helps to understand the energy vs
accuracy tradeoff. As an example, for the activity “sit”,
we can choose 〈5Hz, Ftime〉 which gives us an accuracy
of 0.9816 at an energy consumption of 55.35 Joules/hour.
Even though selecting 〈16Hz, Ftime〉 would have given us
a slightly higher accuracy of 0.9855, the energy consump-



Table 2: Activity recognition accuracy using different 〈SF,CF 〉 choices for our representative phone: Samsung Galaxy S2
Activity Classification Accuracy

SamplingRate1 SamplingRate2 SamplingRate3 SamplingRate4
(100Hz) (50Hz) (16Hz) (5Hz)

Ftime Ftime+Ffreq Ftime Ftime+Ffreq Ftime Ftime+Ffreq Ftime Ftime+Ffreq

‘stand’ 0.9116 0.9203 0.8958 0.9244 0.9516 0.921 0.9123 0.9141
‘slowWalk’ 0.9379 0.935 0.9151 0.9069 0.9171 0.9064 0.8971 0.8486

‘sitRelax’ 0.9822 0.9821 0.9892 0.982 0.9856 0.9824 0.9717 0.9823
‘sit’ 0.989 0.989 0.9887 0.9783 0.9855 0.9889 0.9816 0.9535

‘normalWalk’ 0.9407 0.9364 0.9542 0.9424 0.9237 0.9154 0.8663 0.8386
‘escalatorUp’ 0.6786 0.7948 0.7265 0.7455 0.6592 0.6839 0.6378 0.6653

‘escalatorDown’ 0.6805 0.756 0.6356 0.6642 0.5947 0.6488 0.5868 0.6568
‘elevatorUp’ 0.7026 0.7606 0.7265 0.7863 0.7025 0.7224 0.7827 0.7596

‘elevatorDown’ 0.7353 0.7763 0.7648 0.8059 0.7669 0.7933 0.8056 0.7926
‘downStairs’ 0.8 0.8065 0.8097 0.8239 0.8344 0.7816 0.7559 0.7515

Power consumed (J/hr) 152.75 230.75 110.05 158.4 79.95 119.9 55.35 75.8

tion is significantly higher at 80 Joules/hour.

3.3 Tradeoff between Energy & Accuracy

We now use the results in Section 3.1 and Table 2 to
create a state chart containing desired values for the fea-
ture states and sensor sampling states 〈SF,CF 〉, for each
of the activities, that avoids both a significant increase in
the energy consumed and a steep drop in the classification
accuracy achieved. We utilize the following criteria:

• Condition I (accuracy): Given a desired minimal
level of classification accuracy to be accbase (e.g.,
70%), we choose all states 〈SF,CF 〉 that have a reg-
istered accuracy acci ≥ ∆, where ∆ = max{δ ×
accuracy, accbase} for each activity; accuracy is the
average accuracy across all 〈SF,CF 〉 for a given ac-
tivity (e.g. the average of 8 values in each line in Table
2), δ is a scaling coefficient.
• Condition II (energy): Among the 〈SF,CF 〉 states

that satisfy Condition I for a given activity, we
choose the state i that has highest accuracyi

power consumedi
.

Condition I ensures that we choose only from
acceptably-good 〈ST,CF 〉 combinations, while Condition
II chooses the most power-efficient one among them. Ap-
plying the above two conditions using δ = 1, we obtain the
following operation configurations (Table 3) for each indi-
vidual activity for the Samsung Galaxy S2 device 2.

4 The A3R Strategy
Having established the per-activity optimal choice of

sensing/feature parameters, we now describe the A3R al-
gorithm that runs continuously on an individual’s smart-
phone. A3R assumes that an individual is, at any in-
stant, in one of a set of N possible activities, denoted by

2Note that the best operating point is, in general, device-specific, as
different devices will have different energy curves and even different per-
mitted sampling frequencies.

Table 3: Smart operating configuration for each activity (for
our representative Samsung Galaxy S2)

activity Smart choice
‘stand’ 16Hz Ftime

‘slowWalk’ 16Hz Ftime

‘sitRelax’ 5Hz Ftime+Ffreq

‘sit’ 16Hz Ftime

‘normalWalk’ 16Hz Ftime

‘escalatorUp’ 50Hz Ftime

‘escalatorDown’ 100Hz Ftime+Ffreq

‘elevatorUp’ 5Hz Ftime

‘elevatorDown’ 5Hz Ftime

‘downStairs’ 16Hz Ftime

A = {A0, A1, A2, . . . , AN}, where Ai, i = 1, . . . , N (the
ith activity) is either ‘sitting’, ‘standing’ or some such loco-
motive/postural state. A0 represents the ‘unknown’ activity
state, where the activity classifier is unsure about the cur-
rent activity. For each activity Ai, we assume the existence
of an entry in a state table (similar to Table 3), indicating
the best combination of sampling frequency & feature set
for detecting Ai, denoted by (SFi, CFi).

The A3R algorithm then works as follows. It starts
off initially in the ‘unknown’ state (A0), where the ac-
celerometer sampling rate is set to the highest frequency,
and the full combination of both time+frequency features is
used. Each newly generated accelerometer frame is then fed
into the classifier; the classifier returns a confidence vec-
tor [p1, p2, . . . , pN ] (

∑N
i=1 pi = 1)), capturing the prob-

ability that the frame belongs to each individual activity
state. Once the algorithm identifies (with appropriately high
confidence) that the user is currently in a known activity
state, say Ai, it switches the sampling frequency & the
classification feature set to the corresponding optimal value
(SFi, CFi). The algorithm continues to use these values
until it detects an episode where the classification confi-
dence associated with the current ongoing activity drops be-
low an acceptable level. At that point, A3R declares the user
to have reverted to the uncertain state A0, switches back to
the default case of high-frequency accelerometer sampling
and uses the full set of classification features to again re-



establish the user’s new activity.
To unambiguously specify the A3R algorithm’s state

transition logic, we define two distinct parameters:

• Wframe: The number of consecutive frames (sliding
window) over which confidence values are considered.
The activity that has the highest average confidence
value over the most recentWframe frames is chosen as
the best prediction of the user’s activity in the current
frame. This averaging or smoothing operation elimi-
nates erroneous/outlier frames or activity changes that
last for extremely short durations.
• ∆conf : The threshold associated with a detection of

state change. Intuitively, if the classifier’s highest aver-
age confidence value, smoothed over the last Wframe

consecutive frames, is above this threshold ∆conf ,
A3R declares that the user is currently engaged in
activity Ai, that has this confidence value. If not,
A3R declares that the user’s activity is unknown and
switches to A0.

Algorithm 1 provides the concise formal description of the
A3R algorithm. The algorithm effectively runs in a con-
tinuous loop, keeping track of the identified activity in the
last Wframe activity frames to determine if the 〈SF,CF 〉
combination should continue to remain unchanged (i.e., the
user is still classified as being in the current state) or if
it should be switched to a new value (i.e., the user is de-
tected to transition to either a new activity or the unknown
state). Note that, in practice, A3R does not directly tran-
sition from one activity Ai to another activity Aj(j 6= i),
as it is practically impossible for the highest-confidence ac-
tivity (smoothed overWframes) to be activityAi at present,
and to then becomeAj after one-step shifted window, while
having the confidence remain above ∆conf .

5 Results of Naturalistic Study

To study the expected performance of A3R, we recruited
8 users: 6 of them had a Nokia N95, while 2 had our can-
didate phone Samsung Galaxy S2 (executing an Android
implementation of A3R) and used them as their personal
cellphone). With this setup, we performed two experiments.
In the first one, we collected continuous N95 accelerometer
data from the six users performing their lifestyle activities
over a period of approximately 6-8 weeks. These traces
help us to understand the observed distribution of different
activities (and their duration), the parameter tradeoffs of the
A3R algorithm and to quantify the energy savings perfor-
mance if A3R is implemented on these platforms. From the
Android users, we go a step further and report in-situ battery
drainage when A3R-based activity recognition is executed
continuously, in parallel to other regular usage of the phone
(for calls, texts, web browsing etc.).

Algorithm 1: A3R Algorithm. The pseudocode describes the
steady-state (long running) behavior of A3R, ignoring startup tran-
sients. Smooth Confidence(t) is the highest confidence value
at frame t, across all N activities, averaged over the most recent
Wframe activity frames, whereas Smooth Class(t) is the ordi-
nality of the activity corresponding to this highest confidence value.
A3R switches to the ‘unknown’ state if the highest value of the
smoothed confidence drops below ∆conf .

1: t← 0;State← A0; State Table← [A0, A1, . . . , AN ]
2: while App Running do
3: Conf V ector(t)← classify(Accel Frame(t));
4: Smooth V ector(t)←

1
Wframe

∑t
i=t−Wframe

Conf V ector(i);

5: Smooth Confidence(t)←MAX(Smooth V ector(t));
6: Smooth Class(t)← Index(Smooth Confidence(t));
7: if Smooth Confidence(t) < ∆conf then
8: State← State Table(0);
9: Choice← 〈100Hz, Ftime + Ffreq〉;

10: else
11: State← State Table(Smooth Class);
12: Choice← 〈SFi, CFi〉;
13: end if
14: t← t + 1;
15: end while

5.1 Long Traces from N95 Users

We interviewed the participants and collected ground
truth (5 mins) of the predominant locomotion/posture
change activities and trained our classifiers. We had 6 ac-
tivities in the ground truth study – {‘stand’, ‘walk slowly’,
‘sit relaxed’, ‘sit’, ‘normalWalk’, ‘stairs’}. Thereafter, we
ran the A3R algorithm on the continuous data traces (using
a frame size of 5 secs) and extracted a sequence of activity
inferences and A3R state transitions.

Fig. 5 shows the total number of activity instances (for all
6 activities), for the complete N95 traces of 6 users. Even
though the classifier output may be erroneous (we cannot
possibly have ground truth for the entire 6-8 weeks), we
believe that the results are reasonably accurate, given the ≥
90% accuracy observed during training & cross validation
of the 5 mins ground truth data.

Fig. 6 shows the histogram of the durations for which
each activity instance lasted. We observe that the classi-
fier indicates that the vast majority of individual activity in-
stances lasts for several minutes (1 min = 12 activity frames
in the plot), with most instances lasting at least 1-2 mins.
This observation also justifies the use of Wframe = 10 in
our sliding window computation. We also observe that sit-
ing activities (‘sit’ and ‘sitRelax’) typically have longer du-
rations than ‘stand’ & ‘slowWalk’ activities, which, in turn,
last longer than more active motions (e.g., ‘normalWalk’
and ‘stairs’).

Table 4 reports the emulated energy consumption, based
on the N95 data traces, if the user activities had been mon-
itored by the Galaxy S2 phone. The figures are obtained by
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Figure 5: Distribution of activities detected
for Nokia Users in our observation period
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Figure 7: Impact of window size on
energy savings in A3R

using the sequence of A3R state transitions observed and
multiplying each such activity duration by the correspond-
ing energy power consumption data (from Table 3) for the
corresponding 〈SF,CF 〉 state. The table shows the battery
consumption for 5 different cases:

• Full100, Full50, Full16, Full5: Four non-adaptive
scenarios, where the sampling frequency is always
kept fixed at either {100, 50, 16, 5} Hz and classifica-
tion always uses both time and frequency domain fea-
tures being computed continuously;
• A3R: Dynamically adjust the smart 〈SF,CF 〉 choice

in Table 3 according to the state. We compute the en-
ergy save compared to the full power mode Full100,
i.e., energy(Full100)−energy(A3R)

energy(Full100) × 100%.

Table 4: Cross-user Study of Energy Savings obtained by running
Activity Trace through different modes of Continuous Recognition
Engine (A3R is using Wframe=10 and ∆conf=0.6)
User Time Full100 Full50 Full16 Full5 A3R Energy

ID (hour) (J) (J) (J) (J) (J) Save (%)
1 102.6 23675 16251.8 12301.7 7777.1 12052.1 49.09
2 207.4 47857.6 32852.2 24867.3 15720.9 23817.4 50.23
3 216.7 50003.5 34325.3 25982.3 16425.9 22206.2 55.59
4 139 32074.3 22017.6 16666.1 10536.2 15192.4 52.63
5 143.9 33204.9 22793.8 17253.6 10907.6 16812.1 49.37
6 139.8 32258.9 22144.3 16762 10596.8 14715.4 54.38

We find that A3R’s energy consumption is approxi-
mately 50% less than a continuous sensing engine running
at full power (100 Hz). Further, the figure demonstrates
that A3R’s energy consumption is lower than even sam-
pling constantly @16Hz, with the advantage of improved
accuracy, especially for the more-vigorous activities.
Parameters Analysis: Fig. 7 studies the effect of window
size (Wframe) used in A3R w.r.t. energy loss. Initially,
a higher value of Wframe (greater smoothing) implies a
lower likelihood that erroneous readings or random tran-
sient movements will cause a transition to the ‘unknown
state’. However, as Wframe grows beyond 10 frames (i.e.,
50 seconds), a single window will have an increasing mix
of 2 (or more) different consecutive activities, causing the

classification confidence to be lower, thereby causing more
frequent transititions to the power-hungry ‘unknown’ state.

Fig. 8 shows the energy savings as the desired confi-
dence level (∆conf ) is varied. Naturally, a lower confidence
threshold allows A3R to remain in a known activity state
longer, at reduced sampling rates, but can compromise the
prediction accuracy. A higher confidence threshold on the
other hand makes A3R jump to the more energy-expensive
unknown state more often. In all cases, the energy savings
(over the Full100 non-adaptive approach) is seen to vary
between 45-55% across users.

5.2 In-Situ Study for Android Users

We also experimented with an Android-based implemen-
tation of A3R, used by 2 users each for a span of 6 days.
The study was divided into 3 scenarios and the study was
repeated for 2 days per scenario.

• Non-adaptive: The non-adaptive scenario, where the
sampling frequency is always kept fixed at {50} Hz
and classification always uses both time and frequency
domain features being computed continuously
• A3R: The adaptive scenario, where A3R is used to dy-

namically adjust the 〈SF,CF 〉 parameters.
• No activity recog.: The baseline, where there is no

activity prediction application running on the phone.

We recorded the battery level using android’s Battery-
Manager API, as the users went about performing their
daily activities (e.g., call, SMS, browsing). While the phone
battery was charged overnight each day, ensuring an iden-
tical starting condition, the daily browsing and digital con-
sumption patterns would vary randomly each day. How-
ever, the days selected were all ‘normal’ weekdays, which
were likely to exhibit similar mobile usage behavior. User1
started his day around 7:30AM, while user 2 starts around
8:00 AM. Fig. 9 reflects the battery drainage time series for
each user (averaged over the 2 days per scenario) for the
3 scenarios. We can see ocassional sharp drops in battery
levels, due to sporadic high load spikes (e.g., a long phone
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Figure 9: Power consumption of different activity recognition modes in daily lifestyle
settings (evaluating the embedded A3R for two Android users)

call, or a sudden period of video browsing); accordingly, it
is possible that, ocassionally, the phone battery level was
lower in the absence of activity recognition than when A3R
was used (see 8:30-9:30am in User2’s plot). Nevertheless,
we can observe that at the end of a regular day, the A3R
algorithm clearly saves 20-25% of battery power as op-
posed to the non-adaptive recognition scenario. This lower
amount of overhead reduction (compared to the N95 study)
is likely due to that this data includes the subject(s) engag-
ing in other random (beyond the 6 labeled) activities, caus-
ing A3R to transition to the higher energy consuming, ‘un-
known’ state more often.

6 Conclusion
This paper presented an empirical investigation of

energy consumption characteristics of real-time activity
recognition applications, executing continuously on mobile
phones. We report how Sampling Frequency (SF) and Clas-
sification Features (CF) alter the energy consumed in recog-
nition. After demonstrating that different activities require
different combinations of 〈SF,CF 〉 to achieve the desired
accuracy levels, we devised the “A3R” algorithm, and eval-
uated it using two types of naturalistic data (1) 6 Nokia N95
users over longer spans of times (6-8 weeks) and (2) in-
situ study of two Android users. Our investigation indicates
that such an activity-adaptive model holds potential for sig-
nificantly reducing the energy overheads of accelerometer-
based continuous mobile sensing.
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