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Decentralized Resource Allocation and Scheduling via Walrasian Auctions 

with Negotiable Agents 

 

HuaXing CHEN    Hoong Chuin LAU 
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{hxchen,hclau}@smu.edu.sg 

 

Extended Abstract 

 

1. Introduction 
 

Auctions are well-studied mechanisms to solve 

decentralized resource allocation problems. In 

situations where complementarity exists among 

resources, combinatorial auctions may be utilized.  

Unfortunately, combinatorial auctions often incur hefty 

computational requirements, in that the underlying 

winner determination problem is known to be NP-hard. 

Although a number of efficient implementations are 

proposed (e.g., see Sandholm [11]), combinatorial 

auctions are still not very computationally efficient.  

To avoid solving winner determination problems, 

assuming that clearing is already feasible (i.e. 

aggregate resource demands could be met by supply), 

an alternative method for market clearing is the 

General Equilibrium or Walrasian model, first 

proposed by Walras [14].  Under the GE model, the 

auctioneer would not clear the auction and finalize the 

allocation. Instead, the auctioneer would adjust the 

prevailing resource prices based on the current 

aggregate demands induced by bidders against the 

supply, and announce the adjusted prices back to all 

agents. Reacting on the adjusted resource prices, the 

bidding agents generate the next set of bids and this 

process is iterated until either the supply and demand 

matches (i.e. general equilibrium is reached), or that 

the computational budget is exceeded. In a 

conventional Walrasian auction, bidders are assumed to 

be price takers meaning that they would view market 

prices as exogenous and not something that would 

change because of their own actions.  General 

equilibrium theory states that the market will converge 

to an equilibrium state under very restrictive conditions 

(such as gross substitutability). For arbitrary resource 

allocation problems however, the existence of such an 

equilibrium and effective means to find an equilibrium 

state is often a challenging research question.  

In this paper, we are concerned with solving 

decentralized resource allocation and scheduling 

problems; and assuming feasible solutions exist, we ask 

how we might achieve convergence and good quality 

solutions under a tight computational budget.  

Motivated by recent works on adaptive bidding 

strategies in a winner determination context (Sui and 

Leung [13]) and the analysis of bidding strategies for 

simultaneous ascending auctions in separate markets 

(Wellman et al. [16]), we propose an approach that 

departs from the standard Walrasian auction, in that the 

bidders are not merely price takers reacting to price 

signals; in addition, their bidding strategies can also be 

influenced by a negotiation mechanism, where they 

may adopt different bidding strategies from their 

respective strategy sets from one iteration to the next 

during the auction process.  In this sense, we say that 

the agents are “negotiable”.  We will show how a 

mechanism embedded in the auctioneer side detects a 

trigger state and persuades bidders to change their 

bidding strategies during the auction process, as well as 

how bidders respond to the solicitation of the 

auctioneer while simultaneously adjusting their bids 

based on resource prices, in such a way that a better 

system wide performance could be achieved.  

In this paper, we deal specifically with the resource 

allocation and scheduling problem associated with 

container terminals, but believe that our approach can 

be customized to solve other problems of similar 

structures.  The key result of this paper is to show, 

perhaps counter-intuitively (by experiments), that a 

better system-wide performance is not necessarily 

always achieved with each bidder adopting its best 

bidding strategy throughout the auction process. 

Instead, under various market conditions, convergence 

and better quality solutions can be achieved when 

agents take a negotiable stance in allowing the next-

best bidding strategies to be adopted while still reacting 

to price signals. 
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2. Literature review 
 

In recent years, there are a number of applications 

of auctions in solving distributed resource allocation 

and scheduling problems in a variety of domains. 

Kutanoglu and Wu [4] demonstrated the link between 

combinatorial auction and Lagrangean relaxation and 

use combinatorial auction to solve small-scale job shop 

scheduling problems. Other works include Wellman et 

al. [15], Goldberg et al. [3], Attanasio et al [1], Lau et 

al. [6], Liu and Zhao [7], Stokely et al. [12]. 

On strategic bidding, Wellman et al. [16] 

investigated a straightforward bidding policy and its 

variants to indicate that the efficacy of particular 

strategies depends critically on preferences and 

strategies of other agents, and that the strategy space is 

far too complex to yield to general game-theoretic 

analysis.  Sui and Leung [13] proposed an adaptive 

bidding strategy in a first price seal-bid combinatorial 

auction where the bidders can adjust the profit margin 

constantly accordingly to the bidding history. 

Our work has leveraged on the existing research 

findings of Lau et al. [6] by exploring the bidding 

strategies via an auction mechanism which solicits 

bidders’ change of bidding strategies in the hope that 

system wide performance will be enhanced. 

 

3. Notations and problem formulation 
 

The problem we deal with in this paper can be 

described as a multi-agent flowshop problem with 

special sequencing constraints between jobs in a given 

sequence, and is described as follows. There is a pool 

of limited renewable resource types (Prime Movers or 

PM, Yard Blocks and Yard Buckets) and there are 

multiple units of resources for each resource type. 

There is a set of job agents, each endowed with a list of 

jobs to be serviced in a sequence, where each job is 

performed as a series of operations and needs a 

combination of a single unit of each resource type for 

each operation. Each job corresponds to either loading 

a container from a yard bucket within a yard block to a 

quay crane (QC), or vice versa (called a discharge job). 

For simplicity, we take QCs to be the proxy for job 

agents (which is the same approach taken by Lau et al. 

[6]). The goal is to allocate resource timeslots to the 

job agents such that the sum of makespans of the job 

agents is minimized.  

To solve this problem by a Walrasian auction 

mechanism, the auctioneer will iteratively adjust the 

prices for each resource type in each time slot of the 

entire planning horizon; and in each iteration, the 

auction will begin with the announcement of the price 

vector to all bidders simultaneously.  In a conventional 

scheme, each bidder then generates a bid (i.e. a demand 

for each resource type in each time slot over the entire 

planning horizon) in response to the resource price 

vector. This bid is generated by a bid-generation 

algorithm which seeks to find the bid that minimizes 

the respective agent total cost function, which is 

defined as the sum of the makespan cost and the total 

cost of the bidded resource slots at the prevailing 

prices. Note that there is a tradeoff between these two 

cost components, since more resources will yield a 

shorter makespan but incur a higher resource cost, and 

hence the bid-generation algorithm is one that seeks the 

optimal balance.   A solution is called feasible if there 

are no resource conflicts.  

In this paper, we depart from the conventional 

auction scheme, and allow each bidder to have a finite 

and discrete set of bidding strategies; each strategy is 

associated with a bid generation algorithm. Some bid 

generation algorithms may perform better than others 

in terms of the agent total objective function. (The 

reason for having inferior bid generation algorithms 

will become clear later, but suffice here to say that they 

are required to break resource conflicts among agents, 

seen as compromises in negotiation terminology.)   

As noted earlier, there are 3 types of resources 

namely, PM, Yard Block and Bucket. A bidder may 

request a number of PMs in each time period in order 

to service its jobs.  In addition, it also needs to bid for 

the utilization of Yard Blocks and Buckets. (Interested 

readers familiar with this problem may like to note that 

the yard block resource acts as the proxy for the 

utilization of yard cranes, which we do not explicit bid 

for in this paper, unlike Lau et al. [6] for the reason that 

yard crane slots are consumed by multiple bidders 

simultaneously). Instead in our approach, a helper 

method performs the scheduling of yard cranes based 

on the yard block bids, and this schedule will provide a 

feedback to the auctioneer for the update of the prices 

of the yard block resources. 

We denote k to be the resource type index (PM, 

Block, Bucket) and the entire planning horizon is 

divided into T discrete time periods (aka time slots). 

The notations used in this paper are given as follows: 

• X
r
ikt denotes the demand quantity bidded by bidder 

i for resource k  in time period t during iteration r.  

• C
r
kt denotes the total supply (capacity) for resource 

k, in time period t during iteration r.  

• D
r
kt denotes the aggregate demand (of all agents) 

for resource k, in time period t during iteration r. 

• ω
r
i denotes the bid generation strategy used by 

bidder i during iteration r. 
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4. Solution approach 
 

In our proposed approach, the strategy space for 

each bidder is denoted by Ω comprising of a number of 

bid generation strategies. Each strategy ω is associated 

with an algorithm which enables the bidder to generate 

bids and the corresponding total cost is denoted U(ω). 

Note that we drop the agent index for notational 

simplicity. The algorithms are designed in a way that 

one algorithm is cascaded with another so that the top 

algorithm always yields the best total cost. We term a 

strategy ω’ as smart and another strategy ω’’ as less 

smart if U(ω’) < U(ω’’). Let ω* denote the smartest 

bid generation strategy in Ω (where U(ω*) < U(ω) for 

any ω except itself). Note that a smart bid generation 

strategy tends to exploit cheap resources thereby 

potentially leading to resource contention with other 

agents assuming the other agents are also using smart 

strategies. Hence if all bidders adopt their respective 

smartest bid generation strategy throughout the auction 

process, it could be possible that those bidders will 

contend for resources with one another iteratively with 

possibly no feasible solution generated at the end of the 

auction process. Our intuition is that a less smart bid 

generation strategy may foster more cooperation and 

less competition, thereby leading to conflict resolution. 

Again it does not come without a cost. In the other 

extreme scenario where all bidders decide to use their 

less smart bid generation strategies throughout the 

auction process, we may obtain an undesirably large 

number of solutions, but none of them are good in 

quality as the resources utilization may not be high. 

Hence, the challenge is to be able to derive a 

negotiation mechanism embedded into the auctioneer 

logic that aims to persuade some bidders to concede 

and modify their bid generation strategies to inferior 

ones whenever necessary, so that a better system-wide 

solution can be obtained. We assume therefore that all 

agents are cooperative, i.e. willing to do so with the 

proper incentives set in place. Our proposed 

negotiation approach is based on a similar reward 

scheme proposed by Lau et al. [5] and Ramchurn et al. 

[9] and is outlined as follows. All bidders start with 

their respective optimal strategy ω*; the negotiation 

mechanism in the auctioneer side will solicit the change 

to an inferior strategy ω based on a certain criteria 

(details to be discussed later) and compensate those 

bidders who are willing to concede by an amount of 

credits which, if accumulated, could be used to reject 

future solicitations by surrendering some credits. 

  In the interest of space, we will skip over the 

discussion of bid generation and price adjustment for 

our problem. Interested readers may refer to [6] for 

details. In the following, we focus on presenting the 

key contribution of this work – the embedded 

negotiation mechanism. All bidders are assumed to 

start with the respective smartest bid generation 

strategy. A negotiation mechanism will be enabled if 

resource conflicts exist during the auction that cannot 

be resolved in the first λ (constant) number of 

iterations. Once the negotiation mechanism has been 

enabled, it will be constantly monitoring the ratio of the 

aggregate resource demands to the supply (i.e. D
r
kt 

/C
r
kt) – a large value that exceeds a threshold ftrigger 

suggests that the gap is caused by aggressive bidding 

behavior by some agents on resources for certain time 

periods. We measure bidder aggressiveness by the 

relative ratio of the amount of resource of type k at 

time t requested by a bidder i to the average demand 

(i.e. X
r
ikt/Ave_D

r
kt.). Note that this seemingly simplistic 

definition of aggressiveness may overkill those bidders 

who have persistent preference for resources in a 

particular time period (this persistent behavior will 

occur if some jobs can only be performed in a certain 

time period). However, such a stringent time constraint 

on the jobs largely reduces the effort required for the 

search algorithm as these jobs can only be performed in 

a certain time period. Even with a less smart bidding 

strategy, those bidders will still be able to retain 

desirable resource bids.  

fω’ (≥1) specifies the strategic-specific threshold to 

classify a bidder with its current strategy ω’ as an 

aggressive bidder. Hence, a large fω’ value implies that 

fewer bidders will be selected and requested to use 

their next-best bidding strategy. Note that fω’ is ∞ if ω’ 

is the least smart strategy in the strategy space, so that 

the bidder with the least smart strategy is never 

regarded as an aggressive bidder. The Negotiation Unit 

is responsible for identifying aggressive bidders. A 

contract O(ω’,ω’’) comprises a request for conceding 

from current strategy ω’ and adopting the next-best 

strategy ω’’ together with an associated reward 

M(ω’,ω’’). This reward will be offered in subsequent 

iterations to sustain agent’s interest to continue to bid 

with strategy ω’’. The number of credits given in each 

subsequent iteration is computed from the estimated 

performance gap between bidding strategies ω’ and 

ω’’, normalized by the average performance gap of all 

such (ω’, ω’’) pairs.  

On the bidder side, the credits C
r
i owned by a bidder 

are subject to a depreciation over time (similar to the 

concept of time value of money), which serves to 

discourage a bidder to use its credits at the later 

iterations in order to stabilize the overall bidding 

behavior. Bidders may choose to either accept the 

contract and receive M(ω’,ω’’) credits in each subsequent 
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iteration by adopting the next-best strategy ω’’ or reject 

the contract at the expense of surrendering a number of 

J(ω’,ω’’) credits. In our approach, we set J(ω’,ω’’) < M(ω’,ω’’) 

due to currency depreciation over time. If a bidder has 

enough credits, it may even choose to break the 

contract at any iteration to go back to the previous 

smart bidding strategy ω’ by surrendering E(ω’,ω’’) 

credits, and in our approach, we set E(ω’,ω’’) > M(ω’,ω’’) 

since a number of iterations would have elapsed before 

the bidder takes this course of action. The contracts can 

be cascaded on a single bidder in the sense that the 

rewards will be cumulatively added. Hence, a bidder on 

a contract O(ω’,ω’’) can be offered another contract 

O(ω’’,ω’’’) if it is identified again as an aggressive bidder 

in a subsequent iteration, in which case the credits 

given to the bidder becomes M(ω’,ω’’)+ M(ω’’,ω’’’) if the 

new contract O(ω’’,ω’’’) is accepted. In our approach, a 

bidder with multiple contracts should always break the 

latest contract first if there are sufficient credits. 

If at least one bidder changes its bid generation 

strategy, then the auctioneer will backtrack with a 

probability R by broadcasting the resource prices of 

current iteration to all the bidders without applying 

price adjustment. R is function of the frequency of 

demand/supply violations across all time periods so far, 

such that a low frequency leads a higher possibility to 

backtrack. The whole cycle (from submission of bids 

by bidders to the announcement of resource price by 

auctioneer) will be repeated iteratively until the 

stopping criteria are reached. 

 

Consider bidder’s current strategy to be ω’’.  

• Action 1: Bidder is not identified as an aggressive 

bidder so no new contract is offered, and bidder 

keeps the current strategy. 

• Action 2: Bidder is identified as an aggressive 

bidder and a contract O(ω’’,ω’’’)  is offered; bidder 

surrenders credits J(ω’’,ω’’’) to reject the contract and 

continue with existing strategy. 

• Action 3: Bidder is identified as an aggressive 

bidder and a contract O(ω’’,ω’’’)  is offered; however 

bidder possesses fewer number of credits than 

J(ω’’,ω’’). Hence, bidder accepts the contract and 

move to next-best strategy. 

• Action 4: Bidder have more than E(ω’,ω’’) credits, by 

surrendering E(ω’,ω’’) credits, it breaks the contract 

O(ω’,ω’’) and moves back to previous strategy ω’. 

 

5. Experimental results 
 

For simplicity, we consider only two bid generation 

strategies for each bidder (Simulated Annealing or SA, 

which is the smart strategy, and Relax-and-Repair or 

R&R, the next-best or inferior one). 

Recall that each agent bids for the right to use 

various resource types in different time periods. The 

length of each time period is set to half an hour in our 

experiment. To model the scheduling of jobs more 

precisely, we further divide each time period into 60 

time units, each with length of 0.5 minutes. We model 

the QC, PM, YC processing times as well as the YC 

gantry time with real data obtained from a container 

terminal operator. The experiment is conducted with a 

variety of test cases: under normal resource supply 

conditions as well as those under tight resource 

conditions by scaling down resource capacity from 

those normal test cases. For the negotiation mechanism, 

we set the value of λ to 5, ftrigger to 1.05, fSA to 1, fR&R to 

∞. All experiments were performed on four Pentium-4 

3.0GHz processors each with 2 GB RAM. 

First, we present results on system wide 

performance. We compare our approach with three 

others – a centralized exact approach (adapted from 

Pritsker et al. [8]) solved using the CPLEX 9.0 C++ 

callable library, as well as two standard auction 

approaches where agents adopt specific bidding 

strategies. In the tables below, the respective approach 

is labeled with the bidding strategies used (being R&R 

or SA). Our approach is labeled as “Negotiated”.   

As the centralized approach is computationally 

intensive, we first experimented on test cases of small 

problem size (4 bidders, each with 20 jobs). Our results 

show that for small problem size, in all 5 test scenarios, 

our approach on average gives the best system-wide 

performance (i.e. sum of agent makespans) among 

various auction approaches. The exact mathematical 

model provides the optimal solution, which on average 

is about 20% better than results obtained using auctions 

(the loss of efficiency is to be expected, as shown in 

other papers in the literature). However, the 

computational time taken is prohibitively large and has 

big variance among the test cases. Even for a small 

instance, the computation time on average can take up 

to 7 hours for one test run, whereas all auction 

approaches on average take less than 20 seconds to 

complete (where each agent runs on one of the four 

PCs). 

 For larger problems, we compare the performance of 

the 3 auction approaches. To ensure fair comparison of 

performance against run time, we let each auction 

process run for 200 iterations. These test cases have up 

to 30 bidders, each of which has a number of load and 

discharge jobs ranging from 90 and 120. From the 

experiment results, we may observe our approach 

yields the best system-wide performance on average 
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within a reasonable computational budget, compared to 

the other standard auction approaches that adopted a 

single bidding strategy throughout the auction.   

What is perhaps more interesting is the study on the 

convergence of various auction schemes on two 

specific large tight resource cases (with 20% reduction 

of the normal resource capacity). Experimental results 

show that the SA approach produces no feasible 

solution in both test cases, whereas the R&R and 

Negotiated approaches are still able to give solutions in 

both test cases. The best solution and number of 

feasible solutions of both the R&R and Negotiated 

approaches are summarized in Tables 1 and 2 below. 

For Test Case 2, the feasible solution is given by the 

Negotiated approach at iteration 53 and by R&R at 

iteration 72. The feasible solutions for Test Case 1 are 

traced against the iterations in Figure 1.  Note that each 

point in the diagram indicates the time when a feasible 

solution is found. We observe that in both test cases, 

our approach finds a feasible solution in an earlier 

iteration compared with the R&R approach, and the 

quality of the feasible solutions are better than those 

obtained by R&R, even though R&R yields a greater 

number of feasible solutions.   

 
Table 1. System-wide performance (makespan) 

comparison of R&R and SA 

 R&R Negotiated 

Test Case 1 279.5 274.5 

Test Case 2 240.5 223.9 

Note: all makespans measured in terms of number of minutes 

 
Table 2. Number of feasible solutions obtained by 

various approaches 

 R&R SA Negotiated 

Test Case 1 16 0 6 

Test Case 2 1 0 1 
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Figure 1. Solution plot for test case 1 

 

6. Conclusion 
It is perhaps apt to end the paper with a philosophic 

note from Robert Axelrod’s remarkable book on the 

Iterated Prisoner’s Dilemma – that “in a non-zero sum 

setting, it does not always pay to be so clever… you 

benefit from the other player’s cooperation. The trick is 

to encourage that cooperation.”
1
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