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Adaptive In-Network Processing for Bandwidth

and Energy Constrained Mission-Oriented
Multi-hop Wireless Networks�

Sharanya Eswaran1, Matthew Johnson2, Archan Misra3,
and Thomas La Porta1

1 Networking and Security Research Center, Pennsylvania State University
2 The Graduate Center, City University of New York

3 Advanced Technology Solutions, Telcordia Technologies

Abstract. In-network processing, involving operations such as filtering,
compression and fusion, is widely used in sensor networks to reduce the
communication overhead. In many tactical and stream-oriented wireless
network applications, both link bandwidth and node energy are criti-
cally constrained resources and in-network processing itself imposes non-
negligible computing cost. In this work, we have developed a unified and
distributed closed-loop control framework that computes both a) the op-
timal level of sensor stream compression performed by a forwarding node,
and b) the best set of nodes where the stream processing operators should
be deployed. Our framework extends the Network Utility Maximization
(NUM) paradigm, where resource sharing among competing applications
is modeled as a form of distributed utility maximization. We also show
how our model can be adapted to more realistic cases, where in-network
compression may be varied only discretely, and where a fusion operation
cannot be fractionally distributed across multiple nodes.

1 Introduction

Many wireless sensor network (WSN) scenarios involve a set of long-running
applications, operating over relatively low rates of discrete-event data, and are
thus principally energy-constrained. Given that communication costs dominate
computing costs [13] for relatively simple event-processing operations (such as
averaging or finding the maximum of periodic temperature readings), in-network
processing has been proposed as a means to increase the network operational
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lifetime by reducing the volume of data transmitted to the sink (e.g., [9]). In this
approach, an application is modeled as a graph of stream operators, overlaid on
the physical wireless network topology.

Our focus is on a slightly different stream-oriented wireless networking sce-
nario, where several of these implicit assumptions do not hold. In particular,
many military applications involve the use of a multi-hop wireless network (com-
prising non-sensor nodes) for transporting relatively high-data rate streams from
a set of sophisticated sensor sources (e.g., video cameras, acoustic arrays and
short-range radar feeds) for use by relatively shorter-duration tactical applica-
tions (often called missions). For such environments, bandwidth is a critical
shared resource, and congestion control algorithms (e.g., [17]) must be em-
ployed to effectively share the wireless link bandwidth among the competing
missions. Moreover, the in-network operators for such stream-oriented data typ-
ically comprise more sophisticated DSP-based operations (e.g., MPEG compres-
sion or wavelet coefficient computation), for which the computational cost can-
not be ignored [5]. Accordingly, the application of in-network processing to such
sensor-based streaming applications must consider both bandwidth and energy
constraints and recognize that the energy cost consists of both communication
and computing overheads.

In the generalized model that we consider here, in-network processing may
be viewed as a tuning knob, with higher levels of in-network processing (e.g.,
higher compression or coarser quantization) resulting in higher information loss
for (or lower utility to) the application, but providing the benefit of reduced
network bandwidth consumption. This introduces a non-linear tradeoff in the
energy costs – in general, higher-levels of processing (e.g., more sophisticated
compression techniques) lead to reduced transmission energy overheads, but a
not-necessarily proportional increase in the computational energy [14].

In this paper, we first introduce and develop a distributed, closed-loop con-
trol framework that computes the optimal level of compression performed by a
forwarding node on sensor streams, taking into account both energy and band-
width constraints. In particular, we extend the Network Utility Maximization
(NUM) paradigm, pioneered in [1,2], to model resource sharing among competing
sensor-based applications as a form of distributed utility maximization. Initially,
the physical location of the stream operators is assumed to be pre-specified.
Subsequently, the physical location of the operator graph components is treated
as another decision variable, i.e., we enhance our optimization model to addi-
tionally determine the nodes where various in-network operations are performed.
We shall show how our technique can capture more realistic scenarios where
the quality of in-network processing may be varied only in discrete steps, and
where an operator may be instantiated only on a single node. Simulation-based
studies, using a packet-level protocol implementation of our algorithms, are then
used to demonstrate how “adaptive operator placement” and “variable-quality
in-network compression” can together result in a significant improvement (as
much as 39%) in overall mission utilities.
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The rest of this paper is organized as follows. In Section 2, we explain the
unique aspects of our problem; Section 3 briefly summarizes related work. Sec-
tion 4 presents the mathematical model and protocol for the case where the
location of the operators are specified a priori. Subsequently, Section 5 extends
the solution to consider the problem of optimal placement of operators; Section 6
describes extensions to the the base algorithms to incorporate the real-life inte-
gral constraints. In Section 7, we present our simulation results. Finally, Section 8
concludes the paper.

2 The General Framework of Variable-Quality
In-Network Processing and Dynamic Operator
Placement

We consider two logically distinct in-network processing operations, compression
and fusion:

Compression: The downstream transmission rate of most stream-oriented data
can be reduced by the application of appropriate compression algorithms, both
lossless and lossy. For example, an MPEG-4 (or higher standards, such as MPEG-
21) video stream can be compressed to varying data rates. Compression may be
performed independently at every forwarding node; conceptually, compression
changes the quality (rate) of the output data, but not the data type.

Fusion: In contrast to compression, fusion may be viewed as a process of either
combining or correlating data from multiple separate streams (e.g., superimposi-
tion of audio and video feeds) and/or altering the ‘type’ of a single data stream.
An example of ‘type’ alteration involves the processing of an audio stream to
extract only the ‘talk spurts’ from the signal.

We thus define an operator graph as a set of fusion operators. An operator
placement algorithm maps each of the nodes of the operator graph to a subset
of the forwarding nodes in the network; compression may then be viewed as an
implicit data reduction operator permitted at any of the physical nodes lying
between two consecutive components of the ‘logical’ operator graph.

The problem of resource-aware in-network processing was studied in [12],
where each individual operator was assumed to be immutable (each operator
being characterized by a fixed ratio between its output and input data rates)
and mapped to a pre-defined forwarding node. Separately, [5] considered the
communication+computing cost constraint in the absence of in-network pro-
cessing. An obvious extension of these frameworks is to allow the placement of
the stream processing operators to be a decision variable as well. Prior work on
fusion operator placement (such as [6,7,8,9,10,11,12]) treats it as a stand-alone
problem, where the objective is to place more selective operators closer to the
data sources, without considering the interaction with variable data compression
performed at intermediate nodes.

Prior work (such as [5]) also assumes a relatively simple scalar relation-
ship between both computational and communication energy overheads and
the incoming stream data rate. Many compression algorithms are, however,
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characterized by a non-linear energy-vs-compressibility curve, with the energy
required for compression increasing dramatically when the ratio of output to
input data rates falls below a certain threshold [18].

Based on the above discussion, the key new aspects of our problem formulation
can be summarized as follows:

1. We consider the impact of variable quality compression of sensor streams,
potentially performed by all forwarding nodes, on the capacity constraints
and factor in the non-linear relationship between computational and com-
munication energy overheads.

2. We also explicitly factor in the effect of such variable quality compression on
the operator placement problem, and develop a solution that jointly selects
both the location of fusion operators and the degree of compression that
maximize cumulative system utility.

To solve this problem, we shall develop a NUM-based optimization framework
and a fully-distributed protocol that seeks to jointly optimize the following free
variables: i) Source Rate, x: the rate at which each sensor source transmits
data, ii) Compression Factor, l: the level of compression, i.e., ratio of output
rate to incoming rate, taking place at each forwarding node, and iii) Operator
placement: the optimal node locations at which fusion operations take place.

3 Other Related Work

The classical NUM framework [1,2] was recently extended in [17] to a more gen-
eral WSN environment, where individual missions derive their utility from a com-
posite set of sensors, and intermediate nodes use link-layer multicast to forward
sensor data downstream to multiple subscribing missions. In this WSN-centric
model (referred to as WSN-NUM), the optimization problem is formulated as:

maximize

∑

m∈M

Um(Xm) subject to

∑

∀(k,s)∈q

xs

ck,s
≤ 1, ∀q ∈ Q,

where q is one of the set (Q) of all maximal cliques in the conflict graph; Um(Xm)
represents the utility function of mission m (M being the set of all missions) as
a function of the vector of rates associated with the set of sensors S, and ck,s is
the transmission rate used by node k during the link-layer broadcast of the data
from sensor s. Based on this new model, a sensor (source) s adapts its rate as:

d

dt
xs(t) = κ(

∑

m∈Miss(s)

wms(t) − xs(t)
∑

∀q∈Path(s)

∑

∀(k,s)∈q

μq(t)
ck,s

) (1)

where μq(t) (the ‘cost’ per bit charged by each forwarding clique) is given as
μq(t) = (

∑
∀(k,s)∈q

xs(t)
ck,s

− 1 + ε)+/ε2. Each mission (we assume that all the
streams for a single mission are destined to a single ‘sink’ node) adapts its
‘willingness to pay’ term wms for sensor s based on the source rates and its
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Table 1. Most Common Mathematical Symbols

M Set of all missions P k
max Max power budget at node k.

S Total number of sources P k
recv Power consumed at node k by

set(m) Set of sources used by mission m data reception

Miss(s) Set of missions using flow s P k
trans Power consumed at node k by

(directly or fused) data transmission

Path(s) Multicast route for flow s (raw or P k
comp Power consumed at node k by

fused) from its source to Miss(s) data processing

cks Transmission rate at node k for flow s P k
tot P k

recv + P k
trans + P k

comp

xrec
s Received rate for flow s at a mission αk

recv , Power consumed per bit of received,

(k, s) The transmission of flow s at node k αk
trans, transmitted and

xin(s, k) Incoming rate at node k for flow s αk
comp compressed data at node k

xout(s, k) Outgoing rate for flow s from node k lk,s Compression factor at node k for flow s

own utility function Um(.), according to wms(t) = xs(t)∂Um

∂xs
. The cost at each

clique is cumulatively added along the forwarding nodes and piggy-backed with
the data. The missions send this cost and willingness-to-pay as feedback to their
sources. Each source uses this information to determine its rate for the next
iteration, according to Eq. (1).

This notion of utility-based adaptation under in-network stream processing
was first explored in [15] for wired networks, where each sensor flow is assumed
to pass through an arbitrary processing graph, with each operator on the graph
performing a fixed fractional reduction (or increase) in the output rate. In the
absence of any constraints on the total power consumption at a node, the prob-
lem of optimal in-network processing and rate adaptation decomposes into the
multi-rate multicasting problem. This problem was studied for multi-hop wire-
less networks in [16], where a back-pressure based solution was developed. A data
gathering algorithm with tunable compression for communication and computa-
tion efficiency was developed in [18], but it did not consider the aspects of joint
utilities, congestion control and operator placement.

4 The Network Model and the Optimization Problem

We first explain the process by which nodes select the optimal level of stream
compression, assuming that the positions of the components of the operator
graphs are pre-specified.

4.1 Assumptions

Our formulation and solution makes the following assumptions: (i) Each sensor’s
data flows over a pre-defined multicast tree to its set of subscribing sink nodes
(each sink representing a mission). (ii) A fused stream cannot be subsequently
disaggregated; accordingly fusion of two streams at a node is possible only if
all downstream subscribers (for each of the two sensors) require the same fused
information. (iii) Each sensor’s flow is completely elastic, i.e., each node can
adjust its transmission rate xs by any arbitrary amount, as long as xs > 0. (iv)
The computational power required for compression increases with decrease in
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the compression factor (i.e., ratio of transmitted rate to incoming rate). (v) A
fusion or compression operation performed by an intermediate node is applied
identically to the flow on each of the outgoing links.

4.2 The Model

Each mission’s utility is modeled as a joint function of the rate that it receives
from multiple sensors. The utility of a mission m is a function of the rate at which
it receives data, denoted as Um({xrec

s }s∈set(m)), where xrec
s is the received rate

of flow s and set(m) is the set of sensors that are sources for m. U(.) is assumed
to be a jointly-concave function of the rates of all incoming flows. Table (1) lists
the common mathematical symbols used in this paper.

The key feature of our model is to permit each intermediate node to perform
a ‘variable level of compression’, denoted as lk,s (where 0 < lk,s ≤ 1), that
effectively alters the rate of a flow that is transmitted at node k and originated
at source s. lk,s determines the ratio of the outgoing flow rate to the incoming
flow rate for sensor s at node k, i.e., lks = xout(s,k)

xin(s,k) . The variable compression level
l effectively acts as a ‘tuning knob’, allowing a forwarding node to modify the
outgoing data rate in a manner that balances its competing computational and
communication energy costs, and satisfies the capacity constraints. Intuitively,
a congested network benefits from more aggressive compression. Conversely, a
network operating at low link utilization should have little need for compression
unless its transmission energy cost is too high.

The centralized model for this problem of utility maximization with adaptive
in-network processing can be written as: NUM-INP(U,C,P):

maximize
∑

m∈M

Um({xrec
s }s∈set(m)) − δ

∑

∀nodes,k

P k
tot, subject to (2)

i) Capacity Constraint:
∑

∀(k,i)∈q

xout(i, k)
cki

≤ 1, ∀q ∈ set of cliques, Q (3)

ii) Energy Constraint: P k
tot ≤ P k

max, ∀nodes, k (4)
where P k

tot = P k
rec + P k

trans + P k
comp, 0 ≤ δ ≤ 1 and xs ≥ 0 ∀s

The objective is to maximize the total utility of all missions, subject to an
“energy” penalty function δ

∑
∀nodes,k P k

tot, which ensures a unique solution by
creating a convex optimization objective. δ (between 0 and 1) determines the
weightage given to power consumption (vs. utility); in general, the penalty func-
tion can be the sum of any convex functions of P k

tot. The capacity and energy
constraints are explained as follows:

Capacity Constraint: The capacity constraint in Eq. (3) states that the to-
tal air-time fractions of all interfering transmissions (i.e., all transmissions in a
maximal clique of the conflict graph) must not exceed unity. Please see [17] for
further details.

Energy Constraint: The energy constraint in Eq. (4) states that the total power
consumed at a node k due to data reception (P k

recv), transmission (P k
trans) and
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computation including both compression and fusion (if a fusion node) (P k
comp)

must not exceed the maximum power budget at node k (P k
max). As is common

in literature [3,4,5], we assume a linear energy model as follows:

P k
recv = αk

recv

∑

∀flows, s at k

xin(s, k); P k
trans = αk

trans

∑

∀flowss at k

xout(s, k);

If k is not a fusion point: P k
comp = αk

comp

∑

∀flows, s at k

xin(s, k)(
1

lks
− 1);

where 0 < lks ≤ 1. If k is a fusion point, there is an additional computational cost
of αk

comp

∑
∀flows,f fused at k

xout(f,k)
lkf

incurred by the fusion process. Without
loss of generality, we assume that this cost is proportional to the rate of the
fused flow, and that the cost per bit is the same for compression and fusion.

4.3 Distributed Solution to the Optimization Problem

In order to solve this optimization problem in a distributed manner, we derive
an iterative, gradient-based solution for the model shown in Eq. (2)-(4). We first
make the problem unconstrained by taking Lagrangian as shown below:

maximize
∑

m∈M

Um({xrec
s }s∈set(m)) − δ

∑

∀nodes,k

P k
tot −

∑

∀cliques,q

μq(
∑

∀(k,s)∈q

xout(s, k)
cks

− 1) −
∑

∀nodes,k

ηk(P k
tot − P k

max)

where μq and ηk are Lagrangian multipliers. Using the first-order necessary con-
ditions for gradients with respect to xs and lk,s, we get the following equations:

d

dt
xs(t)=κxs(

∑

m∈Miss(s)

∂Um

∂xs

−
∑

∀q∈P ath(s)

μq

∑

∀(k,s)∈q

∂xout(s, k)

∂xsCks

−
∑

∀k∈P ath(s)

(ηk + δ)
∂P k

tot

∂xs

)(5)

d

dt
lk,i(t)=κlk,i(

∑

m∈Miss(i)

∂Um

∂lk,i

−
∑

∀q∈P ath(i)

μq

∑

∀(v,i)∈q

∂xout(i, v)

∂lk,iCvi
−

∑

∀v∈P ath(i)

(ηv + δ)
∂P v

tot

∂lk,i

)(6)

where, μq is defined as the shadow cost of congestion charged at each clique q

and is given by μq(t) = (
∑

∀(k,s)∈q
xs(t)
ck,s

− 1 + ε)+/εδ1

Similarly, ηk is the shadow cost of energy charged at each node k and is given
by ηk(t) = ( P k

tot(t)
P k

max(t)
− 1 + ε′)+/ε′δ2 where δ1 and δ2 are constants greater than

0. ε and ε′ (0 ≤ ε, ε′ ≤ 1) determine the tolerance margin [17].
Eq. (5) provides the algorithm by which the source sensors adjust their rates

at each iteration; Eq. (6) shows how at each node, the degree of compression
for each flow that the node forwards is varied in each iteration. We observe
the following: (i) Source rate xs depends on the rates at which the downstream
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nodes forward either this source’s flow directly (when there is no fusion), or
any flow derived from this source’s flow (when there is fusion). Similarly, it also
depends on the power consumed at all downstream nodes that forward either
the source’s direct flow or a flow derived (via fusion) from this source. (ii) The
compression levels at the forwarding nodes depend on the forwarding rates and
power consumption at all downstream nodes that receive this flow (either raw
or fused).

When the source and forwarding rates are independently adjusted according
to Eq. (5) and (6), the network converges at the optimal global utility, with
penalties paid for congestion and power consumption. Please see [19] for proof.

4.4 Protocol-Level Implementation of the NUM Algorithm

The biggest challenge in building a fully-distributed and localized protocol for
this model arises from the presence of fusion operators at specific intermediate
WSN nodes. The stream that a mission receives is now obtained by fusing one
or more flows from set(m) according to a series of operators, as defined by the
operator graph. An individual operator f can be viewed as a function that takes
as input the rates of the flows to be fused, and gives as output the rate of the
resulting fused flow.

Hence, the utility of a mission m is a joint function of rates xrec
i , ∀i ∈ set

of flows received at m, with some of these flows being ‘raw’ flows (potentially
compressed) from the corresponding sensor, and other flows being ‘derived’,
through the application of a fusion operator at intermediate nodes (which act as
the ‘source’ for the derived flow). While Eq. (5) refers only to rate adjustment
at the ‘raw’ sources (i.e., sensors), the flow i in Eq. (6) may refer to either a raw
or derived flow. Hence the distributed formulation in Eq. (5) and (6) is sufficient
for deriving the optimal rates for both ‘raw’ and ‘derived’ flows.

From a protocol-perspective, however, the end-to-end feedback mechanism
used in [17], whereby the sinks simply convey their willingness to pay directly
to the source sensors, needs to be modified to reflect the inability of a sink to
directly compute its ‘willingness to pay’ for a source that has passed through
intermediate fusion points. For example, if a stream from source s is transformed

Fig. 1. Node A
fuses flows r, s;
transmits fused
flow f

Fig. 2. Feedback messages received
and propagated by A

Fig. 3. Computation of
lA,f according to Eq. (6)
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twice by operators f and g before reaching a mission m, the mission is unable
to compute its marginal utility ∂Um

∂xs
, because all it knows is the rate of the

stream of type “g • f”, which contributes to its utility; it is unaware of both
the source rate of s and the details of the fusion operations f and g. Here
g • f refers to the composition function of the form g(f(xs, ...)). The solution in
this case is to use the “chain rule” for partial derivatives and compute ∂Um

∂xs
as

∂Um

∂g(f(xs,...))rec ∗ ∂g(f(xs,...))
∂f(xs,...) ∗ ∂f(xs,...)

∂xs
, where the fusion point for g and f provide

the second and third terms, respectively.
Accordingly, in our NUM-INP protocol, the forward path carries only the

data, but no meta-data. Nodes propagate the marginal utility, congestion cost
and energy cost as metadata in signaling messages carried on the reverse for-
warding path; nodes use these feedback messages to compute the compression
levels and the source rates for the next iteration, in addition to updating and
propagating them upstream.

For each stream r that a mission m receives, it sends a feedback (periodi-
cally), to the node that forwarded this stream. The feedback message consists
of: i) A marginal utility MU field, where the mission enters its marginal utility
with respect to the received flow rate ( ∂U

∂xrec
s

); this is used for computing the
‘willingness-to-pay’ according to the chain rule. ii) A 4-tuple consisting of the
fields flow name (the ID of the ‘flow’), rate information (RI) (the rate at which
the mission receives the flow, power information (PI) (the energy cost attributed
to this flow) and congestion information (CI) (the normalized congestion cost
at all the cliques that this node belongs to).

If an intermediate node was a branching point on the multicast forwarding
tree, it collects the feedback from all its child nodes and combines them into a
single feedback message.

The cost fields are updated at each node in the reverse path, to compute the
cumulative cost along the path, and the fusion points make additional modifi-
cations to capture the effect of fusion operation (according to the chain rule).
For example, when a forwarding node A receives a feedback message for flow f
from a downstream node, it adds its own energy cost for f to the PI field (i.e.,
PI = PI + (ηA + δ)PA

tot(f)) and its own congestion cost for f to the CI field
(i.e., CI = CI +

∑
∀q:(A,f)∈q μq

xout(f,A)
CA,f

) before passing the feedback message
to its upstream neighbor. If A is also the fusion point where the fused flow f
originates, then all the fields in the table are further multiplied by the term

lA,f

xout(f,A) ∗ xin(s, A) ∗ ∂f
∂xin(s,A) , before propagating the feedback upstream. Us-

ing the meta-data in the feedback message, the forwarding nodes and source
nodes compute the compression levels and source rates for the next iteration,
according to Eq. (5) and (6). Fig. (1)-(3) illustrate the propagation of feed-
back and computation of compression level for a simple example. In Fig. (2),
v = r in the feedback to r and v = s in the one to s; p1 = (ηA + δ)PA

tot(f),
c1 =

∑
∀q:(A,f)∈q μq

xout(f,A)
CA,f

.
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5 Adaptive Operator Placement

In the previous section, we assumed that the locations of the fusion operators
are fixed and given a priori. In this section, we describe how the NUM-INP
framework can be enhanced to additionally determine the optimal placement
of the fusion operators. Ideally, the communication cost is lowest if a fusion
operation takes place as close to the sources as possible. However, due to energy
constraints, nodes closer to the source may not be able to perform the fusion
operation; in such situations, higher utility may be obtained by pushing the
operator to a node downstream. Our approach is to integrate operator placement
into the NUM framework (in parallel to source rate adaptation and adaptive
compression quality), albeit as an “outer” optimization loop that occurs at a
slower time-scale.

With the help of an operator graph, the forwarding trees and the mission
subscription information, the nodes in a network can determine if they are
candidate-locations for a fusion operator. For example, for the simplistic net-
work shown in Fig. (4), where mission M requires the fused flow, f(xs1 , xs2), the
fusion can take place at node A or B or C. We assume that each node runs a
preliminary protocol (details of which are not relevant to this work) to determine
which fusion operations can be performed at that node. We also assume that the
fusion operations can be expressed as functions of the rates of their input flows.

Fig. 4.
Example
network

Our approach is to allow all candidate locations to perform fusion
on an arbitrary fraction of the input streams, and transmit the rest
as raw streams. This fraction is variable and is adjusted iteratively
in a NUM-based control loop, and it converges at the optimal value.
Let k be a representative candidate node for the fusion operation
f(xs1 , xs2 , xs3 , ...xsn) that fuses flows F = {s1, s2, s3, ..., sn}. Let
θk

f,si
(where si ∈ F ) be the fraction (lying between 0 and 1) of the

input flow si that is fused at node k. The rest of the input flow is
passed on downstream, where the next candidate node fuses all or a
fraction of it, and so on. The mission sink is always a candidate for
all fusion operators, and can absorb any residual “unfused” stream
data.

For the example shown in Fig. (4), node A fuses according to f(θA
f,s1xs1 ,

θA
f,s2xs2 ) and forwards input flows s1, s2 and the fused flow, fA at rates lA,s1(1−

θA
f,s1

)xs1 , lA,s2(1− θA
f,s2

)xs2 and lA,ff(θA
f,s1

xs1 , θ
A
f,s2

xs2), respectively, where lk,s

refers to the compression factor for flow s at node k. Subsequently, node B for-
wards the input flows at rate lB,slA,s(1 − θA

f,s)(1 − θB
f,s)xs, where s ∈ {s1, s2},

along with flow fA (i.e., flow fused at A) compressed at lB,f . It also forwards
the new ‘sub-flow’ fB fused at B at rate lB,ff(lA,s1(1 − θA

f,s1
)θB

f,s1
xs1 , lA,s2(1 −

θA
f,s2

)θB
f,s2

xs2). If the optimal value of θ after convergence is 1 at a node, then that
node is the unique optimal location for fusion. It is also possible that the optimal
configuration is for multiple nodes to share the responsibility of fusion (i.e., two
or more of the candidate nodes will have 0 < θ < 1). Such ‘fractional fusion’ can
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be interpreted as a process of “time-sharing” the responsibility of fusion across
the candidate nodes.

The generic model in Eq. (2)-(4) holds for this problem too; the source rates
and compression factors continue to be adjusted according to Eq. (5) and Eq. (6),
respectively. By taking the Lagrangian of the “θ-enhanced” NUM objective, we
derive the θ-adjustment algorithm for a fusion operation op to be: d

dtθ
k
op,s =

κθ
k
op,s(

∑

m∈Miss(s)

∂Um

∂θk
op,s

−
∑

∀q∈P ath(s)

μq

∑

∀(v,s)∈q

∂xout(s, v)

∂θk
op,sCvs

−
∑

∀v∈P ath(s)

(ηv + δ)
∂P v

tot

∂θk
op,s

) (7)

We observe from Eq. (7) that the θs at candidate fusion points depend on the
forwarding rates and power consumption at all downstream nodes that receive
the flows, either directly or after fusion, from this node. It must be noted that
in this problem, the values of xin, xout, as well as the nodes in the sets path(i)
must now be computed depending on the values of θ’s. We prove in [19] that
this algorithm converges at the optimal solution.

5.1 Protocol-Level Modifications for Operator Placement

The introduction of adaptive operator placement requires modifications to the
signaling mechanism along the reverse forwarding path. This is because, a mis-
sion subscribing to a fused flow now receives multiple ‘sub-flows’, each fused at
a different candidate location, along with the original flows (to be fused directly
at the mission). Hence, the feedback message now consists of a table of 4-tuples,
called the Feedback Information Table (FIT), instead of a single entry. The fields
in the 4-tuple remain the same as described in Section 4.4 and there is an entry
(row) in FIT corresponding to each sub-flow received at the mission. The nodes
along the reverse-forwarding path update the cost information for each of the
sub-flows, and the fusion-point for each sub-flow is responsible for augmenting
the meta-data with the chain-rule information. In order to reduce the signaling
overhead, we maintain a special row in FIT, called the cumulative entry for each
original flow (i.e., each input to the fusion operation); at each candidate fusion
point, the meta-data in the row corresponding to its sub-flow is added to the
cumulative entries and the row is removed. Thus as the feedback message prop-
agates upwards, the FIT reduces in size, with all its entries eventually collapsing
to the cumulative rows.

In the example network of Fig. (4), mission m receives flows fused at A, B, C
and also the raw streams s1 and s2 (if the fusion points do not fuse all the data).
Hence, m sends feedback to C with marginal utility as ∂Um

∂(xfA+xfB +xfC +f(xs1,xs2))

(where xfk refers to the rate of flow of type f that is fused at node k), and FIT
with five rows, corresponding to s1, s2, fA, fB and fC . When C receives this
message, it does the following: (i) updates congestion and energy cost for all
the sub-flows, (ii) adds the rate and cost information for fC to the correspond-
ing fields in the cumulative entry and (iii) removes row fC . Subsequently nodes
B and A update the message in a similar fashion, such that the feedback that
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arrives at source s1 consists of only two rows in FIT: s1 and cumulatives1 (and
similarly for s2). Please see [19] for a more detailed example.

The forwarding nodes use the feedback message to compute the θ and com-
pression values for the next iteration, and the source nodes compute the new
flow rates. The pseudo-code for this adaptation process is given in [19]. We note
that only minimal amount of information is signaled and the algorithms have
been devised such that Eq. (5, 6, 7) can be computed precisely from just this
minimal meta-data and locally available information.

6 NUM Modifications to Address Practical Constraints

For mathematical tractability, the NUM-based technique for “optimal” variable
in-network compression and operator placement requires both these processes
to be represented as continuous variables. These assumptions are likely to be
violated in practice. We now describe how the NUM algorithm can be modified
to address both these practical limitations.

Discrete Compression Levels: Most of the commonly used compression tech-
niques provide for multiple, but discrete, compression levels. For instance, gzip
provides 9 levels of compression, JPEG allows a range of 0 to 100 levels, and
MP3 allows compression ratios ranging from 12:1 to 10:1. The discontinuity aris-
ing from such integral choices prevents the direct application of NUM’s gradient
search techniques and in fact, makes the problem NP-hard [19]. Our NUM- based
heuristic is to run the protocols using a continuous compression model, but sim-
ply map the computed lk,s value to the nearest valid discrete compression level
at each iteration.

Solitary Operator Location: Our theoretical model assumes that a particu-
lar fusion operator may be “split” (in different fractions) across multiple nodes.
In practice, many operators may not be conducive to such fractional splitting
over infinitesimal time-scales. In such cases, our heuristic solution is to assign
the responsibility for fusion to the node with the “largest θ”. A heuristic based
approach is required because the problem of determining the best single loca-
tion for a fusion operator is an NP-hard combinatorial problem as well [19].
The selection of this single fusion point may be performed at each iteration of
the NUM θ-loop (Eq. (7)). To achieve this, the highest cumulative θ value of
downstream nodes is also propagated up the reverse forwarding path; the most
upstream node among the fusion candidates can then designate the node with
the most fusion responsibility as the sole fusion point. However, to ensure rapid
convergence, the other terms (in the Feedback Information Table) carried in the
signaling messages are based on the use of the ‘virtual’ continuous-θ values.

7 Evaluation

In this section we evaluate the performance of the NUM-INP protocol based
on a packet-level simulation on an 802.11-based multi-hop wireless network, us-
ing the discrete-event simulator Qualnet [20]. The values of αk

recv, αk
trans and
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αk
comp are taken as 0.75μJ/bit, 0.6μJ/bit and 0.54μJ/bit, based on the data

from [14].
Utility Gain Due to In-network Processing: Fig. (5) illustrates the rates ob-

tained from adaptive in-network compression on a sample simulated topology,
where the flows from sources 1 and 2 are fused at node 3 and the fused flow is
forwarded to missions A − H . The compression factor and transmission rate at
each node, and the rate at which each mission receives data (xrec) are shown
in the figure. The utility of a mission is of the form γln(1 + xrec). For missions
A and B, γ = 100; for missions C and D γ = 20; for missions E and F γ = 1;
for missions G and H γ = 0.25. As illustrated, in our model, missions that have
higher utility receive the fused flow at higher data rate. On the contrary, if there
is no in-network compression, then all the missions receive at a uniform rate of
11.57 kbps. The values shown within parentheses are the compression factors
and rates when only four discrete compression levels (0.25, 0.5, 0.75 and 1.0) are
allowed. We observe that the rates with discrete compression are fairly close to
the optimal values that can be achieved when the compression is a continuous-
valued variable.

Fig. (6) compares the utilities of a network under three cases: a) with only
source rate adaptation (according to WSN-NUM) but no in-network compres-
sion, b) optimal variable quality compression with pre-specified fusion locations
and c) with joint optimization of compression and operator placement. The sim-
ulated network consists of 100 nodes of random topology in a 1500m x 1500m
field. There are 25 missions and 25 sources and 15 fusion operations, whose ini-
tial locations are picked randomly from the sets of candidate locations (given
by operator task graph). We can see that with NUM-INP, the global utility of
the network is higher (by about 30%); the joint optimization of the operator
locations results in a further 18% gain in system utility.

Fig. 5. Illustration of adaptive in-network
compression with continuous and discrete
levels

Performance Scalability: Fig. (7)
shows the percentage gain in utility
achieved by NUM-INP protocol, com-
pared to simple source rate adapta-
tion (WSN-NUM), when the number
of missions and sources in the network
are varied. We see that the gain in-
creases with an increase in the num-
ber of competing missions and sensor
sources. We experimented with differ-
ent topologies and observed similar
results in all cases. The relative gain
with in-network processing is higher
when the number of missions is larger;
adaptive in-network compression and

fusion helps to alleviate congestion bottlenecks, while adhering to the energy con-
sumption constraints. We also tested the signaling overhead for different numbers
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of candidate nodes and fusion operations and the overhead was very low, in the
order of tens of bytes per second.

NUM-INP under “Realistic Constraints”: We study the impact of discrete
compression levels by computing the loss in overall utility as a function of the
number of discrete compression levels permitted. We map a compression factor
value to a particular level, depending on how many levels are available. For
example, when 10 levels of compression are allowed, we let level 1 = 0.1, level 2 =
0.2, and so on. Fig. (8) plots the system utility (normalized over the optimal
utility with continuous compressibility). We see that the utility is at least 95%
of the optimal for 10 or more number of discrete levels, but drops rapidly if the
number of distinct compression levels is very small.

Fig. 6. Impact of in-network pro-
cessing

Fig. (9) shows the normalized utility as a
function of the number of fusion operators,
when partial fusion is prohibited and fusion
occurs at a solitary node (as described in Sec-
tion 6). For each fusion operator, the number
of candidate nodes was randomly chosen to be
between 2 and 10. We see that the utility re-
mains close to the optimal even as the number
of in-network fusion operations is increased,
with only at most 5% loss in system utility. By
comparing this result to Fig. (6), where adap-
tive operator placement offers an additional
18% gain in utility, we see that joint optimiza-
tion of compression and operator placement is

beneficial, even if fractional operator placement is not permitted.

Fig. 7. Impact of number of
missions and sources

Fig. 8. Impact of discrete
compression levels

Fig. 9. Impact of single
node fusion

8 Conclusion

In this work, we have developed a utility-based protocol for adaptive in-network
processing, for wireless networks with streaming sensor sources, which maximizes
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the sum of mission utilities by jointly optimizing the source data rate, the degree
of stream compression and the location of fusion operators. Our protocol can
achieve up to 39% higher utility than pure source-rate adaptation, with only
modest signaling overhead. In ongoing work, we are extending this framework to
dynamically modify the level of in-network processing, taking network lifetime
objectives into account.
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