
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2005

Scheduling queries to improve the freshness of a
website
Haifeng LIU

Wee-Keong NG

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

DOI: https://doi.org/10.1023/b:wwwj.0000047378.69751.72

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIU, Haifeng; NG, Wee-Keong; and LIM, Ee Peng. Scheduling queries to improve the freshness of a website. (2005). World Wide Web.
8, (1), 61-90. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/78

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1023/b:wwwj.0000047378.69751.72
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

World Wide Web: Internet and Web Information Systems, 8, 61–90, 2005
 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Scheduling Queries to Improve the Freshness of a
Website

HAIFENG LIU, WEE-KEONG NG and EE-PENG LIM awkng@ntu.edu.sg
Centre for Advanced Information Systems, School of Computer Engineering, Nanyang Technological University,
Singapore 639798

Online version published in November 2004

Abstract

The World Wide Web is a new advertising medium that corporations use to increase their exposure to consumers.
Very large websites whose content is derived from a source database need to maintain a freshness that reflects
changes that are made to the base data. This issue is particularly significant for websites that present fast-changing
information such as stock-exchange information and product information. In this article, we formally define and
study the freshness of a website that is refreshed by a scheduled set of queries that fetch fresh data from the
databases. We propose several online-scheduling algorithms and compare the performance of the algorithms on
the freshness metric. We show that maximizing the freshness of a website is a NP-hard problem and that the
scheduling algorithm MiEF performs better than the other proposed algorithms. Our conclusion is verified by
empirical results.

Keywords: Internet data management, view maintenance, query optimization, hard real-time scheduling

1. Introduction

The popularity of the World Wide Web (WWW) has made it a prime vehicle for disseminat-
ing information. More and more corporations and individuals are advertising themselves
through websites. The relevance of database concepts to the problems of managing and
querying Web information has led to a significant body of recent research addressing these
problems. Three main classes of tasks related to information management on the WWW
were proposed in [2]: modeling and querying the Web, extracting and integrating infor-
mation, constructing a website and restructuring a website. Usually, all Web pages can be
classified into three categories:

• Static. Static Web pages present information that either does not change over time or
rarely changes. Examples are personal home pages.

• Dynamic. Dynamic Web pages are dynamically computed, usually with a CGI script
at run-time when a user submits a query form with the required input parameters. The
content of such Web pages varies according to various input parameters.

• Semidynamic. Semidynamic Web pages have their contents derived from some source
databases, and they change in response to updates to the source databases. Semidynamic
pages remain static and do not change automatically unless a user explicitly initiates a

62 LIU ET AL.

refresh request. A refresh request is mostly initiated due to updates to the base data. An
example of this kind of page can be found at http://www.fish.com.sg where a
list of stock-exchange information is refreshed frequently in response to updates to base
data.

As the World Wide Web continues its rapid growth, the number of semidynamic Web
pages with information extracted from source databases will also increase. A crucial prob-
lem arises when base data change at a high frequency and a large set of semidynamic
pages must be kept up-to-date in response to the changes, since nobody is interested in
stale data on the Web (an obsolete stock price may lead an investor relying on the Web to
take a loss). We have proposed a generic model for timely refreshing semidynamic web-
sites in [14], where a Web cell is defined as a portion of a Web page that is derived by the
result of a refresh query against some base tables that change at specific frequencies. To
keep a data-intensive website up-to-date, we design a cellbase that materializes the Web
cells hosted on the website and schedule the set of refresh queries to update the cells in the
cellbase. The website is considered fresh only if its cellbase can be kept up-to-date. More
details can be found in [14].

This article focuses on formally measuring and studying the freshness of a cellbase such
that the website can be kept the most up-to-date when the proper scheduling algorithm
is choosen, since different algorithms can be applied to schedule refresh queries to pull
fresh data from source databases. Another approach to improving cellbase freshness by
optimizing the refresh query set is discussed in [16].

The article is organized as follows. In Section 2 we introduce some basic notations and
definitions that are used throughout the article. We define and propose several algorithms
for scheduling the executions of refresh queries in Section 3. In Section 4, we formally
define metric cellbase freshness and present a few of its basic properties. We briefly discuss
how the feasibility of a refresh-query set and different- scheduling algorithm affect cellbase
freshness in Section 5. Section 6 presents a comparison study of the scheduling algorithms
on cellbase freshness, and the analytical results are verified by the simulation results. We
review related work in Section 7 and draw conclusions in Section 8.

2. Basic definitions

We formally define basic terms in this section.

Definition 1 (Feature table). For a Web cell ci derived from a set of base tables Ti , we
refer to one of its base table b

f
i as its feature table, where b

f
i ∈ Ti and b

f
i has the minimal

update period among all base tables in Ti .

Although the contents of a cell are affected by the updates of all its base tables, we focus
on the update pattern of the feature table only. We justify this in Theorem 1 later.

Definition 2 (Update pattern of feature table). Let b
f
i be the feature table of cell ci . If b

f
i

is updated at a constant period Ui , the duration of each update is assumed to be the same.

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 63

Figure 1. Periodical-update pattern of the feature table of cell ci .

Assuming that the first update completes at time ti,1, we know the time instants when the
subsequent updates complete (ti,j is the completion time of the j th update):

ti,2 = ti,1 + Ui,

ti,3 = ti,1 + 2Ui,

...

ti,j = ti,1 + Ui(j − 1),

...

(1)

Therefore, the tuple 〈Ui, ti,1〉 is the set of all time instants when updates happen at the
feature table b

f
i , and we denote the tuple as the update pattern of b

f
i .

When feature table b
f
i of cell ci is updated with update pattern 〈Ui, ti,1〉, the time axis is

divided into time intervals of equal length Ui by the sequence of time instants when updates
finish at the feature table. We refer to each such time interval as the update interval of b

f
i ,

which corresponds to the refresh interval of ci (Figure 1).

Definition 3 (Refresh interval). A refresh interval of cell ci is the time interval between
two consecutive completions of a feature table update. Clearly, the length of each refresh
interval of ci is the same as the update period Ui of feature table b

f
i .

A refresh request for a cell is raised whenever its feature table has finished one update.
We denote ri,j as the j th refresh request for cell ci raised at time ti,j , when ci’s j th update
finishes. Thus, a refresh interval of a cell is identified by the time interval between two
consecutively raised refresh requests of the cell. Since all refresh intervals have the same
length as Ui , we also refer to Ui as the refresh period of cell ci .

Generally, the freshness of a cell is affected by the updates on all its base tables. A cell
is kept fresh if its refresh query always fetches the newest data from base tables before
the next update on the base tables. We give a formal definition of freshness of a cell in
Section 4. However, among the set of base tables of one cell, it suffices to keep track of
only the updates of the feature table as expressed by the following theorem.

64 LIU ET AL.

Theorem 1. If there is one refresh query performed within each update interval of the
feature table of a cell, then there is at least one refresh query performed within each update
interval of the other base tables of the cell.

The proof is straightforward as all base tables are updated periodically and the feature
table has the minimum update period.

Definition 4 (Timely refresh). Let qi be the refresh query of the cell ci . If one execution
of qi begins and ends within each refresh interval of ci , we say that qi timely refreshes ci .

If ci is timely refreshed by qi , then we say that all refresh requests of ci have been timely
satisfied. Otherwise, for a refresh request ri,j raised at time ti,j , if no execution of qi is
performed within the interval [ti,j , ti,j + Ui], we say that ri,j has been missed and is not
timely satisfied. Note that the deadline for ri,j is the time instant ti,j+1 = ti,j + Ui , when
the next request ri,j+1 is raised. We say that a refresh request ri,j is pending at time t if
t � ti,j+1 − Eqi and no query qi is executed during [ti,j , t], where Eqi is the execution
time of qi . After time instant ti,j+1 −Eqi , the pending request ri,j will be discarded by the
scheduler and is missed.

Definition 5 (Refresh pattern). We call the update pattern 〈Ui, ti,1〉 of the feature table of
cell ci the refresh pattern of ci .

Since we are concerned with refreshing a set of cells materialized in a cellbase, we now
define some concepts associated with a cell set. Let C = {c1, c2, . . . , cn} be the set of cells
in a cellbase where for each ci , i�1�n, there exists a refresh query qi that takes Eqi time
units to execute to yield ci . Let �(qi) denote the result set of query qi . Then �(qi) = {ci},
i � 1 �n, is singleton, and we say that qi is atomic. We define a complex refresh query p

as one whose result set has more than one elements (that is, |�(p)| � 1) and that takes Ep

time units to execute. We emphasize here that the result of an atomic refresh query can be
used to refresh only one cell, whereas the result of a complex query can be decomposed
and distributed to refresh multiple cells (that is, the result of the complex query covers
these cells). In this work, we are not concerned with the details of how the result of a
complex query is distributed to multiple cells. We assume that such a distribution can be
performed with negligible cost.

Definition 6 (Candidate-query set). Given a cell set C and a query set Q(C), if the result
of Q(C) covers all cells in C—that is, �(Q(C)) = ⋃

q∈Q(C) �(q) = C—we say that
Q(C) is a candidate-query set for C.

We refer to the initial refresh-query set Q0(C) = {q1, q2, . . . , qn} of C, where qi’s
are atomic as a trivial candidate-query set for C. To save database access and to reduce
processor usage, the candidate-query set should include as few elements as possible. Since
the result of one complex query may cover multiple cells, a candidate-query set involving

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 65

complex queries may have fewer elements than a trivial candidate-query set. We discuss
candidate-query sets that include complex queries in [16].

Definition 7 (Refresh-pattern set). If the collection of refresh patterns of all cells in C can
be represented as R(C) = {ri | ri = 〈Ui, ti,1〉, i � 1 � n}, then we say that R(C) is the
refresh-pattern set for C.

3. Scheduling algorithm

In this work, a scheduling algorithm is a set of rules that determine the refresh query to
be executed at a particular moment. Given a set C of cells with refresh-pattern set R(C)

and candidate-query set Q(C), the output of a scheduling algorithm is a schedule. Let N
+

denote the set of nonnegative numbers, and let R denote the set of refresh-requests sets.
A schedule is defined as a mapping S :R × N

+ → N
+ such that for each t ∈ N

+ when
processor is idle and Rt ∈ R is the set of pending refresh requests at time t , S(Rt , t)

= i means that query qi is scheduled at time t to satisfy the request ri,j ∈ Rt from ci .
Intuitively, S(Rt , t) = 0 indicates that Rt = ∅ and that the processor is idle. We say
that a schedule is feasible if all refresh requests of C can be timely satisfied by scheduling
queries in Q(C). The following example shows a cell set C with a feasibly scheduled
candidate-query set.

Example 1. Let C = {c1, c2, c3}, Q0(C) = {q1, q2, q3}, R(C) = {〈6, 0〉, 〈6, 1〉, 〈6, 2〉},
and Eq1 = Eq2 = Eq3 = 2. As shown in Figure 2, in each refresh interval of c1, c2, and
c3, the corresponding refresh queries q1, q2, and q3 can be successfully executed. Thus,
Q0(C) is feasible.

The main task of a scheduling algorithm is to determine which refresh query should be
executed when the processor is idle and when there are several pending requests such that
a feasible schedule can be made. In this work, all scheduling algorithms are stationary.

Figure 2. A feasible candidate-query set.

66 LIU ET AL.

Definition 8 (Stationary schedule). A scheduling algorithm is stationary if it schedules the
same query to execute at each time instant when the same permutation of pending refresh
requests appears.

Note that two permutations of a set of refresh requests are the same, if:

• The cells raising the refresh requests are the same;
• The raised order of requests are the same; and
• The time intervals between two neighboring requests are the same.

Suppose at time t that there are two pending refresh requests ri,u and rj,v from cells ci and
cj , respectively (assume that ri,u is raised before rj,v), and that a scheduling algorithm S

determines that qi should be executed at t . Suppose that at t + T , there are two pending
requests ri,u′ and rj,v′ from ci and cj (ci raises the request before cj) and the processor
is idle; the executed query determined by S at t + T is still qi rather than qj . Then S is
a stationary scheduling algorithm, and it produces a stationary schedule. Otherwise, if at
time t + T , qj is executed instead, then S is not stationary.

The properties of a schedule include the following:

• S(∅, t) = 0—that is, the processor continues to be idle at time t if there is no pending
request at t .

• S(Rt1 , t1) = S(Rt2, t2) if the permutations of Rt1 and Rt2 are the same (stationary
property).

A scheduling algorithm can be offline or online. An offline scheduling (analysis) has
full knowledge of the state of the refresh system, including the refresh pattern of a cell set
and the execution times of refresh queries. It is always executed before the real schedule is
performed at run-time. An online scheduling, on the other hand, does not know when an
execution of refresh query would be completed if it has been performed by the scheduler.

Our algorithms are based on a modern real-time system where tasks are scheduled in a
priority manner. At any point in time, the ready job with the highest prioritized executes.
Most systems use a fixed-priority assignment according to which all jobs in a task have the
same priority. Examples of fixed-priority policies are rate monotonic (RM) [13] or dead-
line monotonic (DM) [12]. The priority of a task under RM is proportional to the rate at
which jobs in the task are released, while the priority of a task under DM is inversely pro-
portional to the relative deadline of the task. Priorities may also be assigned dynamically.
The most common dynamic priority-scheduling policy is earliest deadline first (EDF) [13],
which assigns priorities to jobs in order of their absolute deadlines.

In our work, a refresh manager working in an autonomous pull mode sequentially exe-
cutes refresh queries to refresh the cellbase [14]. When a cell needs to be refreshed peri-
odically, the scheduler periodically initiates refresh requests to initiate itself to perform the
corresponding refresh query. Refresh requests may have four different states—PENDING,
FUTURE, SATISFIED, and MISSED—at different times. If the initiating time of a request
is later than the current time, then its state is FUTURE. If the initiating time of a request
is earlier than the current time and the initiating time of the next request coming from the
same cell is later than the current time, then the state of the request is PENDING. If a

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 67

request has been satisfied by executing a corresponding query that completes before the
deadline (the time when the next request is initiated), then it is SATISFIED; otherwise, it
is MISSED. Certainly, for a set of cells with random refresh requirements, the manager
cannot guarantee the refresh of all cells in time by working with a specific scheduling
algorithm. Thus, some refresh requests may be missed.

We propose several online-scheduling algorithms, which include both fixed and dynamic
priority-assignment policies, to compare their performance for refreshing a set of cells with
specific refresh requirements. The algorithms are common in employing a list to store the
pending refresh requests. The scheduler always chooses and fetches one pending request
from the list according to the priority-assignment policy and performs a corresponding
query to satisfy the request. After the execution of the query has been completed, the state
of the request is changed to SATISFIED or MISSED according to the timing constraint.
The scheduler will also change the state of all other requests. Previous pending requests
may become MISSED, and previous future requests may become PENDING and are re-
quired to be inserted into the pending-requests list. The scheduler will wait if there is no
pending requests until some future requests become PENDING with time elapsed. The
algorithms will stop running if no more refresh requests will be raised in the future. The
algorithms are shown in Figure 3. The difference among the algorithms lies in the policy
in choosing one pending request to refresh the corresponding cell. We describe them in
detail as follows:

Earliest deadline first (EDF). This is a traditional scheduling algorithm in real-time spo-
radic task systems. The algorithm always chooses the pending request whose deadline
is the nearest among all pending requests in the list. Here the deadline for a request is
equal to the initiating time of the next request from the same cell.

at starting time, set the first refresh requests of all cells PENDING;
set other refresh requests FUTURE;
while (true) {

if pending requests list is not empty {
fetch the pending request determined by policy of the algorithm;
executing the corresponding refresh query;
change the state of the request to SATISFIED or MISSED;
remove the request from the pending requests list;
update the state of all pending and future requests;

} else {
if there is no more future refresh requests

break;
wait until the time when the nearest future request is initiated;
insert the request into pending requests list;

}
}

Figure 3. Online scheduling algorithms for website refresh requests.

68 LIU ET AL.

Shortest refresh period first (SRPF). This algorithm always chooses the pending re-
quest initiated from a cell that has the shortest refresh period among all cells that have
pending refresh requests in the current list. Clearly, it is equivalent to the traditional
rate-monotonic algorithm.

Longest refresh period first (LRPF). Contrary to SRPF, this algorithm always chooses
the pending request initiated from a cell that has the longest refresh period among all
cells that have pending refresh requests in the current list.

Minimal execution time first (MiEF). The above three algorithms do not consider the
impact of execution time of refresh query, which really plays a great role in scheduling
results since all refresh queries compete to occupy the single processor. Thus, MiEF
gives higher refresh priority to the pending request that can be satisfied by the execution
of a refresh query whose execution time is the shortest in the refresh-query set of the
current pending request list. All execution times of refresh queries are computed when
they are executed the first time.

Maximal execution time first (MaEF). Contrary to MiEF, MaEF assigns the highest pri-
ority to the request that can be satisfied by the refresh query that has the longest execu-
tion time among the refresh-query set of pending-requests list.

4. Freshness

So far, if a candidate-query set is feasible, the refresh queries can be successfully scheduled
to timely refresh the corresponding cells. However, after an update of the feature table of a
cell, “the timely refresh of the cell” can be started earlier or later, provided that the refresh
can be finished before the next update of the feature table. The earlier the refresh starts, the
fresher is the cell. To measure the “freshness” of a single cell (and a cellbase), we formally
define a freshness metric.

4.1. Cell freshness of a refresh interval

Definition 9 (Cell freshness of a refresh interval). For cell ci that is to be refreshed by
query qi with refresh pattern 〈Ui, ti,1〉, its freshness Fi,j achieved in the j th refresh interval
[ti,j , ti,j+1] is defined as follows:

Fi,j =

1

Ui

(ti,j+1 − sj), if qi starts the execution at sj and ends at ej , where

sj � ti,j and ej � ti,j+1,

0, otherwise.

From (1), we know that ti,j+1 = ti,1 + jUi . Thus, we have

Fi,j = ti,1

Ui

+ j − 1

Ui

sj

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 69

when sj � ti,j and ej � ti,j+1—that is, sj � ti,1 + (j − 1)Ui and sj + Eqi � ti,1 + jUi .
From the above definition, the cell freshness of a refresh interval is always between 0 and 1.

Lemma 1. For cell ci with refresh pattern 〈Ui, ti,1〉, if its j th refresh request is timely
satisfied by executing the refresh query qi , then we have

Fi,j � Eqi

Ui

�1,

where Eqi is the execution time of qi .

As the proof follows Definition 9, we do not show it here.
According to the timeliness of response to the updates of feature table, we classify the

freshness of a cell into two levels: tight freshness and loose freshness. We say that a cell ci

is tight fresh during its j th refresh interval if Fi,j = 1. This means that its refresh query
can be instantaneously executed at the time when the feature table finishes an update. Tight
freshness is required when the timeliness of information presented on the Web is critical—
that is, Web information can be refreshed as soon as possible in response to an update on
the base data. Web pages that present real-time stock exchange information are examples
of such requirements. On the other hand, we say that ci is loose fresh during its j th refresh
interval if 0 < Fi,j < 1. In this case, the execution of its refresh query may be started
after the beginning of the interval and completed before the end of the interval. Clearly, if
Fi,j = 0, then ci is not fresh in the refresh interval [ti,j , ti,j + Ui], and the refresh request
ri,j initiating the interval is missed. Note that in Example 1, if the cells are required to be
tight fresh, then the candidate-query set is infeasible.

In Example 1, according to Definition 9, F1,1 = (6−0)/6 = 1, F2,1 = (7−2)/6 = 0.83,
and F3,1 = (8 − 4)/6 = 0.67. Actually, we can observe from the schedule in Figure 2
that c1 will always achieve a freshness of 1 during all its refresh intervals. Cell c3 achieves
a lower value of freshness than c2 because q3 has to wait for two units of time to execute
after the feature table of c3 has been updated once at time 2, whereas q2 waits for only one
unit of time to execute after an update on c2’s feature table at time 1.

4.2. Freshness over a period of time

When a set of refresh queries has been scheduled to refresh a set of cells, we are concerned
with the freshness achieved over a period of time rather than the freshness of a refresh
interval. Thus, we define freshness over a period of time as follows.

Definition 10 (Interval freshness). Given a cellbase C where each cell ci (i � 1 � n)

has refresh pattern 〈Ui, ti,1〉, we define the freshness of ci over any arbitrary time interval
[t1, t2) as

Fi(t1, t2) =
v∑

j=u

Fi,j

u − v + 1
,

70 LIU ET AL.

where ri,u and ri,v are the first and last refresh requests of ci raised within interval [t1, t2),
respectively. The overall cellbase freshness achieved in [t1, t2) is defined as

FC(t1, t2) = 1

n

n∑
i=1

Fi(t1, t2).

To describe a special time interval that is the basic unit of steady period introduced in
Theorem 2, we define it as the refresh cycle of a cellbase.

Definition 11 (Cellbase refresh cycle). For a cellbase C = {c1, c2, . . . , cn} with refresh-
pattern set R(C) = {〈U1, t1,1〉, 〈U2, t2,1〉, . . . , 〈Un, tn,1〉}, if L is the least common mul-
tiple of U1, U2, . . . , Un—that is, lcm(U1, U2, . . . , Un) = L—then we say that any time
interval [t, t + L) (t is any nonnegative integer) is a refresh cycle of C.

Lemma 2. Given a cellbase C = {c1, c2, . . . , cn} with refresh-pattern set R(C) =
{〈U1, t1,1〉, 〈U2, t2,1〉, . . . , 〈Un, tn,1〉}, if the time axis from time t is divided onward into
continuous refresh cycles [t + kL, t + (k + 1)L), where k is any nonnegative integer and
L = lcm(U1, U2, . . . , Un), then the permutation of refresh requests raised in each refresh
cycle is the same.

Proof: Consider any refresh request ri,j raised at ti,j within [t, t + L). We need only
to prove that the refresh requests of ci are also raised at instants ti,j + kL where k is any
positive integer, within the corresponding refresh cycles [t + kL, t + (k + 1)L). This is
true because L is a multiple of any Ui and ci raises its refresh requests with period Ui . �

Theorem 2. In a cellbase C (when refresh queries have been scheduled to refresh cells),
there must exist a time instant ts and an integer Y such that some refresh requests are raised
at ts , and starting from ts , the freshness of C over each time period with length Y is the
same—that is, FC(ts + kY, ts + (k + 1)Y) is the same for all nonnegative integer k. We
refer to ts as the steady-time instant and Y as the length of steady period.

Proof: To prove that such a steady-time instant ts really exists, for a time instant t when
there are raised requests, we first observe properties at t that may affect the behavior of a
scheduling algorithm. We list all scheduling properties at t as follows:

• Permutation of pending refresh requests at t ;
• Processor state (is the processor idle at t? If the processor is busy at t , then how much

time remains to complete the current execution?); and
• Permutation of refresh requests raised after t .

For a stationary scheduling algorithm, if we can find two time instants t1 and t2 such
that all properties mentioned above at these two time instants are entirely the same, then
the scheduling decisions made from t1 are entirely the same as the scheduling decisions
made from t2. That is, the permutation of scheduled queries during [t1, t2) is the same as

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 71

the permutation of scheduled queries during [t2, t2 + (t2 − t1)). Clearly, this means that
scheduling properties at t2 + (t2 − t1) are also the same as those at t1 and t2. Likewise, we
can find infinite time instants t2 + k(t2 − t1) (where k is an integer and k � 2) that have the
same scheduling properties. We say that these time instants have the same steady property.

Therefore, according to Definitions 9 and 10, we have Fi(t1, t2) = Fi(t2+k(t2−t1), t2+
(k + 1)(t2 − t1)) for any cell ci and FC(t1, t2) = FC(t2 + k(t2 − t1), t2 + (k + 1)(t2 − t1))

(where k is any nonnegative integer). Thus, if t1 is the earliest time instant that has the
steady property, then the steady-time instant ts = t1 and the steady length Y = t2 − t1.

To prove the theorem, the task now is to find two time instants t1 and t2 that have the
same steady property. Based on Lemma 2, we know that for any two time instants ta and
tb that have a distance of one or more refresh cycles, the two permutations of the refresh
requests raised respectively during [ta, tb) and [tb, tb + (tb − ta)) are the same. Let the
number of cells in C be n, and let the refresh circle be L. For each time instant tx within
[0, L), consider all subsequent time instants, each of which has a distance L with the
previous one (their first scheduling properties are the same). We know that:

• The number w of possible permutations of the pending requests at any time instant is
finite and w < pn

n ; and
• The remaining time Z for the processor to complete the current execution is also finite,

and Z < E, where E is the maximum query-execution time.

Thus, the maximum number of combinations of the first two scheduling properties
is wZ. Assume that we cannot find out two time instants from {tx, tx +L, tx +2L, . . . , tx +
(wZ − 1)L}, which have the same steady property—that is, the first two scheduling prop-
erties at time instants tx , tx + L, tx + 2L, . . . , tx + (wZ − 1)L are different from each
other. Then the first two scheduling properties at tx + (wZ)L must be the same as those at
one time instant ty among {tx , tx + L, tx + 2L, . . . , tx + (wZ − 1)L}. Therefore, ty and
tx + (wZ)L have the same steady property (their three scheduling properties are the same).

As there may be infinite time instants having the same steady property, we take the
earliest time instant as the steady-time instant ts and the length between ts and the next
instant having the same property as the steady-length Y . Therefore, FC(ts + kY, ts +
(k + 1)Y) is the same for any nonnegative integer k. �

Let us illustrate the steady property introduced above with the following example.

Example 2. Given a cellbase C = {c1, c2, c3} with refresh-pattern set R(C) =
{〈5, 0〉, 〈5, 1〉, 〈5, 2〉} and trivial candidate-query set Q0(C) = {q1, q2, q3}, where
Eq1 = 4, Eq2 = 2, and Eq3 = 2, if we schedule the refresh queries with the EDF al-
gorithm, we obtain the sequence of executed queries as shown in Figure 4. We can see that
time instants 5 + 10k (where k is any nonnegative integer) have the same steady property.
Let us compare the scheduling properties at time instants 5 and 15, respectively. At time
instant 5:

• The permutation of pending requests is r1,2;
• The processor is busy at 5, and it will be idle at 6; and

72 LIU ET AL.

Figure 4. The sequence of executed queries in Example 2.

• The permutation of pending requests from 5 to 15 is r1,2, r2,2, r3,2, r1,3, r2,3, r3,3.

While at time instant 15:

• The permutation of pending requests is r1,4;
• The processor is busy at 15, and it will be idle at 16; and
• The permutation of pending requests from 15 to 25 is r1,4, r2,4, r3,4, r1,5, r2,5, r3,5.

Thus, the scheduling properties at 5 and 15 are the same, and there does not exist any
time instant earlier than 5 that has the steady property. Therefore, 5 is the steady-time
instant and 15 − 5 = 10 is the length of steady period. Thus, FC(5 + 10k, 5 + 10(k + 1))

is the same for any nonnegative integer k.

Corollary 1. The length Y of steady period of a cellbase is the same as or is a multiple of
the length L of the refresh cycle of the cellbase—that is, Y = kL, where k is a positive
integer.

From Theorem 2, the freshness of a cellbase is the same over each steady period after
entering the steady-time instant. Thus, to compare the freshness achieved by different
scheduling algorithms, it is sufficient only to measure the freshness achieved over the first
steady period. We explicitly define the metric as follows.

Definition 12 (Steady freshness). Given a cellbase C = {c1, c2, . . . , cn} with refresh-
pattern set R(C) and candidate-query set Q(C), if ts is the steady-time instant and Y is the
length of steady period while refresh queries are scheduled by a stationary algorithm, then
the steady cell freshness Fi for ci is defined as Fi = Fi(ts, ts + Y) and the steady cellbase
freshness F(C) is defined as F(C) = FC(ts , ts + Y).

The following lemma says that the steady-time instant is always found when the proces-
sor is idle if the candidate-query set can be scheduled to be loose feasible.

Lemma 3. Given a cellbase C = {c1, c2, . . . , cn} with refresh-pattern set R(C) and
candidate-query set Q(C), if Q(C) can be feasibly scheduled to keep all cells loose fresh,
then the processor is idle at the steady-time instant ts .

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 73

Proof: Assuming that the processor is busy at ts , let Y be the length of steady period.
Then ts and ts + Y have the same steady property—that is, the processor is busy at both
instants and needs the same length of time to be idle, the permutation of pending requests
is the same at both instants, and the permutations of requests within [ts, ts + Y) and [ts +
Y, ts + 2Y) are the same too.

Suppose that t1 is the nearest idle instant before ts , where no query is being executed and
at least one request is raised. Thus, [t1, ts) is included in a busy period. Let t2 be the time
instant when the busy period ends. Thus, time interval [t1, t2] is spent to execute queries
to satisfy all requests raised during [t1, ts) since no request has been missed. After Y time
units, the permutation of requests during [t1 + Y, ts + Y) is the same as that during [t1, ts)
because Y is a multiple of the refresh cycle of C. Since we have a feasible schedule and all
requests should be satisfied, we need the same length of time as t2 − t1 to satisfy requests
raised during [t1 +Y, ts +Y). Since ts +Y has the same property as ts and the processor is
idle at ts + (t2 − ts) = t2, the processor should be idle at ts + Y + (t2 − ts) = t2 + Y . That
is, the requests raised during [t1 + Y, ts + Y] have been satisfied before or at t2 + Y . Thus,
the processor must be idle at t1 + Y . Otherwise, there is no sufficient (as long as t2 − t1)
time within [t1 + Y, t2 + Y] to be used to satisfy all requests raised during [t1 + Y, ts + Y).

Therefore, the processor is idle at both t1 and t1 + Y . Moreover, the permutations of
requests during [t1, t1 + Y) and [t1 + Y, t1 + 2Y) are the same too—that is, t1 and t1 + Y

have the same scheduling property, and they are the time instants having the same steady
property. However, a contradiction arises when t1 is earlier than ts and ts is the steady-time
instant. Thus, the assumption is untenable, and the lemma does hold. �

Theorem 3. Given a cellbase C = {c1, c2, . . . , cn} with refresh-pattern set R(C) and
candidate-query set Q(C), if Q(C) can be feasibly scheduled to keep all cells loose fresh,
then the length Y of steady period is the same as the length L of refresh cycle of C—that is,
F(C) = FC(ts , ts + L), where ts is the steady-time instant and L = lcm(U1, U2, . . . , Un).

Proof: We need to prove that the processor has the same scheduling properties at ts and
ts + L—that is:

• The permutations of pending requests at both instants are the same.
• The processor at both instants is either idle or busy with the same busy length left.
• The permutations of requests raised during [ts, ts +L) and [ts +L, ts +2L) are the same.

From Lemma 2, we know that the third property above is clearly true. In addition, we
know from Lemma 3 that the processor must be idle at ts . Thus, we need only to prove
that:

• The permutations of pending requests at both instants are the same. Suppose that the
permutations of pending requests at two instants are denoted respectively as P(ts) and
P(ts + L). Then we need to prove P(ts) = P(ts + L).

• The processor is idle at ts + L.

Assuming that the above two properties are not true, then the following possible propo-
sitions exist:

74 LIU ET AL.

• Assume that the processor is idle at ts + L, while P(ts) �= P(ts + L). As the processor
is idle at ts and ts +L, P(ts) and P(ts +L) are respectively composed of requests raised
at ts and ts + L. However, according to Lemma 2, the requests raised at ts and ts + L

should be entirely the same—that is, P(ts) = P(ts + L). Thus, the assumption does not
hold.

• Assume that the processor is busy at ts + L, while P(ts) = P(ts + L). Thus, to satisfy
requests that are raised during [ts, ts + L), the requirement for processor usage is more
than L time units. Since the permutations of requests during refresh cycles [ts + L, ts +
2L), [ts + 2L, ts + 3L), . . . , are the same as the permutation during [ts, ts + L), no
requests are missed, and the same processor usage is required during each cycle. Then
the processor should be busy at ts + 2L, ts + 3L, . . . , and it is not idle at any instant
ts +kL where k is a positive integer. Thus, there is not any time instant that has the same
scheduling properties as ts . This is a contradiction with the fact that ts is the steady-time
instant. So the assumption does not hold.

• Assume that the processor is busy at ts + L while P(ts) �= P(ts + L). Clearly, more
requests are pending at ts + L than at ts , since pending requests at ts + L include not
only requests raised at ts + L that are the same as pending requests at ts but also those
raised before ts + L. We denote those pending requests at ts + L raised before ts + L as
P ′(ts + L). Then, more than L time units are used to satisfy the requests raised during
[ts, ts +L) excluding those in P ′(ts +L). Similarly, as in the second case, we know that
no time instant ts + kL where k is a positive integer has the same scheduling properties
as ts . This is a contradiction with the fact that ts is the steady-time instants. Therefore,
the assumption does not hold.

Based on the above proof, the initial assumption does not hold. The theorem is proved. �

Corollary 2. Given a cellbase C = {c1, c2, . . . , cn} with refresh-pattern set R(C) and
candidate-query set Q(C), if Q(C) can be feasibly scheduled to keep all cells loose fresh,
then for all scheduling algorithms that can feasibly schedule Q(C), the first steady periods
start at the same instant—that is, their steady-time instants are the same.

For cellbase C in Example 1, the steady-time instant is 0, and the length of steady period
is Y = L = lcm(6, 6, 6) = 6. Thus, we have F(C) = FC(0, 6) = 1

3 (F1(0, 6)+F2(0, 6)+
F3(0, 6)) = 1

3 (F1,1 + F2,1 + F3,1) = 1
3 (1 + 0.83 + 0.67) = 0.83.

5. Feasibility, scheduling algorithm, and freshness

When the cellbase is required to be tight fresh, if there exists one scheduling algorithm that
schedules the executions of refresh queries to make all cells in the cellbase tight fresh in
every refresh interval, then this set of queries is tight feasible. Likewise, when the cellbase
is required to be loose fresh, we say a candidate-query set is loose feasible if queries in
the set keep all cells loose fresh in every refresh interval when they are scheduled by some
algorithm. Simply put, if a candidate-query set is loose feasible, then it can be schedulable

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 75

without any refresh requests missed. Clearly, a tight feasible candidate-query set must also
be loose feasible, and a tight infeasible candidate-query set may still be loose feasible.
However, the converse does not hold. Note that in the rest of the article, we mean a loose
infeasible candidate-query set when we refer to an infeasible candidate-query set. We
studied the feasibility determination problem in [15].

For a loose feasible candidate-query set, it is possible that some scheduling algorithms
may not be able to feasibly schedule queries, whereas there must exist one scheduling
algorithm that can produce a feasible schedule for queries.

Example 3. Given a cell set C = {c1, c2, c3} with refresh-pattern set R(C) = {〈8, 0〉,
〈4, 1〉, 〈8, 2〉}, and candidate-query set Q0(C) = {q1, q2, q3}, where Eq1 = 2, Eq2 = 1,
Eq3 = 3, if Q0(C) is scheduled by the maximal execution-time first (MaEF) algorithm,
then cells cannot be kept loose fresh (the refresh request r2,1 is missed, see Figure 5).
However, if Q0(C) is scheduled by EDF algorithm, then all cells can be kept loose fresh,
and no refresh requests are missed. Thus, Q0(C) is loose feasible.

We say that a scheduling algorithm is global if it produces feasible schedules for all
feasible candidate-query sets. According to [9], we know that the EDF algorithm is global
for candidate-query sets.

Theorem 4. If candidate refresh-query set Q(C) is loose feasible for a cell set C with
refresh-pattern set R(C), then the EDF scheduling algorithm feasibly schedules the execu-
tions of queries in Q(C).

Figure 5. Two different schedules of Q0(C) in Example 3 produced by two algorithms.

76 LIU ET AL.

Theorem 5. If a candidate-query set Q(C) = {q1, q2, . . . , qn} can be feasibly to be sched-
uled to keep the set C of cells with refresh-pattern set R(C) = {〈U1, t1,1〉, 〈U2, t2,1〉, . . . ,
〈Un, tn,1〉} loose fresh, then F(C)�1/n

∑n
i=1 Eqi /Ui �1.

Proof: If Q(C) is loose feasible, then any cell ci ∈ C (i�1�n) can be kept loose fresh.
Thus, according to Lemma 1, we have Fi,j � Eqi /Ui � 1 for any j . Then, according to
Definition 12, Fi � Eqi /Ui � 1. Therefore, we have F(C) � 1/n

∑n
i=1 Eqi /Ui � 1 since

F(C) = 1/n
∑n

i=1 Fi . �

The theorem below says that a value of 1 of cellbase freshness can be achieved by a tight
feasible candidate-query set.

Theorem 6. If a candidate-query set Q(C)is feasible to keep the set C of cells tight fresh,
then F(C) = 1.

Proof: If Q(C) is tight feasible, then for any i, j , we have Fi,j = 1. Thus, according to
Definition 12, Fi = 1. Therefore, we have F(C) = 1 since F(C) = 1/n

∑n
i=1 Fi . �

An important factor to affect the freshness of the cellbase is the scheduling algorithm
deployed by the refresh scheduler. We illustrate it with an example below.

Example 4. Let C = {c1, c2} be a cellbase with refresh-pattern set R(C) = {〈5, 0〉, 〈5, 0〉}
and candidate-query set Q(C) = {q1, q2}, where Eq1 = 2 and Eq2 = 1. If Q(C) is
scheduled by the MaEF algorithm, the first steady period is [0, 5), F1 = F1(0, 5) = F1,1
= 1 and F2 = F2(0, 5) = F2,1 = 3

5 . Then F(C) = 1
2 (1 + 3

5) = 0.8. However, if Q(C) is
scheduled by the MiEF algorithm, the first steady period is still [0, 5), F1,1 = 4

5 , F2,1 = 1,
but F(C) = 1

2 (1 + 4
5) = 0.9 (Figure 6), and the freshness has been improved.

However, for a special group of cells that have the same refresh period and whose refresh
queries have the same length of execution time, we show in the theorem below that the
freshness of a cell set will not be altered when different scheduling algorithms are deployed
if the refresh-query set is loose feasible.

Theorem 7. Given a cellbase C = {c1, c2, . . . , cn} with refresh-pattern set R(C) =
{〈U1, t1,1〉, 〈U2, t2,1〉, . . . , 〈Un, tn,1〉}, where U1 = U2 = · · · = Un = U , if its candidate-
query set Q(C) = {q1, q2, . . . , qn}, where Eq1 = Eq2 = · · · = Eqn = E is loose feasible,
then the cellbase freshness F(C) is the same for all scheduling algorithms that feasibly
schedule Q(C).

Proof: We shall prove that for any two different scheduling algorithms S1 and S2, if
they both feasibly schedule Q(C), S1 achieves freshness F(C)1, and S2 achieves freshness
F(C)2, then F(C)1 = F(C)2. This is clearly true if Q(C) is tight feasible according
to Theorem 6. So we consider only the case when Q(C) is not tight feasible but loose
feasible.

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 77

Figure 6. Queries in Q(C) in Example 4 are scheduled by two different algorithms.

The difference between the algorithms lies in the decision policies they employ to decide
which request should be satisfied by executing a query when multiple requests are pending
at a time instant. We shall prove that although S1 and S2 have different decision policies,
we have F(C)1 = F(C)2. From Corollary 2, S1 and S2 have the same first steady period
[ts, ts + L). Suppose that ci raises refresh request ri,i′ (i�1�n) during [ts, ts + U). Since
U1 = U2 = · · · = Un = U , we have L = U and F(C) = 1/n

∑n
i=1 Fi,i′ . If we can prove

that for S1 and S2 the value of
∑n

i=1 Fi,i′ is the same, then we have F(C)1 = F(C)2.
Assume that for any two requests ru,u′ and rv,v′ pending at a time instant tp ∈ [ts, ts+U),

S1 schedules to execute qu at time t1 and execute qv at time t2 (t2 > t1), whereas S2
executes qu at time t2 and qv at t1, respectively. Note that if Equ �= Eqv , this exchanging
of execution order may not be feasible. According to Definition 9, for both S1 and S2, we
have

Fu,u′ + Fv,v′ = 1

U
(tu,u′ + tv,v′ + 2U − t1 − t2).

Since ru,u′ and rv,v′ are freely selected,
∑n

i=1 Fi,i′ is the same for S1 and S2. Thus,
F(C)1 = F(C)2. �

Another factor that may improve the cellbase freshness is the cardinality of the
candidate-query set. If it is possible to reduce the number of queries in the candidate-
query set of the cellbase, performing fewer queries would be expected to refresh the cells.
Intuitively, we know that more cells can be refreshed earlier since fewer queries compete
to occupy the scheduler. Thus, the cellbase freshness will be improved.

We analyze and compare the performance of cellbase freshness using several schedul-
ing algorithms in the next section and develop an optimization technique to reduce the
cardinality of candidate-query set in [16].

78 LIU ET AL.

6. Comparison study on scheduling algorithms

6.1. Introduction

In this section, we address the issue of improving the cellbase freshness by applying an
appropriate online-scheduling algorithm. Since we have shown that the maximal freshness
of 1 can be achieved by scheduling a tight feasible candidate-query set, we consider only
the case when the candidate-query set is not tight feasible—namely, it is either loose fea-
sible or loose infeasible. However, we must note that obtaining a scheduling algorithm
that maximizes the overall cellbase freshness is a difficult problem. Even for a clairvoyant
scheduler (one that knows all the parameters of the refresh-pattern set and the candidate-
query set), the problem of finding the maximum freshness can be shown to be NP-hard.
Before proving this result, we first observe the load of executed queries incurred by re-
quests within the steady period of a cellbase.

Lemma 4. Given a cellbase C = {c1, c2, . . . , cn} with candidate-query set Q(C) =
{q1, q2, . . . , qn}, if for each cell ci (i � 1 � n), the refresh query qi is scheduled ni times
within the steady period [ts, ts +Y) (the execution of qi is started within [ts, ts +Y)), where
ts is the steady-time instant, then we have

∑n
i=1 niEqi � Y , where Eqi is the execution

time of qi .

The lemma follows from the fact that the time instants ts and ts + Y have the same
scheduling property; that is, the processor is either idle or has the same busy duration
remaining at both instants.

We now state the following theorem.

Theorem 8. Given a cellbase C = {c1, c2, . . . , cn} with refresh-pattern set R(C) =
{〈U1, t1,1〉, 〈U2, t2,1〉, . . . , 〈Un, tn,1〉}, and candidate-query set Q(C) = {q1, q2, . . . , qn},
finding a schedule of refresh queries in Q(C) such that the maximum freshness F(C) of
C can be achieved is NP-hard.

Proof: We need only to prove that the corresponding decision problem is a NP-complete
problem. We need to prove that the following problem is NP-complete: given such a
cellbase C and a positive value W (0 < W � 1), is there a schedule of refresh queries such
that the achieved freshness F(C) � W?

We give a polynomial time transformation from the KNAPSACK problem [3] to the
above problem.

An instance of the KNAPSACK problem consists of a finite set U , a size s(u) ∈ Z
+,

a value v(u) ∈ Z
+ for each u ∈ U , and bounds B,K ∈ Z

+. The problem is to determine
if there is a subset U ′ ⊆ U such that

∑
u∈U ′ s(u) � B and such that

∑
u∈U ′ v(u) � K .

The transformation is performed as follows. Let U = {u1, u2, . . . , um}, B ∈ Z
+,

K ∈ Z
+, and s(ui), v(ui) ∈ Z

+ for i � 1 � m constitute an arbitrary instance of the
KNAPSACK problem. We create a special instance of our problem by constructing a

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 79

cellbase C = {c1, c2, . . . , cm} with candidate query-set Q(C) = {q1, q2, . . . , qm} such
that cell-refresh periods U1 = U2 = · · · = Um = B and the steady period is [ts, ts + B).
Let the execution time Eqi of qi be s(ui), and let R = {r1, r2, . . . , rn} be the set of refresh
requests raised within [ts , ts + B). The scheduling algorithm chooses to schedule a subset
Q′ ⊆ Q(C) to satisfy a subset of R. Thus, the cellbase freshness F(C) = ∑

qi∈Q′ Fi/n,
where Fi is the freshness for ci achieved in the steady period when ri is satisfied. Let
Fi = cv(ui)/K and W = c/n, where c is an arbitrary constant number such that c �
K/B max{s(ui)/v(ui)}� min{n,K min{1/v(ui)}}. Otherwise, we cannot guarantee Fi �
s(ui)/B � 1 (from Lemma 1) and W � 1. Clearly, the construction can be done in
polynomial time. From Lemma 4, we have

∑
qi∈Q′ Eqi � B—that is,

∑
ui∈U ′ s(ui) � B.

If F(C) � W , then
∑

qi∈Q′ Fi/n � c/n—that is,
∑

qi∈Q′ cv(ui)/K � c. Thus, a schedule
that achieves the freshness F(C) � W can be found if and only if we can find a U ′ such
that

∑
ui∈U ′ v(ui) � K with the constraint

∑
ui∈U ′ s(ui) � B while letting Q(C) = U

and Q′ = U ′.
Therefore, a solution to the instance can be used to solve an arbitrary instance of the

KNAPSACK problem. Since KNAPSACK is known to be NP-complete, finding a sched-
ule that achieves a freshness greater than a given positive number is an NP-complete prob-
lem. Thus, the corresponding optimization problem of finding the maximum freshness is
NP-hard [3]. �

Since it is hard to find a schedule that can maximize the freshness of a cellbase, we
propose several approximation scheduling algorithms in this section and compare their
performance with simulation results.

6.2. Comparison analysis

In this section, we analyze and compare the performance of the algorithms proposed in the
preceding section. Given a cellbase C = {c1, c2, . . . , cn} with refresh-pattern set R(C) =
{〈U1, t1,1〉, 〈U2, t2,1〉, . . . , 〈Un, tn,1〉} and candidate-query set Q(C) = {q1, q2, . . . , qn},
we examine the freshness achieved by EDF, MiEF, MaEF, SRPF, and LRPF, respectively,
in the following two cases. (For simplicity, we assume that the cellbase is kept fresh by all
schedules, the steady-time instant is 0, and all cells raise their refresh requests at 0 for all
schedules.)

6.2.1. Uniform refresh periods In this case, all cells in C have the same refresh period
U1 = U2 = · · · = Un = U , and the steady length is U too. Thus, SRPF and EDF (all
requests have the same deadline) have no effect on the cellbase freshness, there is no need
to consider them in this case, and we compare only MiEF and MaEF.

Suppose that Eq1 � Eq2 � · · · � Eqn and
∑n

i=1 Eqi � U . Then MiEF schedules
the refresh queries as shown in Figure 7. Thus, according to Definition 12, the freshness
achieved by MiEF is

80 LIU ET AL.

Figure 7. Cells with the same refresh period are refreshed by MiEF.

F(C) = 1

n

(
U

U
+ U − Eq1

U
+ U − (Eq1 + Eq2)

U
+ · · ·

+ U − (Eq1 + Eq2 + · · · + Eqn−1)

U

)

= 1

nU

(
nU − (n − 1)Eq1 − (n − 2)Eq2 − · · · − Eqn−1

)
.

If we change the scheduling algorithm to MaEF, then the sequence of executed queries is
inversed in Figure 7, and the freshness achieved by MaEF is

F ′(C) = 1

nU

(
nU − (n − 1)Eqn − (n − 2)Eqn−1 − · · · − Eq2

)
.

Clearly, F ′(C) < F(C)—that is, MiEF achieves a higher cellbase freshness than MaEF.
Note that this result is based on the assumption that schedules computed by MiEF and
MaEF are all feasible. We can draw the same conclusion even when the schedules com-
puted by MiEF and MaEF are infeasible. For infeasible cases, some refresh requests would
be missed. However, MiEF satisfies more refresh requests than MaEF does when the same
number of requests are competing to occupy the same time interval because MiEF sched-
ules refresh queries with shorter execution times first. Thus, fewer 0 values contribute
to the cellbase freshness achieved by MiEF than MaEF. This leads to a higher degree of
freshness by MiEF.

6.2.2. Random refresh period In this case, cells in C may have different refresh peri-
ods. It is difficult to compute cellbase freshness by averaging the freshness achieved by
each cell. However, to compare the effect of different schedule policies, we may observe
the effect by varying the policy within a short interval of the schedule.

Consider two adjacent refresh queries q1 and q2 in a schedule for C as shown in Figure 8.
Suppose that the steady period is [0, Y] and that q1 and q2 are executed at t1 and t1 + Eq1 ,
respectively, to satisfy the refresh requests r1,x and r2,y . From Definition 9, the freshness
achieved in the xth refresh interval of c1 and the freshness achieved in the yth refresh
interval of c2 are computed as

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 81

Figure 8. Two adjacent refresh queries during a schedule.

F1,x = d1 − t1

U1
,

(2)
F2,y = d2 − t1 − Eq1

U2
.

Thus, according to Definition 12, the respective steady freshnesses for c1 and c2 are:

F1 = 1

n1
(b1 + F1,x),

(3)
F2 = 1

n2
(b2 + F2,y),

where n1, n2 are the respective number of raised refresh requests by c1 and c2 during the
steady period, n1 = 	Y/U1
, n2 = 	Y/U2
, and b1 and b2 are the respective freshness
during other refresh intervals of c1 and c2. Therefore, the cellbase freshness is

F(C) = 1

n
(F1 + F2 + w), (4)

where w is the freshness contributed by the other cells except for c1 and c2.
From (2)–(4) together, we have

F(C) =
(n2U2(b1U1 + d1 − t1) + n1U1(b2U2 + d2 − t1) + n1n2U1U2w) − n1U1Eq1

nn1n2U1U2
.

Let a = b1n2U1U2 + d1n2U2 − n2U2t1 + b2n1U1U2 + n1U1d2 − n1U1t1 + n1n2U1U2w,
b = nn1n2U1U2. Then

F(C) = a − n1U1Eq1

b
. (5)

Now we change our scheduling policy to see if the cellbase freshness is affected. We
exchange q1 and q2 during the interval [t1, t1 + Eq1 + Eq2] such that q2 is executed before
q1 while keeping the other sequence unchanged during the schedule shown in Figure 8.
With the same method, we compute the changed freshness

F ′(C) = a − n2U2Eq2

b
. (6)

Compare (5) with (6) with n1U1 = n2U2 = Y . We observe that the freshness is improved
(F ′(C) > F(C)) only if Eq2 < Eq1—that is, MiEF performs better than MaEF. Also, we

82 LIU ET AL.

see that algorithms (SRPF and LRPF) that assign a schedule priority based on the length
of a cell-refresh period do not affect the resultant cellbase freshness.

6.3. Performance metrics

The first and foremost objective of scheduling algorithms is to improve the freshness of the
cellbase. To compute the freshness achieved by a schedule for a cellbase C, according to
Definition 12, we must find out the steady-time instant ts and the length of steady period Y .
However, this is a difficult task due to the complex refresh- pattern set of C. Fortunately,
according to Theorem 2, we observe that after entering the steady-time instant ts , the cell-
base achieves the same freshness over every steady period Y . Based on this observation,
we have the following theorem to compute the (steady) freshness of a cellbase.

Theorem 9. The steady freshness F(C) of a cellbase C is equal to the freshness of C over
a sufficiently long time period.

Proof: Suppose that the steady-time instant is ts and the length of steady period is Y .
According to Definition 12, the steady freshness F(C) = F(C)(ts , ts + Y). Let C =
{c1, c2, . . . , cn} and L be a sufficiently large positive integer. We want to prove
F(C)(ts , ts + Y) = F(C)(0, L). Consider an arbitrary cell ci ∈ C. If we can prove
that Fi(ts, ts + Y) = Fi(0, L), then the theorem follows based on F(C)(t1, t2) =
1/n

∑n
i=1 Fi(t1, t2).

Suppose that L = ts + mY (m is sufficiently large) and that ci raises requests
ri,1, ri,2, . . . , ri,x within [0, ts) and raises requests ri,x+1, ri,x+2, . . . , ri,y within [ts, ts +Y)

(Figure 9). Then

Fi(0, L) = lim
m→∞

∑x
j=1 Fi,j + m

∑y

k=x+1 Fi,k

x + m(y − x)
=

∑y

k=x+1 Fi,k

y − x
= Fi(ts , ts + Y).

Thus, the theorem is proved. �

Therefore, to measure the freshness of a cellbase achieved by a schedule, we need only
to run the schedule for a sufficiently long time and compute the freshness over this long
period.

Intuitively, we find that the more the missed refresh requests are produced by a schedule,
the lower is the freshness of the cellbase because a missed refresh request contributes zero
value to the final freshness of the cellbase. Therefore, we define the percentage of missed

Figure 9. Steady freshness and freshness over a long period.

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 83

refresh requests among all requests raised during a schedule as another measure for the
performance of a scheduling algorithm. This is denoted as

M(C) = m

r
· 100%,

where m is the missed number of refresh requests during the schedule and r is the total
number of raised requests during the schedule.

6.4. Simulation results

In this section, we simulate the refresh of a cellbase by a program and verify the previous
performance analysis of different scheduling algorithms empirically.

6.4.1. System environment We perform the simulation program on a Pentium III 550
Gateway PC, where Red Hat 6.0 is running. Sybase Adaptive Server Enterprise 11.9.2
provides an experimental database as the data source of the cellbase.

6.4.2. Input parameters We have identified a list of important parameters for tuning
the behavior of the simulation program. By varying the values of these parameters, we
achieve different configurations for the source database, the cellbase, and the scheduling
algorithm. Thus, different experiments can be conducted. The important parameters are
clarified as follows:

NUMBER OF TABLES. This determines the number of tables that are stored in the
source database.

NUMBER OF COLUMNS. This parameter specifies how many columns are included in
the base tables.

NUMBER OF TUPLES. This parameter specifies how many tuples are stored in the base
tables.

NUMBER OF CELLS. This parameter specifies how many cells should be composed for
the cellbase.

BASE UPDATE PERIOD. This parameter is used to provide a base update period for the
base tables when they are updated in constant or regular pattern.

UPDATE PATTERN. This parameter determines the update pattern of the base tables.
The value of the parameter can be uniform, regular, or random. When the base tables
change in the uniform pattern, they are updated with the same period. In the regular
case, the update periods of all tables are multiples of the parameter value BASE UP-
DATE PERIOD. In the random case, the tables are updated with the random period.

REQUEST PATTERN. This determines how the base tables begin to change. The value
can be synchronous (all tables change at the same time) or asynchronous (all tables
change at arbitrary times).

SCHEDULE ALGORITHM. This parameter determines which scheduling algorithm is
employed to schedule the refresh work. It can be EDF, SRPF, LRPF, MiEF, or MaEF.

84 LIU ET AL.

REFRESH TIMES. This parameter specifies how many times the cells should be
refreshed—that is, how many refresh requests a cell raises during the schedule. With
this parameter, we control the running time of the simulation.

CELL COMPOSE PATTERN. This determines where the content of a composed cell
comes from. The value can be atomic (from one base table) or complex (from multiple
base tables).

6.4.3. Experiments We test the performance of various scheduling algorithms—EDF,
SRPF, LRPF, MiEF, and MaEF—with different parameter settings. The source database
has 20 tables, and each table stores 1,000 tuples. Given a cellbase C = {c1, c2, . . . , cn}
with refresh-pattern set R(C) = {〈U1, t1,1〉, 〈U2, t2,1〉, . . . , 〈Un, tn,1〉} and trivial
candidate-query set Q0(C) = {q1, q2, . . . , qn}, the workload of the refresh system is mea-
sured by the utilization factor, which is defined as

∑n
i=1 Eqi /Ui and represents the fraction

of computing time consumed by the queries over the lifetime of the system.
We have two different experimental settings as follows:

UPDATE PATTERN: uniform
BASE REFRESH PERIOD: 5 sec

UPDATE PATTERN: random
BASE REFRESH PERIOD: 5 sec
RANDOM SCOPE: 5
RANDOM SEED: 1

For each configuration (experiment), we adjust the workload by varying the number of
cells in the cellbase (the number of refresh queries) and perform the simulation program
scheduled by different algorithms, respectively.

First, we compare the performance of MiEF and MaEF when all base tables change at
a fixed frequency (once every 5 seconds). The results are shown in Figure 10. In this ex-
periment, the workload (utilization factor) is increased from 0.2 to 1.5. From Figure 10(a),
we can see that the missed ratio of refresh requests rapidly increases for both MiEF and
MaEF algorithms with the increase of the number of refresh queries (workload). This
situation is caused by multiple queries that compete to utilize the processor and the data-
base. Additionally, we observe that MaEF has a slightly higher missing ratio than MiEF.
Correspondingly, Figure 10(b) shows that the cellbase freshness decreases rapidly with
the growth of the workload and that MiEF achieves a higher freshness than MaEF. (As
the refresh queries in the experiment designed by us have similar execution times, we see
only a small benefit achieved by MiEF.) Note that when the system is overloaded (the
utilization factor of the system exceeds 1 when the number of cells exceeds 40), both al-
gorithms achieve the same low cellbase freshness due to the high ratio of missed refresh
requests.

Next, we perform an experiment to measure the relative performance of the scheduling
algorithms when base tables change at random frequencies—that is, when cells have ran-
dom refresh periods. The results are shown in Figure 11. In this experiment, the refresh
periods for the cells are uniformly distributed within [5, 10] seconds, and the workload is
gradually increased from 0.2 to 1.5 with the growth of the number of cells in the cellbase.

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 85

(a)

(b)

Figure 10. Cellbase freshness achieved by MiEF and MaEF when cells have the same refresh period.

From Figure 11(a), we obtain the same result as the first experiment that the missing ratio
of refresh requests increases with the increase of the workload. More than 80% of refresh
requests have been missed if the system is overloaded with more than 60 cells (the utiliza-
tion factor exceeds 1). Also, we see that MiEF has a lower ratio of missed requests than
EDF. To avoid cluttering the graph, we do not show the curve achieved by MaEF since
it almost achieves the same missing ratio of requests, only that it is slightly higher. Fig-
ure 11(b) shows the cellbase freshness achieved by MiEF, MaEF, and EDF. Clearly, MiEF
performs the best, and the cellbase freshness rapidly drops with the growth of the work-
load. When the system is overloaded, all algorithms perform similarly, and the cellbase
freshness is lower than 10%.

To verify that refresh period plays a trivial role on the achieved cellbase freshness, we
perform another experiment to compare SRPF and LRPF. The experimental settings are the
same as those in the second experiment. The result is shown in Figure 12. We can clearly
see from the figure that the two curves almost coincide with each other; that is, SRPF and
LRPF do not affect cellbase freshness.

Therefore, the above experiments have verified the analysis made in Section 6.2. The
results show that MiEF has an advantage over other algorithms on cellbase freshness re-
gardless of whether the cells have uniform or random refresh periods. Another conclusion
is that the metric—missing ratio of requests—remains consistent with the cellbase fresh-
ness metric for comparing the different algorithms; the higher the missing ratio of requests
is, the lower the cellbase freshness is.

86 LIU ET AL.

(a)

(b)

Figure 11. Cellbase freshness achieved by different algorithms when cells have random refresh periods.

Figure 12. Cellbase freshness achieved by different algorithms when cells have random refresh periods.

7. Related work

Keeping websites up-to-date has drawn the interest of researchers recently, although the
work is in its infancy. In [10], different Webview (referred to as Web cell by us) material-
ization policies (materialized inside the DBMS, materialized at the Web server, and virtual)
have been compared. Their results have indicated that materializing at the Web server is a
more scalable solution and can facilitate an order of magnitude more users than the virtual
and materialized-inside-the-DBMS policies. This result also verifies our approach where a

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 87

cellbase that materializes Web cells is built at the side of Web server. Similar work has been
done in [17] where a document-generator system is presented. Their approach to providing
up-to-date Web information is based on the extensibility infrastructure of object-relational
database systems. By utilizing DB triggers and so-called user-defined functions, docu-
ments can automatically be generated by the DBMS whenever data is updated. However,
this approach will lead to a high workload on databases.

Several areas related to our work are introduced below.

7.1. Real-time scheduling

Our approach is to schedule refresh queries to pull fresh data to websites. This work is
closely related to real-time scheduling. A real-time system is one in which the correctness
of the system depends not only on the logical results but also on the time at which the
results are produced [22]. Since refreshing cells is performed with strict timing constraints
so that execution of a refresh query must be completed within the interval between two
consecutive changes of data source, we may view the refreshing cells as a typical recur-
ring task [6] in a real-time system that makes repeated requests for processor time. More
traditional work can be found in [5,11,13,18]. By utilizing real-time scheduling, we can
carefully define and analyze the freshness of a website. A similar freshness metric has been
defined in [1]; however, that work focuses on refreshing a local copy of an autonomous data
source (website) instead of the original website.

7.2. View maintenance

Our website-refresh model works in a way that is similar to view maintenance in data
warehousing. A data warehouse is a repository of integrated information (materialized
view) that is available for queries and analysis (such as decision support or data mining).
When the underlying data are changed the corresponding materialized views should also
be updated. Work focused mainly on incremental-view maintenance, which computes only
a part of view changes to update its materialization in response to changes to the base data
[4,8,19,20,25].

With respect to the website refresh, we aim to achieve a satisfactory timing constraint
with the refresh requirement of a set of views. This timing requirement (never raised in
traditional view maintenance which assumes that maintenance could be completed before
the next update of the base data) is especially crucial for a large corporation where a set of
views is strategically maintained and base databases are used in time-critical application
such as stock-market systems, manufacturing systems, and so on.

Another major difference between Web-view maintenance and database-view mainte-
nance is that we need to maintain the Web views at a Web server online, as opposed to
data warehouses in which updates are usually off-line. Materializing and maintaining Web
views have drawn the attention of researchers recently. In [21], an algebra for defining hy-
pertext views and view updates is proposed and an algorithm for incremental maintenance
of hypertext views is also proposed. Reference [10] discusses the option of materializing

88 LIU ET AL.

a Web view inside the DBMS, at the Web server, or not at all, always computing it on the
fly. However, no previous work concerns “timeliness” when updating Web views, while it
is truly an important issue when base data change fast (our focus).

7.3. Web caching

Website refresh is different from traditional Web caching: website refreshing aims to timely
refresh Web pages by appropriately executing a set of database queries, whereas Web
caching is recognized as an effective solution for reducing traffic over the Internet and
decreasing user-access latency [24]. Also, Web refreshing is performed at the Web server,
whereas Web caching is done at the client’s location or at proxy locations. Unlike the
conventional Internet cache, which gets requests for content from anywhere, the Akamai
cache [7], a recent popular technology, is optimized for serving specific content on the Web
through many Akamai cache servers on the Internet. However, the power of this new tech-
nology is still traffic management rather than content serving. It may be a complementary
to our website-refresh technique.

Other research fields may also be involved but are not covered by this article, such as
information integration when the refreshed website has different kinds of data sources.

8. Conclusions and future work

As the World Wide Web becomes more and more popular, using databases as the source for
Web pages is also growing more popular. We have tried to maintain the freshness of a data-
intensive website in response to changes to the base data. In this article, we identify website
refreshing as one significant task of website management. A Web cell has been defined as
a portion of Web page that is derived from the result of a query against base data. For
refreshing a website, a cellbase has been designed to materialize the Web cells hosted on
the website. Thus, our task is to keep the cellbase up-to-date. We first roughly distinguish
two levels of freshness in a cellbase—tight freshness and loose freshness—according to
the timeliness of scheduled refresh queries in response to periodical updates on base data.
Then we formally define the metric cellbase freshness that can be quantitatively measured.
Several algorithms have been proposed to schedule the executions of refresh queries. From
our analysis and empirical results, we conclude that MiEF algorithm performs the best
among the scheduling algorithms on the achieved cellbase freshness. More work is being
done to develop an optimization technique for a refresh-query set, such that database access
is reduced and cellbase freshness is improved.

All results in the article are based on the assumption that the base data of a website
change at specific frequencies. Although this assumption is generally adopted by re-
searchers, we need to have a more accurate model for describing the changes of base data.
In the future, we may assume that the base data are modified by a random process, which
is more likely a Poisson process [23]. Under the Poisson process, it is well known that the
time to the next event is exponentially distributed. With the new update model of base data,

SCHEDULING QUERIES TO IMPROVE THE FRESHNESS OF A WEBSITE 89

we may reconsider the refresh pattern of cells and the scheduling policy of refresh queries.
The cellbase-freshness metric may be redefined too to reflect the new update model.

References

[1] J. Cho and H. Garcia-Molina, “Synchronizing a database to improve freshness,” in Proceedings of 2000
ACM SIGMOD International Conference on Management of Data (SIGMOD 2000), Dallas, TX, May 2000.

[2] D. Florescu, A. Levy, and A. Mendelzon, “Database techniques for the World-Wide Web: A survey,” SIG-
MOD Record (ACM Special Interest Group on Management of Data) 27(3), 1998, 59–74.

[3] R. Garey and S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Free-
man, New York, 1979.

[4] J. V. Harrison and S. W. Dietrich, “Maintenance of materialized views in a deductive database: An update
propagation approach,” in Proceedings of the 1992 JICLSP Workshop on Deductive Databases, Washington,
DC, 1992, pp. 56–65.

[5] K. Hong and J. Leung, “On-line scheduling of real-time tasks,” IEEE Transactions on Computer 41, 1992,
1326–1331.

[6] R. Howell and K. Venkatrao, “On non-preemptive scheduling of recurring tasks using inserted idle times,”
Information and Computation 117, 1995, 50–62.

[7] http://www.akamai.com
[8] N. Huyn, “Multiple-view self-maintenance in data warehousing environments,” in VLDB’97, Proceedings

of the 23rd International Conference on Very Large Data Bases, Athens, Greece, August 1997, pp. 26–35.
[9] K. Jeffay, D. Stanat, and C. Martel, “On non-preemptive scheduling of periodic and sporadic tasks,” in

Proceedings of the 12th IEEE Real-Time Systems Symposium, San Antonio, TX, 1991, pp. 129–139.
[10] A. Labrinidis and N. Roussopoulos, “WebView materialization,” in Proceedings of the ACM SIGMOD

International Conference on Management of Data, Dallas, TX, 2000.
[11] J. Leung and M. Merrill, “A note on preemptive scheduling of periodic, real-time tasks,” Information

Processing Letters 11, 1980, 115–118.
[12] J. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of periodic, real-time tasks,”

Performance Evaluation 2, 1982, 237–250.
[13] C. L. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time environment,”

Journal of the Association for Computing Machinery 20, 1973, 46–61.
[14] H. Liu, W.-K. Ng, and E.-P. Lim, “Model and research issues for refreshing a very large website,” in Pro-

ceedings of the 1st International Conference on Web-Based Information Systems Engineering (WISE2000),
Hong Kong, June 2000.

[15] H. Liu, W.-K. Ng, and E.-P. Lim, “Keeping a very large website up-to-date: Some feasibility results,”
in Proceedings of the 1st International Conference on Electronic Commerce and Web Technologies (EC-
Web2000), Greenwich, UK, September 2000.

[16] H. Liu, W.-K. Ng, and E.-P. Lim, “Query integration for refreshing Web views,” in Proceedings of the 12th
International Conference on Database and Expert System Applications (DEXA 2001), Munich, Germany,
September 2001.

[17] H. Loeser, “Keeping Web pages up-to-date with SQL:1999,” in Proceedings of the International Database
Engineering and Applications Symposium (IDEAS 2000), Yokohama, Japan, September 2000.

[18] A. Mok, “Fundamental design problems of distributed systems for the hard real-time environment,” Ph.D.
Thesis, MIT Laboratory for Computer Science, 1983.

[19] X. Qian and G. Wiederhold, “Incremental recomputation of active relational expressions,” IEEE Transac-
tions on Knowledge and Data Engineering 3, September 1991, 337–341.

[20] O. Shmueli and A. Itai, “Maintenance of views,” in Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Boston, MA, May 1984, pp. 240–255.

[21] G. Sindoni, “Incremental maintenance of hypertext views,” in Proceedings of the ACM SIGMOD Workshop
on the Web and Databases (WebDB’98), Valencia, Spain, 1998.

90 LIU ET AL.

[22] J. A. Stankovic, “Strategic directions in real-time and embedded systems,” ACM Computing Surveys 28(4),
December 1996.

[23] H. M. Taylor and S. Karlin, An Introduction to Stochastic Modeling, 3rd ed., Academic Press, New York,
1998.

[24] J. Wang, “A survey of Web caching schemes for the Internet,” Technical Report, Cornell University, 1999.
[25] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom, “View maintenance in a warehousing environment,”

in Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose,
CA, 22–25 May 1995, pp. 316–327.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2005

	Scheduling queries to improve the freshness of a website
	Haifeng LIU
	Wee-Keong NG
	Ee Peng LIM
	Citation

	Scheduling Queries to Improve the Freshness of a Website

