
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2004

Accommodating Instance Heterogeneities in
Database Integration
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Roger Hsiang-Li CHIANG

DOI: https://doi.org/10.1016/S0167-9236(03)00103-9

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng and CHIANG, Roger Hsiang-Li. Accommodating Instance Heterogeneities in Database Integration. (2004). Decision
Support Systems. 38, (2), 213-231. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/58

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/S0167-9236(03)00103-9
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Accommodating instance heterogeneities in database integration

Ee-Peng Lima,*, Roger H.L. Chiangb

aCenter for Advanced Information Systems, School of Computer Engineering, Nanyang Technological University, N4-2a-32,

Nanyang Avenue, Singapore 639798, Singapore
b Information Systems Department, College of Business, University of Cincinnati, Cincinnati, OH 45221, USA

Received 30 March 2002; accepted 30 June 2003

Available online 6 August 2003

Abstract

A complete data integration solution can be viewed as an iterative process that consists of three phases, namely analysis,

derivation and evolution. The entire process is similar to a software development process with the target application being the

derivation rules for the integrated databases. In many cases, data integration requires several iterations of refining the local-to-

global databasemapping rules before a stable set of rules can be obtained. In particular, themapping rules, as well as the datamodel

and querymodel for the integrated databases have to cope with poor data quality in local databases, ongoing local database updates

and instance heterogeneities. In this paper, we therefore propose a new object-oriented global data model, known as OORA, that

can accommodate attribute and relationship instance heterogeneities in the integrated databases. The OORA model has been

designed to allow database integrators and end users to query both the local and resolved instance values using the same query

language throughout the derivation and evolution phases of database integration. Coupled with the OORA model, we also define a

set of local-to-global database mapping rules that can detect new heterogeneities among databases and resolve instance

heterogeneities if situations permit.

D 2003 Elsevier B.V. All rights reserved.

Keywords: Federated databases; Database integration; Schema integration; Instance integration; OORA; OOQLRA

1. Introduction

To integrate two or more pre-existing or local data-

bases without violating their local autonomy, either a

multidatabase approach or a warehousing approach

can be adopted. In both approaches, the database

integration tasks are similar. Before pre-existing data-

bases can be integrated together, the differences among

them must first be identified and further resolved if

possible. All inter-database heterogeneities can be

generally classified into schema and instance ones.

Schema heterogeneities refer to differences among

schema elements from different local databases. In-

stance heterogeneities refer to conflicts that arise when

data from different local databases have to be integrated

into multidatabases or data warehouses. When these

multidatabases (or data warehouses) and local data-

bases are represented in relational model, the instance

level conflicts are local database tuples corresponding

to the same real world entities but carrying different

attribute values. A classification of instance heteroge-

0167-9236/$ - see front matter D 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0167-9236(03)00103-9

* Corresponding author. Tel.: +65-6790-4802; fax: +65-6792-

6559.

E-mail addresses: aseplim@ntu.edu.sg (E.-P. Lim),

Roger.Chiang@uc.edu (R.H.L. Chiang).

www.elsevier.com/locate/dsw

Decision Support Systems 38 (2004) 213–231

neities will be given in Section 2. The resolutions of

schema and instance heterogeneities are also known as

schema integration and instance integration, respec-

tively. In general, schema integration must be done

before instance integration. In the traditional database

integration research, focuses have been given to sche-

ma integration [2,7,9,10,20,23]. Instance heterogene-

ities, in contrast, have not been fully addressed.

To fully address the schema and instance integra-

tion issues, one has to examine the database integration

process at the macro level. We believe that inter-

database heterogeneities should be handled throughout

the entire database integration process. While there has

not been a well-accepted database integration method-

ology, we proposed to divide the entire integration

process into three phases, namely analysis, derivation

and evolution as shown in Fig. 1.

� Analysis: Analysis is essentially a knowledge

acquisition phase. In this phase, database integrators

are expected to understand pre-existing databases at

both the conceptual and implementation levels.

These local database semantics can be acquired

from local database owners. Database integrators

are also required to find out from the integrated

database users their global application requirements

in order to derive the global schema and instances.
� Derivation: The actual derivation of global schema

and integrated instances is done in this phase. Once

the derivation is done, queries on the integrated

database can be evaluated. It is in this phase a

complete mapping from local schemas to global

schema, as well as a mapping from local instances

to global instances is specified.
� Evolution: Due to the autonomy of local database

systems, updates to the local databases may violate

the mapping from local instances to global

instances. Evolution therefore refers to the ongoing

refinement of integrated databases as the local

database schemas and instances evolve. It becomes

the most important phase to maintain a multi-

database or data warehousing system.

Among the above three phases, evolution has been

largely ignored in the database integration research

primarily due to two reasons. Firstly, most researchers

focus on schema integration issues. While a lot of

schema integration issues have to be investigated for

different databases during the derivation phase, it is

uncommon to investigate schema integration issues

during the evolution phase due to rare modification to

pre-existing local schemas. Secondly, research on the

integration of instances has been pre-occupied by

query processing issues instead of local database

updates during the evolution phase. In this paper,

we argue that instance integration may not be com-

plete in the derivation phase. During the evolution

phase, one also has to consider local database updates,

which lead to new instance conflicts that cannot be

handled by pre-defined integration methods. Hence,

new global data models that can accommodate in-

stance heterogeneities become necessary.

1.1. Related work

Most previous database integration research fo-

cused on resolving schema conflicts. A taxonomy of

schema conflicts can be found in [6,8]. Depending on

the tightness of integration between component data-

bases, different schema conflict resolution methods

can be adopted [19]. Loosely integrated component

databases often involve the creation of a wrapper to

Fig. 1. Database integration phases.

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231214

allow a local database system to have a unified access

to the schemas and instances of one or more remote

databases. In this case, the schema conflicts to be

resolved arise from mainly the incompatibility be-

tween data models. The schema conflict resolution

methods for loosely integrated component databases

include [16,25]. For tightly integrated component

databases, an integrated database that merges the

schemas and instances of component databases will

be derived. In other words, a global schema that

merges the local schemas will be required and it

should hide the heterogeneity of local schemas from

the integrated database users [1,7,9,20]. Kaul, Drosten

and Neuhold proposed schema transformation map-

ping and schema integration mapping as the two

major steps to derive a global schema from a few

local schemas [7]. They also proposed an incremental

approach to derive global schemas as the knowledge

required by schema integration may only be available

over time. The stepwise incremental approach to

schema integration was further developed by Aslan

and McLeod [1].

Lately, as researchers begin to address instance

integration problems, several solutions of instance con-

flict resolution have been proposed [5,14,15,22,25].

Most of these solutions resolve instance conflicts in

some pre-determined approaches [5,14,15,22], e.g.,

using probabilistic reasoning, uncertainty theories,

etc. In the work by Lu et al. [17], a statistical approach

to discover conflict resolution rules from different

relations has been developed. Nevertheless, the data

models adopted by these solutions neither facilitate

different ways to resolve conflicts, nor accommodate

much information about instance heterogeneities. The

impact of instance conflicts on query processing and

optimization has also been studied in [26].

In the following, we describe some previous work

in extending data model to accommodate instance

conflicts.

� Polygen model [25] was proposed to capture

source information of attribute values that come

from different local relations. A source value is

associated with every attribute value of the tuples

of polygen relations. The source information

captured includes the sites the attributes originated

from and the intermediate sites at which they are

processed. The model, however, does not provide

the mechanism to accommodate or resolve instance

heterogeneities.
� TS Relational model [11] was proposed to

accommodate entity and attribute conflicts in a

relational integrated database. A special source

attribute is assigned to every relation. An extended

relational algebra has been proposed to manipulate

the TS relations. Like the Polygen model, TS

Relational model is not designed to represent

resolved instance values.
� Role-based multidatabase model [18] extended

Litwin’s multidatabase model [16] by considering

the different roles (or relations) assumed by real-

world objects. Queries on a role-based multi-

database are decomposed into queries on different

combinations of roles. Apart from not handling

resolved instance values, the role-based multi-

database model does not classify between tolerable

and intolerable relationship and attribute value

conflicts. The notions of tolerable and intolerable

conflicts will be elaborated in Section 4.

1.2. Objectives and scope

In the paper, we address the problem of accommo-

dating instance heterogeneities (conflicts) in the glob-

al data model adopted for integrated databases. There

are a number of reasons for accommodating instance

heterogeneities in integrated databases:

� Resolving all instance differences may not be

desirable because some global applications may

want to retain and view these differences in the

integrated database. For example, the different

prices for the same product sold in different stores

may be required to be retained and queried in the

integrated database.
� Preserving the instance heterogeneities allows

database integrators to apply different resolution

techniques on the same instance-level conflicts for

different global application requirement. For exam-

ple, when there are differences between delivery

times for the same products from different data-

bases, the shortest ones might be used for web

advertisement purposes while the longer ones might

be recommended to the users upon purchases.
� Resolving all instance conflicts may not be

possible because the information and knowledge

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231 215

required for the complete conflict resolution is not

available during the moment of instance integra-

tion. It is also impossible to anticipate and resolve

all possible instance conflict as the local database

evolves with time.
� Resolving all instance conflicts may not be feasible

because the amount of processing time to resolve

conflicts for large number of instances may be so

much that integrated information may not be

available on time. For example, the complete

instance conflict resolution may exceed the avail-

able window time for loading data in the data

warehouse environment.

We therefore present an object-oriented global data

model that can accommodate instance heterogeneities

for attributes and relationships in the integrated data-

base. The new global data model supports different

integration and query requirements from the database

integrators and database users during the derivation

and evolution phases of database integration. To our

best knowledge, this is the first attempt in developing

a global data model with the purpose of supporting

queries on integrated databases containing both re-

solved and unresolved values.

1.3. Contributions

On the whole, our research contributes to database

integration in a number of ways. Firstly, it presents the

different types of instance heterogeneities one may

encounter during database integration. Secondly, it

clearly points out the different integration and query

requirements from the database integrators and data-

base users during the derivation and evolution phases

of database integration. Thirdly, we introduce the

concept of threshold predicates and resolution func-

tions to detect and reconcile instance heterogeneities.

Fourthly, an extended object-oriented data model has

been introduced to accommodate resolved as well as

unresolved instance conflicts in the integrated data-

bases. The proposed model is also equipped with the

necessary query and integration primitives required.

This paper is organized as follows. In Section 2,

we describe the various types of instance conflicts and

the overall approaches to handle them in database

integration. Section 3 describes requirements for ac-

commodating instance heterogeneities during the der-

ivation and evolution phases. This study motivates the

development of an extended object-oriented data

model called OORA to be defined in Section 4. Section

5 presents the query language for the OORA data

model and some query examples are given. The

conclusions and future research directions are given

in Section 6.

2. Instance heterogeneities

Instance heterogeneities can be classified into en-

tity conflicts, attribute conflicts and relationship con-

flicts [12,15]. Entity conflicts arise when it is not

known which entity instances from matching entity

types1 correspond to the same real-world entities.

Relationship conflicts occur when it is not known

which relationship instances from matching relation-

ship types correspond to the same real-world relation-

ships. Attribute conflicts arise when the matching

entity (or relationship) instances (determined by re-

solving entity or relationship conflicts) do not have

the same attribute values.

Consider the following integration scenario. Let

DBA and DBB be two databases containing employee

information. The former is owned by the headquarter,

while the latter is maintained by the regional office.

DBA: Staff(ename, position, salary)

DBB: Emp(ename, title, salary, qual)

Assume that during the derivation phase, the

database integrator defines an integrated relation

Employee directly from the above two relations as

shown below.

Employee(ename, position, salary, qual)

The integration of the two local relations Staff and

Emp into Employee at the schema level can be

performed prior to integrating their instances. To

integrate employee tuples from the two local relations

at the instance level, one has to address the issues of

matching tuples that represent the same real world

1 Matching entity types are determined by schema integration.

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231216

entities, and resolving their attribute value and rela-

tionship conflicts.

As pointed out by a number of researchers [6,12],

instance integration constitutes an important step in

database integration. Instance level heterogeneities are

caused by imperfect data quality in the legacy data-

bases. For example, a typo-error in an employee’s

ename in Staff may lead to the failure of matching the

Staff data instance with the corresponding instance in

Emp. When customers do not wish to reveal their

ages, they may provide erroneous age values to the

databases causing problems in the determination of

correct age values. There are many different methods

for resolving instance level conflicts. Nevertheless,

the method used for resolving discrepancies in

employees’ positions may also be different from that

used for salary. In this paper, we will further point out

that the tolerance of instance conflicts varies among

different attributes. In fact, it is common that not all

instances from legacy databases can be properly

integrated during the derivation phase.

Assuming that all instances of Staff and Emp have

been properly integrated during the derivation phase,

one still has to handle integration issues arising from

the updates to local database(s) during the evolution

phase. For example, new employee data instances

could be added to Emp making it necessary to

perform instance integration on the new instances.

Similarly, instance integration is required for changes

to attributes of some pre-existing data instances. There

are essentially two approaches to handle instance

integration problems during the derivation and evolu-

tion phases. The first approach requires the database

integrator to anticipate all possible integration scenar-

ios during the derivation phase and define the instance

integration methods accordingly, hoping that all inte-

gration problems in the evolution phase can be pre-

dicted in advance. When the integration scenarios

cannot be predicted in advance (which is often the

case), one has to resort to accommodating instance

conflicts in the integrated database before these con-

flicts can be finally resolved sometime in the future or

may not be resolved at all.

2.1. Entity conflicts

To resolve entity conflicts, the knowledge for

identifying instances representing the same real-world

entities is required. For simple cases, common keys

among entity instances could be used to match

instances. For example, the employee name attribute

can be used to match data from DBA and DBB.

Complicated entity conflicts arise when there is no

common attribute that can be used to match instances

from different databases. Special techniques designed

for resolving entity conflicts have been proposed

[4,13,14,24]. Although it may not be possible to

resolve all entity conflicts, instances that could not

be determined to represent the same real-world enti-

ties can still be retained as separated instances in the

integrated database.

2.2. Attribute conflicts

Given two instances that represent the same real-

world entity, the differences in their equivalent attrib-

utes are known as attribute conflicts.2 We distinguish

two main types of attribute conflicts, namely tolerable

and intolerable attribute conflicts that should be han-

dled in database integration. Tolerable attribute con-

flicts are those expected by a database integrator at the

time an integrated database is derived. Intolerable

attribute conflicts, on the other hand, refer to attribute

conflicts that should not be resolved automatically by

any predefined resolution methods.

To distinguish between the above two types of

attribute conflicts, we introduce the concept of thresh-

old predicate. When the difference between two or

more conflicting attribute values is smaller than a

threshold value or when the conflicting attribute

values differ in expected patterns, there is a straight-

forward pre-defined approach to handle the conflicts.

The exact conflict handling approach can be readily

specified during the derivation phase of database

integration. The primary purpose of a threshold pred-

icate is therefore to explicitly capture the criteria to be

satisfied by tolerable attribute conflicts. In other

words, we define tolerable attribute conflicts to be

those satisfying the threshold predicates defined for

the attributes involved.

It is necessary to resolve tolerable attribute con-

flicts derived from different local databases. To do

2 If the attribute values are identical, the attribute conflict does

not exist.

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231 217

so, resolution functions should be defined to recon-

cile the corresponding tolerable attribute values.

However, it is not always possible to apply resolu-

tion functions to resolve all possible tolerable attri-

bute conflicts. Sometime, one may not know the

correct resolution function to be specified or used. In

other occasions, the attribute conflicts are considered

to be valid and acceptable by the integrated database

users. Thus, no resolution function is required.

When the conflicting local attribute values cannot

satisfy the threshold predicate defined for the

corresponding attribute, database integrators should

be alerted. Attribute conflicts that fail the specified

thresholds are defined to be intolerable. Database

integrators can be alerted for intolerable attribute

conflicts by having the intolerable attribute conflicts

recorded in a log file.

2.2.1. Attribute conflict example

When the price of a product has different values

in different databases, it is an attribute conflict.

However, a very small difference in price may not

be significant enough to warrant the database inte-

grators’ attention For example, the company may

practise price discrimination strategy. In this case,

the price difference of a product is considered

tolerable if the difference is less than 5% of the

lowest price. Otherwise, it is intolerable. For toler-

able price differences, the multidatabase system or

data warehousing system can apply a pre-defined

resolution function (e.g., choosing the large value,

averaging the two values) to derive an integrated

product price.

2.3. Relationship conflicts

Relationship conflicts, first discussed in [12],

arise when the relationship between two real-world

entities may not be represented consistently in

different databases. In [12], different types of rela-

tionship conflicts have been derived, and they can

be caused by incorrect schema integration, incorrect

entity conflict resolution and inaccurate database

content.

2.3.1. Relationship conflict example

For example, employee e1 is known to work for

department d1 in database A but d2 in database B

where d1 and d2 are determined to represent

different departments in the real-world after entity

conflict resolution. This relationship conflict could

be caused by incorrect relationship cardinalities in

the integrated schema. It could also be caused by d1

and d2 being wrongly determined to represent the

same department. Or, it could be the case that the

employee data in either database A or B is not

accurate.

Like other instance-level conflicts, a complete

resolution of relationship conflicts may not always

be possible. When relationship conflicts cannot

be resolved by the multidatabase system or data

warehousing system, they should be retained and

accommodated.

3. Requirements for accommodating instance

heterogeneity

If inter-database conflicts at both the schema and

instance levels are resolved completely, the integrat-

ed databases can be represented by using a standard

data model. However, when instance heterogeneities

are part of integrated databases, we have to extend

the standard data models and their query languages

to accommodate and manipulate instance heteroge-

neities. Before we propose a global object model for

this purpose, we first investigate the potential query

and integration requirements imposed by two types

of users of the integrated databases, the database

integrators (system users) and end users.

3.1. Database integrators

A database integrator’s involvement in database

integration encompasses both the derivation and

evolution phases as shown in Fig. 1. During the

derivation phase, the database integrator first per-

forms schema integration on the local databases. He

or she later defines transformations on the instances

from each local database so that they conform to the

integrated schema before instances from different

local databases are integrated together. The database

integrator’s tasks during the evolution phase are

similar except that schema integration is usually

not required and the instances to be dealt with are

fewer. A detailed discussion about the transforma-

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231218

tion of local instances is beyond the scope of this

paper. We will instead focus on the database inte-

grator’s activities in resolving the conflicts between

transformed local instances. Henceforth, without loss

of generality, we assume that the database integrator

is given local databases that conform to the inte-

grated schema.

To efficiently integrate local instances, database

integrators require some mechanisms to easily com-

pare local instances and discover conflicts between

them. Subsequently, appropriate resolution methods

can be applied to the tolerable conflicts. Throughout

this integration process, a global data model that

accommodates both instance conflicts and resolved

instances is required. With such a global data model,

the database integrator can query the integrated

database containing instance conflicts and view

these conflicts in the query results. The global data

model should also allow database integrators to

define different resolution functions to resolve con-

flicts or enforce consistency of data stored in local

databases.

Fig. 2. Schemas of local databases.

Fig. 3. Instances of DBA.

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231 219

3.2. End users

End users utilize the integrated database for report

generation and decision making. Depending on their

needs, they may choose to query the resolved or

original instance values. For example, one may want

to query the resolved salary values of employees

who hold manager positions in a particular local

database. Hence, a global data model should support

flexible queries on both original and resolved in-

stance values.

As both multidatabase and data warehousing sys-

tems preserve the autonomy of local database systems,

updates to local databases can often introduce new

instance conflicts to integrated databases. Some of

these new instance conflicts could be handled auto-

matically by the resolution functions predefined by

database integrators and hence no further actions

would be required by the end users. For other new

instance conflicts that cannot be resolved automati-

cally, database integrators have to be called upon to

handle them. Nevertheless, before the database inte-

grators take any actions, these new conflicts have to

be accommodated by the global data model and the

end users should be allowed to continue using the

integrated database.

3.3. An example integration scenario

We employ an integration scenario to demonstrate

the attribute and relationship conflicts. Fig. 2 depicts

the object-oriented schemas (in the form of UML

class diagrams) of the local databases DBA and DBB

containing employee training information. Both the

schemas show that a course can be offered at different

dates with different fees. Each course-offering can be

Fig. 4. Instances of DBB.

Fig. 5. Integrated schema.

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231220

attended by one or more employees. Here, we assume

that schema integration has been performed and the

schemas of existing databases have been made com-

patible to facilitate instance level comparisons. The

schema and data transformation approaches taken to

homogenize the existing databases have been reported

in several papers [20,21].

The instances of DBA and DBB are shown in Figs.

3 and 4, respectively. To keep the figures concise, we

have intentionally used simplified attribute values for

the instances (e.g., course offering ids, course name,

etc.). Suppose all entity conflicts are resolved by

matching cname, id and ename of course, course

offering (i.e., Offering), and employee (i.e., Emp)

instances, respectively. We notice that database course

in DBA has been offered in the Offering instances

with ids 3, 4 and 5, but the same course in DBB has

been offered in the Offering instances with ids 3, 4

and 6. This is a relationship conflict. On the other

hand, the difference in area (i.e., ‘‘theory’’ vs. ‘‘the-

ories’’) for the algorithm course in DBA and DBB is an

attribute conflict. Fig. 5 depicts the integrated schema

derived from DBA and DBB.

4. The OORA object-oriented data model

We propose the OORA,
3 the extended object-ori-

ented data model, to accommodate instance hetero-

geneities in the integrated databases. Specifically, the

OORA model is able to accommodate attribute and

relationship conflicts. The OORA data model is also

designed to support queries on the integrated data-

bases. Furthermore, the OORA data model ensures that

the source of instance heterogeneities can be identified

in order to support subsequent integration work on the

partially integrated database. OORA differs from the

traditional OO data model in a number of ways:

� Identification of matching criteria for deriving

global objects;
� Specification of threshold predicates and resolution

functions;

� Representation of original and resolved attribute

values; and
� Uniform treatment of attribute and relationship

conflicts.

In the following, we describe the unique features of

OORA model in detail.

4.1. Global objects

A global object in the integrated database is de-

rived from one or more local objects that represent the

same real-world entity. Like in the traditional OO data

model, each global object is assigned a unique global

object id (oid). In OORA, we assume that local objects

corresponding to the same global objects (or real-

world entities) can be matched by examining some

common attribute values. These common attribute(s)

can be specified as matching criteria by the database

integrator. For example, a database integrator may use

cname to match Course objects, id to match Offering

objects and ename to match Emp objects from DBA

and DBB. The following three data definition state-

ments have been used to identify matching local

objects:

In general, a data definition statement is defined

based on the following grammar rules:

DERIVE COURSE FROM Course@DBA, Course@DBB

USING Course@DBA(cname), Course@DBB(cname);

DERIVE OFFERING FROM Offering@DBA, Offering@DBB

USING Offering@DBA(id), Offering@DBB(id);

DERIVE EMP FROM Emp@DBA, Emp@DBB

USING Emp@DBA(ename), Emp@DBB(ename);

3 In OORA, R represents the relationship conflicts. A represents

the attribute conflicts. The name OORA indicates that both

relationship and attribute conflicts can be accommodated.

hDerive Global Object Classi D-DERIVEhGlobal Classi
FROMhLocal Class Listi
USINGhLocal Attribute Listi

hLocal Class Listi D-hLocal Classi,
{hLocal Classi}*

hLocal Classi D-hClass Namei@
hLocal Database Namei

hLocal Attribute Listi D-hLocal Classi
(hLocal Attribute Namei),
{hLocal Classi
(hLocal Attribute Namei)}*

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231 221

Once the above data definition statements are spec-

ified, we effectively construct a set of global classes.

Definition 1 (Global class). Let C1, C2, . . ., Cn be n

local classes that are schema compatible, a global

class G derived from them can be defined as:

G ¼ OJðK; fC1; . . . ;CngÞ

where OJ is an n-way outerjoin that merges the

objects from all Ci’s sharing the same identifying

attribute (i.e., K) values.. Note that the resultant global

class G contains the union of all attributes from C1,

C2, . . ., Cn denoted by A1, A2, . . ., An, respectively.

Suppose a global object g in G is derived from local

objects lj1, . . ., ljk in Cj1, . . ., Cjk, respectively,

1V j1V jk V n. We use g.a.ovalue4 to denote the

attribute value of g where a appears in Aj1, . . ., Ajk

and is defined as follows:

g:a:ovalue ¼ fðlji:a;DBjiÞA1ViVkg

4.2. Threshold predicates and resolution functions

One or more pairs of threshold predicates and

resolution functions can be defined for each attribute

in the global schema. Given an attribute in a class

of global objects, the threshold predicates determine

for each global object if a difference between local

values of the attribute is tolerable. As long as one

of the predicates holds, the difference between the

local attribute values is considered tolerable. The

corresponding resolution function (if defined) is then

adopted to resolve tolerable attribute conflicts auto-

matically. Depending on the characteristics of attrib-

utes, different threshold predicates and resolution

functions should be defined by the database integra-

tors and be implemented using system-defined func-

tions/operators or general programs.

Examples of thresholds and resolution functions

for tolerable instance conflicts are:

� A price difference of less than 5 cents for an apparel

product in different databases of a department store

may be tolerable. The highest price can be assigned

to the product in the integrated database.

� A floor area difference of less than 1 ft2 for the

same apartment in different property databases

may be considered insignificant. Such difference

could be resolved by choosing the smallest floor

area as the resolved value.

We define a pair of threshold predicate and reso-

lution function for an attribute a using the following

statement:

Given a global attribute, multiple pairs of threshold

predicates and resolution functions can be defined.

When the resolution function is not defined for a

specific threshold predicate, we say that the resolution

function is a NULL function that returns NULL value

for any given value. Each pair of threshold predicate

and resolution function is assigned a unique id for

easy identification.

Each conjunct in the threshold predicate is a Bool-

ean condition on the ovalue(s) of the global attribute. In

the simplest case, a threshold predicate can be a

conjunction of Boolean comparison of attribute values.

In other more complex cases, a threshold predicate in-

volves distance functions on the attribute values to

measure the extent of difference among attribute values

from different sources. For example, to detect for a

given product whether the difference between the

largest and smallest price values from different sources

is less than 10 cents, we can define following threshold

predicate.

DEFINE price:threshold1@PRODUCTða1; a2; a3Þ

¼ ðmax	 distða1; a2; a3Þ < 0:10Þ4 The notation ovalue represents the original attribute values.

hDefine Threshold

Predicatei
D-DEFINEhglobal attributei.
thresholdhidi@hglobal classi
(hparameter listi) =
hconjunction listi

hparameter listi D-hparameteri
{,hparameter listi}*

hconjunction listi D-hconjuncti
{ANDhconjunction listi}*

hDefine Resolution

Functioni
D-DEFINEhglobal attributei.
resolutionhidi@hglobal classi
(hparameter listi)=
[valuejhfunctioni
(hparameter listi)]

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231222

In the above example, the max-dist() function is an

implemented function that can be invoked with the

input values and it returns the difference between the

largest and smallest input values.

Similarly, the resolution function may involve a

constant value or a merge function that combines the

attribute values from difference sources. For example,

to integrate the price values of a given product, we

may define the resolution function to take the average

value as follows:

DEFINE price:resolution1@PRODUCTða1; a2; a3Þ

¼ averageða1; a2; a3Þ

The average() function is an implemented function,

similar to the distance function, that can be invoked

with input values and it returns a single combined

value.

There are many different ways to define the dis-

tance and merge functions. Broadly, we classify them

into three main categories, namely distributive, alge-

braic and holistic. A distance or merge function f is

distributive if it can be computed in a distributed

manner, e.g., f(x1,. . .,xk) = f(. . .f(f(x1,x2),x3). . .). In

other words, we can apply the same function in any

order on different subsets of the input values. Exam-

ples of distributive function include sum(), max() and

min(). A distance or merge function f is algebraic if it

can be computed by an algebraic function with a fixed

number p of arguments, and each argument can be

computed by applying a distributive function. An

example of algebraic function is the average() func-

tion as it can be computed by two arguments sum()

and count(), which can be derived by distributive

functions. When a distance or merge function is

neither distributive nor algebraic, it is known to be

holistic.

When a distance or merge function is distributive

and algebraic, it is possible to compute the function

value in different ordering of the source values.

Such distributive and algebraic distance and merge

functions allow local databases to be integrated in

different orderings. They can also easily accommo-

date new local databases to be integrated. When

holistic distance and merge functions are used, the

ordering of local databases will be restricted, and it

is more difficult to accommodate any new local

databases.

Given an attribute in the global schema, three

combinations of threshold predicates and resolution

functions can be constructed5:

� Both the threshold predicate and resolution

function are undefined: This implies that any

difference between the corresponding attribute

values is considered an intolerable attribute con-

flict. Unless all corresponding attribute values

given are identical, the resolved attribute value is

always NULL.
� The threshold predicate is defined, but not the

resolution function: This implies that tolerable

attribute conflicts can exist among distinct instan-

ces. These conflicts are also acceptable. However,

unless the acceptable attribute conflict involves

identical values, the resolved attribute value is

always NULL.
� Both the threshold predicate and resolution

function are defined: This implies that tolerable

attribute conflict can exist among distinct instance

and the resolution function will return the resolved

attribute values.

4.3. Elements of attribute values

In the OORA model, every non-oid attribute has a

domain consisting of three elements, namely the

original values (denoted by ovalue), resolved values

(denoted by rvalue) and conflict type (denoted by

conflictType). The resolved value, original value, and

conflict type of an attribute A are represented by

A.rvalue, A.ovalue and A.conflictType respectively.

Formally,

Definition 2 (Conflict type and resolved value of a

global object attribute). Let g be a global object in

the global class G derived from local objects c1, c2,

5 Note that, when the threshold predicate is not defined for an

attribute, it is meaningless to define the resolution function for the

attribute since any difference between corresponding attribute

values is considered intolerable, and such conflict should not be

resolved by a resolution function automatically.

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231 223

. . ., cn from local classes C1, C2, . . ., Cn, res-

pectively. Let a be a global object attribute defined

with threshold and resolution functions g.a.thre-

shold’s and g.a.resolution’s. The conflict type and

resolved value of a global object attribute is defined

as follows:

g:a:conflictType

¼

Resolvable if ak; g:a:thresholdkðc1:a; . . . ; cn:aÞ ¼ TRUE ^ g:a:resolutionkðc1:a; . . . ; cn:aÞ is defined

Acceptable if ak; g:a:thresholdkðc1:a; . . . ; cn:aÞ ¼ TRUE ^ g:a:resolutionkðc1:a; . . . ; cn:aÞ is undefined

Intolerable if bk; g:a:thresholdkðc1:a; . . . ; cn:aÞ ¼ FALSE

NULL otherwise

8>>>>>>>>>>><
>>>>>>>>>>>:

g:a:rvalue ¼

g:a:resolutionkðc1:a; . . . ; cn:aÞ if ak; g:a:thresholdkðc1:a; . . . ; cn:aÞ ¼ TRUE ^ g:a:resolutionkðc1:a; . . . ; cn:aÞ is defined

x if baag:a:ovalue; a ¼ x

NULL otherwise

8>>>><
>>>>:

The A.ovalue of a global object is defined to be a

set of (value,databaseid) pairs where value denotes

the attribute value contributed by the corresponding

object from the existing database identified by data-

baseid. The A.rvalue of a global object is defined to

be any A value contributed by local objects if there is

no attribute conflict. If a difference is found among

the local A values, the tolerance of the conflict is first

determined using the threshold predicate(s) defined

for A, i.e., A.thresholdi()’s. If any of the threshold

predicates holds, the conflict is tolerable and

A.rvalue is obtained by applying the corresponding

A.resolutioni() on the local attribute values. In the

event where the conflict is intolerable or the resolu-

tion function is undefined, NULL is assigned to

A.rvalue.

Depending on the original attribute values and the

threshold predicate(s) defined for the attribute, differ-

ent conflict types can be derived and is stored in A.

conflictType. A.conflictType is NULL if there is no

conflict, Resolvable if there is a tolerable conflict that

can be resolved by the pre-defined resolution function,

Acceptable if there is a tolerable conflict and there is no

pre-defined resolution function for resolving the con-

flict, and Intolerable if there is an intolerable conflict.

In our integrated database example, we can define

the threshold predicates and resolution function for

the area, textbook and salary attributes as follows:

DEFINE area.threshold1@COURSE(a1,a2) = ((a1 EQUALS ‘‘theory’’) AND (a2 EQUALS ‘‘theories’’))

DEFINE area.resolution1@COURSE(a1,a2) = ‘‘theory’’

DEFINE area.threshold2@COURSE(a1,a2) = ((a1 EQUALS ‘‘system’’) AND (a2 EQUALS ‘‘systems’’))

DEFINE area.resolution2@COURSE(a1,a2) = ‘‘system’’

DEFINE textbook.threshold1@COURSE(t1,t2) = ((t1 EQUALS ‘‘abc’’) AND (t2 EQUALS ‘‘abcd’’))

DEFINE textbook.resolution1@COURSE(t1,t2) = ‘‘abc’’

DEFINE position.threshold1@EMP(p1,p2) = ((p1 EQUALS ‘‘pro’’) AND (p2 EQUALS ‘‘pr’’))

DEFINE salary.threshold1@EMP(s1,s2) = (max-dist(s1,s2)V 200)

DEFINE salary.resolution1@EMP(s1,s2) =max(s1,s2)

With the above definition, the area values of

‘‘theory’’ and ‘‘theories’’ for the Algorithm course

constitute a resolvable attribute conflict according to

area.threshold1(). The global object for the Algorithm

course will therefore have a resolved area value of

‘‘theory’’ computed by the resolution function, area.

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231224

resolution1(). On the other hand, the textbook values

of ‘‘abc’’ and ‘‘acb’’ for the Network course constitute

an intolerable attribute conflict. In this situation,

database integrators should be alerted and the conflict

should be resolved manually. Since only the threshold

predicate is defined for the position attribute of the

EMP class, the position values of ‘‘pro’’ and ‘‘pr’’

constitute an acceptable conflict. This may be because

‘‘pro’’ (public relation officer) and ‘‘pr’’ (public

relation) are synonymous. However, there is no

corresponding resolution function for this conflict.

For example, the attribute elements of the area and

textbook attribute of the Network and Algorithm

course objects, and those of the position attribute of

the employee object mike are shown below:

To keep the discussion simple, we have so far only

mentioned attributes with simple domain. OORA can

handle multivalued attributes and attributes with com-

plex data types in a similar manner.

4.4. Relationship conflicts

In the object-oriented data model, relationships can

be treated as attributes that provide references to

objects in other classes. These attributes are known

as reference attributes. The domain of reference

attributes consists of object ids. A one-to-one or

many-to-one relationship from class C1 to class C2

can be represented as an single-valued reference

attribute in C1, while a one-to-many or many-to-many

relationship can be represented as an multi-valued

reference attribute in C1. For multi-valued reference

attributes, the reference attribute values are repre-

sented as sets of object ids.

In the OORA model, global relationships are

derived from relationships between objects of exist-

ing databases. The global relationships, represented

as reference attributes in the global schemas, relate

global objects from different classes in the integrated

database. Similar to attribute conflicts, we represent

the original and resolved values of a reference

attribute R in the global schema by R.ovalue and

R.rvalue, respectively. Threshold predicates and res-

olution functions can also be defined on reference

attributes.

Definition 3 (Conflict type and resolved value of a

global object reference attribute). Let g be a global

object in the global class G derived from local objects

c1, c2, . . ., cn from local classes C1, C2, . . ., Cn,

respectively. Let r be a global object reference

attribute defined with threshold and resolution

functions g.r.threshold’s. and g.r.resolution’s. The

conflict type and resolved value of a global object

reference attribute is defined as follows:

network: area.ovalue ={(system, A), (system, B)}

area.rvalue = system

area.conflictType =NULL

textbook.ovalue ={(abc, A), (acb, B)}

textbook.rvalue =NULL

textbook.conflictType = Intolerable

algo: area.ovalue ={(theory, A), (theories, B)}

area.rvalue = theory

area.conflictType =Resolvable

textbook.ovalue ={(xyz, A), (xyz, B)}

textbook.rvalue = xyz

textbook.conflictType =NULL

mike: position.ovalue ={(pro, A), (pr, B)}

position.rvalue =NULL

position.conflictType =Acceptable

g:r:conflictType

¼

Resolvable if ak; g:r:thresholdkðc1:r; . . . ; cn:rÞ ¼ TRUE ^ g:r:resolutionðc1:r; . . . ; cn:rÞ is defined
Acceptable if ak; g:r:thresholdkðc1:r; . . . ; cn:rÞ ¼ TRUE ^ g:r:resolutionðc1:r; . . . ; cn:rÞ is undefined
Intolerable if bk; g:r:thresholdkðc1:r; . . . ; cn:rÞ ¼ FALSE

NULL otherwise

8>>><
>>>:

g:r:rvalue ¼

g:r:resolutionkðc1:r; . . . ; cn:rÞ if ak; g:r:thresholdkðc1:r; . . . ; cn:rÞ ¼ TRUE ^ g:r:resolutionkðc1:r; . . . ; cn:rÞ is defined

x if brag:r:ovalue; r ¼ x

NULL otherwise

8>>>><
>>>>:

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231 225

For illustration, let say the course offering with id 5

is actually part of that with id 6. The following

threshold predicate and resolution function can be

defined.6

In the above statements, a and b denotes global

object ids of OFFERING objects. Using the threshold

predicate and resolution function for offer, the ele-

ments of offer relationships for Network and Database

are shown below. Note that co1 to co6 are global

object ids for the course offerings with ids 1 to 6,

respectively.

4.5. Integrated database instances

The OORA objects of the integrated database are

shown in Tables 1–3. Note that the Attribute-ele-

ment columns in the above tables are included

simply to illustrate the three elements of attribute

values. As shown in Tables 1–3, the OORA data

model retains both attribute and relationship conflicts

while holding the matching objects from different

databases together by assigning global object ids to

them. Respective resolution functions are defined to

perform various resolutions of instance conflicts

when they are tolerable.

As shown in the above tables, the oid attributes are

unlike the other attributes. They do not have any

conflicts and resolved values. However, to allow them

to be queried in a way consistent with the other

attributes, the oid attributes are assumed to have

identical ovalues and rvalues, and NULL values for

conflictType.

5. OORA query language and examples

To query the global objects represented in the

OORA data model, one has to formulate queries in a

language we refer to as OOQLRA. OOQLRA uses the

OQL syntax since the latter has been included by the

Object Data Management Group (ODMG) as the

standard object-oriented query language [3]. OOQLRA

has further extended OQL to support the query re-

quirement for an integrated database containing attri-

bute and relationship conflicts in the derivation and

evolution phases of database integration. An OOQLRA

SELECT query statement can be expressed as:

The FROM clause consists of one or more expres-

sions each representing a set of objects that belong to

some class. Unlike the usual OQL statements, every

non-oid attribute, say A, found in an OOQLRA query

statement must be in one of the forms, A, A.ovalue,

A.ovalue(D), A.rvalue and A.conflictType where D is

some local database id. Only attributes of the forms

A.ovalue, A.ovalue(D), A.rvalue and A.conflictType

can be used in the WHERE clause. In other words, the

attribute in the form of attribute name can only appear

in the SELECT clause. For example, in the following

query Q1, we retrieve the id, name, area and textbook

information of courses (Table 4).

Example (Q1)

In the following subsections, we will use several

query examples to illustrate other essential features of

OOQLRA.

Network: offer.ovalue ={({co1,co2},A),

({co1,co2},B)}

offer.rvalue ={co1,co2}

offer.conflictType =NULL

Database: offer.ovalue ={({co3,co4,co5},A),

({co3,co4,co6},B)}

offer.rvalue ={co3,co4,co6}

offer.conflictType =Resolvable

DEFINE offer.threshold1@COURSE(a,b) = (a	 {5}+{6}= = b)

DEFINE offer.resolution1@COURSE(a,b) = a	 {5}+{6}

6 In practice, the threshold predicate and resolution function

can be implemented as general programs.

SELECThpath expression 1i, . . ., hpath expression mi
FROMhobject set expression 1i, . . .,hobject set expression ni
WHEREhpredicate expressioni

SELECT C.oid, C.cname, C.area, C.textbook

FROM COURSE C

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231226

Table 2

OFFERING’s global objects

Attr-element oid id Dates fee attended_by

ovalue co1 (1,A)(1,B) (3/2–3/5,A)(3/2–3/5,B) (2000,A)(2000,B) ({e1,e2},A)({e1,e2},B)

rvalue 1 3/2–3/5 2000 {e1,e2}

conflictType NULL NULL NULL NULL

ovalue co2 (2,A)(2,B) (5/23–5/24,A)(5/23–5/24,B) (1000,A)(1000,B) ({e2,e3},A)({e3},B)

rvalue 2 5/23–5/24 1000 {e3}

conflictType NULL NULL NULL intolerable

ovalue co3 (3,A)(3,B) (6/1–6/6,A)(6/1–6/6,B) (5000,A)(5000,B) ({e2},A)({e2},B)

rvalue 3 6/1–6/6 5000 {e2}

conflictType NULL NULL NULL NULL

ovalue co4 (4,A)(4,B) (8/30–9/1,A)(8/30–9/1,B) (2500,A)(2500,B) ({e3},A)({e3,e4},B)

rvalue 4 8/30–9/1 2500 {e3}

conflictType NULL NULL NULL intolerable

ovalue co5 (5,A)(5,B) (11/12–11/12,A) (800,A) ({e4},A)

rvalue 5 11/12–11/12 800 {e4}

conflictType NULL NULL NULL NULL

ovalue co6 (6,A)(6,B) (11/12–11/13,B) (850,B) NULL

rvalue 6 11/12–11/13 850 NULL

conflictType NULL NULL NULL NULL

Table 1

COURSE’s global objects

Attr-element oid cname area Textbook offer

ovalue c1 (network,A)(network,B) (system,A)(system,B) (abc,A)(acb,B) ({co1,co2},A)({co1,co2},B)

rvalue network system NULL {co1,co2}

conflictType NULL NULL intolerable NULL

ovalue c2 (database,A)(database,B) (system,A)(system,B) (def,A)(def,B) ({co3,co4,co5},A)({co3,co4,co6},B)

rvalue database system def {co3,co4,co6}

conflictType NULL NULL NULL resolvable

ovalue c3 (algo,A)(algo,B) (theory,A)(theories,B) (xyz,A)(xyz,B) NULL

rvalue algo theory xyz NULL

conflictType NULL resolvable NULL NULL

Table 3

EMP’s global objects

Attr-element oid Ename Position Qual Salary

ovalue e1 (mike,A)(mike,B) (pro,A)(pr,B) (BA,A) (10000,A)(10200,B)

rvalue mike NULL BA 10200

conflictType NULL acceptable null resolvable

ovalue e2 (karen,A)(karen,B) (eng,A)(eng,B) (BEng,A) (15000,A)(15000,B)

rvalue karen eng BEng 15000

conflictType NULL NULL NULL NULL

ovalue e3 (mel,A)(mel,B) (eng,A)(eng,B) (BSc,A) (14000,A)(12000,B)

rvalue mel eng BSc NULL

conflictType NULL NULL NULL intolerable

ovalue e4 (lisa,A)(lisa,B) (mgr,A)(mgr,B) (BEng,A) (25000,A)(25000,B)

rvalue lisa mgr BEng 25000

conflictType NULL NULL NULL NULL

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231 227

5.1. Queries on original attribute/relationship values

The original attribute and relationship values in the

existing databases have to be examined by the data-

base integrators during the process of deriving objects

in the integrated databases in both the derivation and

evolution phase. For example, the following OOQLRA

statement (Q2) could be used to identify unresolved

intolerable attribute conflict in the COURSE class

(Table 5).

Example (Q2)

Since the OORA model accommodates all the

original attribute and relationship values in the inte-

grated database, users can query local databases via

the global schema using OOQLRA. An example of

such queries is illustrated in Q3 (Table 6).

Example (Q3)

In the Q3 statement, F.date.ovalue(A) represents a

path expression that involves the relationship values

provided by DBA.

5.2. Queries on resolved attribute/relationship values

Once an integrated database is derived, OOQLRA

allows end users to query only the resolved attribute

and relationship values in the integrated database

while hiding the conflicts from the users (Table 7).

Example (Q4)

5.3. Evolution of local databases

When an integrated database is first derived

during the derivation phase, all conflicts between

local instances may be fully resolved. As the local

database evolves, new records are added to the

databases, some old ones are removed, and other

old ones get updated. These local changes may lead

to un-anticipated conflict(s) in the integrated data-

base. In this case, queries similar to Q2 can be used

to identify unresolved attribute and relationship con-

flicts (Table 8).

Example (Q5)

To resolve the identified conflicts, one has to

examine the cause of conflicts. If the conflicts are

due to flaws in the derivation of integration data-

Table 4

Query result of Q1

oid cname area Textbook

c1 (network,A)(network,B) (system,A)(system,B) (abc,A)(acb,B)

network system NULL

NULL NULL intolerable

c2 (database,A)(database,B) (system,A)(system,B) (def,A)(def,B)

database system def

NULL NULL NULL

c3 (algo,A)(algo,B) (theory,A)(theories,B) (xyz,A)(xyz,B)

algo theory xyz

NULL resolvable NULL

Table 5

Query result of Q2

cname.ovalue area.ovalue textbook.ovalue

(network,A)(network,B) (system,A)(system,B) (abc,A)(acb,B)

SELECT C.cname.ovalue, C.area.ovalue, C.textbook.ovalue

FROM COURSE C

WHERE C.textbook.conflictType = Intolerable

SELECT C.oid, C.cname.ovalue(A), C.area.ovalue(A), C.textbook.

ovalue(A), F.date.ovalue(A)

FROM COURSE C, C.offer.ovalue(A) F

SELECT C.cname.rvalue, F.dates.rvalue, E.ename.rvalue

FROM COURSE C, C.offer.rvalue F, F.attended_by.rvalue, E

WHERE E.position.rvalue = ‘‘eng’’

SELECT C.oid, C.cname, C.textbook

FROM COURSE C

WHERE C.textbook.conflictType = Intolerable

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231228

base, we can define attribute threshold predicates

and resolution functions using the DEFINE state-

ments. Otherwise, the conflicts may be caused by

erroneous information introduced to some local

database, e.g., typographical errors made during data

entry. In this case, the appropriate local database

administrator can be advised to correct the error. We

can further define triggers using OOQLRA to detect

intolerable attribute or relationship conflicts in the

integrated objects.

5.4. Aggregate queries

Like other query languages, OOQLRA supports

aggregate queries that are often used in decision

making. For example, to calculate the number of

courses that are offered with a fee higher than

$1000, the query below (Q6) is required.

Example (Q6)

As shown in Table 9, Q6 first identifies the

COURSE objects satisfying the predicate F.fee.

rvalue>1000. The qualified objects are summarized

by the COUNT function. Note that COUNT() is

performed by counting the number of unique global

objects.

5.5. Characteristics of OOQLRA

From the above query examples, we show that

OOQLRA allows users to query either conflicting or

resolved information in an integrated database. It

also supports direct queries on some selected local

database. This flexibility is not available in the

traditional object-oriented data models. The source

information assigned to the attribute values not only

help to distinguish the origin of the attribute values,

but also provide the essential meta-information re-

quired for further conflict resolution. For example, if

the course fee information from database A is more

reliable than that from database B, by examining the

source information in the attribute values, one derive

the appropriate course fee information for the global

objects.

If necessary, special mapping functions that relate

the source information to other meta-information of

the existing databases can be developed. These meta-

information further capture the additional semantics

about the existing databases that may be useful during

database integration or when the attribute values are

interpreted.

Table 6

Query result of Q3

C.oid C.cname.ovalue(A) C.area.ovalue(A) C.textbook.ovalue(A) F.date.ovalue(A)

c1 network system abc 3/2–3/5

c1 network system abc 5/23–5/24

c2 database system def 6/1–6/6

c2 database system def 8/30–9/1

c2 database system def 11/12–11/12

c3 algo theory xyz NULL

Table 7

Query result of Q4

C.cname.rvalue F.dates.rvalue E.ename.rvalue

Network 3/2–3/5 karen

Network 5/23–5–24 mel

Database 6/1–6/6 karen

Database 8/30–9/1 mel

Table 8

Query result of Q5

oid cname textbook

c1 (network,A)(network,B) (abc,A)(acb,B)

network NULL

NULL intolerable

COUNT(SELECT C FROM COURSE C

WHERE EXISTS F IN C.offer.rvalue: F.fee.rvalue >1000)

Table 9

Query result of Q6

COUNT

2

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231 229

6. Conclusions and future research

This research introduces a fresh and comprehensive

approach to examine the database integration process.

To support the query and integration activities in all

phases of database integration, we believe that some

amount of instance-level conflicts have to be accom-

modated by the integrated databases. Furthermore, not

all instance conflicts can always be resolved during

database integration. This paper examines the impact

of instance conflicts on global data model. The concept

of threshold predicate and resolution function have

been adopted to handle both attribute and relationship

conflicts. An extended object-oriented data model

called OORA has been proposed to accommodate

attribute and relationship conflicts. Its query language

OOQLRA and some query examples were given.

This research can be seen as an initial effort to

systematically devise different solutions to resolve as

well as to accommodate instance heterogeneity in the

integrated databases. This is in contrast to past data-

base integration research, which often emphasized on

conflict resolution only.

The following are some future research directions:

� OOQLRA query algebra: The query algebra of

OOQLRA will be developed so that the formal

theory of the OOQLRA language can be defined.

The query algebra will also be useful for designing

the query evaluation strategies for OOQLRA

queries.
� Design and implementation of a database engine

based on the OORA model: The ultimate goal of our

research is to provide a thorough solution to the

construction and maintenance of multidatabase or

data warehousing systems. As part of our effort, a

database engine based on OORA model will be

developed to support both the integration and

query requirements of multidatabase and data

warehouse users.
� Comprehensive classification of schema and in-

stance conflicts: Based on the classification of

instance conflicts given in this paper and further

research on schema conflicts, a comprehensive

classification of schema and instance conflicts can

be derived. The classification will provide better

understanding of inter-database conflicts and their

solutions.

� Multidatabase views: In Ref. [19], a five-level

schema architecture similar to the CODASYL

schema architecture has been proposed for multi-

database systems. With the different query and

integration requirement imposed by the global

application, we believe that multidatabase users

should be given a flexibility to decide how the

conflicts can be viewed and resolved. In this case, a

flexible multidatabase view definition mechanism

based on OORA model can be extremely useful.

For example, users can choose different threshold

predicates and resolution functions for different

multidatabase views defined over the same set of

local databases.

Acknowledgements

The authors wish to thank the Editor-in-Chief and

anonymous reviewers for their supportive comments

on earlier version of this manuscript.

References

[1] G. Aslan, D. McLeod, Semantic heterogeneity resolution in

federated databases by metadata implantation and stepwise

evolution, VLDB Journal 8 (2) (1999) 120–132.

[2] C. Batini, M. Lenzerini, S.B. Navathe, A comparative analysis

of methodologies for database schema integration, ACM

Computing Surveys 18 (4) (1986) 323–364 (December).

[3] R.G.G. Cattell (Ed.), The Object Database Standard: ODMG

2.0, Morgan Kaufmann Publishers, 1997.

[4] A. Chatterjee, A. Segev, Resolving data heterogeneity in sci-

entific and statistical databases, International Working Confer-

ence on Scientific and Statistical Database Management,

Switzerland (June), 1992.

[5] L.G. DeMichiel, Resolving database incompatibility: an ap-

proach to performing relational operations over mismatched

domains, IEEE Transactions on Knowledge and Data Engi-

neering 1 (4) (1989) 485–493 (December).

[6] M. Garcia-Solaco, F. Saltor, M. Castellanos, Semantic hetero-

geneity in multidatabase systems, chapter 5, in: O.A. Bukhres,

A.K. Elmagarmid (Eds.), Object Oriented Multidatabase Sys-

tems: A Solution For Advanced Applications, Prentice Hall,

1996, pp. 129–202.

[7] M. Kaul, K. Drosten, E.J. Neuhold, ViewSystem: integrating

heterogeneous information bases by object-oriented views, In-

ternational Conference on Data Engineering, 1990, pp. 2–10,

February, Los Angeles.

[8] W. Kim, J. Seo, Classifying schematic and data heterogeneity in

multidatabase systems, IEEE Computer 24 (12) (1991) 12–18

(December).

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231230

[9] J.A. Larson, S.B. Navathe, R. Elmasri, A theory of attribute

equivalence in databases with application to schema integra-

tion, IEEE Transactions in Software Engineering 15 (4) (1989)

449–463 (April).

[10] W.-S. Li, C. Clifton, Semantic integration in heterogeneous

databases using neural networks, Proceedings of International

Conference on Very Large Data Bases, 1994, pp. 1–12, Chile.

[11] E.-P. Lim, R.H.L. Chiang, Tuple source relational model: a

source-aware data model for multidatabases, Data and Knowl-

edge Journal 29 (1) (1999) 83–114.

[12] E.-P. Lim, R.H.L. Chiang, The integration of relationship in-

stances from heterogeneous databases, Decision Support Sys-

tems 29 (2) (2000) 153–167.

[13] E.-P. Lim, J. Srivastava, Entity identification in database in-

tegration, Proceedings of International Symposium on Next

Generation Database Applications, Fukuoka, Japan, 1993.

[14] E.-P. Lim, J. Srivastava, S. Prabhakar, J. Richardson, Entity

identification problem in database integration, Proceedings of

IEEE Data Engineering Conference, 1993, pp. 294–301,

Vienna, Austria.

[15] E.-P. Lim, J. Srivastava, S. Shekhar, Resolving attribute in-

compatibility in database integration: an evidential reasoning

approach, Proceedings of IEEE International Conference on

Data Engineering, 1994, pp. 154–163, February, Houston.

[16] W. Litwin, A. Adbellatif, Multidatabase interoperability, IEEE

Computer 19 (12) (1986) 10–18.

[17] H. Lu, W. Fan, C.H. Goh, S.E. Madnick, D.W. Cheung, Dis-

covering and reconciling semantic conflicts: a data mining

perspective, The Proceedings of the 7th IFIP 2.6 Working Con-

ference on Data Semantics (DS-7), Leysin, Switzerland, 1997.

[18] P. Scheuermann, E.I. Chong, Role-based query processing in

multidatabase systems, Proceedings of International Confer-

ence on Extending Database Technology, 1994, pp. 95–108,

March, Cambridge.

[19] A.P. Sheth, J.A. Larson, Federated database systems for

managing distributed heterogeneous, and autonomous data-

bases, ACM Computing Surveys 22 (3) (1990) 183–236

(September).

[20] S. Spaccapietra, C. Parent, Y. Dupont, Model independent

assertions for integration of heterogeneous schemas, Very

Large Database Journal 1 (1) (1992) 81–126.

[21] C. Thieme, A. Siebes, An approach to schema integration

based on transformations and behaviour, Proceedings of the

6th Intern’l Conf. on Advanced Information Systems Engi-

neering (CAiSE’94), 1994.

[22] F.S.C. Tseng, A.L.P. Chen, W.-P. Yang, Answering heteroge-

neous database queries with degrees of uncertainty, Distrib-

uted and Parallel Databases 1 (3) (1993) 281–302.

[23] M.W.W. Vermeer, P.M.G. Apers, On the applicability of sche-

ma integration techniques to database interoperation, Proceed-

ings of International Conference on Conceptual Modeling,

1996 pp. 179–194, Cottbus.

[24] Y.R. Wang, S.E. Madnick, The inter-database instance identi-

fication problem in integrating autonomous systems, Proceed-

ings of IEEE International Conference on Data Engineering,

1989, pp. 46–55.

[25] R. Wang, S. Madnick, A polygen model for heterogeneous

database systems: the source tagging perspective, Proceedings

of International Conference on Very Large Data Bases, 1990,

pp. 519–538, Brisbane.

[26] L.L. Yan, T. Ozsu, Conflict tolerant queries in AURORA,

Fourth IFCIS Conference on Cooperative Information Sys-

tems (CoopIS’99), Edinburgh, Scotland (September), 1999.

Ee-Peng Lim is an Associate Professor with

the School of Computer Engineering,

Nanyang Technological University, Singa-

pore. He obtained his PhD from the Univer-

sity of Minnesota, Minneapolis in 1994.

Upon graduation, he started his academic

career at the Nanyang Technological Uni-

versity (NTU). In 1997, he established the

Centre for Advanced Information Systems

and was appointed the Centre Director. He

was later appointed a visiting professor at

the Chinese University of Hong Kong from December 2001 to June

2003. Upon his return to NTU, he started heading the Division of

Information Systems within the School of Computer Engineering.

He has published more than 120 refereed journal and conference

articles in the area of web warehousing, digital libraries and database

integration. He is currently an Associate Editor of the ACM Trans-

actions on Information Systems (TOIS). He is also a member of the

Editorial Review Board of the Journal of Database Management

(JDM). At present, he is the Program Co-Chair of the 2004 Joint

Conference on Digital Libraries (JCDL2004) and also the Program

Co-Chair of the Sixth International Conference on Asian Digital

Libraries (ICADL 2003).

Roger Chiang is Associate Professor of

Information Systems at College of Business,

University of Cincinnati. He received his BS

degree in Management Science from Na-

tional Chiao Tung University, Taiwan, MS

degrees in Computer Science from Michi-

gan State University and in Business Ad-

ministration from University of Rochester,

and PhD degree in Computers and Informa-

tion Systems from University of Rochester.

His research interests are in data and

knowledge management and intelligent systems, particularly in

database reverse engineering, database integration, data mining,

common sense reasoning and learning, and semantic information

retrieval of Web data. He is currently on the editorial board of

Journal of AIS, Journal of Database Management and International

Journal of Intelligent Systems in Accounting, Finance and Man-

agement. He is the Program Co-Chair of 22nd International Con-

ference on Information Systems, Research in Progress Track, 2001,

and ACM International Workshop on Web Information and Data

Management in 2001, 2002 and 2003. His research has been

published in a number of international journals including ACM

Transactions on Database Systems, Data Base, Data and Knowl-

edge Engineering, Decision Support Systems, Journal of Database

Administration and Very Large Data Base Journal.

E.-P. Lim, R.H.L. Chiang / Decision Support Systems 38 (2004) 213–231 231

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2004

	Accommodating Instance Heterogeneities in Database Integration
	Ee Peng LIM
	Roger Hsiang-Li CHIANG
	Citation

	Accommodating instance heterogeneities in database integration
	Introduction
	Related work
	Objectives and scope
	Contributions

	Instance heterogeneities
	Entity conflicts
	Attribute conflicts
	Attribute conflict example

	Relationship conflicts
	Relationship conflict example

	Requirements for accommodating instance heterogeneity
	Database integrators
	End users
	An example integration scenario

	The OORA object-oriented data model
	Global objects
	Threshold predicates and resolution functions
	Elements of attribute values
	Relationship conflicts
	Integrated database instances

	OORA query language and examples
	Queries on original attribute/relationship values
	Queries on resolved attribute/relationship values
	Evolution of local databases
	Aggregate queries
	Characteristics of OOQLRA

	Conclusions and future research
	Acknowledgements
	References

