
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

8-2009

A Distributed Spatial Index for Error-Prone
Wireless Data Broadcast
Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Wang-Chien LEE
Pennsylvania State University

Ken C. K. LEE
Pennsylvania State University

Dik Lun LEE
Hong Kong University of Science and Technology

Min SHAO
Pennsylvania State University

DOI: https://doi.org/10.1007/s00778-009-0137-2

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ZHENG, Baihua; LEE, Wang-Chien; LEE, Ken C. K.; LEE, Dik Lun; and SHAO, Min. A Distributed Spatial Index for Error-Prone
Wireless Data Broadcast. (2009). VLDB Journal. 18, (4), 959-986. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/747

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s00778-009-0137-2
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Noname manuscript No.
(will be inserted by the editor)

A Distributed Spatial Index for Error-Prone Wireless Data Broadcast

Baihua Zheng1, Wang-Chien Lee2, Ken C. K. Lee2, Dik Lun Lee3, Min Shao2

1 Singapore Management University, Singapore. bhzheng@smu.edu.sg
2 Pennsylvania State University, USA. {wlee,cklee,mshao}@cse.psu.edu
3 The Hong Kong University of Science and Technology, Hong Kong. dlee@cse.ust.hk

Abstract Information is valuable to users when it is
available not only at the right time but also at the right
place. To support efficient location-based data access
in wireless data broadcast systems, a distributed spa-
tial index (called DSI ) is presented in this paper. DSI
is highly efficient because it has a linear yet fully dis-
tributed structure that naturally shares links in differ-
ent search paths. DSI is very resilient to the error-prone
wireless communication environment because interrupted
search operations based on DSI can be resumed eas-
ily. It supports search algorithms for classical location-
based queries such as window queries and kNN queries
in both of the snapshot and continuous query modes.
In-depth analysis and simulation-based evaluation have
been conducted. The results show that DSI significantly
out-performs a variant of R-trees tailored for wireless
data broadcast environments.

Keywords: mobile computing, location-based query, wire-
less broadcast, error resilience

1 Introduction

With the ever growing popularity of smart mobile de-
vices and rapid advent of wireless technology, the vi-
sion of pervasive information access has come closer to
reality. While information is important to users, it is
valuable only when available at the right time, right
place. Indeed, location is a very important requirement
to pervasive information access. The demand for access
of location dependent data (e.g., pollution index, local
traffic conditions, restaurant locations, navigation maps,
weather condition, etc.) fosters a tremendous application
base of location based services.

Today, there are many wireless technologies (e.g.,
Bluetooth, WiFi, UMTS, Satellite, etc.) that could be
integrated into a seamless, pervasive information access
platform. Logically, information access via these wireless

technologies can be classified into two basic approaches:
on-demand access and periodic broadcast. On-demand
access employs a pull-based approach where a mobile
client initiates a query to the server which in turn pro-
cesses the query and returns the result to the client over
a point-to-point channel. On-demand access is suitable
for lightly loaded systems in which wireless channels and
server processing capacity is not severely contended.

On the other hand, periodic broadcast requires the
server to proactively push data to the clients over a ded-
icated broadcast channel. This approach allows an ar-
bitrary number of clients to access data simultaneously,
and thus is particularly suitable for heavily loaded sys-
tems. Wireless data broadcast services have been avail-
able as commercial products for many years, e.g. Star-
Band (www.starband.com) and Hughes Network (www.
hughesnet.com). Recently, there has been a push for such
systems from the industry and various standard bodies.
For example, born out of the International Telecommu-
nication Union’s (ITU) International Mobile Telecom-
munications “IMT-2000” initiative, the Third Genera-
tion Partnership Project 2 (www.3gpp2.org) is develop-
ing Broadcast and Multicast Service in cdma2000 Wire-
less IP network [36]. Another example is the MSN Direct
Service (www.msndirect.com) based on the smart per-
sonal objects technology (SPOT) and the DirectBand
Network. With a continuous broadcast network using
FM radio subcarrier frequencies, mobile devices (e.g.,
smart watches, Navigators and PDAs) can continuously
receive timely information such as stock quotes, airline
schedules, local news, weather, and traffic information.
Moreover, systems for Digital Audio Broadcast (DAB)
(www.worlddab.org) and Digital Video Broadcast (DVB)
(www.dvb.org) are capable of delivering wireless data
services. News also reported that XM Satellite Radio
(www.xmradio.com) and Raytheon have jointly built a
communication system that would use XM’s satellites to
relay information to soldiers and emergency responders
during a homeland security crisis.



2 Baihua Zheng et al.

A number of studies have addressed various system
issues of wireless data broadcast [3,7,8,16,18,31,41]. Re-
cently, several proposals on delivering location-based data
via wireless data broadcast have been suggested, e.g.,
enhanced R-tree based air index by Gedik, et. al. [12],
and the DAYS project led by Kumar [2,10]. In this pa-
per, we address the demand of location-based data by
proposing a novel on-air spatial index, called Distributed
Spatial Index (DSI), to support location-based queries
issued by mobile users in wireless data broadcast sys-
tems. We focus on two classical location-based queries1:
window queries and k nearest neighbor searches. The
former is to retrieve all the queried objects that fall in-
side the query window centered at a query point, and
the latter is to retrieve the k objects located nearest
to a query point. In both cases, the query point could
be the current user location or on an anticipated user
moving trajectory. In the design of DSI, we paid special
attentions to the following three aspects: 1) the perfor-
mance requirement with respect to energy conservation
and access efficiency; 2) the inherently unreliable and
error-prone wireless communication; and 3) the support
of general location-based queries. To cater for client mo-
bility, we consider not only the typical snapshot queries
in which a query point is fixed, but also the continuous
queries in which the query point moves along an antici-
pated movement trajectory. A continuous query is used
in a situation where future client movement is projected.
Taking the continuous nearest neighbor (CNN) query as
an example, a client may want to know the nearest gas
stations along an anticipated path from her current lo-
cation to New York city. The returned result contains
pairs of the nearest gas stations and their corresponding
path segments (i.e., each pair consists of a gas station g
and the segment where g is the nearest gas station). This
information can be cached in a client and is particularly
useful for the client to avoid continuously issuing queries
while moving. Similarly, a continuous window query is
to figure out pairs of qualified objects and their corre-
sponding segments. The proposed DSI is an index struc-
ture that facilitates highly efficient and reliable access of
location-based data in wireless data broadcast systems.
It exhibits the following properties:

– It organizes data objects in a certain linear order
(e.g., Hilbert Curve) that naturally fits the media of
wireless data broadcast to facilitate efficient indexing
and scheduling for broadcast.

– It has a fully distributed structure that allows query
processing to start immediately and thus minimize
the unnecessary waiting time for the arrival of the
starting point of a search path. The property sig-
nificantly shortens the access latency of the queried
data.

1 Without causing any confusion, we use location-based
queries and spatial queries interchangeably.

– It provides multiple search paths for same objects
and shares links on common search paths to minimize
the bandwidth overhead of index information.

– It is very resilient to the inherent error-prone commu-
nication environment in wireless data broadcast. The
clients can resume, instead of restarting, the query
processing operation shortly after an error occurs.

– It efficiently supports a variety of location-based queries,
including window query and k nearest neighbor (kNN)
query, in both of the snapshot and continuous query
modes.

The issues of developing efficient and error-resilient
search algorithms for location-based queries are partic-
ularly challenging. The designs of traditional spatial in-
dexes, e.g., R-Trees, are based on resident storage such
as memory and disk which supports backtracking in tree
traversal. Unfortunately, the linear property of wireless
broadcast environments imposes a serious constraint of
sequential access on R-trees. Thus, our search algorithms
for DSI are based on the principle of following the linear
access order but refining the search space and filtering
out unqualified objects efficiently. Insights obtained from
our analysis have led to a solution based on space refin-
ing and objects filtering and result in very efficient query
processing algorithms.

To the best of our knowledge, this is the first work
addressing location-based query processing issues in the
error-prone wireless communication environment. It is
observed that a node in traditional tree-structured in-
dexes is only pointed by one parent node. As a result, the
only access to a node will be lost if its parent/ascendant
node could not be reached successfully. The search per-
formance penalized by packet loss can be significant.
Alternatively, DSI, by converging multiple search paths
into one linear index structure, enables a fast resume of
the search process. An extensive performance evaluation
in both error-free and error-prone wireless communica-
tion environments shows that the proposed DSI performs
significantly better than a variant of R-trees tailored for
wireless data broadcast environments.

A preliminary version of this work has been reported
in [21], where only the snapshot queries are considered.
In this paper, for the sake of completeness, we extend
the work to answer window queries and kNN queries in
the more challenging continuous query mode. In addi-
tion, we provide an analytical model to study the per-
formance of a primitive search algorithm, namely Energy
Efficient Forwarding (EEF), in both error-free and error-
prone environments. The simulation is also extended to
examine more performance aspects, including power con-
sumption, computation cost and error resilience, on large
datasets. Finally, we also discuss how to extend DSI to
support queries on multiple data types.

The rest of this paper is organized as follows. A
brief review of the wireless data broadcast, space fill-
ing curves, and existing work on air indexing for wire-
less data broadcast is provided in Section 2. The index



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 3

structure of DSI is detailed in Section 3, together with
the description and detailed analysis of EEF, in both
error-free and error-prone environments. Based on DSI,
algorithms that support snapshot queries, as well as con-
tinuous queries, are presented in Section 4. Further, a
simulation based performance evaluation is conducted
in Section 5 to demonstrate the advantage of DSI in
support of multiple spatial queries and its resilience un-
der error-prone wireless communication environments.
Finally, we conclude this paper in Section 6.

2 Preliminaries

In this section, we first describe the general system model,
assumptions, and constraints of wireless data broadcast
systems. Next, we discuss existing work of supporting
spatial queries in wireless data broadcast environments.

2.1 System Model

Typically, a wireless data broadcast system consists of
three parts: 1) a communication mechanism; 2) a broad-
cast server; and 3) a number of mobile clients. Figure 1
shows a high-level view of the system model. The com-
munication mechanism consists of a number of wireless
broadcast channels to disseminate data from the server
to the clients. Without loss of generality, we assume only
one broadcast channel is allocated in our study, without
any uplink channel (since this is a push-based broad-
cast system). To answer queries, the mobile clients tune
into the broadcast channel to retrieve data on air. More-
over, we assume clients can determine their current lo-
cations via some positioning technology, such as GPS.
To simplify our study, we assume the entire service area,
in which the clients can roam freely, is covered by one
broadcast server (e.g., a satellite)2.

Fig. 1 A Wireless Data Dissemination System

The broadcast server is connected to data sources via
high speed networks and thus can be considered as a log-
ical data source for all the mobile users. An important
task of the server is to determine and schedule the data

2 The proposed indexing technique is also applicable to sin-
gle cell in the cellular based mobile system. However, issues
involving with the overlapping of services among the neigh-
boring cells may need further investigation.

objects for the broadcast program. A data object con-
sists of a set of searchable attributes and a content body.
Since our focus in this study is on location-based data ac-
cess, we simply assume that the search attributes consist
of geographical coordinates. A homogeneous data type
(e.g. restaurants) is considered in this study. While com-
plicated applications may likely issue complex queries
that involve multiple types of data objects, our study
represents an initial step towards this direction. In Sec-
tion 3.4, we will discuss how to extend DSI to support
multiple data types.

The server periodically disseminates data objects to
its clients via the shared broadcast channel, and a com-
plete broadcast of data objects is called a broadcast cycle.
From the standpoint of mobile clients, data objects ap-
pear as a sequential stream along the time axis. A client
may start retrieving data on air whenever it tunes into
the broadcast channel. Thus, a broadcast cycle may logi-
cally start at any data object and end at the next appear-
ance of the same data object. Finally, content updates of
a data object are reflected between two successive broad-
cast cycles.

The performance of a wireless data broadcast sys-
tem is measured by two criteria: access efficiency and
energy conservation. As mobile clients are typically pow-
ered by batteries with limited capacity, the main con-
cerns are 1) how fast a request could be satisfied; and
2) how battery energy of mobile clients could be con-
served. To improve energy conservation, smart mobile
devices can switch between two operation modes: active
mode and doze mode. In doze mode, the clients suspend
most energy consuming tasks like computation and com-
munication whereas in active mode, some of those sus-
pended tasks are performed. Energy conserving clients
stay in doze mode most of the time and change to ac-
tive mode occasionally when there is a need to perform
energy consuming tasks. In the literature, two perfor-
mance metrics, namely access latency and tuning time,
are commonly used to measure access efficiency and en-
ergy consumption for mobile clients in a wireless data
broadcast system, respectively [15,17,18]3:

– Access Latency: The time elapsed from the moment
a query is issued to the moment it is answered.

– Tuning Time: The time a mobile client stays in active
mode to receive the requested data objects and index
information.

2.2 Conventional Spatial Query Processing

In conventional spatial database research, many index
structures have been proposed for the access of spatial

3 In this study, while tuning time and access latency are
used as the primary performance metrics to guide the de-
sign and optimization of DSI, we also investigate the power
consumption and computational cost of mobile clients in the
performance evaluation.



4 Baihua Zheng et al.

data, including R-tree [14], KD-tree [27], Quad-tree [28],
etc. Among them, R-tree is most well received for its
simplicity, efficiency, and compatibility to handle a wide
range of spatial data and queries. The basic idea is to
approximate a spatial object with a minimal bounding
rectangle (MBR) and to index these MBRs recursively
using larger MBRs. Each node in the index tree contains
a number of entries. Each entry in an internal node con-
tains a child-pointer to a lower level node in the tree and
an MBR covering all the rectangles in the lower nodes
in the subtree. In a leaf node, an entry consists of a
pointer to the data object and an MBR which bounds
the data object’s spatial region. Variants of the R-tree
differ from each other in terms of the criteria used to
construct the index. Figure 2(b) shows the structure of
an R-tree, where corresponding objects and MBRs are
depicted in Figure 2(a).

R-tree based search algorithms typically follow a branch-
and-bound approach to dynamically adjust the search
space based on the positions of the query point and ob-
jects. For example, suppose that there are two query
points, q1 and q2, as shown in Figure 2(a). For query
point q1, after accessing the root, it visits R2 first since
it is closer to R2 than to R1. In R2, the NN of q1 is o2.
Hence, it records the current minimal distance, |q1, o2|

4.
Because |q1, o2| is shorter than the minimum distance
from q1 to R1, the search is completed. Similarly, for
query point q2, it first examines the root and then R2.
Next, it examines R1 since the current minimal distance,
|q2, o4|, is longer than the minimum distance from q2

to R1. As illustrated, NN search for R-tree dynamically
traverses the MBRs according to the given query point,
which introduces backtracking, i.e., the search goes back
to its parent node and switches to other branches more
likely to contain the result objects. This operation is
well supported in random-access media such as the main
memory and hard disks.

In a wireless broadcast channel, however, data ob-
jects are broadcast based on a pre-defined sequence (called
a broadcast program) and thus a data object is only avail-
able when it is on air. Consequently, search algorithms
designed for random access storages may incur a sig-
nificant access latency. For example, Figure 2(c) illus-
trates branch-and-bound search of the R-tree depicted
in Figure 2(b) on air. Assuming that a search algorithm
chooses to visit the node R2 and then node R1, after vis-
iting the root node, yet the index nodes are broadcast in
the order of root, R1, and R2. Consequently, if a client
intends to backtrack to R1 after visiting node R2, it has
to wait until the next cycle because R1 has already been
broadcast in the current cycle. This occurs every time
when a search order differs from the broadcast order
and thus significantly extends the access latency. Alter-
natively, the client can perform the search in accordance

4 Function |a, b| returns the Euclidean distance between
two points a and b.

with the broadcast order, i.e., visiting root, R1, and then
R2, in order to fit the sequential access property of wire-
less data broadcast. However, this conservative approach
may retrieve some unnecessary objects avoidable based
on branch-and-bound search algorithm and hence results
in a longer tuning time and more energy consumption.

o1
o3

o2

o4

q1

q2

R2

R1

(a) MBR Structures

R1 R2

o1 o3 o2 o4

to data objects

root

R1 R2

(b) R-tree Index

R1

�
�
�

�
�
� R2 R1R21o 3o 2o 4o 1o 3o 2o 4o

��
��
��
��

��
��
��
��

�����������������������������
�����������������������������
�����������������������������
�����������������������������

����������������������������������������������������������Broadcast Cycle

Data Data

(c) Branch-and-Bound Search

Fig. 2 Linear Access on Broadcast Channel

From this example, we can easily observe the defi-
ciencies of R-tree index in wireless data broadcast sys-
tems. Besides, due to the unique characteristics of wire-
less data broadcast, design requirements for air indexes
are distinct from those for the traditional disk-based in-
dexes:
– The size of air index has a direct impact on the access

latency and thus needs to be small.
– Air index can only be accessed sequentially. Thus, the

index structure and search algorithms should take
the property of sequential access into account.

– Query processing based on wireless data broadcast
should start as soon as possible instead of waiting
for a specific index node (e.g., the root of an index
tree) to arrive.

– Additionally, query processing based on wireless data
broadcast should be resilient to the error-prone wire-
less communication environment. In the events of er-
ror while receiving data, the client needs to be able
to resume (instead of restarting) the search shortly.

2.3 Air Indexing

Without any auxiliary information about the broadcast
schedule of data objects, a client is forced to exhaustively
listen to the wireless channel for requested objects. For
instance, to locate an object closest to its current posi-
tion, a client has to download the whole data set. This
clearly consumes a lot of energy since the client has to
stay in active mode for one entire broadcast cycle.

Air indexing techniques are often used for conserv-
ing the energy of mobile clients [18,20]. The basic idea
is that the broadcast server pre-computes indexing in-
formation (including searchable attributes and delivery
time of data objects) and interleaves it with data objects
on the broadcast channel. Through the air index, mobile



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 5

clients are aware of the arrival time of desired data ob-
jects by examining the index information. Long before
the arrival of the objects, the clients can switch to doze
mode and only wake up to active mode when the objects
are about to be broadcast. Similarly, appending to each
data object, the delivery time of the next index helps
the clients to schedule the sleep time for subsequential
data access. Consequently, the search of data objects is
facilitated.

Imielinski et al. has extended B+-trees to assist the
access of broadcast data. Two approaches, namely, (1,
m) and distributed index, are proposed to interleave the
index and data in a broadcast channel [18]. The former
treats the whole index as one segment and replicates
the segment m times within one broadcast cycle. An
index scan is guaranteed to be finished by visiting one
index segment. However, the clients suffer from a longer
access latency since m identical index segments extend
the overall broadcast cycle significantly. The distributed
index replicates only the top part of an index tree (see
Figure 3 for illustration), and the replicated part is only
a small portion of the entire index. It has been shown
that the distributed index scheme is more efficient than
(1, m) in terms of access latency.

          Part

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

b6b4b3 b5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 c24 c25 c26 c27

b1 b2 b7 b8 b9

a2 a3 a1

I

Replicated Part

Non-Replicated

Fig. 3 A Distributed Index for Broadcast

Chen et al. proposed a broadcast index based on un-
balanced tree tailored for non-uniform data access [6]. By
organizing the data objects with low access frequencies
in low-level nodes of the index and putting frequently
accessed data in high-level nodes, the search cost of fre-
quently accessed data is minimized. Signature and hash-
ing methods have also been developed for data broadcast
systems to support equality queries [15,20]. Signatures
and hash index frames are interleaved with data objects
or a group of data objects. By matching the hash value
or signature of a query with that of indexed attribute
values in the data objects, a client can easily avoid re-
trieving unwanted data in the broadcast channel.

Ideas of indexing the attribute ranges for exponen-
tially increasing number of data objects were discussed
in different contexts, e.g., Chord [33], flexible index [17]
and exponential index [37]. However, the focus of these
work is totally different from our study. Chord aims at
providing peer-to-peer lookup based on a hashed search
key, while flexible index and exponential index investi-
gate optimal tuning of the access latency and the tun-
ing time in support of simple searches of broadcast data
based on a single attribute. None of them considered

complex location-based queries, as we address in this
paper.

2.4 Processing of Location-Based Queries

In the literature, different approaches have been pro-
posed to facilitate the processing of location-based queries
(LBQs). Dunham and Kumar have done lots of pioneer
studies in this area. They presented a query formaliza-
tion which considers both location-dependent data and
location-independent data in [5], proposed an architec-
ture for the processing of LBQ in [30], and developed se-
mantic caching for managing location-dependent data in
mobile environments in [26]. The placement of location-
dependent data along wireless broadcast channels has
been addressed in [39,40], and the privacy issue of access-
ing location-dependent data has been addressed in [4,
11,24]. In this paper, we focus on supporting location-
based queries, namely, window queries and kNN queries,
in error-prone wireless broadcast systems.

Several air indexes have been recently proposed to
support broadcast of spatial data (i.e., location depen-
dent data) [38,42,43]. These studies can be classified into
two categories, according to the nature of the queries
supported. The first category focuses on retrieving data
associated with some specified geographical range, such
as “Starbucks Coffee in New York City’s Times Square”
and “Gas stations along Highway 515”. A representa-
tive is the index structure designed for DAYS project [2,
10]. It proposes a location hierarchy and associates data
with locations. The index structure is designed to sup-
port queries on various types of data with different lo-
cation granularities. The authors exploit an important
property of the locations, i.e., containment relationship
among the objects, to determine the relative location of
an object with respect to its parent that contains the
object. The containment relationship limits the search
range of available data and thus facilitates efficient pro-
cessing of the supported queries. In brief, a broadcast
cycle consists of several sub-cycles, with each containing
data belonging to the same type. A major index (one
type of index buckets) is placed at the beginning of each
sub-cycle. It provides information related to the types
of broadcast data, and enables clients to quickly jump
into the right sub-cycle which contains her desired data.
Inside a sub-cycle, minor indexes (another type of index
buckets) are interleaved with data buckets. Each minor
index contains multiple pointers to the data buckets with
different locations. Consequently, a search for a data ob-
ject involves accessing a major index and several minor
indexes.

The second category focuses on retrieving data ac-
cording to specified distance metrics. An example is near-
est neighbor search based on Euclidian distance. D-tree
is a paged binary search tree to index a given solution
space in support of planar point queries. Grid-partition



6 Baihua Zheng et al.

index is specialized for the (single) Nearest-Neighbor
problem [43]. Hilbert Curve Index (HCI) is designed to
support general spatial queries, including window queries
and nearest-neighbor queries. It adopts a B+-tree to
index broadcast data objects according to the Hilbert
Curve order. Conventional spatial index R-tree has also
been adapted to support kNN search in broadcast envi-
ronments [12].

The problems of those two categories are different in
nature and hence the index structure designed for one
category cannot be directly applied to the other. DSI
falls into the second category. Although DSI employs the
Hilbert curve values to order spatial objects as HCI, the
index structures and search algorithms are completely
different.

2.5 Hilbert Curve

Since most spatial queries search for objects that are
closely located, one strategy for wireless data broad-
cast is to schedule (spatially) near objects close to each
other in the broadcast program. However, spatial ob-
jects reside in a two- or three- dimensional space whereas
data objects on air are broadcast in a linear media. To
keep neighboring objects in a high dimensional space re-
main close to each other on the broadcast channel, a
space-filling curve (e.g., Hilbert Curves (HC) [13]) can
be adopted to schedule broadcast of data objects based
on the coordinates on the curve. As such, the data local-
ity on the broadcast channel can meet the access locality
required by spatial queries. DSI adopts this idea to build
an air index upon space filling curve5.

Figure 4(a) shows the basic Hilbert curve of order
1. To derive a curve of order i, each vertex of the ba-
sic curve is replaced by a curve of order (i − 1), which
may be strategically rotated and/or reflected to fit the
new curve. The Hilbert curves of orders 2 and 3 are de-
picted in Figure 4(b) and Figure 4(c), respectively. The
numbers, called HC values in this paper, represent the
visiting orders of different points in the Hilbert curve.
For example, curve H2 illustrates a (4 × 4) grid, where
the point located in (x = 1, y = 1) has the HC value 2.

Given the HC and its coordinate mapping function,
it is easy for a client to convert between coordinates
and HC values. Let n be the number of bits assigned to
represent a coordinate in one dimension, and d be the
dimensionality of the original search space, the expected
time complexity for the conversion is O(nd). Since n is a
constant and d is usually 2 or 3, the conversion overhead
is fixed. The detailed conversion algorithm is available
in [25].

The HC provides a linear order of data objects for
broadcast, while maintaining maximal locality amongst

5 Please note that space filling curves other than HC can
also be used for DSI.

nearby data objects. The remaining challenge to be ad-
dressed is how to design an air index such that spatial
queries can be efficiently answered. It is the focus of this
paper.

21

0 3
x

y

1 2

1

2

(a) H1

13 12

11

10965

4

3 2

0 1 14 15

7 8

x

y

2

1

2

1 3

3

(b) H2

0

1 2

3 4 5

67

8 9

101112

13

14

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

1 2 3 4 5 6 7
x

1

2

3

4

5

6

7

y

(c) H3

Fig. 4 Hilbert Curve of Order 1, 2, and 3

3 Distributed Spatial Index (DSI)

In conventional spatial databases, spatial queries are well
supported by tree-based indexes, such as R-tree and its
variants. Based on searching criteria, searches start from
the root node of a tree through a sequence of interme-
diate nodes to reach leaf nodes pointing to target spa-
tial objects. However, employing a tree-based index on
a linear broadcast channel to support spatial queries
results in several deficiencies. Firstly, clients can only
start the search when they retrieve the root node in the
channel. Replicating the index tree in multiple places in
the broadcast channel provides multiple search starting
points, shortening the initial root-probing time. How-
ever, a prolonged broadcast cycle leads to a long access
latency experienced by the clients. Secondly, a wireless
broadcast media is not error-free. In case of losing inter-
mediate nodes during the search process, the clients are
forced to either restart the search upon an upcoming root
node or scan the subsequential broadcast for other pos-
sible nodes in order to resume the search, thus extending
the tuning time. Thirdly, backtracking, commonly used
in traversing tree-based index, is no longer efficient in lin-
ear access medium. As a result, tree-based indexes are
not appropriate for supporting spatial queries in data
broadcast environments.

Motivated by the need of an index structure support-
ing spatial queries in broadcast environments, we present
a fully distributed spatial index structure, namely DSI,
in this section. Very different from tree-based indexes,
DSI is not a hierarchical structure. Index information of
spatial objects is fully distributed in DSI, instead of sim-
ply replicated, in the broadcast. With DSI, the clients
do not need to wait for a root node to start the search.
The search process launches immediately after a client
tunes into the broadcast channel and hence the initial
probe time for the index information is minimized. Fur-
thermore, in the event of data loss, clients resume the



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 7

search quickly. In this section, we focus on a basic op-
eration upon DSI, i.e., EEF algorithm, and discuss the
possible approaches to extend DSI to support various
types of data objects. The detailed search algorithms for
other types of spatial queries will be discussed in the
next section.

3.1 The Index Structure

Hilbert curve (HC) is adopted in DSI to determine broad-
cast order of data objects. Data objects of the same stor-
age size, mapped to point locations in a 2-D space, are
broadcast in the ascending order of their HC values. Sup-
pose there are N objects in total, DSI chunks them into
nF frames, with each having no objects (nF = ⌈N/no⌉).
We use the space covered by Hilbert Curve shown in Fig-
ure 4(c) as a running example, with solid dots represent-
ing the locations of data objects (i.e., N = 8). Figure 5
demonstrates a DSI structure with no set to 1, i.e., each
frame contains only one object. Notation ohc represents
an object o having hc as its HC value. For example, o6

represents the object spatially located in (x = 3, y = 1),
as shown in Figure 4(c).

6

32

17

11

…...…... O6 O11 O17 O27 O32 O40 O51 O61 O11 O17 O27O6

index 

table

data 

packet

Ohc object with hc as its 

Hilbert Curve value

a broadcast cycle

HC 

value
pointer

32

6

51

40

HC 

value
pointer

frame

Fig. 5 DSI for the Running Example

In addition to objects, each frame has an index ta-
ble as its header, which maintains information regarding
to the HC values of the objects included in the current
frame as well as information about data objects to be
broadcast after specific waiting interval6. Every index
table keeps ni entries, each of which, τj , is expressed
in the form of 〈HC′

j , Pj〉, j ∈ [0, ni). Pj is a temporal

pointer to the rj -th frame after the current frame, where
r (> 1) is an exponential base (i.e., a system parame-
ter), and HC′

j is the HC value of the first object inside
the frame pointed by Pj . When ni is set to 1, each in-
dex table contains one entry pointing to the next frame.
In this case, DSI becomes a linked list of frames. When
ni is set to ⌊logr(nF )⌋, each index contains pointers to
the objects in the next frame, the r1th frame, the r2th
frame, ..., and the frame that is at least 1/r of broadcast
cycle away from the current one. Logically, a broadcast
cycle starts from any frame F , and ends right before
the next appearance of frame F . When ni is larger than

6 This waiting interval can be denoted as a temporal pointer
represented by the number of data frames apart from the
current frame.

⌊logr(nF )⌋, pointers in the index table of frame F may
refer to the frames that are at least one broadcast cycle
away from the current frame F . In other words, the in-
dex table of F may contain pointers that span more than
one broadcast cycle. Since a broadcast cycle already con-
tains the entire data set, we set ⌊logr(nF )⌋ as the value
of ni. In addition to τj , an index table keeps the HC
values HCk (k ∈ [1, no]) of all the objects objk that are
contained in the current frame. This index information,
although occupying little extra bandwidth, can provide
a more precise image of all the objects inside current
frame. During the retrieval, a client can compare HCk’s
of the objects against the one she has interest in, so the
retrieval of any unnecessary object (whose size is much
larger than an HC value) can be avoided.

Let us go back to the example shown in Figure 5.
Suppose r = 2 and no = 1, each index table has logr(nF ) =
3 entries since nF = 8. The index tables corresponding
to frames of data objects o6 and o32 are shown in the
figure. Take the index table for frame o6 as an exam-
ple: τ0 contains a pointer to the next upcoming (20-th)
frame whose first object’s HC value is 11, τ1 contains a
pointer to the second (21-th) frame with HC value for
the first object being 17, and the last entry τ2 points to
the fourth (22-th) frame. It also keeps the HC value 6 of
the object o6 in the current frame.

3.2 Energy Efficient Forwarding

Since DSI distributes index tables along with all the
frames in the broadcast, lookup of interested objects
with known spatial coordinates is facilitated by travers-
ing one or multiple frames. In this section, we discuss
energy efficient forwarding (EEF), the most basic search
algorithm for DSI. As the name indicates, this algorithm,
good for saving energy, has a small cost in terms of tun-
ing time. The EEF algorithm is designed to also accom-
modate the situation where the requested object with a
specified coordinate may not exist.

The pseudo-code of EEF is depicted in Algorithm 1.
Here, we use an example to explain the search algo-
rithm. Looking for an object O spatially located in point
p = (x, y), a client first translates the coordinate p to the
corresponding HC value HCp and starts tuning into the
broadcast channel for the object. After synchronizing the
broadcast channel, the client retrieves the index table
of its first frame. It compares HCp with HCk to check
whether the object O is contained in the current frame. If
a match is found, the object is retrieved and the search is
terminated. If HCp is within the range bounded by HC1

and HCno
, but there is no match, the search is termi-

nated with an empty result. Otherwise, the client needs
compare the HC′

i maintained by the index table, and fol-
lows the pointer Pi with HCp ∈ [HC′

i, HC′

(i+1)modni
)7.

7 If HC′

i is larger than HC′

(i+1)modni
, [HC′

i, HC′

(i+1)modni
)

is replaced by the ranges [HC′

i, HCmax) ∪ [0, HC′

(i+1)modni
).



8 Baihua Zheng et al.

Algorithm 1 EEF

Input: The HC value HCp of the spatial p locating at (x, y)
in a 2-D space;
Output: Requested object;
Procedure:

1: begin the initial probe and retrieve the first frame F ;
2: while (F is not empty) do

3: retrieve the index table associated with F ;
4: if (HC1 ≤ HCP ≤ HCno

) then

5: /*check objects of the current frame*/
6: for (k := 1; k <= no; k := k + 1) do

7: if (HCP = HCk) then

8: retrieve the kth object objk in the frame;
9: return objk;

10: no match is found, return ∅;
11: for (P := NULL, i := 0; i < ni; i := i + 1) do

12: /* check the index entry τi */
13: if (HC′

i ≤ HCp < HC′

(i+1)modni
) then

14: P := Pi; break ;
15: else if (HC′

(i+1)modni
< HC′

i) and (HC′

i ≤ HCp or
HCp < HC′

(i+1)modni
) then

16: P := Pi; break ;
17: if (P 6= NULL) then

18: switch to doze mode until frame F pointed by P
arrives;

19: else

20: F := NULL;

EEF is a basic operation and a building block for search
algorithms of other more complex queries. In the fol-
lowing, we mathematically analyze its performance, in
terms of tuning time and access latency. The notations
used in our analysis are summarized in Table 1.

Notation Description

N the number of data objects.

C the capacity of a packet.

r the exponential base (r > 1).

so the size of a data object.

no the object factor (i.e., the number of objects in
a frame).

nF the number of frames within one broadcast cy-
cle, nF = ⌈N/no⌉.

sHC the size of a Hilbert Curve value.

sp the size of a pointer.

st the size of a index entry, st = sHC + sp.

ni the number of index entries in one index table,
ni = ⌊logr(nF )⌋.

si the size of an index table, si = ni · st.

sF the size of a frame, sF = si + no · (sHC + so).

Table 1 Definition of Notations

The tuning time of EEF is the cumulated time when
clients stay in active mode to retrieve requested ob-

In this paper, HCmax represents the maximal HC value
within the search space

jects and/or useful index information pointing to re-
quested objects both directly or indirectly to facilitate
EEF on DSI. Suppose a client tunes into the broadcast
channel and the first frame received is Fm, while the
requested object is located in frame Fm+l, which is l
(0 ≤ l ≤ nF − 1) frames behind the current frame. The
tuning time to reach the target frame Fm+l (from Fm) is
denoted by t(l), which is dependent on distance l and the
exponential base r. Suppose that the client can start the
search at any time. The lag time of the requested object
and the search starting time is uniformly distributed in
between 0 and nF − 1 frames. Therefore, the expected
tuning time in terms of number of frame accesses is ex-
pressed in Equation (1). The first term, C

2sF

, represents
the initial probe for the first complete frame. As each
packet contains a pointer to the next frame, the initial
probe on average requires retrieval of half of a packet.
The second term is the average number of frames ac-
cessed. t(l) is expressed as a recursive form as stated
in Equation (2). Here, x is the maximum value from
{r0, r1, r2, · · · , ⌊nF /r⌋}, that does not exceed l.

E(tuning) =
C

2sF

+
1

nF

nF −1
∑

l=0

t(l) (1)

t(l) =

{

1, l = 0;
t(l − x) + si

sF

, l > 0.
(2)

The exponential base, r, can be used to control the
number of index entries in DSI table. Obviously, with
more entries indexing data objects in a broadcast cycle,
tuning time can be better improved. In the following,
we set r = 2 in order to analyze the access efficiency of
DSI. For clarity of presentation, we set s = so + sHC .
Thus, the average latency for energy efficiently reaching
a frame is derived in Equation (3).

E(latency) =
sF

2
+

sF · nF

2
=

si + no · s

2
· (1 +

N

no

) (3)

3.3 Error Resilience

The above description is based on an error-free wireless
communication environment, in which there is no signal
interference or packet loss. In practice, the wireless envi-
ronment is inherently unreliable and error prone due to
radio propagation attenuation, fading and noises. In such
an environment, link errors occur frequently and thus an
error-resilient air index that can quickly resume inter-
rupted query processing is highly desirable. DSI natu-
rally is an excellent scheme to provide this function ow-
ing to its fully distributed index structure. If a frame is
lost, the query processing can continue in the next frame
based on alternative search paths. Thus, performance
deterioration is minimized. This is a great advantage of
DSI over other air indexes.

For a conventional tree-based air index, any node is
only pointed by one parent. Therefore, the immediate



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 9

access to a node is lost if its parent/ascendant node is
not reached successfully. The client has to either wait
for rebroadcast of the lost node or blindly scan all the
following packets from the wireless channel until the de-
sired node is received. However, both approaches are not
efficient. The former incurs an extremely large access la-
tency, while the latter wastes scarce power resources by
scanning lots of useless nodes.

Differently, DSI distributes the index information over
the whole broadcast cycle. From any given starting frame,
there is always a path available to reach a target frame
efficiently and thus enables any interrupted search to re-
sume immediately. Take Figure 8 as an example, which
sets frame F8 containing object o61 as the target frame.
Table 2 lists all the search paths resumed at different
frames.

Starting Frame Search Path

F1 F1 − > F5 − > F7 − > F8

F2 F2 − > F6 − > F8

F3 F3 − > F7 − > F8

F4 F4 − > F8

F5 F5 − > F7 − > F8

F6 F6 − > F8

F7 F7 − > F8

Table 2 Search Paths Under DSI

To facilitate our study on error-prone wireless envi-
ronments, a variable θ is introduced to control the prob-
ability of a frame loss. When θ is 0, no frame is lost which
is the ideal environment considered in the previous sub-
section. On the other extreme, θ is 1 and all frames are
lost. In the following, we examine the resilience of DSI
under various θ’s via theoretical analysis. The results of
experimental simulation will be presented in Section 5.

Recall that Equation (2) presents the required tuning
time of accessing a frame which is l frames away from the
current frame under the ideal environment. If the current
frame cannot be received successfully, the client will not
obtain the index information provided by that frame.
Therefore, the search will be resumed by listening to the
next frame. Taking the frame loss into consideration,
we derive the tuning time performance in presence of
broadcast errors in Equation (5).

E(tuning, θ) =
C

2sF

+
1

nF

nF −1
∑

l=0

t(l, θ) (4)

t(l, θ) =















1, l = 0;
(

1 − θ
)

·
(

t(l − x, θ) + si

sF

)

+

θ ·
(

t(l − 1, θ) + si

sF

)

, l > 0.
(5)

Here we only consider the situation where a small
number of frames (≤ nF ) are lost. In case that a long dis-
connection occurs (e.g., more than nF frames are lost),

the pointer information obtained from previous probing
is no longer valid. Consequently, the search has to re-
start anyway. Similarly, if the target frame which con-
tains the needed objects is lost, the client has to wait
for the next cycle to access the desired data, no matter
which kind of indexing technique is employed. There-
fore, without loss of generality, we assume that the tar-
get frame will be received successfully in this analysis,
i.e., t(0, θ) = 1. Since the target frame can be reached
from any frame, the access latency will not be affected
by the link errors. Therefore, the average access latency
of DSI is still a half of the broadcast cycle, as shown in
Equation (3).

3.4 Multiple Data Types

In the above discussion, we assume all the data objects
are of the same data type (e.g., restaurants). In many
real life applications, users of diverse interests might is-
sue queries on objects of different types. For examples,
visitors shopping at the Fifth Avenue might look for
nearby ATM when they run out of cash, while others
might want to find a nearby restaurant for lunch. In this
section, we briefly discuss two approaches to extend DSI
for supporting queries of different data types, namely
the sequential approach and the integrated approach.
Sequential Approach. The sequential approach uses
a single channel to broadcast data objects of different
types. It splits the broadcast cycle into sub-cycles with
each sub-cycle corresponding to a single data type. The
index table of each frame contains Pj to facilitate the
search within a sub-cycle of a particular data type Ti.
To direct searches of different data types to the right
sub-cycle, the index table also stores 〈Ti, Pi〉, where Ti

is the unique identifier of a particular data type and Pi is
the pointer to the start of the corresponding sub-cycle.

O14 O23 O43 O11 O32 O40 O61 O13 O14O13

Sub-Cycle 1 Sub-Cycle 2

40

32

T2

11

T1

Tune in

0 5 10 15 20

tu

T1 Restaurants

T2 ATMs
0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

Fig. 6 A Multiple Types Dataset and the Sequential Broad-
cast Approach

Figure 6 depicts an example in which two types of
data objects are supported (i.e., restaurants and ATMs),
denoted by filled circles and filled triangles, respectively.
A broadcast program is organized in accordance with
the sequential approach. Suppose a user issues a query
q to retrieve the ATM located in the position (x = 6,
y = 6, i.e., its HC value is 40). The user tunes into the
broadcast channel to retrieve an index table (the first
index table as illustrated in this example). Thereafter, it
switches to doze mode until the sub-cycle corresponding



10 Baihua Zheng et al.

to the desired data type (i.e., sub-cycle 2) arrives. The
user downloads the first index table in the sub-cycle and
follows the second link to access data item O40. Assume
it takes 0.5 time unit tu to broadcast an index table and
2 time units to broadcast a frame which contains one
single data item. The access latency for q is 17.5 time
units and the tuning time is 3.5 time units.

Integrated Approach. The sequential approach sup-
ports searches on particular data types. However, a user
may issue a query that involves multiple data types. For
example, a user is going to attend his friend’s birthday
party in a restaurant. He wants to visit a nearby gas
station, a bakery and a flower shop on his way to the
restaurant. He can tune into three different sub-cycles
in the sequential approach to retrieve the targeted gas
station, bakery, and flower shop. As those targeted ob-
jects might be located closely, it is a waste to conduct
spatial queries (e.g., CNN search in this example) on the
same area multiple times. Motivated by this observation,
we propose the integrated approach, which aims at using
one spatial index to support queries on different types
of objects.

The integrated approach broadcasts all the data ob-
jects, regardless of their data types, in one wireless chan-
nel in the order of their HC values. A broadcast program
organized in accordance with the integrated approach
for the same sample datasets defined in Figure 6 is de-
picted in Figure 7. The original index table keeps τi =
〈HC′

i, Pi〉 tuples which guide the search to move towards
the targeted items via EEF. However, as data objects
of different types are integrated in one broadcast pro-
gram, a bit-string tag is appended to each τi to indicate
the types of the data objects with HC values ranging
between HC′

i and HC′

(i+1) mod ni
. In other words, the

pointer Pi serves as an entrance to the data stored in
the next 2i-th to next 2i+1-th frames, and the bit-string
tags the data types of the data objects contained by
those frames. The length of the corresponding bit-string
is bounded by the number of data types. In our example,
two data types, restaurants and ATMs, are tagged by a
2-bit string where the first bit corresponds to restaurants
and the second bit corresponds to ATMs. As shown in
Figure 7, the index table of item O32 has three tuples.
The first one points to the next frame, i.e., F6 containing
the object O40. Since O40 is the only object contained
in the next frame, it must be an ATM as its bit string
is 10. The second one points to the 21-th frame and the
bit-string 11 indicates that frames F7 and F8 contain ob-
jects from both types. Similarly, the third tuple points
to the 22-th frame. The bit-string again is 11 which indi-
cates that frames F9, F10, F11, and F12 contain objects
of both types. When a user issues a query, it only eval-
uates those frames containing the desired data types.
When data objects of multiple types share similar geo-
graphical distributions, the integrated approach can be
employed to avoid redundant index information.

How to organize the broadcast channel to facilitate
access of data objects of different data types is a topic
which deserves further investigation. Due to the space
limitation, we discuss the above two possible approaches
that can support queries of heterogeneous data types.
Since the performance of these approaches is dependent
on multiple factors, such as the distribution of data ob-
jects and the query patterns of different users, we leave
the issue of tuning the performance in real applications
and the development of other approaches as a future
study to work on.

O13 O14 O23 O32 O40 O43 O61 O11 O13O11

Broadcast cycle

43

40

01

Tune in

0 5 10 15 20

01

32

1011

tu

T1 Restaurants

T2 ATMs

Fig. 7 The Integrated Broadcast Approach

4 Spatial Queries Processing

In this section, we first discuss the search algorithms
based on DSI for snapshot window queries and near-
est neighbor (NN) searches, two classical spatial queries.
Considering the scenario where mobile clients may is-
sue queries while moving, we also discuss the support of
continuous window queries and continuous NN searches
on DSI. Finally, we discuss briefly how to extend all the
proposed search algorithms in a homogeneous data type
scenario.

4.1 Snapshot Query Processing On Air

Snapshot spatial queries are issued from static query
points, i.e., the current locations of mobile clients. Exam-
ple queries include window queries and k-nearest neigh-
bor (kNN) queries (where k ≥ 1). A window query re-
trieves spatial objects inside a query window, as “locate
all the pubs within this town”. kNN query retrieves k
objects that are closest to a given query point among all
the objects. An example of kNN query is “locate three
Chinese restaurants nearest to my current position”. We
discuss the search algorithms in the following two sub-
sections.

4.1.1 Window Queries Query windows can be of dif-
ferent shapes. Without loss of generality, we assume a
rectangular query window specified by two ranges in re-
spective dimensions. Therefore, given a window query Q,
the corresponding window WQ is specified as [x1, x2] ×



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 11

[y1, y2]. The search needs to find objects with their co-
ordinates p ∈ [x1, x2] × [y1, y2]. Since Hilbert Curve is a
space-filling curve, the intersections between the curve
and the boundary of the query window partition the
curve into several segments, each of which corresponds
to a HC value subsequence. For any segment, it is either
fully inside the query window, or outside the window. In
other words, WQ is transformed to a set of HC value sub-
sequences (called targeted segments) whose segments are
inside WQ. The basic idea of processing window queries
is to employ the EEF operation to go from a targeted
segment to the next targeted segment energy-efficiently.

Since an HC is linear, a segment seg within WQ

must share some common endpoints with segments out-
side WQ. All these common endpoints must be on the
boundary of WQ. Hence, the window query algorithm
first detects all the intersections between the HC and the
boundary of WQ. Without loss of generality, we assume
that all the segments located inside the query window
form a targeted segments set H . Upon receiving an in-
dex table, the client sequentially scans each entry and
follows the first point Pi with the range {HC′

i −HC′

i+1}
overlapping with some segment segj of H . The qualified
objects contained in the frame pointed by Pi are there-
after retrieved and the segment segj is refined by remov-
ing the overlapped part. This process continues until H
becomes empty. The detailed pseudo-code of the window
query algorithm is provided in Algorithm 2.

Algorithm 2 Window Query

Input: a query window WQ;
Output: objects within query window;
Procedure:

1: compute the targeted segments set H , with each segment
segi denoted by the range {H2i−1, H2i};

2: begin the initial probe and find the pointer P to the first
frame Fs; R := ∅;

3: while H is not empty do

4: switch to doze mode until frame Fs pointed at by P
arrives;

5: for (i := 1; i <= no; i := i + 1) do

6: if (HCi is bounded by some targeted segment segj)
then

7: R := R ∪ {obji}; refine segment segj;
8: for (P := NULL, i := 0; i < ni; i := i + 1) do

9: refine targeted segments based on HC′

i;
10: if (HC′

i < HC′

(i+1) mod ni
) and ({HC′

i −
HC′

(i+1) mod ni
} overlaps some targeted segments)

then

11: P := Pi; break ;
12: else if (HC′

(i+1) mod ni
< HC′

i) and ({HC′

i −
HCmax} or {0−HC′

(i+1) mod ni
} overlaps some tar-

geted segments) then

13: P := Pi; break ;
14: return R;

Figure 8 illustrates the window query processing with
DSI. Suppose the shaded area in the figure is a query
window. The client first detects all the targeted seg-
ments. In this example, the set H has three targeted seg-
ments, {10−11}, {28−35}, and {52−53}, all highlighted
by dashed lines. Suppose the client tunes into the chan-
nel as depicted, the first frame F1 it receives contains
object o6, which is not located within the query window.
The client then follows the first index entry to retrieve
o11 and removes the targeted segment {10−11} from H .
By combining index tables in F1 and F2, the client has
more knowledge of the objects, i.e., (6, 11, 17, 27, 32, 40, · · ·).
Thus, it skips F3 and F4 by going to doze mode (as in-
dicated by dark frames) and only wakes up to retrieve
F5. At this moment, the search still does not terminate
since there may be objects within segment {52 − 53}.
After receiving F7, the search terminates since o52 and
o53 are found not to exist. As Figure 8 where the client
skips the downloading of dark frames shows, the access
latency is 8 frames and the tuning time is 5 frames.

Tune in

32

6

51

40

51

17

6

61

F1

Finish

11

40

27

17

6

32

17

11

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

O6 O11 O17 O27 O32 O40 O51 O61 O11O6O61

F2 F3 F4 F5 F6 F7 F8

Fig. 8 Window Query Processing

4.1.2 K Nearest Neighbor Queries To determine whether
an object o is qualified for a kNN search, a search algo-
rithm needs to know not only locations of the object
o and the query point, but also the locations of other
candidate objects. However, algorithms based on a dis-
tributed index environment (e.g., DSI) have no complete
knowledge of the objects distribution. As a result, it
is impossible for a client to determine a precise search
space which contains only those k qualified objects at
the time the query is issued. The basic idea behind the
kNN search algorithms for DSI is to determine a search
space based on what clients know and then dynamically
shrink the space as more index information is received.

The initial search space for a kNN query is the en-
tire search space, which covers all the data objects, and
the corresponding targeted segment is {0, HCmax}. As
a client tunes into the channel and receives index tables,
the existence of some objects is confirmed. The search
space can be shrunk to a circle centered at the query
point and containing k nearest objects out of those ob-
jects known so far. Correspondingly, the targeted seg-
ment is refined by removing HC values of both visited ob-
jects and those located outside the search space. The re-
fining process continues and the retrieval of objects hap-
pens when objects are within the current search space.



12 Baihua Zheng et al.

Finally, the search completes when all k NN objects are
retrieved and the targeted segment set becomes empty.

Obviously, how fast a search space can be shrunk
from the entire search space to the final precise one di-
rectly affects the search performance. If the query point
is located far away from the objects contained in the
current broadcast frame, the initial circle could be very
large because the index table has very limited informa-
tion about the distribution of data objects close to the
query point (due to exponential increase of data objects
covered by index table entries). Consequently, many can-
didates will fall inside the large search circle, and the
client has to download more objects and retrieve more
index tables than necessary to refine the search radius.
On the other hand, if a query point is close to the objects
contained in the current broadcast frame, the search
space will converge very rapidly and the search process
typically will terminate quickly, because there are more
information about data objects around the query point.
In other words, clients can either follow the broadcast
order to refine the search space gradually or jump to the
frame closest to the query point for a quicker refinement.
According to how to refine the search space, two strate-
gies for kNN query processing, namely conservative and
aggressive, are proposed.

Approximated Search Space

11

40

27

17

6

32

17

11

32

6

51

40

27

61

40

32

40

11

61

51

Aggressive Approach

Conservative ApproachTune in
F1 Finish

O6 O11 O17 O27 O32 O40 O51 O61 O6O61

F2 F3 F4 F5 F6 F7

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

Tune in
F1

Finish

O6 O11 O17 O27 O32 O40 O51 O61 O6O61

F2 F3 F4 F5 F6 F7 F8 F9

O11 O17 O27

F10 F11 F12

51

17

6

61
q

Fig. 9 kNN Query Processing

Conservative Approach.
The conservative approach does not skip any data object
that is possible to be included in the answer set. Thus,
a client tends to retrieve a lot of subsequent frames and
use their associated index tables to reduce the search
space. This simple approach guarantees a kNN search to
be completed within one broadcast cycle and hence has
small access latency. However, clients might suffer from
a relatively higher energy expense due to the slow search
space convergence which turns out to trigger more ob-
jects retrieval. The algorithm is depicted in Algorithm 3.

For better illustration, we use an example (as shown
in Figure 9) to explain the process. Suppose a client lo-
cated at the spot q labelled by HC value 33 issues a 3NN
query. Initially the search space covers an entire spatial
region and the targeted segment is {0 − 63}, assuming
the client knows the total search space is a 8×8 grid. The
client tunes into the channel as depicted, and the first
frame it receives is F1. According to the index table of

Algorithm 3 Conservative kNN query processing

Input: a query point q, and the requested number of nearest
neighbors k;
Output: k nearest neighbors to q;
Procedure:

1: r :=∞; R := ∅; F ′ := NULL; seg := {0 − HCmax};
2: begin the initial probe and find the pointer P to the first

frame Fs;
3: while seg is not empty do

4: switch to doze mode until frame Fs pointed at by P
arrives;

5: for (i := 0; i < ni; i := i + 1) do

6: o′i := the object represented by HC′

i;
7: if |o′i, q| < r then

8: r := insert(R, o′i, k);
9: for all the data objects obji contained in Fs do

10: if |obji, q| <= r then

11: retrieve obji; r := insert(R, obji, k);
12: refine targeted segment seg based on current search

range;
13: for (P := NULL, i := 0; i < ni; i := i + 1) do

14: if HC′

i is bounded by targeted segment seg then

15: P := Pi; break ;
16: return R;

F1, the client knows the existence of objects o6, o11, o17,
and o32. Tentatively, it determines that objects o6, o11,
and o32 are the three nearest neighbors known so far.
Thus, the search space is refined to the solid-lined circle
crossing o6 (see Figure 9). The targeted segments are re-
vised to {6− 11}, {24− 57}, and {61− 62} accordingly
by removing those outside the search circle.

The client downloads object o6 and follows the first
pointer P0 to access frame F2. The existence of objects
o27 and o40 is therefore detected. Objects o27, o32, and
o40 become the new 3NN candidates, and the search
space is further reduced to the dashed circle across o27.
Consequently, segment {6− 11} is removed and the tar-
geted segments are refined to {26 − 28} and {31 − 56}.
The client skips object o11 and follows the second pointer
P1 to access frame F4 since it is the closest frame that
overlaps with targeted segments. The refining of the search
space continues and only qualified objects that are inside
the search range (i.e., the corresponding HC values are
bounded by the targeted segments) are retrieved. Even-
tually, the search space is finalized (i.e., the inner solid
circle), all the inside objects (i.e., o32, o40 and o51) are
retrieved, and the targeted segment becomes empty. As
shown in Figure 9 where the client skips the download
of dark frames, the access latency is 7 frames and the
tuning time is 6 frames.

Aggressive Approach.

The aggressive approach is different from the conserva-
tive approach in refining the size of the search space. As
we explained previously, the conservative approach ac-
cumulates the knowledge about object distribution grad-
ually, according to the broadcast order of frames. How-



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 13

ever, frames close to the query point can provide more
precise knowledge about objects distribution that we are
interested in than those far away ones. Motivated by
this fact, the aggressive approach tries to jump to the
frame that is closest to the query point to expedite the
finalizing of the search space. Hopefully, the retrieval of
some intermediate objects that are falling outside the fi-
nal search space can be avoided and hence the client en-
ergy is saved. However, it may skip some answer objects
and the client has to collect them in the next broadcast
cycle, which incurs a longer access latency.

As the algorithm is very similar to the conservative
approach, we do not list the pseudo-code but use the
same running example to illustrate the aggressive kNN
processing (also shown in Figure 9). After downloading
the index table of the first frame F1, the client decides
to follow P2 since HC′

2 (i.e., 32) is closest to the query
point, compared to other indexed HC values. It skips
frames F2, F3, F4 to access F5 directly. Based on the
index table, it detects the existence of objects o11, o32,
o40, and o51. Accordingly, a search circle centered at q
covering o32, o40, and o51 (3NN objects she knows as
far) is set as the initial search space. The corresponding
targeted segments are set as {9−10}, {27−28}, {31−36},
{39 − 40}, and {43 − 55}. Based on index information
associated with frame F1, segment {9 − 10} containing
no existing object can be removed. Since object o32 is
next to q along the Hilbert curve8, the remaining search
steps are similar as those in the conservative approach,
i.e., sequentially retrieving all the data objects located
within the search space.

The client downloads object o32, and accesses frames
F6 and F7. Although the three answer objects are re-
trieved, the search is not completed since the targeted
segments ({28 − 28} and {31 − 31}) are not empty. At
frame F7, the client will follow the third pointer P2 to
access frame F11, since neither HC′

0 nor HC′

1 overlaps
with targeted segments. The index table shows the next
two objects are o27 and o32, ruling out the existence of
o28 and o31 and thus terminating the search process. As
Figure 9 shows, the access latency is 11 frames and the
tuning time is 5 frames.

4.2 Continuous Query Processing on Air

Due to the mobility of users, query points may move
continuously, which makes the retrieval of location-based
data a challenge. This issue of query continuity is par-
ticularly important for navigation and tour guide appli-
cations. Repeatedly issuing snapshot window queries or
nearest neighbor queries along each moving point is ob-
viously not a feasible strategy. Since the answer to new

8 Since it is impossible to find real nearest object to a given
query point q without complete knowledge of object distribu-
tion, we treat the object closest to q along the Hilbert curve
as the best candidate for its nearest neighbor.

query points may very likely remain the same as that
to a previous query point, there is no need to contin-
uously issue and process the query while moving. One
approach to address this issue is to allow a client to is-
sue a continuous query by specifying a projected moving
trajectory in order to retrieve answers corresponding to
an anticipated trajectory in a timely fashion. As a result,
answers paired with corresponding segments of the tra-
jectory (where the answers are valid) are returned and
cached in the client. Thus, efficient algorithms for pro-
cessing continuous queries along projected trajectories
are very important. Again, our solution aims at reduc-
ing energy consumption and access latency. In the fol-
lowing, we present the search algorithms for both con-
tinuous window query and continuous nearest neighbor
search.

4.2.1 Continuous Window Queries A continuous win-
dow (CW) query returns all the objects which are lo-
cated inside a sliding query window whose center (i.e.,
query point) lies along a given query line segment. Each
object is associated with a validity segment, i.e., a por-
tion of the query line segment where the object is covered
by all the query windows centered along that line. For
example, a client plans to drive to Boston along Highway
I-93, and wants to locate all the nearby gas stations in
advance since she forgot to gas up her car. A continu-
ous window query: “locate all the gas stations within 1
mile from my current location to Boston along Highway
I-93” can be issued to retrieve all the qualified gas sta-
tions. Unlike snapshot window query, a query point of
CW query is not fixed and moves along a projected line
segment. Due to the change of query point, the distances
between the query point and data objects are no longer
fixed. The result of a window query issued at one point
may not be the same as that issued at another point,
as illustrated in Figure 10. In the figure, a query point
moves along a query line segment se passing through
three distinct points p1, p2 and p3. The query results
to window queries issued at p1, p2 and p3 are {o1, o2,
o3}, {o2, o3}, and {o2, o3, o4}. Here, o2 and o3 are the
common answer objects to the three adjacent window
queries. However, o1 becomes invalid after p2 while o4

becomes valid beyond p3. This observation implies that
each object o has its own validity segment V So. In this
paper, our continuous window query is defined to include
a set of objects, and each object o is associated with a
validity segment V So. The formal definitions of a contin-
uous window query and a validity segment are given as
follows. Here, Ww×l(p) represents a rectangular window
centered at point p, having w as width and l as length,
and o ∈ Ww×l(p) means the object o is located inside
the window.
Definition 1 Given a continuous window query issued
along se with Ww×l as the query window, a validity seg-
ment to an answer object o stands for a subsegment
V So ⊆ se such that ∀p ∈ V So, o ∈ Ww×l(p). �



14 Baihua Zheng et al.

Definition 2 Given a query line segment se, a query
window Ww×l, and a set of objects O, a continuous
window query retrieves all the objects o ∈ O, such that
∃p ∈ se, o ∈ Ww×l(p). All the qualified objects o, to-
gether with their corresponding validity segment V So,
form the answer set. �

s

e

p
1

p
2

p
3

O
2

O
3

O
1

O
4

A

B

C D

E

F

Fig. 10 Illustration of CW
Query

s

e

x

y

O2
O1

z

Minkowski Regions

VSO1

VSO2

Fig. 11 Minkowski Region
and Validity Segment

Minkowski region can be used to determine the va-
lidity segment for each answer object. Every object o
has a Minkowski region that shares the same size as the
query window and centers at o, i.e., Ww×l(o). The in-
tersection of the query line segment with the Minkowski
region provides the validity segment of the object o, i.e.,
V So = se∩Ww×l(o). Figure 11 shows the Minkowski re-
gions for objects o1 and o2. According to the intersection
between Minkowski regions and the query line segment,
we can determine V So1

= sy and V So2
= xz.

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63A

B

C D

E

F

A’

D’

Tune in

51

17

6

61

F1 Finish

32

6

51

40

6

32

17

11

O6 O11 O17 O27 O32 O40 O51 O61 O11O6O61

F2 F3 F4 F5 F6 F7

s

e

Fig. 12 Example of Continuous Window Query

Due to a large overlap among the results of adja-
cent window queries, our strategy for processing a CW
query is described as follows. Firstly, clients collect all
the objects that are covered by query windows issued
from points along the line segment. Secondly, for each
object, we identify the corresponding validity segment.
For the first step, we derive a search range that bounds
all the answer objects. Figure 12 shows an illustrative
example with a CW query issued along a query line seg-
ment se. By sliding a window along se, we obtain a poly-
gon ABCDEF that covers all the possible query windows
whose centers lie along se. Instead of finding the tar-
geted segment for a complicated polygon, we construct
a minimal bounding window, i.e., rectangle AA’DD’,
that tightly covers the polygon. As discussed in snap-
shot window query, the targeted segment set H for the
rectangle AA’DD’ which contains two segments, {0−15}
and {50 − 61}, can be easily determined. H serves as a
guidance for object retrieval, but the real retrieval hap-

pens only when the objects are located in the polygon
ABCDEF.

Suppose the client tunes into the channel as depicted,
the first frame F1 it receives contains object o6, inside the
polygon ABCDEF. The client retrieves the object and
then follows the last index entry to access the index table
associated with o32. After accessing F1, the segment {0−
15} is shrink to {0−5}. The client switches to doze mode,
and wakes up when frame F5 is about coming. According
to the index table associated with F5, she skips F6 and
follows the second pointer to access F7. The search is
completed after downloading object o51. This is because
1) the first entry of F7’s index table points to o61 which is
outside the polygon ABCDEF, indicating a safe removal
of the targeted segment {50 − 61}; and 2) the second
entry of F7’s index table points to o6 again showing the
beginning of a new broadcast cycle and implying that
no objects are within the remaining search space {0 −
5}. The validity segments of answer objects o6 and o51

can be derived thereafter according to their Minkowski
Regions9. The access latency is 7 frames and the tuning
time is 3 frames. Algorithm 4 lists the pseudo code.

Algorithm 4 Continuous Window Query

Input: a query line segment se, a specified query window
W w×l, sorted HC values of objects;
Output: answer objects together with their corresponding

validity segments;
Procedure:

1: determine a polygon poly := ∪W w×l(p), ∀p ∈ se;
2: determine a minimal bounding window W that bounds

polygon poly;
3: res:=Window Query(W ); /* only those objects falling

inside poly are retrieved */
4: res′ := ∅;
5: for each object o ∈ res do

6: find its Minkowski region Mo, i.e., Mo := W w×l(o);
7: find its validity segment V So, i.e., V So := Mo ∩ se;
8: res′:=res′ ∪ {o, V So};
9: return res′;

4.2.2 Continuous Nearest Neighbor Queries Continuous-
nearest-neighbor (CNN) query finds a set of nearest neigh-
bors corresponding to every point in a given query line
segment. Example queries like “locate all the nearest
Chinese restaurants along the Fifth Avenue from my
current position to the Central Park” issued by a vis-
itor touring in Manhattan. Similar to kNN search, one
challenge faced in processing CNN query is how to de-
termine a search space large enough to contain all the
results. In addition, unlike kNN search, CNN extends

9 The green and red segments along se (shown in Figure 12)
represent the validity segments of objects o6 and o51 respec-
tively, i.e., V So6

and V So51
.



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 15

the query point to a query line segment, which makes
the search algorithms different and challenging.

It has been pointed out that the answer set to a CNN
query contains a set of objects, denoted as o1, o2, · · · ,
on, which partition the corresponding query line segment
into n smaller segments li (i ∈ [1, n]) [32]. Each answer
object oi dominates a corresponding segment li, i.e., oi

is the nearest neighbor of any query point lying on seg-
ment li. This is similar to the validity segments returned
by a continuous window query. An example is depicted
in Figure 13. Objects o1, o2, and o4 form the CNN an-
swer set to the query line se. o1 dominates the shad-
owed line segment sp1, which means o1 is the nearest
neighbor to any point lying along the segment sp1. Sim-
ilarly, o2 dominates p1p2 and o4 dominates p2e. p1 and
p2 are called split points [34] since they are the points at
which the nearest objects along the line segment change.
Other than finding CNN result objects, determining split
points is clearly not trivial. In addition, as the arrival of
objects depends on the broadcast schedule, the search
space refinement and object filtering render CNN query
processing particularly challenging.

������
������
������
������s e1

O1

O2

O3

O4
O5

p
2

P

Fig. 13 Example of CNN Search

Our CNN query processing is briefly described as fol-
lows. First, the initial search space is set to a space cov-
ering all the available data objects.The size is thereafter
reduced as more knowledge about the data distribution
is accumulated. The adjustment of the search space is
based on Heuristic 1 and is detailed in Algorithm 5.
Only those frames with objects fallen in the (immedi-
ate) search range are retrieved. However, not all the re-
trieved data objects can contribute to the final answer
set. In order to filter out the unqualified objects quickly,
Heuristic 2 is used to simplify the objects checking pro-
cess and hence reducing the computational cost. The
search continues until the search range is finalized and
all the objects inside it are downloaded and checked. The
search algorithm for CNN queries is summarized in Al-
gorithm 6. Table 3 defines all the notations used in the
following description.
Heuristic HR1. Given a query segment se and a cor-
responding set of split points SL(se), the maximal dis-
tance between any point p (p ∈ se) and NN(p) is bounded
by Dmax, where Dmax = MAX(|sp, sp.NN |), ∀sp ∈
SL(se). �Take Figure 14 as an example, and assume SL(se)
currently contains two split points, sp1 and sp2. For ∀p ∈
ssp1, |p, NN(p)| should not be greater than MAX(r1, r2),
since |p, o1| ≤ MAX(r1, r2) and |p, NN(p)| ≤ |p, o1|.
Similarly, it is guaranteed that |p′, NN(p′)| ≤ MAX(r3, r4)

Notation Description

|p1, p2| Euclidean distance between points p1 and p2

CNN(se) the answer set containing all the nearest neigh-
bors to any point in the segment se

SL(se) the set of split points found so far for the seg-
ment se

p.NN the nearest-neighbor found so far to point p

NN(p) the real nearest-neighbor to the point p

Table 3 Terminology Definition

s
e

sp
1

sp
2

O1

O

O

2

3

r1
r2

r3r3 r4

r5 r6

e's'

r3

P1

P2 P3

P4

r3

P’

P’

2

1

a

P’

P’4

3

r3

r3

r3

b

Fig. 14 Approximation of CNN Search Range

and |p′′, NN(p′′)| ≤ MAX(r5, r6), with p′ ∈ sp1sp2 and
p′′ ∈ sp2e. As a result, |q, NN(q)| (q ∈ se) is bounded by
r3, the largest distance among all split points and their
corresponding nearest neighbors.

Algorithm 5 RefineCNNSearchRange

Input: query line segment se, SL(se);
Output: a search range;
Procedure:

1: Dmax := 0;
2: for each point sp in SL(se) do

3: dis := |sp, sp.NN |;
4: if dis > Dmax then

5: Dmax := dis;
6: extend segment se to se′, with |ee′| := |e, e.NN |;
7: extend segment es to es′, with |ss′| := |s, s.NN |;
8: draw a line l passing s′ and perpendicular to line se;
9: find two points P1 and P2 on l such that |P1, s

′| :=Dmax

and |P2, s
′| := Dmax;

10: draw a line l′ passing e′ and perpendicular to line se;
11: find two points P3 and P4 on l′ such that |P3, e

′| :=Dmax

and |P4, e
′| := Dmax;

12: return the rectangle bounded by P1, P2, P3 and P4;

Based on HR1, a circle cir(a, Dmax), which is cen-
tered at a point a (∈ se) and has Dmax as radius, is
guaranteed to bound the nearest neighbor to point a.
As a result, a straightforward approach to approximate
the search range is to bound all the circles cir(a, Dmax)
for all the points a along the query line segment, which
forms a pill-shaped region. Further, we can use the rect-
angle P ′

1P
′

2P
′

3P
′

4 as shown in Figure 14 to bound the
search area. In addition, the rectangle can be trimmed



16 Baihua Zheng et al.

(as shown in Algorithm 5). Its correctness is warranted
by Lemma 1.
Lemma 1 The search range approximated by Algo-
rithm 5 is guaranteed to enclose all the nearest neighbors
to all the points along a given query line segment. �

Proof: Without loss of generality, we use the one shown
in Figure 14 as a running example. In order to prove
that rectangle P1P2P3P4 is big enough to cover all the
nearest neighbors, we first need to prove that the near-
est neighbor to any point along se will not fall inside
rectangle bounded by P ′

1P
′

2P1P2.
We assume points a, b are two points on se such

that |s′a|=|be′|=Dmax. In other words, the points p lying
along sa (or be) are the only points whose correspond-
ing circles cir(p, Dmax) are not bounded by the search
range P1P2P3P4. Given a point p ∈ sa, we assume its
nearest neighbor NN(p) is outside rectangle P1P2P3P4.
As a result, the distance between p and o1 (i.e., s.NN)
must be larger than that between p and NN(p). On
the other hand, points o1, s, and p form a triangle, and
|o1, p|

2=|s, o1|
2+|s, p|2-2 · |s, o1| · |s, p| · cos(∠o1sp).

If cos(∠o1sp) 6= −1, |o1, p| ≤ (|s, o1|+|s, p|)2. It is ob-
vious that (|s, o1|+|s, p|) = |p, s′| ≥ |o1, p|. As |p, NN(p)|
≥ |p, s′|, |p, NN(p)| ≥ |o1, p|. Consequently, the assump-
tion that NN(p) is outside rectangle P1P2P3P4 is not
valid.

Otherwise, cos(∠o1sp) = −1, which means o1 overl-
pas with s′. Obviously, |p, s′| is the lower bound of the
distance between p and any point falling inside rectangle
P ′

1P
′

2P1P2 (i.e.,|p, s′| ≤ |p, NN(p)|). Consequently, the
assumption that NN(p) is outside rectangle P1P2P3P4

is not valid.
Similarly, we can prove that the nearest neighbor to

any point along line be must be inside rectangle P1P2P3P4.
As a result, the correctness of algorithm 5 is proved. �

Heuristic HR2. Given a query segment se and a set of
split points SL(se), a new object o′ belongs to CNN(se)
if and only if ∃sp ∈ SL(se), |sp, sp.NN | > |sp, o′|. �

The above heuristic has been proved in [34]. All the
objects that do not have a closer distance to any split
point than the distance between the split point and its
current nearest neighbor are not qualified and can be
safely discarded. HR2 serves as the objects retrieval guid-
ance and tries to save the client’s energy by skipping
unqualified objects.

Based on heuristics HR1 and HR2, Algorithm 6 shows
the pseudo code of the query processing algorithm for
CNN queries. Here we use a simple example (as shown in
Figure 15) to illustrate the CNN search process. Suppose
a client who tunes into the channel as depicted wants to
find all the nearest neighbors (e.g., gas stations) along
its motion path (represented by a horizontal line seg-
ment se). According to the index table of F1, the client is
aware of the existence of objects o6, o11, o17, and o32 and
thus can determine o32 is the current nearest neighbor
which dominates the entire query line segment. Accord-
ingly, the client can approximate the search range based

on current Dmax, i.e., |o32, e|. The light gray rectangle
depicted in the figure is the corresponding search range.

CNN Queries

6

11

17

27

32

40

51

61

s e

D
max

a

D’max

Access 

Frame
Dmax SL

F1 dis(O32,e) (s[O32],e)

F5 dis(O40,e) (s[O32],a[O40],e)

F6 dis(O40,e) (s[O32],a[O40],e)

Tune in
F1 Finish

O6 O11 O17 O27 O32 O40 O51 O61 O11O6O61

F2 F3 F4 F5 F6

32

6

51

40

40

11

61

51

6

32

17

11

Fig. 15 CNN Query Processing

Thereafter, the client skips frames F2, F3, and F4

(since they are all outside the current search range), and
then accesses frame F5. According to the index table
associated with frame F5, object o40 is identified to be
closer to point e than e’s current nearest neighbor (i.e.,
o32). As a result, o40 becomes a new potential answer
object and a new split point (i.e., point a) is introduced.
Now, the current answer set contains two objects o32

and o40, that are NN objects to segment sa and segment
ae respectively. The search range is shrunk to the dark
gray rectangle. The search process is completed when
the frame F6 is downloaded since all the objects inside
the search range are retrieved. Finally, the access latency
is 6 frames, and the tuning time is 3 frames.

Algorithm 6 CNN Query Processing

Input: a query segment se;
Output: CNN(se);
Procedure:

1: res := ∅; SL := ∅; begin the initial probe and retrieve
frame Fs;

2: while Fs 6= NULL do

3: for all the pointers Pi in the index table of Fs do

4: o′i := the object represented by HC′

i;
5: if ∃p ∈ SL, |o′i, p| < |p, p.NN | then

6: addNewNN(SL,o′i);
7: for all the data objects obji within Fs do

8: if ∃p ∈ SL, |obji, p| ≤ |p, p.NN | then

9: addNewNN(SL,obji); download object obji;
10: r := RefineCNNSearchRange(se, SL);
11: for all the pointers Pi in the index table of Fs do

12: if (HC′

i < HC′

(i+1) mod ni
) and ({HC′

i-
HC′

(i+1) mod ni
} overlaps with r) then

13: F ′ := the frame pointed at by the pointer Pi;
break;

14: else if (HC′

i > HC′

(i+1) mod ni
) and ({HC′

i-
HCmax} or {0-HC′

(i+1) mod ni
} overlaps with r)

then

15: F ′ := the frame pointed at by the pointer Pi;
break;

16: Fs := F ′; F ′ := NULL;
17: for all split points sp in SL do

18: res :=res ∪ {sp.NN};
19: return res;



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 17

4.3 Discussion: Queries on Multiple Data Types

Although our algorithms presented in this section are for
homogeneous data types, all of them can be naturally ex-
tended to support heterogeneous data types if the query
does not depend on the proximity of the data objects
from different types. For example “return all the ho-
tels, shopping malls and Italian restaurants within 1000
meters to the VLDB 2008 conference venue”. Here we
would like to highlight a point about NN type queries
(such as kNN search and CNN search) under the inte-
grated approach. Originally, the index entry 〈HC′

j , Pj〉
maintains the smallest HC value of data objects con-
tained in the frame that Pj points to, and it is for sure
that an object with the HC value HC′

j is present. The
search can utilize this information to refine the search
range. However, data objects of different types might
be broadcast in one frame in the integrated approach.
Consequently, a kNN search of a particular data type
i cannot use the HC′

j value directly as it is not guar-
anteed that the data with HC value HC′

j actually be-
longs to the data type Ti. One possible solution to this
issue is to ignore the search range refinement step, as
shown in lines 5-8 in Algorithm 3. Alternatively, instead
of keeping 〈HC′

j , Pj〉 pairs in the index table, we can

store 〈HC1
j , HC2

j , · · · , Pj〉 with HCi
j representing the

HC value of the first object corresponding to the data
type Tj contained in the target frame. In addition, more
complex queries such as locating the top-three closest
apartments with kindergartens within 500 meters involve
the spatial join. We leave the detailed investigation of
these queries in our future work.

5 Performance Evaluation

This section evaluates the performance of DSI for sup-
porting various spatial queries. The queries to be eval-
uated include 1) point queries using EEF, 2) snapshot
window queries and snapshot k nearest neighbor (kNN)
queries, and 3) continuous window queries and contin-
uous NN queries. In order to show that tree-based in-
dex structures are inefficient for broadcast environments,
we develop an R-tree-based air index to compare with
DSI10. To construct an R-tree-based air index, we em-
ploy the STR packing scheme [22] that has been shown to
provide optimal search performance. Further, to reduce
the initial probing cost, we replicate the top portion of
the R-tree evenly in the broadcast channel based on the
well-known distributed data organization scheme [18].
The replication level is optimized according to the an-
alytical model presented in [18]. Without loss of gener-
ality, we assume each index node occupies one packet,
which in turn determines the fanout of the R-tree. We
label this R-tree-based air index as STR R-Tree.

10 R-tree is considered the best index structure for low-
dimensional spatial data.

Our design of DSI is highly flexible and configurable
by adjusting two major parameters, namely, exponential
base r and object factor no. In this evaluation, we fix r at
2 while varying no. We leave the study on combinations
of r and no for future research. The impact of no is
mainly on the number of frames, nF (= ⌈N/no⌉), in
the broadcast, which in turn affects the number of index
table entries (i.e., ni = ⌊log2(nF )⌋ = ⌊log2(⌈N/no⌉)⌋)
carried by a frame. In this paper, we simply allocate one
packet for the index table associated with each frame,
which is consistent with that for R-tree. Thereafter, the
total number of frames nF and object factor no can be
derived.

The performance evaluation is based on simulations.
Our simulator is built with CSIM18 [29]. It consists of a
server, a client and a broadcast channel between them11.
The server disseminates an entire data set on the broad-
cast channel repeatedly. A client processes one query at a
time. At the time the client issues a query, it tunes into
the broadcast channel to collect the requested spatial
objects. After the query is processed, the client becomes
idle and is reactivated when the next query arrives.

For each set of experiments, the simulation runs for
100, 000 randomly issued queries based on both the UNI-
FORM and the REAL datasets. The results presented
in this section are the average of 100, 000 queries. UNI-
FORM is a synthetic dataset containing 20, 000 points
uniformly distributed in a unit square. REAL is a real
dataset containing over 40, 000 schools (point locations)
in US obtained from Tiger/Line [9]. A coordinate is rep-
resented by a pair of 4-byte float-point numbers, and an
HC value for a 2-D spatial object is represented by an
8-byte integer. The size of a spatial object is fixed at
1, 024 bytes.

The query performance metrics include access la-
tency and tuning time. Suppose the bandwidth of the
broadcast channel is fixed, we simply report the num-
ber of bytes transferred over the broadcast channel in
place of real clock time. Firstly, this does not involve any
complicated unit conversion from bytes into time units.
Secondly, we avoid using the number of packets for com-
parison since the packet capacities in our experiments
are varied to model different real life network payload
characteristics.

Our first set of experiments studies the performance
of DSI and R-tree for different spatial queries, namely
point queries, snapshot window queries, snapshot kNN
query, continuous window queries and continuous near-
est neighbor searches. Our second set of experiments
evaluates the computational cost and power consump-
tion of different indexes. All these experiments are based
on a reliable wireless environment, i.e., the percentage of
link errors θ = 0. Thereafter, we conduct another set of

11 In a broadcast system, the number of clients will not af-
fect the search process conducted by each individual client.
For simplicity, we only simulate one client in this model.



18 Baihua Zheng et al.

0

2

4

6

8

10

12

14

64 128 256 512
Packet Capacity (Byte)

A
c
c
e
s
s
 L

a
te

n
c
y
 (

M
il

li
o

n
 B

y
te

) Experimental Result

Analytical Result

(a) Access Latency (UNIF.)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

64 128 256 512
Packet Capacity (Byte)

T
u

n
in

g
 T

im
e

 (
B

y
te

)

Experimental Result

Analytical Result

(b) Tuning Time (UNIF.)

0

5

10

15

20

25

64 128 256 512

Packet Capacity (Byte)

A
cc

es
s 

L
an

te
cy

 (
M

il
li

o
n

 B
yt

e)

Experimental Result Analytical Result

(c) Access Latency (REAL)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

64 128 256 512

Packet Capackty (Byte)

T
u

n
in

g
 T

im
e 

(B
yt

e)

Experimental Result Analytical Result

(d) Tuning Time (REAL)

Fig. 16 Performance of Point Query vs. Packet Capacity

 1.3e+007

 1.4e+007

 1.5e+007

 1.6e+007

 1.7e+007

 1.8e+007

 1.9e+007

 2e+007

 2.1e+007

 2.2e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

STR R-Tree
DSI

(a) Access Latency (UNIF.)

 224000

 226000

 228000

 230000

 232000

 234000

 236000

 238000

 240000

 242000

 244000

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

STR R-Tree
DSI

(b) Tuning Time (UNIF.)

 3e+007

 3.5e+007

 4e+007

 4.5e+007

 5e+007

 5.5e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

STR R-Tree
DSI

(c) Access Latency (REAL)

 1.23e+006

 1.24e+006

 1.25e+006

 1.26e+006

 1.27e+006

 1.28e+006

 1.29e+006

 1.3e+006

 1.31e+006

 1.32e+006

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

STR R-Tree
DSI

(d) Tuning Time (REAL)

Fig. 17 Performance of Window Queries vs. Packet Capacity (WSR = 0.1)

experiments to simulate an error-prone environment in
which packet loss happens in order to demonstrate the
superior resilience of DSI to errors. All the above sim-
ulations are conducted based on the assumption that a
homogeneous data type is considered. In order to eval-
uate the performance of DSI under multi-data type en-
vironments, we conduct the last set of experiments to
evaluate the performance of window queries and contin-
uous window queries under the sequential approach and
the integrated approach.

5.1 Point Queries

The first set of experiment evaluates DSI for point queries
in terms of access latency and tuning time. We vary the
packet size from 64 up to 512 bytes. We also use the sim-
ulation results to validate our analytical model. The ex-
perimental results of the UNIFORM and REAL datasets
are depicted in Figure 16. The variation of packet sizes
does not affect the access latency since the increase of
packet sizes does not extend the broadcast cycle much.
From the plots, we observe the consistency between the
simulation and analytical results, which demonstrates
the correctness of our analytical model.

5.2 Snapshot Queries

Next, we conduct experiments to evaluate the perfor-
mance of DSI and R-tree in answering snapshot window
and kNN queries. For window query, we introduce a pa-
rameter WindowSizeRatio (WSR), which is defined as
the ratio of the side length of the query window to that
of the whole search space (default = 0.1), to control the
sizes of the query windows. For kNN searches, we adjust
parameter k to control the size of the answer set.

5.2.1 Snapshot Window Queries In this experiment set,
we evaluate the performance of DSI and R-tree for sup-
porting window queries. In the first experiment, we fix

WSR at 0.1 and vary packet capacity from 64 to 512
bytes. The results are plotted in Figure 17. It can be
observed that DSI is superior to R-tree in terms of ac-
cess latency. As the packet capacity increases, the access
latency of DSI remains small and stable while that of
R-tree drops. On average, DSI requires only 79% and
66% of the access latency of R-tree for the UNIFORM
and REAL datasets, respectively. This is because DSI
can start the search right after the client tunes into the
channel, and the access latency is the duration of time
from the starting frame to the last retrieved frame. Al-
though the capacity changes, the time duration changes
in terms of the number of packets but not the num-
ber of bytes. As a result, the access latency of DSI is
very low and stable. On the other hand, window search
performance of R-tree is affected by the relationship be-
tween MBRs and the query windows. As packet capacity
changes, the fanout and hence MBRs change. The search
path from the root node down to the leaf nodes changes
accordingly and thus the performance varies.

Besides, DSI performs better than R-tree in terms
of tuning time. This is attributed to the compactness
of DSI, which indexes 1-D HC values instead of 2-D
MBRs as R-tree does. In addition, MBRs may overlap
with query windows which might not contain any answer
object. On average, DSI consumes only 96% of the tun-
ing time of R-tree for the UNIFORM dataset and 90%
of the tuning time of R-tree for the REAL dataset.

To study the impact of query window size, we fix
packet capacity, denoted as C, to 128 bytes and vary
WSR from 0.02, to 0.05, to 0.1, and to 0.2 in the sec-
ond set of experiments. The results for the UNIFORM
and REAL datasets are depicted in Figure 18. Again,
DSI is observed to be outperforming R-tree in terms of
both the access time and the tuning time. In comparison
with R-tree, DSI only consumes 95% of the tuning time
and requires 66% of the access latency on average for the
REAL dataset. As the window size becomes larger, more
objects have to be retrieved and hence the retrieval cost



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 19

 1.1e+007

 1.2e+007

 1.3e+007

 1.4e+007

 1.5e+007

 1.6e+007

 1.7e+007

 1.8e+007

0.20.10.050.02

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

WinSizeRatio

STR R-Tree
DSI

(a) Access Latency (UNIF.)

1024000

256000

64000

16000

0.20.10.050.02

T
un

in
g 

T
im

e 
(B

yt
e)

WinSizeRatio

STR R-Tree
DSI

(b) Tuning Time (UNIF.)

 2e+007

 2.5e+007

 3e+007

 3.5e+007

 4e+007

 4.5e+007

 5e+007

0.20.10.050.02

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

WinSizeRatio

STR R-Tree
DSI

(c) Access Latency (REAL)

4e+006

2e+006

960000

480000

240000

120000

60000

0.20.10.050.02

T
un

in
g 

T
im

e 
(B

yt
e)

WinSizeRatio

STR R-Tree
DSI

(d) Tuning Time (REAL)

Fig. 18 Performance of Window Queries vs. WSR (C=128Bytes)

 1.1e+007

 1.2e+007

 1.3e+007

 1.4e+007

 1.5e+007

 1.6e+007

 1.7e+007

 1.8e+007

 1.9e+007

 2e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

STR R-Tree
Enhanced STR R-Tree

DSI (Conservative)
DSI (Aggressive)

(a) Access Latency (k = 1)

256000

128000

64000

32000

16000

8000

4000
 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

STR R-Tree
Enhanced STR R-Tree

DSI (Conservative)
DSI (Aggressive)

(b) Tuning Time (k = 1)

 1.2e+007

 1.4e+007

 1.6e+007

 1.8e+007

 2e+007

 2.2e+007

 2.4e+007

 2.6e+007

 2.8e+007

 3e+007

 3.2e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

STR R-Tree
Enhanced STR R-Tree

DSI (Conservative)
DSI (Aggressive)

(c) Access Latency (k = 30)

1.24e+06

512000

256000

128000

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

STR R-Tree
Enhanced STR R-Tree

DSI (Conservative)
DSI (Aggressive)

(d) Tuning Time (k = 30)

Fig. 19 Performance of kNN Queries vs. Packet Capacity (UNIFORM)

of the qualified objects (which is independent of the in-
dex structure and search algorithm) dominates the tun-
ing time. Consequently, both DSI and R-tree have simi-
lar tuning time performance. The advantage of DSI un-
der the UNIFORM dataset is even more significant, as
shown in Figure 18(a) and Figure 18(b). For the same
sets of window queries, by using DSI, clients can reduce
23% of the tuning time and 29% of the access time from
that of R-tree.

5.2.2 Snapshot K Nearest Neighbor Queries In this sec-
tion, the performance of DSI and R-tree algorithms for
supporting kNN queries is evaluated. For R-tree index,
the kNN search algorithm would visit index nodes and
objects sequentially as backtracking is not feasible on
the broadcast. This certainly results in a considerably
long tuning time especially when the result objects are
located in the later part of the broadcast. However, if
the client knows that there are at least k objects in the
later part of the broadcast that are closer to the query
point than the currently found ones, they can safely skip
the downloading of the intermediate objects currently lo-
cated. This observation motivates the design of the en-
hanced kNN search algorithm (please refer to [12] for
details). It requires each index node to carry a count of
the underlying objects (“object count”). Thus, clients do
not blindly download intermediate objects. In our exper-
iment, we include this enhanced kNN search algorithm
for comparison. Instead of including “object count” in
every index node, we continue to use STR-tree and use
the level of the index node and the fanout of the index
(which is fixed) to determine object counts at runtime.
We label this extended algorithm as Enhanced STR
R-tree. The performance shown in this section is ac-
tually slightly better than its real performance, because
the overhead of “object count” is not included in our
measurement.

Firstly, we examine the performance of the DSI and
R-tree algorithms for 1NN (i.e., k=1) and 30NN (i.e.,
k=30) queries with different packet capacities. Figure 19
plots the performance for the UNIFORM dataset. At
first sight, the aggressive approach is the most energy ef-
ficient. It dramatically saves more tuning time than both
the conservative approach and R-tree-based approaches.
This aligns with our expectation since the aggressive
approach skips the objects located far away from the
query point. Therefore, the search range could be shrunk
quickly and hence fewer false result objects are down-
loaded. For example, we track the number of objects
retrievals incurred for the UNIFORM dataset (C = 64
bytes, and k = 30) and find that on average only 75 ob-
jects are retrieved by the aggressive approach, compared
with 223 by the conservative approach. Meanwhile, the
R-tree algorithms scan a number of index nodes and
some additional objects to determine the final result,
making them less competitive than DSI. However, the
aggressive approach suffers from a much longer access
latency. This is because the kNN search process is post-
poned, i.e., the client might miss some answer objects in
the current broadcast cycle, thereby forcing it to down-
load them in the next cycle.

In summary, when k = 1, conservative approach in-
curs only 71% of R-tree’s access latency12, and it con-
sumes 11% of R-tree’s and 53% of Enhanced R-tree’s
tuning time, respectively. When k is set to 30, on aver-
age conservative approach incurs 75% of R-tree’s access
latency for UNIFORM dataset. Meanwhile, it consumes
49% of R-tree’s and 58% of Enhanced R-tree’s tuning
time, respectively. Since the conservative approach achieves
a good balance between the access latency performance
and the tuning time performance, we use it as the default
algorithm for kNN search in the following discussion.

12 The Enhanced kNN search algorithm only improves tun-
ing time performance, but not access latency.



20 Baihua Zheng et al.

 2.5e+007

 3e+007

 3.5e+007

 4e+007

 4.5e+007

 5e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

STR R-Tree
Enhanced STR R-Tree

DSI (Conservative)
DSI (Aggressive)

(a) Access Latency (k=1)

 16384

 32768

 65536

 131072

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

STR R-Tree
Enhanced STR R-Tree

DSI (Conservative)
DSI (Aggressive)

(b) Tuning Time (k=1)

 2.5e+007

 3e+007

 3.5e+007

 4e+007

 4.5e+007

 5e+007

 5.5e+007

 6e+007

 6.5e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

STR R-Tree
Enhanced STR R-Tree

DSI (Conservative)
DSI (Aggressive)

(c) Access Latency (k=30)

1.04e+06

520000

260000

130000
 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

STR R-Tree
Enhanced STR R-Tree

DSI (Conservative)
DSI (Aggressive)

(d) Tuning Time (k=30)

Fig. 20 Performance of kNN Queries vs. Packet Capacity (REAL)

 1.1e+007

 1.2e+007

 1.3e+007

 1.4e+007

 1.5e+007

 1.6e+007

 1.7e+007

5030101

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

K

STR R-Tree
Enhanced STR R-Tree

DSI

(a) Access Latency (UNIF.)

512000

256000

128000

64000

32000

16000

5030101

T
un

in
g 

T
im

e 
(B

yt
e)

K

STR R-Tree
Enhanced STR R-Tree

DSI

(b) Tuning Time (UNIF.)

 2.6e+007

 2.8e+007

 3e+007

 3.2e+007

 3.4e+007

 3.6e+007

 3.8e+007

 4e+007

 4.2e+007

 4.4e+007

5030101

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

K

STR R-Tree
Enhanced STR R-Tree

DSI

(c) Access Latency (REAL)

1.04e+06

512000

256000

128000

64000

32000

16000
5030101

T
un

in
g 

T
im

e 
(B

yt
e)

K

STR R-Tree
Enhanced STR R-Tree

DSI

(d) Tuning Time (REAL)

Fig. 21 Performance of k-NN Queries vs. k (C=128Bytes)

For the REAL dataset, the performance difference
between R-tree and DSI (conservative approach) nar-
rows, as shown in Figure 20. This is because R-tree
ensures high spatial locality. When the distribution of
objects is skewed, the search space represented by high-
level index nodes which contain farther objects from a
query point can be pruned efficiently, thereby improving
the search performance. For NN search, Enhanced R-tree
performs better than DSI in terms of tuning time. How-
ever, DSI still provides the best access latency. For NN
search, it requires 63% of the access latency of R-tree.
When k increases to 30, DSI has a better performance
than both R-tree and Enhanced R-tree. DSI consumes
69% of R-tree’s and 92% of Enhanced R-tree’s tuning
time, respectively. This is because R-tree would have
different search paths for scattered result objects. Mean-
while, for DSI, the proximity of closely located objects is
preserved by space-filling curve, which allows search to
be constrained within a small portion of the broadcast.
In addition to the tuning time, DSI also saves 34% of
access latency compared to R-tree.

Compared with window queries, the advantages of
DSI over R-tree are even more obvious for supporting
kNN queries. Our conservative search approach refines
the search space gradually while achieving energy ef-
ficiency by moving close to the query point via EEF.
Next, we vary k from 1 to 50 to examine the impact of
the number of nearest neighbors on the performance of
spatial air indexes. Figure 21 shows the results for both
the UNIFORM and REAL datasets. As expected, DSI
performs the best for almost all the cases in both access
latency and tuning time.

5.3 Continuous Queries

In this section, we evaluate DSI and R-tree in answering
continuous queries, including continuous window queries

and continuous nearest neighbor searches, issued from
clients when they are moving. A parameter QueryLength-
Ration (QLR) is introduced to represent the length of
the projected linear trajectory (i.e., the query line seg-
ment). It is defined as the ratio of the length of the query
segment to the side length of the whole search space (de-
fault = 0.1). The starting point of a moving trajectory
is randomly selected, and the corresponding direction of
the movement is uniformly distributed between 0 and
π/2. A client is assumed to issue either a continuous
window query, whose size is controlled by WSR, or a
continuous nearest neighbor query at the starting point.

5.3.1 Continuous Window Queries First, the perfor-
mance of different indexes supporting continuous win-
dow queries is evaluated. Different WSR values are used:
0.02, 0.05, 0.1, and 0.2. The length of the client mov-
ing trajectory is varied via QLR. To simplify our ex-
periments, we assume that WSR and QLR share the
same value instead of evaluting all the possible combi-
nations of the two parameter values. In addition, we fix
the packet capacity C at 128 bytes.

Figure 22 depicts the simulation result under differ-
ent configurations of WSR and QLR values for both the
UNIFORM and REAL datasets. Due to the compactness
of the index tables and its distributed nature, DSI incurs
a much shorter access latency than R-tree. Consider the
UNIFORM dataset. DSI takes only 80% of R-tree’s ac-
cess latency. The improvement is even more significant
for REAL dataset. DSI incurs only 67% of R-tree’s ac-
cess latency. In terms of tuning time performance, DSI
for continuous window queries still performs better than
R-tree, even though with a smaller margin. It consumes
94% and 87% R-tree’s tuning time for the REAL and
UNIFORM datasets, respectively. Compared to snap-
shot window queries, DSI is less competitive in tuning
time. This is because DSI approximates search range as



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 21

 1.2e+007

 1.3e+007

 1.4e+007

 1.5e+007

 1.6e+007

 1.7e+007

 1.8e+007

 1.9e+007

 2e+007

 2.1e+007

0.2^20.1^20.05^20.02^2

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

WinSizeRatio*QueryLengthRatio

STR R-Tree
DSI

(a) Access Latency (UNIF.)

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

 2e+006

0.2^20.1^20.05^20.02^2

T
un

in
g 

T
im

e 
(B

yt
e)

WinSizeRatio*QueryLengthRatio

STR R-Tree
DSI

(b) Tuning Time (UNIF.)

 2e+007

 2.5e+007

 3e+007

 3.5e+007

 4e+007

 4.5e+007

 5e+007

0.2^20.1^20.05^20.02^2

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

WinSizeRatio*QueryLengthRatio

STR R-Tree
DSI

(c) Access Latency (REAL)

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

0.2^20.1^20.05^20.02^2

T
un

in
g 

T
im

e 
(B

yt
e)

WinSizeRatio*QueryLengthRatio

STR R-Tree
DSI

(d) Tuning Time (REAL)

Fig. 22 Performance of CW Search vs. (WSR×QLR) (C=128 Bytes)

 1.2e+007

 1.4e+007

 1.6e+007

 1.8e+007

 2e+007

 2.2e+007

 2.4e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

STR R-Tree
DSI

(a) Access Latency (UNIF.)

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

STR R-Tree
DSI

(b) Tuning Time (UNIF.)

 3e+007

 3.5e+007

 4e+007

 4.5e+007

 5e+007

 5.5e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

STR R-Tree
DSI

(c) Access Latency (REAL)

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

STR R-Tree
DSI

(d) Tuning Time (REAL)

Fig. 23 Performance of CNN Search vs. Packet Capacity (REAL: QLR = 0.1)

a rectangle based on the given query line segment, which
actually takes a large area into consideration and hence
introduces some extra overhead.

5.3.2 Continuous NN Queries To evaluate the perfor-
mance of DSI and R-tree for supporting continuous NN
queries, we first fix the length of the query line seg-
ment, i.e., QLR, and vary the packet capacity C from
64 bytes to 512 bytes. The result is plotted in Figure 23.
DSI is shown to incur a shorter access latency for both
the UNIFORM and REAL datasets than R-tree, since
DSI enables clients to start the query processing almost
right after they tune into the channel while R-tree needs
clients to wait for the arrival of the root index node
to start the search. On average, DSI requires 64% and
72% of R-tree’s access latency under the UNIFORM
and REAL datasets, respectively. In terms of tuning
time, DSI demonstrates its strength for the UNIFORM
dataset by only consuming 75% of R-tree’s tuning time.
However, R-tree outperforms DSI for the REAL dataset
as R-tree benefits more from the skew distribution.

 1.2e+007

 1.3e+007

 1.4e+007

 1.5e+007

 1.6e+007

 1.7e+007

 1.8e+007

 1.9e+007

 2e+007

 2.1e+007

0.20.10.050.02

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

QueryLengthRatio

STR R-Tree
DSI

(a) Access Latency

 50000

 100000

 150000

 200000

 250000

 300000

0.20.10.050.02

T
un

in
g 

T
im

e 
(B

yt
e)

QueryLengthRatio

STR R-Tree
DSI

(b) Tuning Time

Fig. 24 Performance of CNN Search vs. QLR (UNIFORM:
C=128 Bytes)

Next, we evaluate the performance of DSI and R-
tree under different settings of QLR. Figure 24 shows
the performance for the UNIFORM dataset by fixing
the packet capacity C at 128 bytes and varying QLR
from 0.02 to 0.2. As expected, as QLR increases, more
result objects will be collected. Therefore, more energy is
consumed. DSI performs consistently better than R-tree

in terms of tuning time and access latency. On average,
DSI only requires 62% of tuning time and 66% of R-
tree’s access latency. For the REAL dataset, DSI does
not perform as well as R-tree in terms of tuning time
due to the skewed object distribution. However, it incurs
considerably less access time, i.e., 72% of R-tree’s access
latency.

R-tree demonstrates a better performance in tuning
time when the distribution of objects is skewed for CNN
queries. As we explained above, R-tree clusters objects
according to spatial locality and thus allows quick search
space pruning if certain tree branches of the objects do
not contribute to the query result. On the other hand,
the search algorithm based on DSI approximates the
search range based on the query line segment and all the
candidates found so far. Therefore, it could be very likely
that some false results are downloaded before the actual
ones are found, thereby introducing a longer tuning time
than R-tree. On the other hand, due to compactness and
distribution of the index tables, the access time of DSI
remains the lowest.

5.4 Computational Cost

Besides the tuning time performance which reflects the
number of data objects that a client has to retrieve in or-
der to finish a query, query processing performed at mo-
bile clients also consumes power resource. In this section,
we evaluate the computational cost of DSI and R-trees in
terms of the CPU time for answering queries. The eval-
uation is based on a Generic SUN4U SPARC with 4G
main memory. Although the SUN machine is much more
powerful than existing handheld devices, the result pro-
vides good insights and serves as a good reference. In ad-
dition, with the trend of rapid technology advances, it is
not surprising to have powerful mobile devices with sim-
ilar computational capability in the future. We conduct
experiments on snapshot window queries and snapshot



22 Baihua Zheng et al.

 0

 500

 1000

 1500

 2000

 2500

 64  128  256  512

C
PU

 T
im

e 
(M

ill
is

ec
on

d)

Packet Capacity (Byte)

STR R-Tree
DSI

(a) Win. Query (UNIF.)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 64  128  256  512

C
PU

 T
im

e 
(M

ill
is

ec
on

d)

Packet Capacity (Byte)

STR R-Tree
DSI

(b) Win. Query (REAL)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 64  128  256  512

C
PU

 T
im

e 
(M

ill
is

ec
on

d)

Packet Capacity (Byte)

STR R-Tree
Enhanced STR R-Tree

DSI (Conservative)

(c) 30NN (UNIF.)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 64  128  256  512

C
PU

 T
im

e 
(M

ill
is

ec
on

d)

Packet Capacity (Byte)

STR R-Tree
Enhanced STR R-Tree

DSI (Conservative)

(d) 30NN (REAL)

Fig. 25 CPU Time of Window Query and 30NN Searches vs. Packet Capacity (WSR = 0.1)

kNN queries with various packet capacities. The results
are shown in Figure 25.

From the figures, DSI is shown to be superior to
R-tree in terms of CPU time for most cases. For win-
dow queries, the advantage of DSI is distinct. For all the
cases, DSI finishes window queries within 1 millisecond
under the UNIFORM dataset that is only 1% of the CPU
time of R-tree. For the REAL dataset, DSI requires again
only 1% of R-tree’s CPU time. For 30NN queries, the su-
periority of DSI is still very obvious. DSI requires only
24% and 27% of enhanced R-tree and R-tree’s CPU time
for the UNIFORM dataset, respectively, and it also sig-
nificantly outperforms Enhanced R-tree and R-tree for
the REAL dataset.

5.5 Power Consumption

Conventionally, tuning time is used in the literature to
evaluate power consumption. Since it is well-known that
mobile devices consume much more energy in the ac-
tive mode than in the doze mode, an energy-conserving
index usually can reduce the tuning time. However, a
shorter tuning time does not necessarily save energy due
to frequent switching operations (i.e., switch between ac-
tive mode and doze mode), which also incur significant
energy cost [35]. In order to fully demonstrate the ad-
vantage of DSI, we conduct a simulation to evaluate the
power consumption in different approaches.

Different components in mobile devices have differ-
ent power consumption [1,19]. For example, a proces-
sor (StrongARM SA-1100) consumes 0.05mW at doze
mode but 200mW at normal mode, a RangeLAN2 PC
card consumes 25mW at doze mode, 750mW at receive
mode, and 1500mW at transmit mode, and a µ-blox
GPS-MS1E consumes 33mW at doze mode and 462mW
at normal mode. Based on these data, we can approx-
imate the ratio of power consumed in active mode to
that consumed in doze mode, denoted as e, based on
200+750+462
0.05+25+33 = 24.34. Consequently, we can take the power

consumed at doze mode as the unit power consumption
(denoted as ρ), and power consumed at active mode is
(e · ρ), i.e., 24.34 units.

Let Pon and Poff denote the power consumption in
active and doze modes, respectively. Also, let Ton, Toff

and Tset denote the time spent in active, doze and setup

(i.e., switching) during query processing13. Finally, we
use Nswi to denote the number of switches incurred. We
further assume Pswi, the power consumption of a switch
operation, equals Pon. The total power consumption can
be derived based on Equation 6.

P = Ton · Pon + Tset · Nswi · Pswi + Toff · Poff

= Ton · (e · ρ) + Tset · Nswi · (e · ρ) + Toff · ρ (6)

It is observed that the typical setup time for a mobile
device to start its radio or to tune into active mode is
in the order of 100µs [35]. Since the setup time is de-
vice dependent, we vary the setup time, ranging from
100µs to 1ms, in our experiments. In order to approxi-
mate the time needed to retrieve data objects/index in-
formation, we further assume the bandwidth B of the
broadcast channel is 128kbps. Figure 26 presents the
power consumed of window queries and continuous win-
dow searches for both the UNIFORM and REAL datasets.
As depicted, DSI saves more power and outperforms R-
tree significantly. When Tset = 0.1ms, DSI consumes
only 86.4% and 83.3% of R-tree’s power consumption
for window query and continuous window query, respec-
tively, under the UNIFORM dataset. For the REAL dataset,
DSI consumes only 74.9% and 72.2% of R-tree’s power
consumption for window query and continuous window
query. This is due to more switches occurred in R-tree
search algorithms than in DSI algorithms. We further
observe that the advantage of DSI in terms of energy-
saving is more significant when WSR is smaller (e.g.,
0.02). This is because as WSR becomes larger, the an-
swer set contains more objects. Consequently, the en-
ergy consumed by retrieving result objects, which is far
more than that used to retrieve index, becomes dom-
inant. Hence, the difference between DSI and R-tree is
reduced. For example, when WSR = 0.02, DSI only con-
sumes 57.3% of R-tree’s power consumption for window
query under the REAL dataset, while the ratio of DSI’s
power consumption to that of R-tree reaches 94.9% when
WSR = 0.2.

5.6 Error Resilience

For a tree-structured index, re-access and re-probe are
two straightforward strategies to resume a failed search.
The former tries to access the lost packet from the next

13 Note that the setup time typically refers to the time for
a mobile device to start or to wake up its radio component.



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 23

 512

 1024

 2048

 4096

 8192

 16384

0.20.10.050.02

U
ni

t P
ow

er
 C

on
su

m
pt

io
n

WinSizeRatio

STR R-Tree (UNI)
DSI (UNI)

STR R-Tree (REAL)
DSI (REAL)

(a) WQ (Tswi = 0.1ms)

 512

 1024

 2048

 4096

 8192

 16384

0.20.10.050.02

U
ni

t P
ow

er
 C

on
su

m
pt

io
n

WinSizeRatio

STR R-Tree (UNI)
DSI (UNI)

STR R-Tree (REAL)
DSI (REAL)

(b) WQ (Tswi = 1ms)

 512

 1024

 2048

 4096

 8192

 16384

 32768

0.2^20.1^20.05^20.02^2

U
ni

t P
ow

er
 C

on
su

m
pt

io
n

WinSizeRatio*QueryLengthRatio

STR R-Tree (UNI)
DSI (UNI)

STR R-Tree (REAL)
DSI (REAL)

(c) CWQ (Tswi = 0.1ms)

 512

 1024

 2048

 4096

 8192

 16384

 32768

0.2^20.1^20.05^20.02^2

U
ni

t P
ow

er
 C

on
su

m
pt

io
n

WinSizeRatio*QueryLengthRatio

STR R-Tree (UNI)
DSI (UNI)

STR R-Tree (REAL)
DSI (REAL)

(d) CWQ (Tswi = 1ms)

Fig. 26 Power Consumption of Window/Continuous Window Query (B=128kbps, C=128bytes, WSR = 0.1, QLR = 0.1)

0

1000

2000

3000

4000

5000

6000

7000

64 128 256 512
Packet Capacity (Byte)

T
u

n
in

g
 T

im
e

 (
B

y
te

)

Experimental Result

Analytical Result

(a) vs. C (θ=0.5,UNIF.)

0

1000

2000

3000

4000

5000

6000

7000

64 128 256 512

Packet Capackty (Byte)

T
u

n
in

g
 T

im
e 

(B
yt

e)

Experimental Result Analytical Result

(b) vs. C (θ=0.5,REAL)

0

500

1000

1500

2000

2500

3000

3500

0 0.3 0.5 0.7
Threshold

T
u

n
in

g
 T

im
e

 (
B

y
te

)

Experimental Result

Analytical Result

(c) vs. θ (C = 128B,UNIF.)

0

500

1000

1500

2000

2500

3000

3500

0 0.3 0.5 0.7
Threshold

T
u

n
in

g
 T

im
e 

(B
yt

e)

Experimental Result Analytical Result

(d) vs. θ (C = 128B,REAL)

Fig. 27 Tuning Time Performance of Point Query

broadcast cycle, which incurs extremely long access la-
tency. The latter re-starts the search from the packet
right after the lost packet and hence all the previous
efforts are in vain. Obviously, the performance of R-
tree under an error-prone environment is not compara-
ble to that of DSI by adopting either re-access or re-
probe strategies. Every packet loss will incur an increase
of the access latency and possibly the tuning time. In
the literature, a progressive method has been proposed
in [23] to efficiently resume an interrupted search by find-
ing an available replicated index node. However, the so-
lution is only applicable to the simple range query in
one-dimensional space, and cannot be extended to an-
swer complicated queries, such as kNN queries and CNN
searches. Thus, we only evaluate the performance of DSI
in this set of experiments.

To examine the resilience of on air spatial index-
ing techniques to wireless communication link errors, we
compare their performance under an error-prone wireless
broadcast environment, where a reliable data delivery is
no longer guaranteed. We first evaluate the performance
of point query under the default packet loss probability,
i.e., (θ = 0.5), with results depicted in Figure 27(a) and
Figure 27(b). As we assume that the packets containing
the final answers will not be lost, the access latency of
point query will not be affected. It is observed that the
results from simulation are pretty close to the analyti-
cal result. The difference of tuning time performance is
only 0.1% and 0.2% under the UNIFORM and REAL
datasets.

Next, we vary θ to evaluate DSI with various de-
grees of communication link errors. Figure 27(c) and
Figure 27(d) show the performance of both datasets un-
der different values of θ, which is varied from 0.0 to 0.7.
As expected, simulation results match the analytical re-
sult. The difference is only around 0.6% and 0.2% for
the UNIFORM and REAL datasets, respectively.

The performance of window queries and 30NN searches
under different θ is also evaluated. Again, DSI provides
a relatively stable performance. Table 4 summarizes the
performance downgrade (in percentage) under various
communication link error ratios for REAL dataset and
that of UNIFORM dataset is ignored due to space limi-
tation. Note that the baseline of comparison is the per-
formance of DSI under the ideal, lossless wireless com-
munication environment (θ = 0). The loss of packets
has a smaller impact on the performance of window
queries, compared with that of kNN search. The reason
is that the search range of window query is fixed, while
the search range of kNN queries is determined based on
the information obtained from the downloaded packets.
When the packets cannot be retrieved successfully, the
clients do not have sufficient knowledge to shrink the
search range. As a result, it is likely to download irrele-
vant objects.

Capacity θ
Window Query 30NN

Tuning Latency Tuning Latency

64
0.3 0.05% 0.18% 8.41% 0.01%
0.5 0.11% 0.01% 18.08% 0.0.03%
0.7 0.27% 0.21% 36.20% 0.16%

128
0.3 0.03% 0.01% 8.83% 0.02%
0.5 0.07% 0.01% 19.46% 0.01%
0.7 0.17% 0.16% 40.67% 0.01%

256
0.3 0.06% 0.24% 9.66% 0.05%
0.5 0.14% 0.01% 21.13% 0.06%
0.7 0.31% 0.20% 42.36% 0.38%

512
0.3 0.12% 0.10% 10.79% 0.09%
0.5 0.25% 0.38% 21.73% 0.23%
0.7 0.55% 0.61% 43.64% 0.06%

Table 4 Performance Downgrade vs. θ under DSI (REAL)

In order to provide a visual representation of the
performance under error-prone environments, Figure 28
presents the results of NN searches under the UNIFORM



24 Baihua Zheng et al.

dataset. It is obvious that the performance of DSI is rel-
atively stable.

 1.11e+007

 1.12e+007

 1.13e+007

 1.14e+007

 1.15e+007

 1.16e+007

 1.17e+007

 1.18e+007

 1.19e+007

 1.2e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

DSI(THETA=0.0)
DSI(THETA=0.3)
DSI(THETA=0.5)
DSI(THETA=0.7)

(a) Access Latency

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

DSI(THETA=0.0)
DSI(THETA=0.3)
DSI(THETA=0.5)
DSI(THETA=0.7)

(b) Tuning Time

Fig. 28 Performance of NN Search under Error-Prone En-
vironment (UNIFORM)

In summary, the fully distributed characteristics of
DSI enable query processing to be resumed immediately
after the loss of packets occurs. Distribution of index
information to frames over the whole cycle contributes
to the efficiency and robustness of DSI and the search
algorithms in wireless data broadcast.

5.7 Multiple Data Types

In addition to the broadcast and query processing of
homogeneous data type, we also conduct a set of ex-
periments to evaluate the performance of the proposed
sequential and integrated approaches for the broadcast
of heterogeneous data types. We assume there are two
uniform datasets with N1 = N2 = 10000, corresponding
to two data types. An eight-bit string tag is allocated to
represent data types. The performance of window queries
with WSR = 0.1 is depicted in Figure 29, with respect
to a window query on one data type (D = 1) and a
window query on both data types (D = 2).

When the query is on a single data type, the sequen-
tial approach performs better than the integrated ap-
proach, requiring on average 91.3% of the tuning time
and 92.3% of the access latency of the integrated ap-
proach. This is because the sequential approach uses
a smaller index table, compared with that of the in-
tegrated approach. The number of index entries in an
index table under the sequential approach is dependent
on the number of frames inside the whole broadcast cy-
cle, i.e., ni = ⌈log2⌊Ni/no⌋⌉. However, under the in-
tegrated approach, that number is bounded by the to-
tal number of frames inside one broadcast channel, i.e.,
ni = ⌈log2⌊N/no⌋⌉ with N =

∑t

i=1 Ni and t being the
number of data types supported in the system. Conse-
quently, as the number of data types increases, the differ-
ence between the average index table sizes under the in-
tegrated approach and the sequential approach becomes
more significant, which directly affects the performance.

On the other hand, the integrated approach outper-
forms the sequential approach when the queries issued
are on multiple data types, as depicted in Figure 29(c)
and Figure 29(d). On average, it requires 99.1% of the

tuning time, and 88.8% of the access latency of the se-
quential approach. The main reason is that the sequen-
tial approach forces the searches related to data objects
from both data types to access both subcycles, while ob-
jects that are closely located are placed in nearby frames
under the integrated approach.

Based on the performance of both approaches un-
der different query types, we observe that the access la-
tency of the integrated approach is stable while that of
the sequential approach varies. The main reason is that
the integrated approach treats objects of different types
equally and objects are uniformly distributed along the
wireless channel. Consequently, for a given query win-
dow, the average distance between the initial frame (i.e.,
the first frame retrieved after a query is issued) and the
final target frame (i.e., the last frame retrieved that con-
tains answer objects) is almost independent of the data
types involved in the query. However, the sequential ap-
proach partitions the broadcast program into different
sub-cycles. A query which involves objects of n data
types has to scan n sub-cycles and hence n has a direct
impact on the average access latency. In addition, we
also observe that the tuning time performance of both
approaches doubles when both data types are queried
in one query. This is because when the number of data
types involved into a query increases from one to two,
the number of answer objects and hence the tuning time
performance doubles.

In addition to snapshot window queries, we also eval-
uate the performance of the sequential approach and
the integrated approach in answering continuous window
queries, with both WSR and QLR set to 0.1. Again, two
types of queries are evaluated, with one querying objects
of one data type (D = 1) and the other querying objects
from both types (D = 2). The performance is depicted
in Figure 30. Similar observations as the result of the
window query experiments are obtained. When objects
of one data type are queried, the sequential approach
performs better due to the small size of the index ta-
ble. However, its advantages disappear when objects of
multiple data types are queried in the same query. Due
to the space limitation and the primary focus of this
work, we are not able to elaborate the performance of
two approaches in details in this paper. We plan to fur-
ther examine this issue in our future research.

6 Conclusion

This paper addresses research issues in supporting spa-
tial queries in wireless data broadcast systems. Spatial
indexes proposed recently are all tree-based structures,
in which a search starts at the root of the tree. A client
searching for information on a broadcast channel has to
wait for the data packet containing the root node to ar-
rive, thus prolonging the initial probing time and the
access latency. Moreover, existing studies ideally assume



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 25

 1.3e+007

 1.31e+007

 1.32e+007

 1.33e+007

 1.34e+007

 1.35e+007

 1.36e+007

 1.37e+007

 1.38e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

Sequential  Approach
Integrated Approach

(a) Access Latency (D = 1)

 110000

 112000

 114000

 116000

 118000

 120000

 122000

 124000

 126000

 128000

 130000

 132000

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

Sequential  Approach
Integrated Approach

(b) Tuning Time (D = 1)

 1.34e+007

 1.36e+007

 1.38e+007

 1.4e+007

 1.42e+007

 1.44e+007

 1.46e+007

 1.48e+007

 1.5e+007

 1.52e+007

 1.54e+007

 1.56e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

Sequential  Approach
Integrated Approach

(c) Access Latency (D = 2)

 224000

 226000

 228000

 230000

 232000

 234000

 236000

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

Sequential  Approach
Integrated Approach

(d) Tuning Time (D = 2)

Fig. 29 Performance of Window Queries on one/two Data Types (N1 = N2 = 10000, WSR = 0.1)

 1.32e+007

 1.34e+007

 1.36e+007

 1.38e+007

 1.4e+007

 1.42e+007

 1.44e+007

 1.46e+007

 1.48e+007

 1.5e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

Sequential  Approach
Integrated Approach

(a) Access Latency (D = 1)

 230000

 240000

 250000

 260000

 270000

 280000

 290000

 300000

 310000

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

Sequential  Approach
Integrated Approach

(b) Tuning Time (D = 1)

 1.46e+007

 1.48e+007

 1.5e+007

 1.52e+007

 1.54e+007

 1.56e+007

 1.58e+007

 1.6e+007

 1.62e+007

 1.64e+007

 64  128  256  512

A
cc

es
s 

L
at

en
cy

 (
B

yt
e)

Packet Capacity (Byte)

Sequential  Approach
Integrated Approach

(c) Access Latency (D = 2)

 470000

 475000

 480000

 485000

 490000

 495000

 500000

 505000

 510000

 515000

 64  128  256  512

T
un

in
g 

T
im

e 
(B

yt
e)

Packet Capacity (Byte)

Sequential  Approach
Integrated Approach

(d) Tuning Time (D = 2)

Fig. 30 Performance of Continuous Window Queries on one/two Data Types (N1 = N2 = 10000, WSR = 0.1, QLR = 0.1)

a reliable wireless communication environment, where
packet loss never occurs. In fact, wireless communication
is inherently unreliable. A desirable air indexing tech-
nique should be resilient in the error-prone wireless en-
vironment. That is, query processing should be quickly
recovered after interruption. In this paper, a fully dis-
tributed spatial index, namely DSI, is proposed to meet
these requirements.

DSI naturally combines multiple search paths into a
linear structure and fully distributes this index structure
over the whole broadcast cycle. As a result, it allows a
search to start right after a client tunes into the chan-
nel. For the same reason, interrupted query processing
can be resumed instantly even when a received packet
is corrupted. Based on DSI, efficient search algorithms
for energy efficient forwarding (EEF), snapshot window
queries, snapshot k nearest neighbor queries, continuous
window queries, and continuous nearest neighbor search
are developed. An analytical model has been developed
to measure both the access latency and the tuning time
performance of EEF operation under both error-free and
error-prone environments. An extensive simulation based
evaluation is conducted under both error-free and error-
prone environments. Experimental results show that DSI
significantly outperforms a state-of-the-art spatial air in-
dexing technique extended from R-tree.

In summary, the contribution of this work is five-fold:

– An error-resilient and energy-efficient spatial index
structure, DSI, is developed for wireless data broad-
cast.

– Search algorithms based upon DSI for query points
that are static or move on a projected trajectory
are developed. These spatial queries include snapshot
window queries, snapshot k-nearest-neighbor queries,
continuous window queries, and continuous nearest-
neighbor queries.

– An analytical cost model is derived for Energy-Efficient
Forwarding operation.

– Two index organizations are proposed to support
spatial queries on objects of multiple data types.

– An extensive simulation is conducted to compare the
performance of DSI with a spatial air index extended
from R-tree.
As for our next steps, we are considering multiple

directions to extend DSI. First, we have focused on ho-
mogeneous data type in this study and proposed two
approaches in this work to extend DSI for supporting
spatial queries on objects of multiple data types. How-
ever, the issue of processing of spatial queries involv-
ing multiple data types deserves further investigation.
We are working on a) efficient indexing and query pro-
cessing algorithms to answer complex queries, and b) a
general system framework which allows flexible perfor-
mance tuning under different query patterns and object
distribution patterns. Second, memory in modern mobile
devices has become larger. Hence, caching data objects
and/or index information on the clients is feasible. We
are looking into techniques that combine caching and
indexing to improve the query processing performance.
Third, in our current work, we assume one Hilbert Curve
which covers the entire service area. The service area
might cover a large space, but a client is more likely to
be interested in objects located close to her. Given a long
broadcast cycle, it might take a long time for a client to
reach the broadcast objects located close to her. This is
an interesting issue that needs further investigation. We
are currently working on a scalable solution. Last but
not the least, we are looking into prototyping a wireless
data broadcast testbed that supports spatial queries.

7 Acknowledgment

The authors would like to thank the editor Panos Kypros
Chrysanthis, and anonymous reviewers for their valu-
able comments and suggestions that helped to improve
the quality of this paper. In this research, Dik Lun Lee



26 Baihua Zheng et al.

was supported in part by a grant from the Research
Grant Council, Hong Kong SAR, Chian under Grant
no. 616005. Wang-Chien Lee and Ken C. K. Lee were
supported in part by the National Science Foundation
under Grant no. IIS-0328881 and IIS-0534343. Besides,
Wang- Chien Lee was supported in part by the National
Science Foundation under Grant no. CNS-0626709.

References

1. SA-1100 Microprocessor Product Brief. Website at
http://bwrc.eecs.berkeley.edu/Research/Pico Radio/
Test Bed/Hardware/Documentation/ARM/processor arm
SA1100-productbrief.pdf.

2. D. Acharya and V. Kumar. Location based Indexing
Scheme for DAYS. In Proceedings of the 4th ACM Inter-
national Workshop on Data engineering for Wireless and
Mobile access (MobiDE’05), pages 17–24, June 2005.

3. S. Acharya, R. Alonso, M. Franklin, and S. Zdonik.
Broadcast Disks: Data Management for Asymmetric
Communications Environments. In Proceedings of ACM
SIGMOD Conference on Management of Data (SIG-
MOD’95), pages 199–210, May 1995.

4. M. Gruteser amd D. Grunwald. Anonymous Usage of
Location-Based Services through Spatial and Temporal
Cloaking. In Proceedings of the 1st ACM/USENIX In-
ternational Conference on Mobile Systems, Applications,
and Services (MobiSys’03), June 2003.

5. A.Seydim, M. Dunham, and V. Kumar. Location depen-
dent query processing. In Proceedings of the 2nd ACM
International Workshop on Data Engineering for Wire-
less and Mobile Access (MobiDE’01), pages 47–53, Santa
Barbara, CA, USA, May 2001.

6. M-S. Chen, K-L. Wu, and S. Yu. Optimizing Index
Allocation for Sequential Data Broadcasting in Wire-
less Mobile Computing. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), 15(1):161–173, Jan-
uary/February 2003.

7. A. Datta, A. Celik, J.K. Kim, D. VanderMeer, and
V. Kumar. Adaptive Broadcast Protocols to Support
Power Conservation Retrieval by Mobile Users. In Pro-
ceedings of IEEE International Conference Data Engi-
neering (ICDE’97), pages 124–133, April 1997.

8. A. Datta, D. E. VanderMeer, A. Celik, and V. Ku-
mar. Broadcast protocols to support efficient retrieval
from databases by mobile users. ACM Transactions on
Database Systems (TODS), 24(1):1–79, March 1999.

9. Topologically Integrated Geographic Encoding and Ref-
erencing system. TIGER homepage. Website at
http://www.census.gov/geo/www/tiger/.

10. N. Garg, V. Kumar, and M. Dunham. Information map-
ping and indexing in days. In Proceedings of the 14th In-
ternational Workshop on Database and Expert Systems
Applications (DEXA’03), pages 951–955, 2003.

11. B. Gedik and L. Liu. Location Privacy in Mobile Sys-
tems: A Personalized Anonymization Model. In Proceed-
ings of the 25th International Conference on Distributed
Computing Systems (ICDCS’05), June 2005.

12. B. Gedik, A. Singh, and L. Liu. Energy Efficient Ex-
act kNN Search in Wireless Broadcast Environments. In

Proceedings of the 12th annual ACM international work-
shop on Geographic information systems (GIS’04), pages
137 – 146, 2004.

13. C. Gotsman and M. Lindenbaum. On the Metric Proper-
ties of Discrete Space-Filling Curves. IEEE Transactions
on Image Processing, 5(5):794–797, May 1996.

14. A. Guttman. R-trees: A Dynamic Index Structure
for Spatial Searching. In Proceedings of the ACM
SIGMOD Conference on Management of Data (SIG-
MOD’84), pages 47–54, June 1984.

15. Q. L. Hu, W.-C. Lee, and D. L. Lee. Power Conserva-
tive Multi-Attribute Queries on Data Broadcast. In Pro-
ceedings of the 16th International Conference on Data
Engineering (ICDE’00), pages 157–166, February 2000.

16. T. Imielinski, S. Viswanathan, and B. R. Badrinath. En-
ergy efficiency indexing on air. In Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, pages 25–36, May 1994.

17. T. Imielinski, S. Viswanathan, and B. R. Badrinath.
Power Efficiency Filtering of Data on Air. In Proceed-
ings of the 4th International Conference on Extending
Database Technology (EDBT’94), pages 245–258, March
1994.

18. T. Imielinski, S. Viswanathan, and B. R. Badrinath.
Data on Air - Organization and Access. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE),
9(3), May-June 1997.

19. Oliver Kasten. Energy Consumption. Website at
http://www.inf.ethz.ch/personal/kasten/research/
bathtub/energy consumption.html.

20. W.-C. Lee and D. L. Lee. Using Signature Techniques
for Information Filtering in Wireless and Mobile Envi-
ronments. Journal of Distributed and Parallel Databases
(DPDB), Special Issue on Database and Mobile Comput-
ing, 4(3):205–227, July 1996.

21. W.-C. Lee and B. Zheng. DSI: A Fully Distributed Spa-
tial Index for Wireless Data Broadcast. In Proceedings
of 25th IEEE International Conference on Distributed
Computing Systems (ICDCS’05), June 2005.

22. S. T. Leutenegger, J. M. Edgington, and M. A. Lopez.
STR: A Simple and Efficient Algorithm for R-Tree Pack-
ing. In Proceedings of the 13th International Conference
on Data Engineering (ICDE’97), pages 497–506, April
1997.

23. S-C. Lo and L-P. Chen. An Adaptive Access Method
for Broadcast Data under an Error-Prone Mobile Envi-
ronment. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 12(4):609–620, July 2000.

24. M. Mokbel, C-Y. Chow, and W. Aref. The New Casper:
Query Processing for Location Services without Compro-
mising Privacy. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB’06), Seoul,
Korea, 2006.

25. D. Moore. Hilbert curve. URL at
http://www.caam.rice.edu/ dougm/twiddle/Hilbert.

26. Q. Ren and M. H. Dunham. Using semantic caching to
manage location dependent data in mobile computing.
In Proceedings of the 6th Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking
(MobiCom’00), pages 210–221, August 2000.

27. J.T. Robinson. The KDB Tree: A Search Structure for
Large Multidimentional Dynamic Indexes. In Proceed-
ings of the ACM SIGMOD International Conference on



A Distributed Spatial Index for Error-Prone Wireless Data Broadcast 27

Management of Data (SIGMOD’81), pages 10–18, Ann
Arbor, MI, USA, April 1981.

28. H. Samet. The QuadTree and Related Hierarchical
Data Structures. ACM Computing Surveys (CSUR),
16(2):187–260, 1984.

29. H. Schwetman. CSIM User’s Guide (version 18).
Mesquite Software, Inc, http://www.mesquite.com,
1998.

30. A. Seydim, M. Dunham, and V. Kumar. An Architecture
for Location Dependent Query Processing. In Proceed-
ings of the Fourth International Workshop on Mobility
in Databases and Distributed Systems (MDDS’01), 2001.

31. J. Shanmugasundaram, A. Nithrakashyap, R. M.
Sivasankaran, and K. Ramamritham. Efficient Con-
currency Control for Broadcast Environments. In Pro-
ceedings of ACM SIGMOD International Conference on
Management of Data (SIGMOD’99), pages 85–96, June
1999.

32. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Modeling and Querying Moving Objects. In Proceedings
of the 13th International Conference on Data Engineer-
ing (ICDE’97), pages 422–432, April 1997.

33. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications. In Proceedings of confer-
ence of the Special Interest Group on Data Communica-
tion (SIGCOMM’01), pages 149–160, August 2001.

34. Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest
Neighbor Search. In Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB’02), Au-
gust 2002.

35. A. Wang, S. Cho, G. Sodini, and P. Chandrakasan. En-
ergy efficient Modulation and MAC for Asymmetric RF
Microsensor Systems. In Proceedings of the 2001 Interna-
tional Symposium on Low Power Electronics and Design,
2001.

36. J. Wang, R. Sinnarajah, T. Chen, Y. Wei, and E. Tiede-
mann. Broadcast and multicast services in cdma2000.
IEEE Communications Magazine, 42(2), 2004.

37. J. Xu, W.-C. Lee, and X. Tang. Exponential Index: A
Parameterized Distributed Indexing Scheme for Data on
Air. In Proceedings of the 2nd ACM/USENIX Interna-
tional Conference on Mobile Systems, Applications, and
Services (MobiSys’04), Boston, MA, June 2004.

38. J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee. Energy Ef-
ficient Index for Querying Location-Dependent Data in
Mobile Broadcast Environments. In Proceedings of the
19th IEEE International Conference on Data Engineer-
ing (ICDE’03), pages 239–250, March 2003.

39. J. Zhang and L. Gruenwald. Efficient Placement of
Geographical Data Over Broadcast Channel for Spatial
Range Query Under Quadratic Cost Model. In Pro-
ceedings of the 3rd International ACM Workshop on
Data Engineering for Wireless and Mobile Access (Mo-
biDE’03), 2003.

40. J. Zhang and L. Gruenwald. Optimizing Data Placement
Over Wireless Broadcast Channel for Multi-Dimensional
Range Query Processing. In Proceedings of IEEE In-
ternational Conference on Mobile Data Management
(MDM’04), 2004.

41. B. Zheng and D. L. Lee. Information dissemination
via wireless broadcast. Communication of the ACM,
48(5):105–110, 20056.

42. B. Zheng, W.-C. Lee, and D. L. Lee. Spatial index on
air. In Proceedings of the first IEEE International Con-
ference on Pervasive Computing and Communications
(PerCom’03), pages 297–304, March 2003.

43. B. Zheng, J. Xu, W.-C. Lee, and D. L. Lee. Grid-
Partition Index: A Hybrid Method for Nearest-Neighbor
Queries in Wireless Location-Based Services. VLDB
Journal, 15(1):21–39, 2006.


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	8-2009

	A Distributed Spatial Index for Error-Prone Wireless Data Broadcast
	Baihua ZHENG
	Wang-Chien LEE
	Ken C. K. LEE
	Dik Lun LEE
	Min SHAO
	Citation


	dsi-journal.dvi

